

DEPARTMENT OF INFORMATION TECHNOLOGY ELECTROMAGNETICS RESEARCH GROUP

ICEAA - IEEE APWC 2023 Conference

A YUKAWA-CALDERÓN TIME-DOMAIN COMBINED FIELD INTEGRAL EQUATION FOR ELECTROMAGNETIC SCATTERING*

VAN CHIEN LE

October 11, 2023

*A joint work with P. Cordel, F. P. Andriulli and K. Cools.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Time-domain integral equations

TD-EFIE:
$$\mathcal{T} \boldsymbol{j} = -\mathbf{n} \times \boldsymbol{e}^{in},$$
 $(\boldsymbol{e}^{in}, \boldsymbol{h}^{in})$ $(\boldsymbol{\epsilon}, \boldsymbol{\mu})$ **TD-MFIE:** $\left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\boldsymbol{j} = \mathbf{n} \times \boldsymbol{h}^{in},$ $(\boldsymbol{e}^{in}, \boldsymbol{h}^{in})$ Ω

where ${\cal I}$ is the identity operator, $\eta=\sqrt{\mu/\epsilon}, c=1/\sqrt{\mu\epsilon}, R=|{m r}-{m r}'|$, au=t-R/c,

$$\begin{split} (\mathcal{T}\boldsymbol{j})(\boldsymbol{r},t) &= (\mathcal{T}^{s}\boldsymbol{j})(\boldsymbol{r},t) + (\mathcal{T}^{h}\boldsymbol{j})(\boldsymbol{r},t), \\ (\mathcal{T}^{s}\boldsymbol{j})(\boldsymbol{r},t) &= -\frac{\eta}{c}\,\mathbf{n}\times\int_{\Gamma}\frac{\partial_{t}\boldsymbol{j}(\boldsymbol{r}',\tau)}{4\pi R}\,\mathrm{d}s', \\ (\mathcal{T}^{h}\boldsymbol{j})(\boldsymbol{r},t) &= c\eta\,\mathbf{n}\times\mathbf{grad}_{\mathbf{x}}\int_{\Gamma}\int_{-\infty}^{\tau}\frac{\mathrm{div}_{\Gamma}\,\boldsymbol{j}(\boldsymbol{r}',t')}{4\pi R}\,\mathrm{d}t'\,\mathrm{d}s', \\ (\mathcal{K}\boldsymbol{j})(\boldsymbol{r},t) &= -\mathbf{n}\times\mathbf{curl}_{\mathbf{x}}\int_{\Gamma}\frac{\boldsymbol{j}(\boldsymbol{r},\tau)}{4\pi R}\,\mathrm{d}s'. \end{split}$$

A D > A D >

1/18

GHENT UNIVERSITY

э.

→

Time-domain integral equations

TD-EFIE:
$$\mathcal{T}\boldsymbol{j} = -\mathbf{n} \times \boldsymbol{e}^{in},$$
 $(\boldsymbol{e}^{in}, \boldsymbol{h}^{in})$ $(\boldsymbol{\epsilon}, \mu)$ **TD-MFIE:** $\left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\boldsymbol{j} = \mathbf{n} \times \boldsymbol{h}^{in},$ $(\boldsymbol{e}^{in}, \boldsymbol{h}^{in})$ Ω

where ${\cal I}$ is the identity operator, $\eta=\sqrt{\mu/\epsilon}, c=1/\sqrt{\mu\epsilon}, R=|{m r}-{m r}'|$, au=t-R/c,

