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Abstract

The finite-difference time-domain (FDTD) method to solve the linearised equations of fluid
dynamics has shown to be very powerful and useful in outdoor sound propagation. Practical appli-
cations are however limited due to the large need for computational resources. The numerical dis-
cretisation influences computational efficiency to an important degree. In this paper, some
possible ways to discretise temporal derivatives are studied. Two obvious ways of time-discretisation
namely staggered-in-time (SIT) and a simple collocated-in-time (CIT) scheme are compared to the
prediction-step staggered-in-time (PSIT) scheme. The latter is intended to be used for the calculation
of sound propagation in the typical low wind speeds encountered in the outdoor environment at low
heights above the earth’s surface. It was shown that the PSIT scheme is more stable than the SIT
scheme, so practical calculations are possible. Computational efficiency is increased to an important
degree compared to the CIT scheme. The numerical accuracy (more precisely the amplitude error) of
the PSIT scheme is an important improvement upon SIT. The CIT scheme on the other hand con-
serves amplitude better. The amplitude error becomes larger with increasing wind speed because of
some simplifications during the numerical discretisation. In low wind speeds, the PSIT algorithm can
serve as an interesting compromise between numerical accuracy and the required amount of comput-
ing power.
© 2005 Elsevier Ltd. All rights reserved.

* Corresponding author.
E-mail address: Timothy.Van.Renterghem@intec.ugent.be (T. Van Renterghem).

0003-682X/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.apacoust.2005.10.003


mailto:Timothy.Van.Renterghem@intec.ugent.be

202 T. Van Renterghem, D. Botteldooren | Applied Acoustics 68 (2007) 201-216

Keywords: Finite-difference time-domain method; Linearised equations of fluid dynamics; Outdoor sound pro-
pagation; Numerical schemes

1. Introduction

The finite-difference time-domain (FDTD) technique to solve the linearised equations
of fluid dynamics has become a reference model for complicated outdoor sound propaga-
tion calculations [1-4]. The main advantage upon other simulation techniques is the ability
to take into account in detail arbitrary flow and temperature fields. This method has
shown to be very useful to investigate practical problems, e.g., the use of trees as a curing
measure for screen-induced refraction of sound by wind [2]. The FDTD method is how-
ever computational very expensive. The numerical discretisation plays an important role
in this respect. In this paper, we will focus on explicit and compact (low-order) numerical
schemes, in a Cartesian grid. Compact schemes are preferred for their easy inclusion of
complicated obstacles and easy handling near interfaces between different propagation
media (like the air-ground interface). Since the simulation space in outdoor sound prop-
agation applications is usually very large, explicit schemes are interesting because they
scale very well.

In a medium at rest, a staggered spatial grid and staggered time-discretisation results in
a very efficient numerical scheme for solving the linear, scalar wave equation. Staggered-
in-space means that the acoustical variables (pressure and the components of the particle
velocity) are not discretised at the same physical locations in the computational grid. Stag-
gered-in-time means that the pressure and velocity fields are not updated at the same, dis-
crete times. Central difference approximations of the spatial and temporal derivatives in
such a scheme result in second-order accuracy [5]. The scheme is very compact, which
makes the implementation of boundary conditions simpler. In a staggered spatial grid,
the acoustic pressures are typically situated in the centre of each computational cell, the
components of the particle velocity are on the faces that border each cell. This means,
e.g., that a rigid boundary condition is obtained by simply setting the (orthogonal) particle
velocity at that location to zero.

The scheme is also very efficient in memory usage. Staggered-in-time allows for in-place
computation: the new values of the acoustic pressure and acoustic velocity replace the old
ones in computer memory. Since memory use is often the bottleneck in FDTD simula-
tions, this is an important feature. Stability is ensured as long as the Courant number is
smaller than or equal to 1 [S]. The numerical model is free of amplitude errors [5]. The
phase error is smallest when propagating along the diagonal of the computational cells
and if the Courant number is 1 [5].

