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ABSTRACT
The finite-difference time-domain (FDTD) method, solving the inhomogeneous, moving
medium sound propagation equations, also referred to as the Linearized Euler(ian) Equations
(LEE), has become a mature reference outdoor sound propagation model during the last two
decades. It combines the ability to account for complex wave effects like reflection, scattering
and diffraction near arbitrary objects, and complex medium effects like convection, refraction
and (turbulent) scattering. In addition, it has the general advantages of a time-domain method. It
is indicated that the numerical discretisation scheme should be chosen depending on the flow
speed of the background medium. Perfectly matched layers, applicable to cases in presence of
(non-)uniform flow, are state-of-the-art perfectly absorbing boundary conditions that are key in
outdoor sound propagation applications, where only a small part of the unbounded atmosphere
can be numerically described. Various ways to include outdoor soils are summarized, like time-
domain impedance plane boundary conditions and explicitly including the upper part of the soil
in the simulation domain. Approaches for long-distance sound propagation, including moving
calculation frames and hybrid modeling are discussed. This review deals with linear sound
propagation only.

1. INTRODUCTION
During the last two decades, time-domain modelling has received a lot of interest as it
was shown to have great potential. One of the major advantages is that the response
over a broad frequency range can be obtained with a single simulation run only, on
condition that a short acoustic pulse is excited at the source position. Clearly, the spatial
discretisation will limit the range of frequencies that can be sufficiently resolved. As
analysis of a system’s response is often more convenient in frequency domain, a Fourier
transform can still provide the necessary information in a post-processing step. 
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Time-domain models further allow including non-linear effects that appear near high
amplitude sources. A time-domain approach directly models the waveform; therefore, its
distortion can be captured, corresponding to a transfer of sound energy in between
sound frequencies. The latter is less trivial in a frequency-domain technique, focusing
on a single frequency at a time. In time domain, moving sources and related doppler-
shifts, as well as transient behavior can be simulated directly. In addition, source
localization using time-reversal techniques clearly needs a time-domain approach.
While traditionally sound propagation is treated in the frequency domain, time-domain
approaches emerged in the last two decades mainly due to the increased access to
computing power.

Moving and inhomogeneous media may strongly effect sound propagation in the
near field of realistic sources, as well as in the far field. Near airplanes e.g., sound is
emitted in a flowing medium, and the radiation pattern is strongly influenced by the
shape of structures like wings or outlet ducts. Similarly, engine noise exiting the exhaust
pipe of a car results in a specific radiation pattern influenced by strong temperature
gradients at the interface between the jet and surroundings, in combination with high
outflow speeds. A model capable of taking into account both diffraction and scattering
by arbitrary shapes in combination with complex flow effects is required in such
applications.

Such initial, near-field propagation effects, after generation of sound, are relevant for
engineering radiation of sound at the source. But also in the far field, sound propagation
is influenced considerably by flow and medium inhomogenities, often referred to as
atmospheric effects. Especially gradients in the wind velocity and air temperature affect
sound propagation in the atmospheric boundary layer over large distances [1][2].
Downwind or under temperature inversion conditions, wave-guiding is observed,
strongly increasing sound pressure levels. Upwind, extended shadow regions are
formed, where only turbulent scattering or creeping sound waves could lead to some
sound penetration from a specific source [3]. Furthermore, atmospheric absorption
processes are strongly influenced by relative humidity and air temperature, and to a
lesser extent, by atmospheric pressure [4].

A volume-discretisation time-domain technique is well suited to study propagation
of broadband sound in arbitrary moving media and temperature fields. This paper
reviews specifically the finite-difference time-domain method as an approach to model
sound propagation in the atmospheric boundary layer. Topics of concern are defining a
suitable set of sound propagation equations and their numerical discretisation; the
treatment of infinitely and finitely absorbing boundary conditions; and approaches for
long-range sound propagation. Linear acoustics are considered.