$$\begin{split} (\mathcal{T}\boldsymbol{j})(\boldsymbol{r},t) &= (\mathcal{T}^{s}\boldsymbol{j})(\boldsymbol{r},t) + (\mathcal{T}^{h}\boldsymbol{j})(\boldsymbol{r},t), \\ (\mathcal{T}^{s}\boldsymbol{j})(\boldsymbol{r},t) &= -\frac{\eta}{c}\,\mathbf{n}\times\int_{\Gamma}\frac{\partial_{t}\boldsymbol{j}(\boldsymbol{r}',\tau)}{4\pi R}\,\mathrm{d}s', \\ (\mathcal{T}^{h}\boldsymbol{j})(\boldsymbol{r},t) &= c\eta\,\mathbf{n}\times\operatorname{\mathbf{grad}}_{\mathbf{x}}\int_{\Gamma}\int_{-\infty}^{\tau}\frac{\mathrm{div}_{\Gamma}\,\boldsymbol{j}(\boldsymbol{r}',t')}{4\pi R}\,\mathrm{d}t'\,\mathrm{d}s', \\ (\mathcal{K}\boldsymbol{j})(\boldsymbol{r},t) &= -\mathbf{n}\times\operatorname{\mathbf{curl}}_{\mathbf{x}}\int_{\Gamma}\frac{\boldsymbol{j}(\boldsymbol{r},\tau)}{4\pi R}\,\mathrm{d}s'. \end{split}$$

TD vs **FD**: TD allows coupling to non-linear systems.

1/18

э.

< ∃ →

Motivations

Numerical issues:

- Late-time (dc) instability
- Dense discretization breakdown
- Large-time step breakdown
- Inaccuracy of sulution
- Nontrivial nullspaces of static MFIE operators on toroidal surfaces
- Resonant instability.

Motivations

Numerical issues:

- Late-time (dc) instability
- Dense discretization breakdown
- Large-time step breakdown
- Inaccuracy of sulution
- Nontrivial nullspaces of static MFIE operators on toroidal surfaces
- Resonant instability.

Goal of this talk: to introduce a TD formulation that is immune to all above issues.

Time-domain and Frequency-domain

Time-domain \Rightarrow **Frequency-domain**: Fourier transform w.r.t. angular frequency $\omega = \kappa c$. **FD-EFIE** operator

$$(T_{\kappa}\boldsymbol{j})(\boldsymbol{r}) = (T_{\kappa}^{s}\boldsymbol{j})(\boldsymbol{r}) + (T_{\kappa}^{h}\boldsymbol{j})(\boldsymbol{r}),$$

$$(T_{\kappa}^{s}\boldsymbol{j})(\boldsymbol{r}) = -j\kappa\eta\,\mathbf{n} \times \int_{\Gamma} \frac{\exp(-j\kappa R)}{4\pi R}\,\boldsymbol{j}(\boldsymbol{r}')\,\mathrm{d}\boldsymbol{s}',$$

$$(T_{\kappa}^{h}\boldsymbol{j})(\boldsymbol{r}) = \frac{\eta}{j\kappa}\mathbf{n} \times \mathbf{grad}_{\mathbf{x}} \int_{\Gamma} \frac{\exp(-j\kappa R)}{4\pi R}\,\mathrm{div}_{\Gamma}\,\boldsymbol{j}(\boldsymbol{r}')\,\mathrm{d}\boldsymbol{s}'$$

FD-MFIE operator

$$(K_{\kappa}\boldsymbol{j})(\boldsymbol{r}) = -\mathbf{n} \times \operatorname{curl}_{\mathbf{x}} \int_{\Gamma} \frac{\exp(-j\kappa R)}{4\pi R} \, \boldsymbol{j}(\boldsymbol{r}') \, \mathrm{d}s'.$$

э

< ∃⇒

Time-domain and Frequency-domain

Time-domain \Rightarrow **Frequency-domain**: Fourier transform w.r.t. angular frequency $\omega = \kappa c$. **FD-EFIE** operator

$$(T_{\kappa}\boldsymbol{j})(\boldsymbol{r}) = (T_{\kappa}^{s}\boldsymbol{j})(\boldsymbol{r}) + (T_{\kappa}^{h}\boldsymbol{j})(\boldsymbol{r}),$$

$$(T_{\kappa}^{s}\boldsymbol{j})(\boldsymbol{r}) = -j\kappa\eta\,\mathbf{n}\times\int_{\Gamma}\frac{\exp(-j\kappa R)}{4\pi R}\,\boldsymbol{j}(\boldsymbol{r}')\,\mathrm{d}s',$$

$$(T_{\kappa}^{h}\boldsymbol{j})(\boldsymbol{r}) = \frac{\eta}{j\kappa}\mathbf{n}\times\operatorname{grad}_{\mathbf{x}}\int_{\Gamma}\frac{\exp(-j\kappa R)}{4\pi R}\,\mathrm{div}_{\Gamma}\,\boldsymbol{j}(\boldsymbol{r}')\,\mathrm{d}s'.$$

FD-MFIE operator

$$(K_{\kappa}\boldsymbol{j})(\boldsymbol{r}) = -\mathbf{n} \times \operatorname{curl}_{\mathbf{x}} \int_{\Gamma} \frac{\exp(-j\kappa R)}{4\pi R} \, \boldsymbol{j}(\boldsymbol{r}') \, \mathrm{d}s'.$$

Frequency-domain \Rightarrow **Time-domain**: inverse Fourier transform w.r.t. ω .