The unique performance of such a scheme gets lost when the medium of propagation is
moving. The spatial derivatives of the additional terms in the equations, related to the
flow, must now be calculated over two cells. This does not create a problem: only a special
treatment near the borders of the grid is needed. So a staggered-in-space scheme can still
be used. The time-discretisation on the other hand is critical with respect to numerical sta-
bility. The field values required to calculate the additional terms induced by the flow are
not available at the correct time and thus interpolation is required. Still using the stag-
gered-in-time approach in combination with an explicit scheme in a moving medium
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results in stability issues, as will be shown in Section 4 in this paper. Calculations using this
approach are nevertheless possible in some mild situations. A staggered-in-space, stag-
gered-in-time scheme was used, e.g., to simulate the propagation of an acoustic pulse over
short distances above a flat, rigid ground in the presence of small wind speeds and wind
speed gradients [7]. In case of larger wind speeds, complex wind fields, and certainly when
long simulation times are needed (e.g., in case of multiple reflections), instability will make
meaningful simulations impossible.

The stability problem can be overcome by using a collocated temporal grid [4,6]. The
acoustic pressure and the components of the particle velocity are updated in the latter
at the same discrete times. In Section 4, it will be shown that such a scheme guarantees
stability, even for Mach numbers up to 1. However, compared to the staggered-in-time
scheme, the computational requirements increase to an important degree.

An alternative scheme, namely the “prediction-step staggered-in-time” (PSIT) algo-
rithm [2,3], is studied in detail in this paper, and compared to the time-discretisation
schemes mentioned in previous paragraphs. The PSIT scheme is a compromise between
stability, accuracy and numerical efficiency. The main goal is the simulation of sound
propagation outdoors in presence of the typical (low) wind speeds and wind speed gradi-
ents encountered at low heights above the earth’s surface.

This paper is outlined as follows. The starting equations for sound propagation in a
moving medium are given in Section 2. The PSIT algorithm is developed in Section 3.
As an example, the time-discretisation of the mass—conservation equation is shown and
the typical features of the PSIT scheme are discussed. The developed scheme is compared
to a staggered-in-time and a collocated-in-time scheme in a two-dimensional simulation
space with regard to numerical stability (Section 4) and accuracy (Section 5). Computa-
tional requirements of these numerical schemes are addressed in Section 6. Practical guide-
lines concerning numerical accuracy, computational effort and stability are summarized in
Section 7. Finally, conclusions are drawn in Section 8.

2. Moving-medium sound propagation equations

Sound propagation in a moving medium can be described by the following set of linear
equations [1,3,6,7]:

0

a—lt)+vo-Vp+c2pOV~v:0, (1)
ov 1

—+ V- V)V+(v-V)vg+—Vp =0, (2)
ot Po

where v is the particle velocity vector, p is the acoustic pressure, vq is the background flow
velocity vector, ¢ is the adiabatic speed of sound, pg is the ambient mass density, and ¢ is
time. It is assumed that gravity is neglected, and that the background flow is
incompressible.

The interactions between the sound waves and the flow are limited when using this set
of equations. The acoustic waves do not influence the flow field, and generation of sound is
not considered. The main effects of wind on sound propagation outdoors, namely convec-
tion, refraction and scattering are accounted for in detail. This set of equations describes
sound propagation in a “background flow”. A steady-state flow field is commonly used as
an input for the transient acoustic calculations. Flow calculations can be performed
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independently from the acoustic calculations. This is an interesting approach, since both
types of simulations have different demands concerning the computational grid and time
steps. It is also possible to use commercial computational fluid dynamics (CFD) software,
which makes use of state-of-the-art numerical schemes for flow calculations, suitable tur-
bulence models, etc.

3. PSIT algorithm
3.1. Notations

In this paper, focus is on time-discretisation schemes. All the schemes considered use a
staggered-in-space grid. The same notations as in [5] are used. Indices of spatial and tem-
poral grid points are indicated as subscripts and superscripts, respectively. The acoustic
pressures are determined at grid positions (idx, jdy, kdz) at sampled times /d:

d
péiéx,jdy,k dz) (3)

where dx, dy, and dz are the spatial discretisation steps and d¢ is the time discretisation
step. The indices i, j and k locate the spatial points, the index / indicates a discrete time.
The three components of the particle velocity are determined at staggered grid positions
(140.5s)dr (14-0.5s)dt (14-0.5s)dt
©((£0.5)dvjdykdz)?  Vy(idy,(j£0.5)dykdz)?  Va(id,jdy,(k+0.5) dz)* (4)
In case of a staggered-in-time discretisation, s equals 1. This means that the particle veloc-
ities are updated at intermediate times. When the time-discretisation is collocated, s equals
0. In the latter, the velocity is updated at the same discrete times as the pressures.
The (time-independent) components of the background flow velocity can be discretised
at the same positions of the particle velocity components:

