Induction heating with moving conductor *A time discretization scheme & numerical analysis*

Le Van Chien^{*}, Karel Van Bockstal^{**} & Marian Slodička Research group NaM^2 , Department of Mathematical Analysis, Ghent University, Belgium

{vanchien.le, karel.vanbockstal, marian.slodicka}@ugent.be

Introduction

Induction heating is a commonly industrial manufacturing process. Some scientific papers deal with the well-posedness and provide theoretical results, while others propose some numerical schemes. A problem has imposed in the real industrial processes, where the conductors are moving in the electromagnetic system. We investigate a model of multi-physics in the domain consisting out of multiple components: moving workpiece, static coil and air. To our best knowledge, there aren't any similar works that have been done before.

Mathematical model

Let Ω be an open, bounded and simply-connected domain in \mathbb{R}^3 containing the moving workpiece Σ , the static coil Π and the rest air. We denote the velocity vector \boldsymbol{v} , the outward unit normal vector \boldsymbol{n} and the conductors by $\Theta = \Sigma \cup \Pi$ (see Figure 1).

Variational problems

Define the Banach space $X_{N,0} = \{ \boldsymbol{u} \in \boldsymbol{H}^1(\Omega) | \nabla \cdot \boldsymbol{u} = 0, \boldsymbol{u} \times \mathbf{n} = \boldsymbol{0} \text{ on } \partial\Omega \}$ with the norm:

 $\|\boldsymbol{u}\|_{\boldsymbol{X}_{N0}} = \|
abla imes \boldsymbol{u}\|_{\mathbf{L}^{2}(\Omega)}.$

For any $\varphi \in X_{N,0}$, $\xi \in \mathrm{H}^1(\Pi)/\mathbb{R}$ and $\psi \in \mathrm{H}^1(\Omega)$, it holds that

 $(\sigma \partial_t \boldsymbol{A}, \boldsymbol{\varphi})_{\Theta(t)} + \left(\mu^{-1} \nabla \times \boldsymbol{A}, \nabla \times \boldsymbol{\varphi}\right)_{\Omega} + (\sigma \nabla \phi, \boldsymbol{\varphi})_{\Pi} + (\sigma \nabla \times \boldsymbol{A}, \boldsymbol{v} \times \boldsymbol{\varphi})_{\Theta(t)} = 0,$ $(\sigma \nabla \phi, \nabla \xi)_{\Pi} + (j, \xi)_{\Gamma} = 0,$ $(\beta \partial_t \mathcal{T}, \psi)_{\Omega} + (k \nabla \mathcal{T} - \beta \mathcal{T} \boldsymbol{v}, \nabla \psi)_{\Omega} + (\alpha \left(\mathcal{T} - \mathcal{T}_c \right), \psi)_{\partial \Omega} = (\mathcal{R}_r \left(Q \right), \psi)_{\Omega}.$

Each of subdomains is characterized by different material coefficients:

- the magnetic permeability μ ,
- the electrical conductivity σ ,

• the thermal conductivity k,

• volumetric heat capacity β .

The time frame is denoted by [0, T].

Time discretization scheme

The time range [0, T] is divided into *n* subintervals. For any $i = 1, 2, \dots, n$, find $\phi_{c_i} \in \mathrm{H}^1(\Pi)/\mathbb{R}, A_i \in X_{N,0}$ and $\mathcal{T}_i \in \mathrm{H}^1(\Omega)$ such that: for any $\xi \in \mathrm{H}^1(\Pi)/\mathbb{R}$, $\varphi \in X_{N,0}$ and $\psi \in \mathrm{H}^1(\Omega)$

 $(\sigma_i (\mathcal{T}_{i-1}) \nabla \phi_{c_i}, \nabla \xi)_{\Pi} + (j_i, \xi)_{\Gamma} = 0,$ $\left(\sigma_{i}\left(\mathcal{T}_{i-1}\right)\delta\boldsymbol{A}_{i},\boldsymbol{\varphi}\right)_{\Theta_{i}}+\left(\mu_{i}^{-1}\nabla\times\boldsymbol{A}_{i},\nabla\times\boldsymbol{\varphi}\right)_{\Omega}+\left(\sigma_{i}\left(\mathcal{T}_{i-1}\right)\nabla\times\boldsymbol{A}_{i},\boldsymbol{v}_{i}\times\boldsymbol{\varphi}\right)_{\Theta_{i}}=-\left(\sigma_{i}\left(\mathcal{T}_{i-1}\right)\nabla\phi_{c_{i}},\boldsymbol{\varphi}\right)_{\Pi},$ $(\beta_i \delta \mathcal{T}_i, \psi)_{\Omega} + (k_i \nabla \mathcal{T}_i - \beta_i \mathcal{T}_i \boldsymbol{v}_i, \nabla \psi)_{\Omega} + (\alpha (\mathcal{T}_i - \mathcal{T}_c), \psi)_{\partial \Omega} = (\mathcal{R}_r (Q_i), \psi)_{\Omega},$

where

$$Q_i = \sigma_i \left(\mathcal{T}_{i-1} \right) |\delta \boldsymbol{A}_i + \nabla \phi_{c_i} - \boldsymbol{v}_i \times \nabla \times \boldsymbol{A}_i|^2.$$