Van Chien Le

October 11, 2023

3/18

Yukawa-Calderón frequency-domain CFIE

A Yukawa-Calderón FD-CFIE formulation:

$$\left(-T_{-j\kappa}T_{\kappa} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$

= $T_{-j\kappa} \left(\mathbf{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\mathbf{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$

Yukawa-Calderón frequency-domain CFIE

A Yukawa-Calderón FD-CFIE formulation:

$$\left(-T_{-j\kappa}T_{\kappa} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$

= $T_{-j\kappa} \left(\mathbf{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\mathbf{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$

Properties:

- \checkmark free from resonant frequencies
- $\checkmark\,$ well-conditioned at all regimes.
- A. Merlini, Y. Beghein, K. Cools, E. Michielssen, and F. P. Andriulli, Magnetic and combined field integral equations based on the quasi-Helmholtz projectors. *IEEE Trans. Antennas Propag.*, vol. 68, no. 5, pp. 3834-3846, 2020.

GHENT

Yukawa-Calderón frequency-domain CFIE Special property

A Yukawa-Calderón FD-CFIE operator:

$$-T_{-j\kappa}T_{\kappa} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa}\right).$$

Given R^{Γ} the loop projection, the following special property holds

$$R^{\Gamma}\left(\frac{1}{2}I - K_0\right)\left(\frac{1}{2}I + K_0\right)R^{\Gamma} = 0.$$

Consequence: symmetrized MFIE operator is compact. Properties:

- $\checkmark\,$ applicable for different domains
- ✓ gives accurate solutions.

Inverse Fourier transform of Yukawa-Calderón FD-CFIE: very complicated!

$$\left(-T_{-j\kappa}T_{\kappa} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$

= $T_{-j\kappa} \left(\mathbf{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\mathbf{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$

B 5

Inverse Fourier transform of Yukawa-Calderón FD-CFIE: very complicated!

$$\left(-T_{-j\kappa}T_{\kappa} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$

= $T_{-j\kappa} \left(\mathbf{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\mathbf{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$

Solution: $T_{\kappa}, K_{\kappa} \Rightarrow T_{\kappa'}, K_{\kappa'}$, with $\kappa' > 0$

4 E 6

-

< <p>Image: A matrix

Yukawa-Calderón time-domain CFIE (cont.)

The Yukawa-Calderón FD-CFIE:

$$\left(-T_{-j\kappa}T_{\kappa'} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa'}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$$

Applying the inverse Fourier transform w.r.t. $\omega' = \kappa' c$ gives the Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa} \mathcal{T} + \alpha \left(\frac{1}{2} I - K_{-j\kappa} \right) \left(\frac{1}{2} \mathcal{I} + \mathcal{K} \right) \right) \mathbf{j}(\mathbf{r}, t)$$

= $T_{-j\kappa} \left(\mathbf{n} \times \mathbf{e}^{in}(\mathbf{r}, t) \right) + \alpha \left(\frac{1}{2} I - K_{-j\kappa} \right) \left(\mathbf{n} \times \mathbf{h}^{in}(\mathbf{r}, t) \right).$

October 11, 2023

4 E 6

-

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Yukawa-Calderón time-domain CFIE (cont.)

