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Electromagnetic contact problem

Let us consider the eddy current equations

∇ ·B = 0,

∇×E = −∂tB,
∇×H = J ,

with the constitutive relations

B = µH, J = σ (E + v ×B) .

We acquire the following interface conditions

[[B · n]] = 0,

[[H × n]] = 0,

[[(E + v ×B)× n]] = 0.
Θ = Σ ∪Π ⊂ Ω.
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The jumping material coefficients

The material coefficients σ and µ are defined by

σ(x, t) =


σΣ(x, t) in Σ(t),

σΠ(x, t) in Π,

0 in Ω \Θ(t),

and

µ(x, t) =


µΣ(x, t) in Σ(t),

µΠ(x, t) in Π,

µair(x, t) in Ω \Θ(t).

At the interfaces of the different materials, σ and µ have jumps, i.e.

[[σ]] 6= 0, [[µ]] 6= 0.
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A− φ formulation

Since ∇ ·B = 0, there exists a unique vector potential A ∈ H1(Ω) of B such that

B = ∇×A, ∇ ·A = 0, A× n = 0 on ∂Ω.

Therefore, from ∇×E = −∂tB, we get that

∇× (E + ∂tA) = 0

or
E + ∂tA = −∇φ.

Thanks to J = σ(E + v ×B), the total current density J can be split into

J = Jsource + Jeddy,

where
Jsource = −σ∇φ, Jeddy = −σ∂tA + σv × (∇×A).
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A− φ formulation (cont.)

The boundary value problem for the scalar potential φ
∇ · (−σ∇φ) = 0 in Π× (0, T ),

−σ∇φ · n = 0 on
(
∂Π \ Γ

)
× (0, T ),

−σ∇φ · n = j on Γ× (0, T ) ,

where ∫
Γ

j(s, t) ds = 0.

From ∇×H = J and B = µH, we derive the initial-boundary value problem for
the vector potential A

σ∂tA +∇× (µ−1∇×A) + χΠσ∇φ
−σv × (∇×A) = 0 in Ω× (0, T ),

A× n = 0 on ∂Ω× (0, T ),

A(x, 0) = A0 in Θ(0).
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Functional setting

Let us consider the following Hilbert spaces

Z =
{
ψ ∈ H1(Π) : (ψ, 1)Π = 0

}
,

W 0 =
{
ϕ ∈ L2(Ω) : ∇×ϕ ∈ L2(Ω),∇ ·ϕ = 0,ϕ× n = 0 on ∂Ω

}
,

with the equipped norms

‖ψ‖Z =‖∇ψ‖L2(Π) ,

‖ϕ‖W 0
=‖∇ ×ϕ‖L2(Ω) .

We recall the well-known Reynolds transport theorem

d

dt

∫
ω(t)

f dx =

∫
ω(t)

∂tf dx +

∫
∂ω(t)

fv · n ds.
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Weak formulation

The weak problem for φ reads as:(
σ(t)∇φ(t),∇ψ

)
Π

+
(
j(t), ψ

)
Γ

= 0 ∀ψ ∈ Z .

For any ϕ ∈W 0, it holds that(
σ(t)∂tA(t),ϕ

)
Θ(t)

+
(
µ−1(t)∇×A(t),∇×ϕ

)
Ω

+
(
σ(t)∇φ(t),ϕ

)
Π
−
(
σ(t)v(t)× (∇×A(t)),ϕ

)
Θ(t)

= 0.

Using the Reynolds transport theorem, the variational formulation for A is defined
as: Find A(t) ∈W 0 such that the following identity holds true for any ϕ ∈W 0

d

dt

(
σ(t)A(t),ϕ

)
Θ(t)
−
(
σ(t)A(t),ϕ(v · n)(t)

)
∂Θ(t)

−
(
γ(t)A(t),ϕ

)
Θ(t)

+
(
µ−1(t)∇×A(t),∇×ϕ

)
Ω

+
(
σ(t)∇φ(t),ϕ

)
Π
−
(
σ(t)v(t)× (∇×A(t)),ϕ

)
Θ(t)

= 0,

where γ = ∂tσ.
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Uniqueness

Theorem

Let the material functions µ ∈ C1 and σ ∈ C2 on each component (in all

variables). Moreover, assume that A0 ∈ L2 (Θ0) , j ∈ Lip
(

[0, T ],H−1/2(Γ)
)
,

v ∈ C1(Ω× [0, T ]) and

0 < σ∗ ≤ σ ≤ σ∗ in Θ; σ = 0 in air

and
0 < µ∗ ≤ µ ≤ µ∗ in Ω.

The variational system admits at most one solution (φ,A) satisfying
φ ∈ L2

(
(0, T ),Z

)
, A ∈ L2

(
(0, T ),W 0

)
and

∥∥√σA∥∥
L2(Ω)

∈ C([0, T ]).
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Time discretization

We partition the time range [0, T ] into n ∈ N equidistant subintervals with the
time step

τ =
T

n
.

The time discretization scheme is defined as: Find φi ∈ Z and Ai ∈W 0 such
that the following identities are valid for any ψ ∈ Z and ϕ ∈W 0

(σi∇φi,∇ψ)Π + (ji, ψ)Γ = 0,

δ (σiAi,ϕ)Θi
−
(
σiAi,ϕ(vi · n)

)
∂Θi
− (γiAi,ϕ)Θi

+
(
µ−1
i ∇×Ai,∇×ϕ

)
Ω

+ (σi∇φi,ϕ)Π −
(
σivi × (∇×Ai),ϕ

)
Θi

= 0,

where

δ (σiAi,ϕ)Θi
=

1

τ

(
(σiAi,ϕ)Θi

− (σi−1Ai−1,ϕ)Θi−1

)
.
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Time discretization (cont.)