Vox((i40.5)dx,jdy,kdz) s VOp(idx,(j£0.5)dy,kdz)s  V0z(idx,jdy,(k+0.5) dz) - (5)

3.2. SIT and CIT

To illustrate the differences in discretisation of the schemes that are considered, the
pressure equation (1) is studied in detail. The following equations are continuous in space
and discrete in time. Some possibilities for the time-discretisation of the sound propaga-
tion equations in a moving medium are explained briefly in this section.

In a first approach, the staggered-in-time method is used for the time-discretisation of
the non-moving medium terms, while the term containing the background flow velocity is
approximated at the time (/ — 1)dz [7]:

p=pt —dtc?p,V v —devy - Vp'L (6)

In this way, an explicit time-stepping algorithm is obtained: the pressure at the new time
/dt is based completely upon values of the previous times (/ — 1)d¢ and (/ — 0.5)d¢. In-
place computation is possible. Additional memory, compared to the equations that
describe sound propagation in a medium at rest, is only needed to store values of the back-
ground flow velocity. Since Eq. (6) is closely related to the staggered-in-time approach in
absence of flow, it will be indicated throughout this paper as SIT.
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Alternatively both the acoustic pressure and acoustic velocity components can be dis-
cretised at times /dz. The time derivative can now be approximated by a central difference
over 2 time steps and gives:

pl=p'? = 2dec?p,V v = 2dev, - Vp'L. (7)

Eq. (7) is the simplest form of a collocated-in-time scheme, and will be indicated throughout
this paper as CIT. The values of the acoustic pressure of two previous times (/ — 2)d¢ and
(I — 1)dt are now needed to calculate the acoustic pressure at the new time /dz. This means
that the memory requirement is doubled compared to time-stepping based on Eq. (6).

3.3. PSIT

The same temporal grid is used as in the SIT approach (s equals 1 in Eq. (4)). The term
containing the background flow velocity is now taken as half the value at the previous time
(I — 1)dt, and half the value at time /dz:

pl=p" —dtc?p,V - v —0.5dtvy - Vp' — 0.5dtvy - Vp'L. (8)

Such an approach improves stability, as will be shown in Section 4. Writing the unknown
quantities at the left hand side gives:

P +0.5dev - Vpl = p't —dic?p,V - v — 0.5dtvy - Vp'L. 9)

For the discretisation of the spatial derivatives at time /dz, neighboring values of p are in-
volved. The numerical scheme is no longer explicit. This would lead to a band matrix to be
inverted at each time step. Since we are only interested in sound propagation in the typical
(low) wind speeds encountered outdoors at low heights above the earth’s surface, an alter-
native and more efficient approach is chosen. This allows approximating the gradient of
the pressure at time /dz by neglecting the background flow:

Phppr. =P = dic? pgV v, (10)
In this approach, following terms on the left-hand side in Eq. (9) are neglected:
—0.25d#%vy - V[vo - Vp'™'] and — 0.25d#*vy - Vv, - V'], (11)

that are second-order terms in Mach number.
Using Eq. (10) in (9) gives:

p=p" = dicp,V v —divg - V(' = 0.5dtc?p, Vv 0. (12)

The part in between brackets on the right hand side can be seen as the sound propagation
equation to calculate the pressure at time (/ — 0.5)dz in a medium at rest:

pl :plfl _ dthPOV . vl*OAS _ leo . vplf().S (13)

noflow *

During the time-stepping algorithm, we have to make a “prediction” of the sound field as
if there was no flow. This is done after finishing the calculation of the velocity field at time
(I — 0.5)dt and just before the new pressure field is calculated at time /dz.

As can be seen from Eq. (13), the value of p at the new time /ds only depends upon val-
ues at the previous times (/ — 1)ds and (/ — 0.5)dz.