Theorem 1. For any $i = 1, 2, \dots, n$, there exists a unique triplet $\phi_{c_i} \in \mathrm{H}^1(\Pi)/\mathbb{R}, A_i \in X_{N,0}$ and $\mathcal{T}_i \in \mathrm{H}^1(\Omega)$ solving the time discretization problem.

Convergence

Firstly, we assume that there exists a transportation mapping γ which belongs to C² class in both of time and space such that

 $\gamma'(t) = \boldsymbol{v}.$ $\gamma(t):\Theta_0\to\Theta(t),$

Define the following Rothe's functions:

$\overline{\phi}_n(t) = \phi_{c_i}$			$\forall t \in (t_{i-1}, t_i],$
$\overline{\boldsymbol{A}}_n(t) = \boldsymbol{A}_i,$	$\boldsymbol{A}_n(t) = \boldsymbol{A}_{i-1}$	$+ (t - t_{i-1}) \delta \boldsymbol{A}_i,$	$\forall t \in \left(t_{i-1}, t_i\right],$
$\overline{\mathcal{T}}_n(t) = \mathcal{T}_i,$	$\underline{\mathcal{T}}_n(t) = \mathcal{T}_{i-1},$	$\mathcal{T}_n(t) = \mathcal{T}_{i-1} + (t - t_{i-1})\delta\mathcal{T}_i,$	$\forall t \in \left(t_{i-1}, t_i\right],$
$\overline{\gamma}(t) - \gamma$			$\forall t \in (t \cdot 1 t \cdot]$

The Maxwell equations for electromagnetics in each of continuous media are:

$$\nabla \cdot \boldsymbol{B} = 0,$$

$$\nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B},$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J},$$

with the interface conditions:

$$\llbracket \boldsymbol{B} \cdot \mathbf{n} \rrbracket_{\partial \Theta(t)} = 0, \qquad \llbracket \boldsymbol{H} \times \mathbf{n} \rrbracket_{\partial \Theta(t)} = \mathbf{0}, \qquad \text{and} \qquad \llbracket (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \times \mathbf{n} \rrbracket_{\partial \Theta(t)} = 0, \qquad \forall t \in [0, T]$$

We consider the constitutive relation between H and B in the linear form:

 $\boldsymbol{H} = \boldsymbol{\mu}^{-1} \boldsymbol{B}.$

The Ohm law for moving problem with the velocity \boldsymbol{v} is given as:

 $\boldsymbol{J} = \sigma \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right).$

Since Ω is a simply-connected domain, we have a unique vector potential $\mathbf{A} \in \mathbf{H}^{1}(\Omega)$:

 $B = \nabla \times A$, $\nabla \cdot A = 0$, $A \times n = 0$ on $\partial \Omega$,

and a unique scalar potential $\phi \in \mathrm{H}^1(\Omega)/\mathbb{R}$ such that:

 $\boldsymbol{E} + \partial_t \boldsymbol{A} = -\nabla\phi.$

Therefore, we have the following initial boundary value problem for the vector potential A:

 $\begin{cases} \sigma \partial_t \mathbf{A} + \nabla \times (\mu^{-1} \nabla \times \mathbf{A}) + \chi_{\Pi} \sigma \nabla \phi - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) = \mathbf{0} & \text{in } \Omega \times (0, T), \\ \mathbf{A} \times \mathbf{n} = \mathbf{0} & \text{on } \partial \Omega \times (0, T) \end{cases}$ on $\partial \Omega \times (0, T)$, $\boldsymbol{A}(\boldsymbol{x},0) = \boldsymbol{A}_0$ in Ω .

 $\overline{\boldsymbol{A}}_n(0) = \boldsymbol{A}_n(0) = \boldsymbol{A}_0, \qquad \overline{\mathcal{T}}_n(0) = \underline{\mathcal{T}}_n(0) = \mathcal{T}_n(0) = \mathcal{T}_0, \qquad \overline{\gamma}_n(0) = \gamma_0.$

Theorem 2. There exists a solution-triplet $\{\phi, \mathbf{A}, \mathcal{T}\}$ where $\phi \in L^2((0, T), H^1(\Pi)/\mathbb{R}), \mathbf{A} \in L^2((0, T), H^1(\Pi)/\mathbb{R})$ $L^{2}((0,T), \mathbf{X}_{N,0})$ with $\partial_{t} \mathbf{A} \circ \gamma \in L^{2}((0,T), L^{2}(\Theta_{0}))$ and $\mathcal{T} \in C([0,T], L^{2}(\Omega)) \cap L^{\infty}((0,T), H^{1}(\Omega))$ with $\partial_t \mathcal{T} \in L^2((0,T), L^2(\Omega))$ such that