The Yukawa-Calderón FD-CFIE:

$$\left(-T_{-j\kappa}T_{\kappa'} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}I + K_{\kappa'}\right)\right) \boldsymbol{j}(\boldsymbol{r})$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r})\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r})\right).$$

Applying the inverse Fourier transform w.r.t. $\omega' = \kappa' c$ gives the **Yukawa-Calderón TD-CFIE**

$$\left(-T_{-j\kappa} \mathcal{T} + \alpha \left(\frac{1}{2} I - K_{-j\kappa} \right) \left(\frac{1}{2} \mathcal{I} + \mathcal{K} \right) \right) \boldsymbol{j}(\boldsymbol{r}, t)$$

= $T_{-j\kappa} \left(\mathbf{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t) \right) + \alpha \left(\frac{1}{2} I - K_{-j\kappa} \right) \left(\mathbf{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t) \right).$

Optimal parameters: $\kappa = (c.\Delta t)^{-1}$ and $\alpha = \eta^2$.

LINIVERSITY

The Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa}\mathcal{T} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\right) \boldsymbol{j}(\boldsymbol{r}, t)$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t)\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t)\right).$$

October 11, 2023

< (T) >

The Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa}\mathcal{T} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\right) \boldsymbol{j}(\boldsymbol{r}, t)$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t)\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t)\right).$$

Properties:

✓ Resonant stability

GHENT UNIVERSITY

31.5

The Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa}\mathcal{T} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\right) \boldsymbol{j}(\boldsymbol{r}, t)$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t)\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t)\right).$$

Properties:

- ✓ Resonant stability
- ✓ Late-time (dc) stability
- ✓ Immune to nullspaces of static MFIE operators on toroidal surfaces

The Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa}\mathcal{T} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\right) \boldsymbol{j}(\boldsymbol{r}, t)$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t)\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t)\right).$$

Properties:

- \checkmark Resonant stability
- ✓ Late-time (dc) stability
- $\checkmark\,$ Immune to nullspaces of static MFIE operators on toroidal surfaces
- $\checkmark\,$ Free from dense discretization and large-time step breakdowns

Yukawa-Calderón time-domain CFIE Properties

The Yukawa-Calderón TD-CFIE

$$\left(-T_{-j\kappa}\mathcal{T} + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\frac{1}{2}\mathcal{I} + \mathcal{K}\right)\right) \boldsymbol{j}(\boldsymbol{r}, t)$$
$$= T_{-j\kappa} \left(\boldsymbol{n} \times \boldsymbol{e}^{in}(\boldsymbol{r}, t)\right) + \alpha \left(\frac{1}{2}I - K_{-j\kappa}\right) \left(\boldsymbol{n} \times \boldsymbol{h}^{in}(\boldsymbol{r}, t)\right).$$

Properties:

- \checkmark Resonant stability
- ✓ Late-time (dc) stability
- $\checkmark\,$ Immune to nullspaces of static MFIE operators on toroidal surfaces
- $\checkmark\,$ Free from dense discretization and large-time step breakdowns
- $\checkmark\,$ Accuracy of the solution.

October 11, 2023

Discretization

October 11, 2023

< 17 ►

9/18

э

Testing schemes

Frequency-domain operators	Time-domain operators
	$\left[\mathbf{e}_{i}\right]_{m}=\left.\left\langle\mathbf{n}\timesoldsymbol{f}_{m},\mathbf{n} imesoldsymbol{e}^{in} ight angle ight _{t=i\Delta t}$
$\left[\mathbb{G} ight]_{mn}=\langle \mathbf{n} imes oldsymbol{g}_m,oldsymbol{f}_n angle$	$\left[\mathbf{h}_{i}\right]_{m}=\left.\left\langle\mathbf{n} imesoldsymbol{g}_{m},\mathbf{n} imesoldsymbol{h}^{in} ight angle ight _{t=i\Delta t}$
$\left[\mathbb{Z} ight]_{mn} = \langle \mathbf{n} imes oldsymbol{g}_m, T_{-j\kappa} oldsymbol{g}_n angle$	$\left[\mathbf{Z}_{i} ight]_{mn}=\left.\left<\mathbf{n} imesoldsymbol{f}_{m},\mathcal{T}\left(oldsymbol{f}_{n}h_{i} ight) ight> ight _{t=0}$
$\left[\mathbb{M}\right]_{mn} = \langle \mathbf{n} \times \boldsymbol{g}_m, K_{-j\kappa} \boldsymbol{f}_n \rangle$	$\left[\mathbf{M}_{i} ight]_{mn}=\left.\left<\mathbf{n} imesoldsymbol{g}_{m},\mathcal{K}\left(oldsymbol{f}_{n}h_{i} ight) ight> ight _{t=0}$

$$\langle oldsymbol{f},oldsymbol{g}
angle = \int_{\Gamma}oldsymbol{f}(oldsymbol{r})\cdotoldsymbol{g}(oldsymbol{r})\,\mathrm{d}s.$$

GHENT UNIVERSITY

э.