Actually, this equation is quite similar to the CIT Eq. (7). The second and third term on
the right hand side are discretised at an intermediate time (/ — 0.5)dz in Eq. (13), (/ — 1)d¢
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in Eq. (7) relative to the times necessary to discretise the temporal derivative of the pres-
sure (/dt and (/ — 1)dz in Eq. (13), /d¢ and (/ — 2)d¢ in Eq. (7)). The main differences lie in
the fact that the PSIT approach is more efficient in memory use (see Section 6), and that
the CIT scheme does not use a low-Mach number approach.

The discretisation of the velocity Eq. (2) is based on this same approach, and will there-
fore not be discussed here. The time-discretised velocity equation, using the prediction-
step staggered-in-time approach, yields:

YOS — yl=05 _ dtinl —de(vo - V)V

noflow
Po

—dt(V! ow - V) Vo (14)

noflow

4. Stability
4.1. Methodology

Numerical stability of the different approaches considered to solve the moving-medium
sound propagation equations is examined by using theory of discrete time-delay systems
[8]. The spatial discretisation results in a number of local values for the acoustic pressures
p and components of the particle velocities V;. A system matrix is constructed, which cou-
ples each acoustical variable to the relevant quantities at the previous time step(s).

For the matrices of unknowns to be finite, the simulation region of interest must be
bounded. Although boundary conditions can influence stability to an important degree, they
are not of interest in an assessment of stability of a bulk numerical scheme. Therefore, the
grid considered will be periodically extended to an infinite area. The use of so-called cyclic
boundary conditions is a straightforward implementation in a structured grid. Index values
beyond the last element refer to the first elements in each direction and the other way around.

Let P be the array containing all pressures, and V; the array containing the i-compo-
nents of the particle velocities. The distinction is made between collocated-in-time schemes
and staggered-in-time schemes. In the first case, Eqgs. (1) and (2) can be written as

MP' =M P2+ M_P7' + 2R yi=t

(15)
NV! =N, V2 + N, Vi 4 5,.p
In the second case, these equations become
MPl —_ M,1P171 + ZRX.V'ff().S7
" (16)

NV =N, sy 4 §.p

In the previous equations M, N, S and R are sparse matrices containing the parameters
belonging to the different terms in the sound propagation equations. To write these equa-
tions as a general matrix equation describing a discrete time-delay system X" = AX™, we
find in case of Eq. (15):

P! M'M_, MR, M'M_ 0
V! NS, NN, 0 NN, _
X] — lll ’ A — i i —1 i ,—2 (17)
P- 1 0 0 0

yi-! 0 1 0 0
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and in case of Eq. (16):

X’—lP[

105 ) (18)

. M7'M_; +M'RN;'S;, M'RN;'N,, 5
s N;'S; N;'WNias

where the index 7 implicitly refers to an extension to as much vector-components as re-
quired and 0 and 1 indicate matrices of zeros and the unit matrix of appropriate
dimensions.

It can be proven that the discrete system is stable if and only if all eigenvalues (or poles)
of the matrix 4 have a modulus smaller than one [8]. In other words, all eigenvalues must
lie within a circle of radius 1 in the complex plane. The position of the eigenvalues gives an
indication of the severity and type of instability. Besides, some aspects of the numerical
accuracy become visible.

4.2. Stability analysis

A two-dimensional simulation space was considered, in case of a uniform background
flow and in case of the presence of gradients in the background flow velocity. A grid of
10 x 10 cells (periodically extended) is used, leading to 300 eigenvalues for the SIT/PSIT
system and 600 eigenvalues for the CIT system. All schemes use the staggered-in-space
approach.

An explicit integration scheme in a staggered-in-space and staggered-in-time grid, in a
non-moving medium, is stable when the Courant number is equal to or smaller than 1.
This condition can be interpreted as follows: within a single time step, the acoustic wave
may travel at most the distance of one computational cell. In this view, the Courant num-
ber for sound propagation in a uniform flow may be defined as:

(c+ vy)dt
1 1
Vaz Tz

where CN is the Courant Number, c is the speed of sound, and dx and dy are the spatial
discretisation steps in the two-dimensional grid, d¢ is the temporal discretisation step, and
vo 18 the uniform flow velocity.