2. GOVERNING SOUND PROPAGATION EQUATIONS
Starting equations for time-domain implementations of sound propagation in the
atmosphere have been scrutinized by Ostashev et al. [5]. Departing from the linearized
equations of fluid dynamics, simplifications can be made when the atmosphere is
assumed to be an ideal gas, when the magnitude of the flow speed vector v0 is smaller
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than the speed of sound c, when spatial variations in ambient air pressure are neglected,
and when internal gravity waves are of no concern. This leads to the following closed
set of coupled partial differential equations in the particle velocity vector v and acoustic
pressure p :

(1)

(2)

In these equations t denotes time and r0 is the mass density of air.
This set of equations [6][7][8][5] has been commonly proposed to study in detail

sound propagation in the atmosphere where there is interest in the effect of a
combination of wave phenomena as observed in a motionless medium (like reflection,
diffraction and scattering by arbitrary objects) and flow effects like refraction,
convection and (turbulent) scattering. These equations are often called linear(ized)
Euler(ian) equations (LEE).

Equations (1) and (2) only describe sound propagation. Consequently, sound
generation terms are absent in contrast to common aeroacoustic equations. The flow
does not generate sound here (but e.g. deforms the wavefronts) and the acoustics do not
influence the (non-acoustic) macro fluid flow. Therefore, these equations were referred
to as “sound propagation in background flow” in Ref. [7]. In contrast to reference
frequency-domain outdoor sound propagation techniques like the Parabolic Equation
(PE) method (see e.g. [1] for an overview) or the Fast Field Program (FFP) (see e.g. [1]
for an overview), arbitrary flow fields can be accounted for. Including an
inhomogeneous medium does not induce difficulties in a volume-discretisation
technique as will be discussed further in the text.

In the equations above, atmospheric absorption is not included. Although this effect
can be relatively easily added to Eq. (2) (e.g. as a general diffusion term as proposed in
Ref. [6]), this is not optimal from an efficiency point of view. A more efficient approach
is performing appropriate filtering on the time-domain signal afterwards, avoiding
additional simulations for the wide range of air temperature and relative humidity
combinations that are commonly observed in the atmosphere.

3. NUMERICAL DISCRETISATION
In contrast to frequency-domain techniques, both the temporal and spatial discretisation
of the governing sound propagation equations are of concern, strongly influencing
numerical accuracy, numerical efficiency and numerical stability. The specific choice
could depend on the application of interest and the magnitude of the background flow.
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A primary choice is whether to only use pressures to discretise the sound propagation
domain (called p-FDTD), or using both particle velocity components and pressures 
(p-v FDTD) as depicted in Fig. 1. While only using pressures strongly reduces the
number of unknowns in the calculation grid, already in its simplest form second-order
derivatives are necessary. Consequently, additional fields need to be stored in memory
to prevent mixing old and new fields during time-stepping, partly mitigating this
memory-related benefit. p-FDTD has a certain popularity in room acoustics and audio
applications [9][10][11], where flow is of no concern. p-v FDTD is the obvious way to
implement the coupled set of partial differential Eqs. (1) and (2). A single equation with
only the acoustic pressures as unknowns cannot be derived, unless simplifications are
made to the flow field.

In case of p-v FDTD, a choice between a staggered and collocated spatial
discretisation has to be made (see Fig. 1). In a staggered grid, the pressures and
velocities do not appear at the same physical locations in the grid, but are shifted in
place. Typically, the pressures are located in the centre of each cell, while the particle
velocity components are located on the faces that border each computational cell. In a
collocated grid, pressures and all components of the velocities appear e.g. in the centre
of each computational cell.

3.1. Homogeneous still medium
In absence of flow, so when v0 = 0, such a staggered-in-place grid has remarkable
properties. This specific scheme originates from the so-called Yee cell [12], developed
to solve the Maxwell equations with the FDTD technique in electromagnetic
applications. At a lowest possible order, it can be shown that the error term from the
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Figure 1: The different basic spatial and temporal discretisation setups in FDTD.
Acoustic pressures are indicated with dots, the components of the particle
velocities with arrows (SIP = staggered-in-place, CIP = collocated-
in-place, SIT = staggered-in-time, CIT = collocated-in-time).



Taylor expansion is reduced with a factor 4 relative to the collocated spatial
representation of velocities and pressures. It can be seen as if the discretisation is
virtually halved by taking the spatial gradients closer to the location where they are
actually needed. The staggered-temporal approach (where the pressures and velocities
are not updated at the same discrete times, but in a leap-frog manner) has similar
benefits. A major advantage of such a staggered temporal grid is the possibility for in-
place-computation : the old values are replaced by the new ones in computer memory
during time-integration, which is highly efficient.