A Yukawa-Calderón TD-CFIE for electromagnetic scattering

Marching-on-in-time algorithm

The discretized linear system

$$\begin{pmatrix} \mathbf{L}_0 & & \\ \mathbf{L}_1 & \mathbf{L}_0 & \\ \vdots & \vdots & \ddots & \\ \mathbf{L}_{N_T-1} & \mathbf{L}_{N_T-2} & \dots & \mathbf{L}_0 \end{pmatrix} \begin{pmatrix} \mathbf{j}_1 \\ \mathbf{j}_2 \\ \vdots \\ \mathbf{j}_{N_T} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_{N_T} \end{pmatrix} \implies \mathbf{j}_i = \mathbf{L}_0^{-1} \left(\mathbf{r}_i - \sum_{k=1}^{i-1} \mathbf{L}_k \, \mathbf{j}_{i-k} \right),$$

with

$$\mathbf{L}_{i} = \mathbb{Z}\mathbb{G}^{-\mathsf{T}} \mathbf{Z}_{i} + \eta^{2} \left(\frac{1}{2}\mathbb{G} - \mathbb{M}\right) \mathbb{G}^{-1} \left(\frac{1}{2} \mathbf{G}_{i} + \mathbf{M}_{i}\right),$$

and

$$\mathbf{r}_i = -\mathbb{Z}\mathbb{G}^{-\mathsf{T}}\mathbf{e}_i + \eta^2 \left(\frac{1}{2}\mathbb{G} - \mathbb{M}\right)\mathbb{G}^{-1}\mathbf{h}_i.$$

< ∃ →

ж

< ∃⇒

Numerical results

Geometries

A Yukawa-Calderón TD-CFIE for electromagnetic scattering

October 11, 2023

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Numerical results

Experimental setting

Gaussian-in-time plane wave

$$e^{in}(\mathbf{r},t) = \frac{4A}{w\sqrt{\pi}}\mathbf{p}\exp\left(-\left(\frac{4}{w}\left(c(t-t_0)-\mathbf{k}\cdot\mathbf{r}\right)\right)^2\right).$$

Numerical results are obtained using 4 formulations:

- the standard TD-EFIE;
- the standard TD-MFIE;
- the mixed TD-CFIE

$$\mathbf{Z} + \eta \, \mathbb{G}_{xx} \mathbb{G}^{-1} \left(\frac{1}{2} \, \mathbf{G} + \mathbf{M} \right) = \mathbf{e} + \eta \, \mathbb{G}_{xx} \mathbb{G}^{-1} \mathbf{h};$$

• the Yukawa-Calderón (YC) TD-CFIE.

Numerical results Sphere

A Yukawa-Calderón TD-CFIE for electromagnetic scattering

Numerical results Cuboid

Numerical results Torus

Conclusions and future work

This contribution has introduced a Yukawa-Calderón TD-CFIE formulation, which:

- is immune to resonant instability and late-time instability
- is well-conditioned at all regimes
- gives accurate solutions
- is applicable for different domains
- is not affected by nullspaces of the static MFIE operators on toroidal surfaces.

Future work: to combine the Yukawa-Calderón TD-CFIE with the quasi-Helmholtz projectors to render a stabilized TD-CFIE formulation at low frequencies.

LINIVERSITY

References and acknowledgment

- K. Cools, F. P. Andriulli, F. Olyslager, and E. Michielssen Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects. Part I: Preconditioning. *IEEE Trans. Antennas Propag.*, vol. 57, no. 8, pp. 2352–2364, 2009.
- Y. Beghein, K. Cools, H. Bagci, and D. De Zutter A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation.

IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1228–1238, 2013.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101001847).

Established by the European Commissio

THANKS FOR YOUR ATTENTION!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