It was observed that the presence of gradients in the background flow does not signif-
icantly change the stability of the different numerical schemes considered. Stability is dom-
inated by the maximum magnitude of the flow velocity in the computational grid.
Therefore, the stability analysis in the remainder of this section is performed for the case
of a uniform flow.

The results of the stability analysis are shown in Figs. 1 and 2. A uniform flow velocity
of 10 m/s (Mach number of 0.0294) is used. The poles are plotted in the complex plane.
Using the CIT approach, a completely stable system is obtained, provided that the Cou-
rant number, as defined by Eq. (19), is equal to or smaller than 0.5. This alternative sta-
bility condition is caused by time-stepping over two times d¢ in the CIT equations. When
this condition is fulfilled, all poles lie exactly on the unit circle, as shown in Fig. 1.

In case of a staggered-in-time scheme in the presence of flow, there are always some
poles that lie outside the unit circle. The location of the poles in Fig. 2 is the result of
the stability analysis in case of a Courant number, as defined by Eq. (19), equal to 1.

CN = (19)
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o CIT

-1 -0.5 0 0.5 1

Fig. 1. Locations of the eigenvalues of the system matrix 4 in the complex plane, for the CIT scheme. The
uniform background flow velocity is 10 m/s, the Courant number equals 0.5.

The distance between the unstable pole and the unit circle is an indication for the sever-
ity of the instability. Or stated otherwise: the larger this distance, the quicker the instability
appears in a simulation. In Fig. 3, the maximum magnitude of the poles is shown for dif-
ferent Courant Numbers, as defined by Eq. (19), for a uniform flow velocity of 10 m/s
(Mach number of 0.0294). When decreasing the Courant number, there is a shift of the
unstable poles towards the unit circle, however the instability (which becomes eventually
very weak) remains. It can therefore be concluded that SIT and PSIT are theoretically
unstable.

When comparing the PSIT and SIT scheme, it is clear that the PSIT algorithm is ben-
eficial as to stability, since the poles lie more closely to the unit circle. When increasing the
flow velocity (see Fig. 4), the poles shift outside the unit circle, and instability increases. It
can be seen, e.g., that a flow velocity of 5 m/s (Mach number of 0.0147) in the SIT scheme
gives the same “‘severity of instability” at about 22 m/s (Mach number of 0.0647) in the
PSIT scheme. A Courant Number equal to 1, as defined by Eq. (19), is used for
the PSIT/SIT schemes, and a Courant Number equal to 0.5, as defined by Eq. (19), for
the CIT scheme.

Note that this analysis is performed for an infinitely extended open area. Boundary con-
ditions like (perfectly) absorbing boundaries or bulk losses may stabilize the system.

5. Numerical accuracy
5.1. Uniform flow

The numerical accuracy of the different time-discretisation schemes is studied in a
two-dimensional simulation space. Exact analytical solutions for sound propagation in
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-1 -0.5 0

Fig. 2. Locations of the eigenvalues of the system matrix A4 in the complex plane, for the SIT and PSIT scheme.
The uniform background flow velocity is 10 m/s, the Courant number equals 1. In the figure above, a general view
is given; in the figure below, a single quadrant is shown in detail.

a moving medium are limited to the case of a uniform flow. Therefore, the numerical accu-
racy of the different schemes that are considered in this paper is first studied in case of a
uniform flow velocity of 10 m/s (Mach number of 0.0294). A formula to calculate the
sound field due to a point monochromatic source in a two-dimensional homogeneous uni-
formly moving medium is given in [6]. Although this rather simple situation, the differ-
ences in accuracy between the schemes under consideration become clear.
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Fig. 4. Maximum magnitude of the eigenvalues for the SIT (CN =1), PSIT (CN=1) and CIT (CN =0.5)
scheme, with increasing uniform background flow Mach number.