The Courant number governs both numerical stability and accuracy. Following its
definition, it actually states that within one time step, a sound wave may travel at
maximum one grid cell further. Detailed analysis of this FDTD scheme in absence of
flow shows that amplitude errors are absent at all Courant numbers [13]. The phase
error depends on the propagation direction and is therefore asymmetric. There are no
phase errors for sound propagation along the diagonal of square cells when the Courant
number is equal to one [13]. Exactly along a coordinate axis, the phase error is largest.
A Courant number of 1 is also most interesting along this propagation direction. Not
only from the viewpoint of accuracy, but also for numerical efficiency this is optimal:
a minimum number of time steps are needed for sound to reach a given distance.

Given this inherent phase error, a rather fine spatial discretisation is needed to reduce
this numerical dispersion and 10 computational cells per wavelength are usually advised
in a lowest-order discretisation. When accurate phase predictions are required for a
specific application, an even finer spatial discretisation should be chosen.

Higher-order schemes enhance phase accuracy at a given spatial discretisation.
Higher-order spatial discretisation seems most optimal when applying so-called
dispersion-relation preserving schemes [14], where the Taylor coefficients are slightly
adapted, depending on the specific scheme. Although higher-order schemes are clearly
interesting, time steps need to be reduced to keep simulations stable; relaxing the need
for a fine spatial discretisation should be weighed against the increase in calculation
time. Furthermore, this could lead to a much more complicated boundary treatment than
in compact schemes. This is a drawback, as FDTD is especially interesting in cases with
many objects and interfaces at close distance, including object with concave and convex
parts and including complicated object-induced gradients in the propagation medium.

Higher-order temporal discretisation approaches including more terms from the
Taylor-series expansion, to better approach the continuous derivatives, is not interesting
as for each increase in order, additional pressure and velocity fields have to be kept in
memory during time-stepping. This strongly increases the computational cost which is
often a bottleneck in FDTD applications. More advanced low-storage techniques have
been developed like the one proposed by Bogey and Bailly [15] based on the Runge-
Kutta approach, still explicitly solving these equations.

3.2. Inhomogeneous medium
Inhomogeneous mediums are rather easily modeled in a volume-discretisation
technique. Each grid cell can be assigned a different temperature, leading to a (local)
variation in sound speed. Clearly, the highest temperature will determine the time step,
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meaning that in other parts of the propagation domain the phase error cannot be
minimized anymore.

3.3. Moving medium
In case of moving media, staggered-in-place is still an appropriate choice for spatial
derivatives. The temporal discretisation needs more care as instability issues might
appear. The (forward-difference) staggered-in-time (SIT) approach, as used in a
motionless medium, was shown to be both unstable and inaccurate [16], albeit
computationally fast. Although this method has been employed successfully in specific
applications involving flow [6][17], its use should be discouraged certainly in case of
higher flow speeds and long-distance sound propagation. The accuracy of this specific
scheme was quantified in Ref. [16], for sound propagation in a uniform (very) low-
Mach number flow. In Ref. [5], a similar comparison with an analytical solution at
higher flow speeds further confirmed its inaccuracy.

The theoretically correct and numerically stable approach for temporal derivatives in
flow is the collocated-in-time (CIT) scheme [5][16], involving centered finite-
differences. In contrast to the staggered-in-time approach, pressures and velocities are
now updated at the same discrete times. Consequently, an additional particle velocity
field and acoustic pressure field need to be kept in memory to perform time stepping in
a lowest-order implementation. As a result, the memory cost is doubled, while time
steps are halved. The increase in computational cost, relative to sound propagation in a
still medium, is therefore large. This discretisation scheme shows [5] to be capable of
accurately solving Eqs. (1) and (2), up to Mach numbers equal to 1. Similarly as in
absence of flow, there are no amplitude errors. The phase error is hardly affected by the
presence of flow [16].

