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Introduction

Induction heating is a commonly industrial manufacturing process. Some scientific papers deal with the
well-posedness and provide theoretical results, while others propose some numerical schemes. A problem has
imposed in the real industrial processes, where the conductors are moving in the electromagnetic system. We
investigate a model of multi-physics in the domain consisting out of multiple components: moving workpiece,
static coil and air. To our best knowledge, there aren’t any similar works that have been done before.

Mathematical model

Let Q be an open, bounded and simply-connected domain in R> containing the moving workpiece 3, the static

coil IT and the rest air. We denote the velocity vector v, the outward unit normal vector n and the conductors
by © = X UII (see Figure 1).
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Figure 1: The domain
Each of subdomains is characterized by different material coefficients:

e the magnetic permeability p,
e the electrical conductivity o,
e the thermal conductivity k.

e volumetric heat capacity (.

The time frame is denoted by [0, 7.

The Maxwell equations for electromagnetics in each of continuous media are:

V-B =0,
VxFE=-0B,
VxH-=J,

with the interface conditions:

|B - n]e ) =0, [H x n]se ) =0, and  [(E+wv x B) xn]pg) =0, vVt €10, 7.
We consider the constitutive relation between H and B in the linear form:
H=."'B.
The Ohm law for moving problem with the velocity v is given as:
J=0(E+vxB).
Since (2 is a simply-connected domain, we have a unique vector potential A € H(Q):
B=V x A, V-A=0, Axn=0 on 0f),
and a unique scalar potential ¢ € H'(Q)/R such that:
E +0,A=—-Vo.
Therefore, we have the following initial boundary value problem for the vector potential A:
(0O A+ V x (/flv x A) + xoVe —ov x (Vx A)=0  inQx(0,T),
TAxXxn=0 on 082 x (0,7,
LA(z,0) = Ay in €).

The elliptic problem for the scalar potential ¢ is formed by:

—V - (6Vep) =0 in [T x (0,7,
—oV¢-n=0 on (OIT\T) x (0,T),
—oVo-n=j on ' x (0,7T).
The heat transfer problem is as follows:
BHT +V - (=kVT + 8Tv) =R, (Q) in 2 x (0,7,
(—kVT +8Tv) - n=aT =T, on 02 x (0,7,
T(x,0) =Ty in €2,

where R, is the cut function and the Joule heating source () is the following:
1 2
Q=—|J"=0|0tA+Vod—vxVx A"

%

Finally, we need some transmission conditions on the interface 0O(t) :

[7TT=0, and [-kVT + BTv] = 0.
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Variational problems

Define the Banach space X = {u cH' () |V-u=0,uxn=0on 8@} with the norm:
HuHXN70 — ”V X uHL2<Q) :

For any ¢ € X g, § € HYIT)/R and ¢ € H! (Q), it holds that

(00, @)o + (1Y x A,V x (,0)9 +(0Vé, @)+ (07 x A v X @)o) =0,

(V¢ VE) 1+ (5,8 =0,
(BOT, )+ (VT = BT,V )o + (T = Te) , ¥)gn = (R (@), ¥)q -

Time discretization scheme

The time range |0, 7T is divided into n subintervals. For any ¢ =1,2,--- ,n, find ¢., € HY(II)/R, A; € XN
and 7; € HY(Q) such that: for any & € HI(IT)/R, ¢ € X ypand ¢ € HY(Q)

(03 (Ti=1) Ve, VE + (Ui E)r = 0,

(07 (Ti—1) 0 A, P)g, + (M{lv x A, V X SO)Q + (07 (Tim1) V X Aj,vi X @)g. = = (07 (Ti=1) Ve, )11
(Bi0Ti, ) + (ki VT — BiTivi, Vb + (a (T = Te) , ¥)pn = (R (Q5) , ¥)q

where

Qi =0; (Ti1)|0A; + Ve, —v; x V x Aj|*.

Theorem 1. For any i = 1,2,--- ,n, there exists a unique triplet ¢., € HYIT)/R, A; € XN and
T € i (2) solving the time discretization problem.

Convergence

Firstly, we assume that there exists a transportation mapping v which belongs to C? class in both of time and
space such that

v(t) : ©g — O(t), v (t) = w.

Define the following Rothe’s functions:

D (t) = ¢, Vi € (ti—1, 1],
Ap(t)=A;, Apt)=A;_ 1+ (t—t;_1)0A;, vt € (ti—1,ti],
Tult)="Ti,  Tot)="Ti—1,  Tolt)=Ti—1+({t—ti—1)0T;, vt € (ti—1,ti],
Yn(t) = Vi, vt € (ti—1,t],

t)
(0) = An(0) = Ay,  Tn(0) = T,(0) = Tn(0) = Ty,

|
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n(0) = 0.

Theorem 2. There exists a solution-triplet {6, A, T} where ¢ € L7 ((O,T),Hl(H)/R),A c
L2 ((0,7), X ) with A o~ € L?((0,T),L*(0g)) and T € C([0,T],L*(2)) N L> ((0,T), H (%)
with 0T € L7 ((0,7), LQ(Q)) such that

(i) Ta—aT in € (10,7],12(2)),
To—T., TnoT in 12 ((0,7),L3@)),
Toa(t) = T(t), Tnt)— T in HYQ) forall te|0,T),
oT, — T in 1.2 ((o, ), LZ(Q)) |

(i) A, ~A, VxA,>VxA in 12 ((o,T>,L2(Q)) |
DA, 07, — A oy in 12((0,T),1.2 (@0)) |

(i31) V¢, — Vo

(2v) ¢, A and T solve the variational system.

Conclusions

In this study, we have
e investigated a mathematical model for induction heating with the moving workpiece problem,
e proposed an effective discretization algorithm to solve the variational problems,

e proved the stability and the convergence of the approximation scheme.

Future research

In the future, we should
e investigate the nonlinear model for the induction heating problem,

e deal the induction hardening procedure by considering additional the phase transition kinetic of workpiece.
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