All schemes use a staggered, spatial grid. A point source emits an acoustic pulse. A
point source in a two-dimensional grid is equivalent to an infinite, coherent line source
in a three-dimensional space. The numerical accuracy of a FDTD scheme is characterized
by its amplitude and phase error. Therefore, at two locations (point p; and point p,), close
to each other, time signals are recorded. The ratio in amplitude between these two points
as calculated with FDTD is compared to the ratio that can be expected theoretically. The
phase difference as predicted by FDTD, subtracted from the theoretical phase difference,
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gives the phase error. The amplitude error is expressed in dB per metre to have an estima-
tion of the accuracy in practical calculations. The phase error is expressed in radials per
metre. In outdoor sound propagation, a small amplitude error is of primary concern.
When resonant structures are present, a phase error close to 0 becomes important.

In Fig. 5, accuracy is presented as a function of the wavelength 1 divided by the spatial
discretisation step dx. The Courant number, as defined by Eq. (19), equals 1 for the SIT
and PSIT scheme, and equals 0.5 for the CIT scheme. The flow is directed along one axis
of the grid (0°). Three situations are considered: sound propagation along one axis in
direction of the flow (0°), sound propagation along the diagonal of the (square) cells
(45°) and sound propagation along the other axis of the grid, thus orthogonal to the flow
(90°). The results of the SIT, PSIT and CIT calculations are shown. For comparison, the
results of the SIT calculations in absence of flow are added.

In absence of flow, there is no amplitude error in the SIT approach. For sound prop-
agation along the diagonal of the computational cells, the phase error is very small. The
latter increases when deviating from that (optimal) direction, and reaches its maximum
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0.05 0.05 1 0.025
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Fig. 5. Amplitude error (figures above) and phase error (figures below) with increasing number of cells per
wavelength, for three different propagation conditions. The SIT (CN = 1), PSIT (CN = 1) and CIT (CN = 0.5)
approach in case of a uniform background flow velocity of 10 m/s are considered. For comparison, the numerical
accuracy of the SIT approach in a non-moving medium (CN = 1) is also shown. In the upper plots, the lines
indicating the latter are covered up by the lines of the CIT scheme.
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for sound propagation along one dimension. With an increasing number of cells per wave-
length, the phase error decreases. These findings were shown analytically in [5]. The ampli-
tude error and phase error of the CIT approach in flow follows closely the behavior of the
SIT scheme in a non-moving medium, except for the phase error when propagating along
the diagonal of the cells.

The amplitude of the SIT and PSIT scheme in flow is not error-free. When using 10
computational cells per wavelength in case of a uniform flow velocity of 10 m/s, the
SIT scheme gives an amplitude error of 0.15, 0.1 and 5E-3 dB/m, for sound propagation
in the direction of the flow (0°), along the diagonal of the computational cells (45°) and
orthogonal to the flow (90°), respectively. Using the PSIT approach, these errors become
4E-3, 2E-3 and <1E-4 dB/m. When applying the CIT scheme or the SIT scheme in absence
of flow with this same spatial discretisation, the amplitude error was found to be smaller
than 1E-4 dB/m in the directions that were examined. It should be mentioned that the val-
ues given for the SIT scheme are extrapolated ones, neglecting possible instability.

It can be observed that the amplitude error for PSIT and SIT are smaller for propaga-
tion along the diagonal of the cells. For sound propagation orthogonal to the flow, the
amplitude errors of all schemes are very small, except for the SIT scheme.

The PSIT scheme has clearly a much smaller amplitude error than the SIT scheme. The
stability analysis already revealed this. There is no amplitude error when the poles of the
system lie exactly on the unit circle in the complex plane, as is the case for the CIT scheme.
It is clear from Figs. 2 and 6 that the stable poles (those inside the unit circle) of the SIT
scheme have a smaller modulus than the stable PSIT poles.

The amplitude error in the SIT scheme is caused by the fact that the flow terms are dis-
cretised at the “‘wrong time”. In the PSIT scheme, the amplitude error is caused by neglect-
ing the flow during the prediction step. The minimum value of the magnitude of all poles
in the system, which is an indication for the amplitude error, with increasing flow velocity,
is shown in Fig. 6. With increasing flow velocity, this error increases.