In a way to conciliate the accuracy and stability of the CIT scheme and the
calculation efficiency of SIT, the so-called prediction-step staggered-in-time (PSIT)
approach was proposed in Refs. [7] and [8] and scrutinized in Ref. [16]. The staggered-
in-time updating of acoustic pressures and particle-velocity components is retained, but
an intermediate step is introduced, updating the fields deliberately neglecting flow.
These fields are then subsequently used in the equations including the flow terms. This
approach allows keeping an explicit updating scheme. In contrast to the CIT scheme,
only a single additional field needs to be stored, whose memory allocation can be used
both for the acoustic pressures and the components of the particle velocities. The phase
error is not affected relative to sound propagation in a still medium, while the amplitude
error is strongly reduced relative to the SIT scheme [16]. For the rather low wind speeds
as typically observed in the atmospheric surface layer, this method shows to be
sufficiently accurate (let say, for Mach numbers smaller than 0.1). This scheme shows
to be marginally unstable. However, with increasing flow speeds, stability and accuracy
issues appear with PSIT and the use of CIT is then advised.

3.4. Turbulent medium
Although detailed computational fluid-dynamics (CFD) models like direct-numerical
simulation (DNS) or large-eddy simulation (LES) could produce momentary turbulence
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fields (that are directly employable in a finite-difference time-domain model, see e.g.
Ref. [18]), the huge computational cost involved is still an important barrier for their
wide use. In addition, the desired spatial resolution in a finite-difference time-domain
technique is often too demanding.

A common approach to account for turbulent scattering is the so-called frozen
turbulence approach [1]. The sound-propagation medium is perturbed by local
variations in the flow speed and temperature in such a way that the statistics of the
turbulent realizations are close to those of specific turbulence models or correspond to
experiments. Next, sound propagation is calculated through various realizations,
allowing to calculate statistics on e.g. the sound pressure. Such turbulent-field
realizations can be constructed in various ways, like e.g. with the turbule or quasi-
wavelet approach as proposed by Goedecke et al. [19][20] or by projecting fluctuation
spectra, with random phase, to the physical space [21][22]. These approaches have been
applied to homogeneous isotropic turbulence above a flat ground. Examples of such
realisations are shown in Fig. 2.
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Figure 2: Three turbulent field realisations employing the turbule [20] theory for
flow velocity turbulence (homogeneous and isotropic turbulence;
solenoidal eddies). A Kolmogorov spectrum is used, with Cv

2 = 0.035
m4/3/s2. Eight length scales have been considered, with radii of the
vortices ranging from 1.5 m to 0.11 m. Turbulent kinetic energy fields are
depicted (in m2/s2).



In Van Renterghem [7], the turbulent kinetic energy field (“k-field”), as calculated
with a standard k-e turbulence-closure CFD model, was used to adapt the local
turbulence strength of such turbules. To some extent, the inhomogeneous turbulence as
observed in the urban environment near roof level is then accounted for. Heimann and
Blumrich [23] used a somewhat related technique, and added the concept of “transient
turbulence” to avoid calculating through many realizations of a turbulent atmosphere.

It was argued in Ref. [21] that the FDTD method has high potential to account for
turbulent scattering at all angles and to include multiple scattering, in combination with
wave phenomenons present in a non-turbulent (moving and inhomogeneous)
atmosphere.

4. INFINITE BOUNDARY CONDITIONS
Two types of infinite boundary conditions are generally of concern, namely a perfectly
reflecting and a perfectly absorbing boundary condition. Full reflection is easily
modeled in a staggered spatial grid since on the faces bordering a grid cell, the normal
particle-velocity components are defined. Setting this component to zero models a rigid
boundary condition.

Implementing perfectly absorbing boundary (PAB) conditions is challenging in a
full-wave numerical technique. However, PABs are essential in outdoor sound
propagation : the unbounded sound propagation region (i.e. the atmosphere) has to be
truncated to a finite simulation domain. An impedance plane boundary condition, on
which the impedance of the propagation medium is imposed, is a sound approach from
a theoretical point of view, but shows to have a too limited accuracy in FDTD
implementations. Numerical experiments show that for normally-incident sound waves,
typical reductions in reflection are less than 40 dB relative to the incident sound energy
[7].