Lemma
For any τ < τ0 and for any i = 1, 2, . . . , n, there exists a unique couple
(φi,Ai) ∈ Z×W 0 solving the time discrete system.

Lemma
There exist positive constants C and τ0 such that the following estimates hold
true for any τ < τ0

(i) max
1≤i≤n

‖∇φi‖2L2(Π) ≤ C,

(ii) max
1≤l≤n

‖Al‖2L2(Θl)
+

n∑
i=1

‖∇ ×Ai‖2L2(Ω) τ +

n∑
i=1

‖Ai −Ai−1‖2L2(Θi−1) ≤ C.
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Rothe’s method

We introduce the following Rothe’s functions and domain

φn(t) = φi, An(t) = Ai,

gn(t) = (σi−1Ai−1,ϕ)Θi−1
+ (t− ti−1) δ (σiAi,ϕ)Θi

,

jn(t) = ji, σn(t) = σi, γn(t) = γi, µn(t) = µi, vn(t) = vi, Θn(t) = Θi,

with the initial data φn(0) = φ0,An(0) = A0, gn(0) = (σ0A0,ϕ)Θ0
.

The discrete problems can be rewritten in the continuous sense: for any ψ ∈ Z
and ϕ ∈W 0, it holds that(

σn(t)∇φn(t),∇ψ
)

Π
+
(
jn(t), ψ

)
Γ

= 0,

g′n(t)−
(
σn(t)An(t),ϕ(vn · n)(t)

)
∂Θn(t)

−
(
γn(t)An(t),ϕ

)
Θn(t)

+
(
µ−1
n (t)(∇×An(t)),∇×ϕ

)
Ω

+
(
σn(t)∇φn(t),ϕ

)
Π

−
(
σn(t)vn(t)× (∇×An(t)),ϕ

)
Θn(t)

= 0.
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Convergence on given data

Lemma
There exists a constant C > 0 such that the following relations hold true

max
t∈[0,T ]

∥∥∥jn(t)− j(t)
∥∥∥

H−1/2(Γ)
≤ Cτ,

max
t∈[0,T ]

∥∥vn(t)− v(t)
∥∥
H(div,Ω)

≤ Cτ,

max
t∈[0,T ]

∥∥µn(t)− µ(t)
∥∥

L2(Ω)
≤ C
√
τ ,

max
t∈[0,T ]

∥∥γn(t)− γ(t)
∥∥

L2(Ω)
≤ C
√
τ ,

max
t∈[0,T ]

∥∥σn(t)− σ(t)
∥∥

L2(Ω)
≤ C
√
τ ,

max
t∈[0,T ]

∥∥∇σn(t)−∇σ(t)
∥∥
L2(Ω)

≤ C
√
τ .
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Existence

Theorem

There exists a unique weak solution (φ,A) to the variational system satisfying
φ ∈ L2((0, T ),Z) and A ∈ L2((0, T ),W 0) with

∥∥√σA∥∥
L2(Ω)

∈ C([0, T ]).

Moreover, the following convergences hold true

(i) φn ⇀ φ in L2
(
(0, T ),Z

)
,

(ii) An ⇀ A in L2
(
(0, T ),W 0

)
,

gn → (σA,ϕ)Θ in L1
(
(0, T )

)
.
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Proof of the existence

Proof. The boundedness of
{
φn

}
and

{
An

}
implies the existence of

φ ∈ L2((0, T ),Z) and A ∈ L2((0, T ),W 0) such that

φn ⇀ φ in L2
(
(0, T ),Z

)
,

An ⇀ A in L2
(
(0, T ),W 0

)
.

Thanks to the stability of An, the following strong convergence holds true

gn −
(
σnAn,ϕ

)
Θn

→ 0 in L1((0, T )).
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Proof of the existence (cont.)

Moreover, we can also deduce the following convergences in L1
(
(0, T )

)
(
γnAn,ϕ

)
Θn

→ (γA,ϕ)Θ ,(
µ−1
n ∇×An,∇×ϕ

)
Ω
→
(
µ−1∇×A,∇× ϕ

)
Ω
,(

(∇σn · vn)An,ϕ
)

Θn

→
(
(∇σ · v)A,ϕ

)
Θ
,(

σn (∇ · vn)An,ϕ
)

Θn

→
(
σ (∇ · v)A,ϕ

)
Θ
,(

σnvn,∇
(
An ·ϕ

))
Θn

→
(
σv,∇ (A ·ϕ)

)
Θ
,(

σnvn × (∇×An),ϕ
)

Θn

→
(
σv × (∇×A),ϕ

)
Θ
.

Therefore, we can pass to the limit and use the Reynolds transport theorem to
conclude that (φ,A) solves the variational system.
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Proof of the existence (cont.)

Finally, the following relation can be obtained∣∣(σA,A)Θ (η)− (σA,A)Θ (ξ)
∣∣ . |η − ξ|+ ∫ η

ξ

‖∇ ×A‖2L2(Ω) dt

which implies the continuity in time, i.e.

lim
η→ξ

(σA,A)Θ (η) = (σA,A)Θ (ξ)

and thus
∥∥√σA∥∥

L2(Ω)
∈ C([0, T ]).
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Conclusion

A mathematical model for an electromagnetic contact problem with moving
conductor is investigated.

A time discretization for solving the variational problem is introduced.

The convergence of the numerical scheme is shown.

The existence of a unique weak solution is present.
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Thank you for your attention!
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