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Introduction

Induction heating is a commonly industrial manufacturing process. Some scientific papers deal with the
well-posedness and provide theoretical results, while others propose some numerical schemes. A problem has
imposed in the real industrial processes, where the conductors are moving in the electromagnetic system. We
investigate a model of multi-physics in the domain consisting out of multiple components: moving workpiece,
static coil and air. To our best knowledge, there aren’t any similar works that have been done before.

Mathematical model

Let Ω be an open, bounded and simply-connected domain in R3 containing the moving workpiece Σ, the static
coil Π and the rest air. We denote the velocity vector v, the outward unit normal vector n and the conductors
by Θ = Σ ∪ Π (see Figure 1).
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Figure 1: The domain

Each of subdomains is characterized by different material coefficients:

• the magnetic permeability µ,

• the electrical conductivity σ,

• the thermal conductivity k,

• volumetric heat capacity β.

The time frame is denoted by [0, T ].

The Maxwell equations for electromagnetics in each of continuous media are:

∇ ·B = 0,

∇×E = −∂tB,
∇×H = J ,

with the interface conditions:

[[B · n]]∂Θ(t) = 0, [[H × n]]∂Θ(t) = 0, and [[(E + v ×B)× n]]∂Θ(t) = 0, ∀t ∈ [0, T ].

We consider the constitutive relation between H and B in the linear form:

H = µ−1B.

The Ohm law for moving problem with the velocity v is given as:

J = σ (E + v ×B) .

Since Ω is a simply-connected domain, we have a unique vector potential A ∈ H1(Ω):

B = ∇×A, ∇ ·A = 0, A× n = 0 on ∂Ω,

and a unique scalar potential φ ∈ H1(Ω)/R such that:

E + ∂tA = −∇φ.

Therefore, we have the following initial boundary value problem for the vector potential A:
σ∂tA +∇×

(
µ−1∇×A

)
+ χΠσ∇φ− σv × (∇×A) = 0 in Ω× (0, T ),

A× n = 0 on ∂Ω× (0, T ),

A(x, 0) = A0 in Ω.

The elliptic problem for the scalar potential φ is formed by:
−∇ · (σ∇φ) = 0 in Π× (0, T ) ,

−σ∇φ · n = 0 on (∂Π \ Γ)× (0, T ) ,

−σ∇φ · n = j on Γ× (0, T ) .

The heat transfer problem is as follows:
β∂tT +∇ · (−k∇T + βT v) = Rr (Q) in Ω× (0, T ),

(−k∇T + βT v) · n = α(T − Tc), on ∂Ω× (0, T ),

T (x, 0) = T0 in Ω,

where Rr is the cut function and the Joule heating source Q is the following:

Q =
1

σ
|J |2 = σ |∂tA +∇φ− v ×∇×A|2 .

Finally, we need some transmission conditions on the interface ∂Θ(t) :

[[T ]] = 0, and [[−k∇T + βT v]] = 0.

Variational problems

Define the Banach space XN,0 =
{
u ∈H1(Ω) |∇ · u = 0,u× n = 0 on ∂Ω

}
with the norm:

‖u‖XN,0
= ‖∇ × u‖L2(Ω) .

For any ϕ ∈XN,0, ξ ∈ H1(Π)/R and ψ ∈ H1 (Ω), it holds that

(σ∂tA,ϕ)Θ(t) +
(
µ−1∇×A,∇×ϕ

)
Ω

+ (σ∇φ,ϕ)Π + (σ∇×A,v ×ϕ)Θ(t) = 0,

(σ∇φ,∇ξ)Π + (j, ξ)Γ = 0,

(β∂tT , ψ)Ω + (k∇T − βT v,∇ψ)Ω + (α (T − Tc) , ψ)∂Ω = (Rr (Q) , ψ)Ω .

Time discretization scheme

The time range [0, T ] is divided into n subintervals. For any i = 1, 2, · · · , n, find φci ∈ H1(Π)/R, Ai ∈XN,0

and Ti ∈ H1(Ω) such that: for any ξ ∈ H1(Π)/R, ϕ ∈XN,0 and ψ ∈ H1(Ω)

(σi (Ti−1)∇φci,∇ξ)Π + (ji, ξ)Γ = 0,

(σi (Ti−1) δAi,ϕ)Θi
+
(
µ−1
i ∇×Ai,∇×ϕ

)
Ω

+ (σi (Ti−1)∇×Ai,vi ×ϕ)Θi
= − (σi (Ti−1)∇φci,ϕ)Π ,

(βiδTi, ψ)Ω + (ki∇Ti − βiTivi,∇ψ)Ω + (α (Ti − Tc) , ψ)∂Ω = (Rr (Qi) , ψ)Ω ,

where
Qi = σi (Ti−1) |δAi +∇φci − vi ×∇×Ai|2 .

Theorem 1. For any i = 1, 2, · · · , n, there exists a unique triplet φci ∈ H1(Π)/R,Ai ∈ XN,0 and

Ti ∈ H1 (Ω) solving the time discretization problem.

Convergence

Firstly, we assume that there exists a transportation mapping γ which belongs to C2 class in both of time and
space such that

γ(t) : Θ0→ Θ(t), γ′(t) = v.

Define the following Rothe’s functions:

φn(t) = φci ∀t ∈ (ti−1, ti] ,

An(t) = Ai, An(t) = Ai−1 + (t− ti−1) δAi, ∀t ∈ (ti−1, ti] ,

T n(t) = Ti, T n(t) = Ti−1, Tn(t) = Ti−1 + (t− ti−1) δTi, ∀t ∈ (ti−1, ti] ,

γn(t) = γi, ∀t ∈ (ti−1, ti] ,

An(0) = An(0) = A0, T n(0) = T n(0) = Tn(0) = T0, γn(0) = γ0.

Theorem 2. There exists a solution-triplet {φ,A, T } where φ ∈ L2
(
(0, T ),H1(Π)/R

)
,A ∈

L2
(
(0, T ),XN,0

)
with ∂tA ◦ γ ∈ L2

(
(0, T ),L2 (Θ0)

)
and T ∈ C

(
[0, T ],L2(Ω)

)
∩ L∞

(
(0, T ),H1(Ω)

)
with ∂tT ∈ L2

(
(0, T ),L2(Ω)

)
such that

(i) Tn→ T in C
(

[0, T ],L2(Ω)
)
,

T n→ T , T n→ T in L2
(

(0, T ),L2(Ω)
)
,

Tn(t) ⇀ T (t), T n(t) ⇀ T (t) in H1(Ω) for all t ∈ [0, T ],

∂tTn ⇀ ∂tT in L2
(

(0, T ),L2(Ω)
)
,

(ii) An ⇀ A, ∇×An ⇀ ∇×A in L2
(

(0, T ),L2(Ω)
)
,

∂tAn ◦ γn ⇀ ∂tA ◦ γ in L2
(

(0, T ),L2 (Θ0)
)
,

(iii) ∇φn→ ∇φ in L2
(

(0, T ),L2(Π)
)
,

(iv) φ,A and T solve the variational system.

Conclusions

In this study, we have

• investigated a mathematical model for induction heating with the moving workpiece problem,

• proposed an effective discretization algorithm to solve the variational problems,

• proved the stability and the convergence of the approximation scheme.

Future research

In the future, we should

• investigate the nonlinear model for the induction heating problem,

• deal the induction hardening procedure by considering additional the phase transition kinetic of workpiece.
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