Therefore, so-called “zonal techniques” are needed; various approaches were
reviewed by Hu [24]. The perfectly-matched layer (PML) theory, originally proposed
by Berenger for electromagnetic FDTD applications [25], is a highly accurate PAB and
is state-of-the-art in acoustic FDTD applications [26]. The basic idea is that a layer of
cells is needed near the grid borders having a gradual increase of the damping. This
ensures that there is sufficient acoustic energy loss when the sound waves reach the
borders of the computational domain, while the change in impedance near the interface
between the bulk grid and the absorbing layers is minimal. In absence of flow, a
damping term is introduced in both the equation updating the velocity and pressure over
time. Imposing perfect absorption at all angles of incidence and at all sound frequencies
leads to surprisingly simple “matching” conditions: the ratio of the damping coefficient
in both equations is the mass density of the bulk propagation medium. An essential step,
in analogy to the original formulation by Berenger [25], is splitting the acoustic pressure
- although it is a scalar - in an orthogonal and parallel component relative to the interface
to introduce an additional degree of freedom. However, PMLs in unsplit physical
variables have been developed as well [27] as theoretical analysis showed that the split-
set of equations is not strongly well-posed [28].
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With increasing number of cells to constitute the absorbing layer, the reflection at the
interface decreases. When well designed, 100 dB reduction in acoustic energy upon
reflection, over a wide range of angles of incidence and frequencies, could be reached
with a reasonable PML thickness [7].

PMLs have been developed for a moving medium as well [26][27][28][29][30].
However, in the implementation proposed in Refs. [7] and [8], the matching conditions
were shown not to depend on the (uniform) flow speed. Still using uniform-flow PMLs
in presence of (strong) flow gradients only leads to a slightly worsened performance [7],
meaning that the PMLs remain highly accurate. However, dedicated approaches are
possible [31].

5. FINITE-IMPEDANCE BOUNDARY CONDITIONS
Materials, from a historical point of view, have been acoustically characterized mainly
in the frequency domain. A frequency-independent impedance plane is easily
implemented and accurate in a p-v FDTD grid. However, most materials behave
strongly different in function of sound frequency. Using a fixed impedance and
repeating calculations to obtain the response at various frequencies of interest is
therefore highly inefficient: One of the main assets of a time-domain technique, namely
the possibility to acquire a broadband response with a single simulation, would be lost
then.

There are two main approaches, either using an impedance plane as a material
boundary condition, or including (a part of) the material in the simulation domain.

5.1. Impedance–plane approach
In a brute-force approach, direct convolution is a possibility, yielding the time-domain
analogy of any frequency-domain function. However, such an operation is unattractive
as it is computationally highly demanding. In theory, the full time history has to be kept
in memory at each boundary point for accurate representation of the interaction between
the sound wave and the material.

Two types of impedance plane approaches have been considered in time-domain
simulations. A first option is considering a physical model. A second option is using
specific functions, allowing a (relatively) easy translation to the time-domain. Next, the
parameters of such formulations (sometimes referred to as “template functions”) are
found by curve fitting to obtain a specific frequency-impedance behavior. The physical
sound propagation equations are not explicited in the latter. Therefore, only forms
obeying a number of conditions could lead to stable and accurate time-domain
implementations: Causality (meaning that only previous values are needed to perform
time-updating), passivity (meaning that the real part of the impedance is larger than or
equal to zero for all sound frequencies), and reality (the particle velocity and pressure in
time-domain are real values; consequently, also the time-domain representation of the
frequency-impedance model must be real) are needed [32].

This section summarizes some impedance plane boundary conditions that were
shown to be applicable to model reflections from typical outdoor soils. The methods
discussed are expected to have a wider applicability, though.
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5.1.1. Expansion around jw
An attractive model, with a clear physical meaning, is a mass-damper-spring system
[13][33], characterized by the following impedance equation :

, (3)

with j the imaginary unit and w the pulsation, a-1 is the spring constant, a0 a material
damping constant and a1 the mass; all these material parameters are expressed per unit
area. Interestingly, each term can be easily translated to the time domain: the 1/jw –term
corresponds to a simple time integration, demanding only a single additional variable to
be kept in memory at each boundary point. The constant term is solved by linear
interpolation over time, while the mass term jw corresponds to a time-derivative.
However, the unbounded air-propagation time step should be reduced with a
factor to ensure numerical stability [13]. It was shown in Ref. [34] that such a
system obeys the necessary conditions of causality and passivity on condition that
realistic physical values are used for the coefficients. Putting such a system in series
allows introducing more complex behavior of materials or increases the degree of
freedom in curve fitting [35]. In order to capture the typical steep descent in impedance
in the low-frequency range for outdoor soils, Heutschi et al. [36] proposed to add a
(1/jw)2 term to approach e.g. the Delany and Bazley model [37], widely used to
represent reflection on grass-covered soil in outdoor sound propagation. However, the
double integration needed to express this additional term in the time-domain was found
to lead to a positive feedback loop and instable results [36]. The latter was solved, in a
practical way, by slightly damping this term, which did not induce a significant loss in
numerical accuracy for typical cases of sound propagation outdoors for source and
receiver at low heights. This is consistent with the analysis performed by Dragna [34],
showing that the Delany and Bazley model [37] is actually not suited as a time-domain
boundary conditions since it is theoretically not possible to simultaneously obey the 3
conditions of reality, causality and passivity.