1%~
\ T
N T
\\ [ v
098 *
AN T
0] S T
k-] N T
2 0.96f R H
c ~
(o)} S
£ .
. 0.94f RN
£ ~.
E
0.92 A
.
0.9r|-+-8IT RRNE
~+ - PSIT
——CIT
0.88 ‘ :
0 0.05 0.1 0.15

Mach number

Fig. 6. Minimum magnitude of the eigenvalues for the SIT (CN=1), PSIT (CN=1) and CIT (CN =0.5)
scheme, with increasing uniform background flow Mach number.
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Introducing flow only slightly affects the phase error. The phase is not anymore error-
free when propagating along the diagonal of the cells, since the flow is directed along one
axis of the grid. The different schemes in flow behave more or less similarly.

5.2. Non-uniform flow

Numerical accuracy is further investigated in case of a non-uniform flow. Since no exact
analytical solutions are known in such a sound propagation medium, the CIT approach is
chosen as the reference solution. As was shown by the accuracy study in case of a uniform
flow, the amplitude error was very small for the latter. This approach does however not
allow investigating the phase error. An artificial sawtooth wind speed profile was chosen.
Wind speed is directed horizontally. A linear wind speed gradient of 1/s is used between
the maxima (10 m/s) and minima (0 m/s) in this profile. Such a profile contains upwardly
and downwardly refracting parts. The source is situated at a height were a maximum in the
wind speed is present. Downwind sound propagation is simulated in the free field, in hor-
izontal direction, up to a distance of 100 m from the source.

Calculations with the SIT approach were not possible since instabilities arose before the
receiver at 100 m was reached. Calculations with the PSIT scheme were sufficiently stable.
The accuracy of the latter, compared to the CIT approach, is calculated in our example.
When taking 10 computational cells per wavelength, the amplitude error becomes 0.5 dB
at a distance of 100 m. This means that the increase in the error, compared to the uniform
flow case (with a wind speed equal to 10 m/s), is only 1E-3 dB/m. It can therefore be con-
cluded that numerical accuracy is mainly determined by the magnitude of the flow veloc-
ity. The error induced by the presence of gradients in the flow velocity is of secondary
importance.

6. Computational efficiency

In a (homogeneous) medium at rest, memory requirements are mainly determined by
the number of acoustical variables p and v;. The SIT approach in absence of flow is com-
putational very efficient and is therefore taken as a reference. Such a scheme allows for in-
place computation: the new values of both the acoustic pressures and the components of
the particle velocities replace the old values in computer memory.

In a moving medium, the (background) flow velocity field needs to be stored as well. In
case of a uniform flow, the number of additional variables is only limited to the number of
dimensions of the grid. In the most general situation, and when discretising the compo-
nents of the background flow velocities at the locations of the components of the particle
velocities (see Section 3.1), the fields of vy; need to be stored and use the same amount of
memory as the v; fields.

The SIT approach in flow, compared to the SIT scheme in a medium at rest, only needs
additional memory to store values of the background flow velocity. For the CIT scheme,
the values of the acoustical variables of two time steps need to be kept in memory as well,
leading to a doubling of memory use when comparing with the SIT scheme in flow.

It might seem that for the PSIT scheme the same amount of memory is needed as for the
CIT scheme. However, when using the same memory locations to temporarily store the
predictions of the pressures and the predictions of the components of the velocities, mem-
ory use is increased to a lesser degree. In Table 1, an overview is given of the number of
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Table 1
Number of acoustical variables p and v; needed in the SIT, PSIT and CIT scheme, in case of a one-dimensional,
two-dimensional and three-dimensional simulation space

SIT PSIT CIT
1D 2 3 4
2D 3 4 6
3D 4 5 8

acoustical variables p and v; needed to perform simulations in a one-dimensional, two-
dimensional and three-dimensional simulation space. The memory needed to store values
of the background flow velocity is not considered in Table 1.

In a two-dimensional grid, the memory requirements of the PSIT scheme are 2/3 of
those of the CIT scheme. In a three-dimensional simulation space, this ratio reduces fur-
ther to 5/8. It is clear that the PSIT approach is beneficial as to memory use.

The different schemes can be ordered with regard to computation speed as follows:
SIT > PSIT > CIT. The SIT and PSIT scheme perform time-stepping with the same tem-
poral discretisation step, leading to a Courant Number equal to 1. An additional calcula-
tion is needed at each time step in the PSIT scheme, for each acoustical variable. This
results in an important increase in calculation time of PSIT compared to SIT. Computing
times are however less than doubled, since during the prediction step the background flow
is neglected. This means that fewer terms need to be calculated.

