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Summary
An efficient hybrid model is presented for sound propagation in situations with several reflecting obstacles near
the source. A Finite-Difference Time-Domain (FDTD) model is used in the complex source region, while a
Parabolic Equation (PE) model is used for propagation to a distant receiver. The models are coupled by transfor-
mation of FDTD results at the boundary of the source region from the time domain to the frequency domain. The
FDTD-PE model takes into account multiple reflections of sound waves in the source region, and interaction of
sound waves with complex wind fields near the obstacles. It is shown that the FDTD-PE model is accurate, and
requires considerably smaller computer times and memory than FDTD does.

PACS no. 43.20.El, 43.28.Fp, 43.28.Gq, 43.28.Js

1. Introduction

Noise barriers are widely used to reduce traffic noise. Ac-
curate calculation of sound propagation over noise barriers
is therefore of practical interest. Barriers cause reflection
and diffraction of sound waves. In situations with barri-
ers on both sides of a road, multiple reflections between
the barriers occur. In addition, sound waves are refracted
by wind and temperature gradients. Complex wind fields
near noise barriers have a large effect on sound waves.

Sound propagation in situations with several reflecting
obstacles and arbitrary wind and temperature fields can be
modeled with a Finite-Difference Time-Domain (FDTD)
model [1, 2, 3, 4, 5, 6]. The FDTD model is based on nu-
merical integration of the linearized Euler equations in the
time domain. A drawback of the FDTD model is that it
requires large computer times and memory.

A more efficient model for outdoor sound propagation
is the Parabolic Equation (PE) model [7, 8, 9, 10, 11]. The
PE model is based on a one-way wave equation in the fre-
quency domain. Consequently, the PE model is suitable
for long-range sound propagation over flat ground, but less
suitable for sound propagation in situations with several
reflecting obstacles and arbitrary wind fields.

In many practical situations, e.g. a road with noise bar-
riers, obstacles are located near the source while further
away from the source there are no objects that significantly
disturb the sound field. In these situations it is of interest
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to use a hybrid FDTD-PE model. FDTD is applied in the
complex source region, while PE is used for propagation
over flat ground to a distant receiver. In this way, compu-
tational efficiency is optimized.

In this article we present such a hybrid FDTD-PE
model. Section 2 gives a general description of the cou-
pling of FDTD, a time-domain model, to PE, a frequency-
domain model. Section 3 describes the numerical imple-
mentation of the hybrid model. In section 4 we present
FDTD-PE results for a number of test cases, and compare
the results with results of other models (FDTD, GFPE, ray
model). In this way we show that the FDTD-PE model is
accurate. Complex atmospheric and acoustic effects, such
as atmospheric turbulence and non-locally reacting ground
reflection, are not included in the test cases, to keep the
comparison as clear as possible. Section 5 discusses nu-
merical efficiency of the FDTD-PE model, in terms of
computer time and memory.

2. General approach

Figure 1 illustrates the basic approach of the FDTD-PE
model. In the source region (gray area in the figure),
with complex obstacles and complex wind fields, we use
FDTD. The coupling of FDTD and PE occurs at a verti-
cal array of intermediate receivers, located at the bound-
ary of the source region. FDTD results at the intermediate
receivers are used to generate starting functions for PE.
Propagation to a distant receiver is computed with PE.

We use a 2D version of the FDTD model [1, 2], based
on the 2D Euler equations. The source is represented by
a broadband sound pulse. We calculate time signals of the
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sound pressure at the intermediate receivers. The compu-
tational domain of FDTD is chosen a little larger than the
source region, so the boundary of the domain is not too
close to the intermediate receivers. We allow for some
space for so-called ‘perfectly matched layers’ [2, 12] at
the top, right, and left boundaries of the computational do-
main, to simulate an unbounded atmosphere.

Spectral decomposition of the time signals yields start-
ing functions for PE, for a wide range of frequencies
at the same time. The vertical spacing of the intermedi-
ate receivers, and also the FDTD grid spacing, is chosen
equal to the PE grid spacing for the highest frequency
for which calculations are performed (e.g. one tenth of a
wavelength). We use the Green’s Function PE (GFPE) ver-
sion of the PE model [9, 10, 11]. Since we use 2D FDTD,
we also use 2D GFPE. Sound pressure levels at the dis-
tant receiver are transformed to relative levels by subtract-
ing ‘free-field’ sound pressure levels, i.e. levels for an un-
bounded homogeneous atmosphere. In the appendix of this
article we show that relative levels in 2D are equal to rela-
tive levels in 3D, in good approximation.

3. Implementation

This section describes details of the FDTD-PE model. We
use the xz coordinate system shown in Figure 2. The
source is located at range xs and the receiver is located
at range xr. Intermediate receivers at the boundary of the
source region are located at range xi.