5.1.2. Direct convolution
The following sum of terms can be efficiently implemented in time domain:

(4)

as the inverse Fourier Transform can be written as a sum of exponentially decreasing
functions [38]. Consequently, this allows calculating a direct convolution not entailing
an excessive computational cost. Furthermore, each term can be implemented in a
recursive way, only needing a single additional variable per term considered necessary
to approach a particular frequency-impedance curve. This method was shown to be
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applicable to the Miki model [39] to approach typical outdoor soils like grass-covered
ground and snow [40]; rigid backing was used for the latter. This direct convolution can
be considered as a generalization of the mass-spring-damper approach following
analysis in Ref. [41].

5.1.3. Rational functions
Another possibility is describing a frequency-dependent impedance by a rational
function [42][43][44]:

. (5)

Ostashev et al. [43] proposed Pade-approximants for the Zwikker and Kosten [45]
impedance boundary condition and for the Attenborough 4-parameter model [46]. It
was shown in Ref. [43] that when using fractional derivatives, a causal time-domain
boundary condition can be formulated. The fractional derivatives can be efficiently
calculated using exponentially decaying functions in a recursive approach.

The use of rational functions to approach frequency-dependent impedances is related
to infinite impulse response (IIR) filters, that are commonly designed in the z-domain.
Such an approach is known to be able to provide the required real coefficients. Design
in the z-domain rapidly leads to discretised FDTD equations. This methodology was
shown to be accurate and efficient in typical room acoustics applications [47].

5.2. Modeling sound propagation through (a layer of) soil
The aforementioned time-domain impedance plane boundary conditions assume locally
reacting materials. Non-locally reacting materials can be modeled by including (part of)
the porous material inside the simulation domain, in contrast to only modeling the
interface between two media. In the first option, sound propagation inside the material
is explicitly resolved and the physical sound propagation equations in the material
should be known. Also when there is only interest in the reflected waves at the interface,
such an approach can be interesting.

5.2.1. Poro-rigid frame model
A popular model to account for soil reflections in finite-difference time-domain
simulations is the one by Zwikker and Kosten [45]. This rigid-porous medium model
assumes that the constituting part of the material, i.e. the frame, does not vibrate with
the incident sound wave. This is a reasonable assumption when the density of the
material matrix and its stiffness are significantly higher than those in air. For many
outdoor soils, this condition is fulfilled. The model employs three material parameters
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namely the flow resistivity s, the porosity j and the so-called structure constant ks,
which is linked to the tortuosity:

, (6)

, (7)

, (8)

. (9)

The main reason for its popularity is the ease in implementation and the fact that
additional numerical constraints are limited compared to sound propagation in
unbounded air. A general damping term is introduced in the velocity equation (Eq. (6)),
which is proportional to the flow resistivity of the soil, and the (scalar) mass density r’
and speed of sound c’ in the material are adapted based on the porosity and structure
constant, as illustrated by Eqs. (6)–(9).

The implementation of Eqs. (6)–(9) has been analyzed in detail. Some care is needed
when using this type of model in case of higher flow resistivities. To ensure accuracy, a finer
grid than needed in bulk air must be applied to accurately capture the rapid decrease in sound
pressure near the soil interface. A sudden grid refinement with a factor 4 is proposed in Ref.
[17] near the interface air-ground. A gradual grid refinement, reducing spurious reflections
in the refinement area, was proposed in Ref. [7].