(i)	$\mathcal{T}_n o \mathcal{T}$	in	$C\left([0,T],L^2(\Omega)\right),$
	$\overline{\mathcal{T}}_n \to \mathcal{T}, \underline{\mathcal{T}}_n \to \mathcal{T}$	in	$\mathrm{L}^{2}\left((0,T),\mathrm{L}^{2}(\Omega)\right),$
	$\mathcal{T}_n(t) \rightharpoonup \mathcal{T}(t), \overline{\mathcal{T}}_n(t) \rightharpoonup \mathcal{T}(t)$	in	$\mathrm{H}^{1}(\Omega)$ for all $t \in [0, T],$
	$\partial_t \mathcal{T}_n \rightharpoonup \partial_t \mathcal{T}$	in	$\mathrm{L}^{2}\left((0,T),\mathrm{L}^{2}(\Omega) ight),$
(ii)	$\overline{A}_n ightarrow A, \nabla \times \overline{A}_n ightarrow \nabla \times A$	in	$\mathrm{L}^{2}\left((0,T),\mathbf{L}^{2}(\Omega)\right),$
	$\partial_t \boldsymbol{A}_n \circ \overline{\gamma}_n \rightharpoonup \partial_t \boldsymbol{A} \circ \gamma$	in	$\mathrm{L}^{2}\left((0,T),\mathbf{L}^{2}\left(\Theta_{0}\right)\right),$
(iii)	$\nabla \overline{\phi}_n \to \nabla \phi$	in	$\mathrm{L}^2\left((0,T),\mathbf{L}^2(\Pi)\right),$

 ϕ , **A** and \mathcal{T} solve the variational system. (iv)

Conclusions

In this study, we have

• investigated a mathematical model for induction heating with the moving workpiece problem,

• proposed an effective discretization algorithm to solve the variational problems,

• proved the stability and the convergence of the approximation scheme.

Future research

The elliptic problem for the scalar potential ϕ is formed by:

$$\begin{cases} -\nabla \cdot (\sigma \nabla \phi) = 0 & \text{in } \Pi \times (0, T), \\ -\sigma \nabla \phi \cdot \mathbf{n} = 0 & \text{on } (\partial \Pi \setminus \Gamma) \times (0, T) \\ -\sigma \nabla \phi \cdot \mathbf{n} = j & \text{on } \Gamma \times (0, T). \end{cases}$$

The heat transfer problem is as follows:

$\boldsymbol{\beta}\partial_{t}\boldsymbol{\mathcal{T}}+\nabla\cdot\left(-k\nabla\boldsymbol{\mathcal{T}}+\boldsymbol{\beta}\boldsymbol{\mathcal{T}}\boldsymbol{v}\right)=\boldsymbol{\mathcal{R}}_{r}\left(Q\right)$	in $\Omega \times (0, T)$,
$(-k\nabla \mathcal{T} + \beta \mathcal{T} \boldsymbol{v}) \cdot \mathbf{n} = \alpha (\mathcal{T} - \mathcal{T}_c),$	on $\partial \Omega \times (0, T)$,
$\mathcal{T}(\boldsymbol{x},0) = \mathcal{T}_0$	in Ω ,

where R_r is the cut function and the Joule heating source Q is the following:

$$Q = \frac{1}{\sigma} |\boldsymbol{J}|^2 = \sigma |\partial_t \boldsymbol{A} + \nabla \phi - \boldsymbol{v} \times \nabla \times \boldsymbol{A}|^2.$$

Finally, we need some transmission conditions on the interface $\partial \Theta(t)$:

$$[\mathcal{T}] = 0,$$
 and $[-k\nabla \mathcal{T} + \beta \mathcal{T} \boldsymbol{v}] = \mathbf{0}$

In the future, we should

• investigate the nonlinear model for the induction heating problem,

• deal the induction hardening procedure by considering additional the phase transition kinetic of workpiece.

References

[1] Jaroslav Chovan, Christophe Geuzaine, and Marian Slodička. A - ϕ formulation of a mathematical model for the induction hardening process with a nonlinear law for the magnetic field. Computer Methods in Applied Mechanics and Engineering, 321:294 – 315, 2017.

[2] Jozef Kačur. Method of Rothe in Evolution Equations, volume 1192. Springer, Berlin, Heidelberg, 1985.

Acknowledgements

* Le Van Chien is supported by the grant number 6016618N of the Fund for Scientific Research - Flanders. ** Karel Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N).