The CIT scheme is slower, since the Courant Number has to be limited to 0.5, resulting
in a doubling of the number of time steps needed. Besides, at each time step, all flow terms
in the discretised equation need to be included.

7. Discussion

The SIT and PSIT scheme are computational much more efficient than the CIT scheme.
On the other hand, it is clear the CIT approach is better compared to PSIT and certainly
to SIT as regards numerical accuracy. The applicability of the SIT scheme seems doubtful
because of the large amplitude error and numerical instability. Calculations with the SIT
scheme in [7] were however in good agreement with analytical solutions. It has to be men-
tioned that wind speeds were very low in these calculations, in combination with very short
propagation distances. Besides, almost 20 computational cells were used for the highest
frequency under consideration.

When using the PSIT scheme for downwind sound propagation in a uniform flow of
10 m/s, only 0.4 dB is numerically dissipated over a distance of 100 m and when using
10 computational cells per wavelength. The presence of gradients in the flow velocity only
slightly increases this error. In practical applications, when using a broadband source, this
will be the maximum error, and only applies to the highest frequency that is modeled. The
increased accuracy that can be obtained with the CIT scheme must be weighted against the
increase in computational effort when performing calculations. Sound propagation calcu-
lations over long distances need very large amounts of computational resources, even with
a scheme like PSIT.

Examples of the usefulness of the PSIT scheme in non-uniform flows can be found in
[2]. Numerical calculations are compared to measurements in two wind tunnel experiments
with noise barriers, described in detail in [9-11]. Flow fields in the latter are complex
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because of the presence of large gradients in the flow velocity and also by the presence of
rotating flows. The propagation distances in these experiments were smaller than 100 m. In
a first one [9], sound propagation over a single noise barrier in flow was modeled. Simu-
lations with the PSIT [2] approach were shown to be accurate. In a second experiment,
noise barriers on both sides of a source were modeled, in combination with wind speed
reducing measures [10,11]. The flow fields near the barriers consisted in both upwardly
and downwardly refracting flows. Because of the multiple reflections between the barriers,
time signals were long. It was found that SIT simulations were not possible in such a con-
figuration, not only for the low accuracy of this scheme, but also because instability inter-
fered with the relevant signals, preventing meaningful simulations. The use of the PSIT
approach resulted in sufficiently stable calculations. Good agreement was obtained with
experimental results [2]. About 10 computational cells per wavelength were used for these
calculations (for sound propagation in air), for the highest frequencies considered. The
maximum magnitude of the wind velocity in the simulation grids was in all cases smaller
than 20 m/s.

8. Conclusions

In this paper, the prediction-step staggered-in-time (PSIT) finite-difference time-
domain scheme is studied in detail. Focus was on the time-discretisation of the mov-
ing-medium sound propagation equations, for compact and explicit numerical schemes
in a Cartesian grid. A comparison with more obvious time-discretisation schemes like
staggered-in-time (SIT) and collocated-in-time (CIT) was performed. It was shown that
the PSIT scheme is a good compromise between these schemes. In contrast to the SIT
scheme, stability is improved to an important degree, so the simulation of sound prop-
agation in the outdoor environment in the presence of realistic wind fields near the
earth’s surface becomes possible. Compared to the CIT scheme, computational efficiency
is strongly increased, as concerns both computing times and memory use. The phase
error of all schemes considered is very similar. The amplitude error of the PSIT scheme
is much smaller than the amplitude error of the SIT scheme. In the CIT approach how-
ever, there is in theory no amplitude error. It was found that the magnitude of the flow
velocity is dominant to the presence of gradients, as concerns both stability and numer-
ical accuracy.

With increasing wind speed, the amplitude error increases in the PSIT algorithm. This is
caused by the prediction step where the background flow is neglected in order to have an
explicit and efficient numerical scheme. Depending on the available computational
resources, the magnitude of the wind speed and the desired accuracy, an appropriate
time-discretisation scheme should be used. The PSIT algorithm is a compromise between
numerical accuracy, computing time and memory use.
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