Numerical stability of the FDTD implementation of the Zwikker and Kosten model
[45] was scrutinized in Ref. [48]. With increasing product of flow resistivity and
medium porosity, time steps should be slightly decreased to obtain stability. Increasing
the structure factor seems to stabilize simulations. The rigid-porous medium seems to
be less restrictive as for the time step in case of an already fine spatial grid in unbounded
air. However, smaller time steps are needed in case large spatial steps are used in
unbounded air.

The rather simple approach by Zwikker and Kosten does not capture all relevant
physics of sound interacting with outdoor soils, especially for propagation through soils
at high frequencies and low flow resistivities [49]. In its basic form, sound reflection is
rather accurately modeled. Making the parameters weakly frequency-dependent extends
its range of applicability [49], however, departing from the rather straightforward
implementation as discussed above.
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5.2.2. Poro-elastic frame models
Poro-elastic soil models have been implemented as well in the time-domain. The
coupled movement of the frame and air inside the porous medium then needs to be
accounted for. Two approaches, inspired by Biot’s theory [50][51], have been reported
for time-domain modeling of outdoor sound propagation. Dong et al. [52] only
discretise the pore’s air particle velocities and frame velocities inside the porous
medium, while above the soil only acoustic pressures are used in representing the sound
field. Ding et al. [53] consistently follow the p-v FDTD approach in both the unbounded
air and the poro-elastic medium. This means that inside the soil, not only the pore air
pressure and particle velocity, but also the frame pressure and frame velocity are
resolved.

Compared to a rigid-porous medium, additional medium parameters are the bulk
modulus of the frame and frame density. In Biot’s frequency-domain approach, some
medium parameters were assigned an imaginary part, in order to model frame damping.
An additional frame-damping coefficient has been used instead in Ref. [53], while Dong
et al. [52] directly model friction in the air-filled pores. No additional numerical stability
issues have been reported in these references.

6. LONG DISTANCE SOUND PROPAGATION
A volume-discretisation technique like FDTD, even when fully optimized, is not well
suited to calculate sound propagation up to large distances. In this section, some
alternatives are discussed to tackle this problem and summarized in Fig. 3.

6.1. Moving-frame FDTD
On condition that a short, acoustic pulse is excited at the source position, the moving
frame FDTD allows performing calculations at minimum computational cost. Instead
of updating the fields throughout the full spatial grid, calculations are only made in a
limited zone of the grid, centered around the propagating pulse. This calculation frame
then moves with the speed of sound in the desired direction. A moving-frame approach
prevents updating acoustic variables in zones where hardly any acoustic energy is
present. The moving calculation frame should include the full vertical extent of the grid,
however.

This method has been applied to sound propagation from a coherent line source over
a rigid ground plane in a refractive atmosphere [17], and was shown not to decrease
numerical accuracy. A fixed calculation frame has been used in the latter. When using
programming languages allowing dynamic memory allocation, even more efficient
implementations are possible. In Ref. [54], multiple narrow frames are employed by
threshold-based memory allocation, allowing to follow distinct reflections as well.
Clearly, if the sound propagation problem becomes too reverberant, no gain is observed
anymore by the use of a moving frame.
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6.2. Hybrid modelling
Many noise-control engineering cases need highly detailed modelling in a source zone,
while at the same time, sound propagation up to a large distance is required. Clearly, it
is very hard to conciliate these two demands within a single numerical technique.

Various spatial domain-decomposition methods have been proposed in the field of
outdoor acoustics, typically combing a full-wave technique near the source, with the
parabolic equation method [55] or a geometrical acoustics approach to reach far-away
receivers [56].

Especially the combination of FDTD and PE [57] is interesting as the effect of flow
is accounted for in both the source region and outside, while wave effects are preserved.
A PE method assumes one-way sound propagation in a limited angle around the source
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Figure 3: Schematic representation of long-distance sound propagation approaches
based on finite-difference time-domain modeling, employing (a) moving
frame FDTD (fixed-width calculation frame), (b) dynamic moving frame
FDTD, and (c) a hybrid FDTD-PE method.



and the effective sound speed approach [1]. These assumptions allow efficient yet
accurate predictions of long-distance sound propagation in the atmosphere. Although a
combination between a full-wave technique and geometrical acoustics has its merits, an
essential problem is that the latter relies on a high-frequency approach outside the
source region. Note that usually the low-frequency content of a source becomes
dominant after long-distance propagation as high frequencies are easily absorbed in the
atmosphere [4].

The hybrid method between FDTD and PE has been analysed in detail in Ref. [57].
The Green’s Function Parabolic Equation (GFPE) [1] has been used, given its high
efficiency (e.g. the possibility for stepping at various wavelenghts in the propagation
direction) and the possibility to capture most relevant outdoor sound propagation
aspects (like range-dependent arbitrary sound speed profiles, range-dependent ground
impedance, accounting for terrain undulations [1][58][59], turbulent scattering, etc.). A
one-way coupling was proposed, where FDTD constitutes a vertical array of pressures
at a frequency of interest at close distance from the source region, forming the starting
function for GFPE. This vertical array is then subsequently propagated up to the
receiver distance as in a standard GFPE calculation. Accuracy is hardly affected by this
coupling. The mismatch in grid height between FDTD and PE is solved in Ref. [57] by
employing the decrease of sound pressure in the PML towards the top of the FDTD grid,
forming the basis for the extrapolation of the pressure towards the top of the PE grid,
which is typically much higher. The gain in computational efficiency is huge, relative to
applying FDTD to the full sound propagation region, if even possible [57].

6.3. Undulating terrain
Long-distance sound propagation typically involves ground undulations that might
significantly affect sound propagation. Transformation from the traditional structured
Cartesian grid to a curvilinear coordinate system, following the terrain undulations, is a
popular and efficient technique [54][60][61]. This method allows time-domain
impedance-plane boundary conditions to be applied to the uneven terrain, while the
same numerical approaches as in a rectangular coordinate system can still be used.

7. CONCLUSIONS AND DISCUSSION
The finite-difference time-domain method has become a mature reference sound
propagation model over the last two decades. It has the advantages of a time-domain
method namely the possibility to obtain a broadband frequency response with a single
simulation, the possibility to include non-linear effects and the treatment of moving and
realistic sources. In an arbitrary moving medium, finite-difference time-domain
implementations are needed that resolve both the particle velocity and the acoustic
pressure.

The numerical discretisation scheme strongly influences numerical stability,
numerical accuracy, and numerical efficiency. Since FDTD calculations are typically
computationally highly demanding, well-though choices should be made. Analysis
shows that staggered spatial grids are interesting both in presence and absence of flow.
In flow, however, collocated temporal grids are accurate and stable up to Mach numbers
of 1 when solving the LEE, but lead to a strong increase in computational cost. 
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The prediction-step staggered-in-time (PSIT) approach shows to be a compromise
between accuracy, stability and computational efficiency at low Mach number flows.

Perfectly matched layers efficiently model perfectly absorbing boundaries when
truncating the atmosphere to a finite calculation domain. The presence of flow does not
deteriorate its behavior.

The treatment of finite-absorbing boundaries has long been considered an important
drawback of time-domain approaches. However, various techniques have been proposed
to model impedance-plane boundary conditions as well as explicitly modeling sound
propagation inside a porous medium.

Long-distance sound propagation is either possible with fixed or dynamic moving
calculation frames or by hybrid modeling. A coupled FDTD-PE method is especially
interesting as it allows including moving and inhomogeneous medium effects in both
the source region and during propagation towards receivers far away. Curvilinear
coordinate transformations allow the inclusion of undulating terrains that might
especially be relevant in case of long-distance sound propagation.

An interesting numerical technique closely related to the finite-difference time-
domain technique is the pseudo-spectral time-domain method [62]. Essentially, spatial
derivatives are solved in the wave-number domain, needing a multiplication only. The
efficiency of this method relies heavily on the availability of efficient forward (and
backward) Fourier transforms. In addition, phase errors are absent on condition that the
Nyquist sampling criterion is obeyed, leading to the need of only 2 cells per wavelength
in theory. This method corresponds to a spatial stencil equal to the full extent of the
simulation domain along a particular coordinate axis and can therefore be considered as
a high-order finite-difference approach. This method has been applied to Eqs. (1) and
(2) by Hornikx et al. [63] for applications in outdoor sound propagation. Although its
large potential, approaches to implement frequency-dependent boundary conditions are
lacking. Up till now, only frequency-independent impedances have been implemented,
either by modeling a second medium with a different density [63], or with a constant and
real impedance plane [64].
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