3.1. FDTD in the source region

In the source region we take into account not only reflec-
tion and diffraction by obstacles, but also refraction in-
duced by complex wind fields around obstacles. There-
fore, we first perform a CFD calculation with software
package Fluent [13] to obtain a stationary background
wind field for the FDTD calculation. The CFD calculation
is based on Reynolds averaging, and employs an appropri-
ate turbulence closure model.

For FDTD simulation of sound propagation without
background flow (i.e. wind) it is advantageous to use a
staggered grid, which means that acoustic pressure and
acoustic velocity are discretized on mutually shifted sub-
grids [1, 2]. A staggered grid is used most naturally with
a staggered time-integration scheme (pressure and veloc-
ity are updated at different times). In cases with back-
ground flow, however, the additional flow terms in the
wave equations introduce some complications. Two op-
tions are found in the literature to solve this. Either one
uses a collocated time-integration approach (pressure and
velocity are updated at equal times) [5] or one uses the
staggered time-integration approach in combination with
a prediction step without background flow [2]. Both ap-
proaches have their own characteristics of memory use,
computing times, numerical stability, and accuracy [14].
For this work we used the latter approach.

We use a computational grid with square cells. For the
grid spacing !x we use a value of one tenth of the wave-

Figure 1. Schematic illustration of FDTD-PE model. FDTD is
used in the source region (gray area), with complex obstacles and
complex wind speed profiles. The FDTD computational domain
is a little larger than the source region, so the intermediate re-
ceivers are located well within the FDTD computational domain.
PE is used for propagation of the signals at the intermediate re-
ceivers to a distant receiver.

Figure 2. Geometry with xz coordinate system. The source re-
gion (gray area) extends to range xi.

length corresponding to the highest frequency of interest.
The time step !t is chosen such that the 2D CFL numberp
'c!t*!x is unity (c is the speed of sound). The FDTD

model described above was validated by comparison with
experimental data for various situations with noise barriers
[12].

The surface of obstacles can be described by a surface
impedance that is approximated in the time domain us-
ing a first order series expansion [15]. A more careful im-
plementation of the ground surface is required for sound
propagation over natural ground [16]. Alternatively, one
may include a layer of absorbing ground material in the
simulation domain [4, 12]. For the comparisons presented
in this article, we assumed a rigid ground surface in the
source region, thus avoiding the problem of the represen-
tation of the ground surface. Spurious reflections from the
‘open’ boundaries of the computational domain are elimi-
nated by ‘perfectly matched layers’ [2, 12].

The FDTD calculation in the source region starts with a
broadband sound pulse emitted by the source. We generate
a Gaussian wavelet by adding to the sound pressure at the
source position at each time step the time integral of the
following function of time t

f"t# . A sin
#
'$fc"t! t##

$
exp

#! "t! t##
%*%

$
(so we add the sum

P
f"tj#!t over time levels tj start-

ing from t$ . %). Here A is a parameter related to the
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amplitude of the pulse, fc is a central frequency, t# is a
time delay, and % is a parameter related to the bandwidth
&*"'

p
%# of the pulse. It should be noted that one may also

generate a starting pulse by assuming a Gaussian pressure
distribution at t . % in a small region around the source
position, for example; this approach yields identical nor-
malized sound pressures (see section 3.5) as the approach
described above does. Time signals of the sound pressure
at all grid points at range x . xi (i.e., at the intermediate
receivers) are recorded.

3.2. FDTD outside the source region

In this work, propagation outside the source region is cal-
culated with PE. However, for the sake of comparison of
the computational efficiency of models (in section 5), an
efficient ‘moving-window’ implementation of FDTD [4]
outside the source region is briefly discussed in this sec-
tion.

We assume that outside the source region the one-way
propagation approximation is valid, which is required for
application of PE. This implies that the efficient moving-
window implementation of FDTD can be used, at least if
we have a short pulse-like signal traveling through the at-
mosphere. By restricting the computational grid to a mov-
ing window that follows the pulse, the number of grid cells
that must be kept in memory is reduced. Grid cells outside
the window can be ignored since the field is zero at these
cells. In this way, computer times and memory can be very
much reduced. If the pulse is smeared out over a longer
time, for example owing to multiple reflections between
parallel noise barriers (see section 4), the moving-window
approach loses its efficiency.

3.3. Transition from FDTD to PE

To generate starting functions for PE, the FDTD time sig-
nals are transformed by FFT to the frequency domain.
This gives starting functions of the complex sound pres-
sure p"zj# sampled at grid points j . &( '( ' ' ' at x . xi,
for a range of frequencies covered by the broadband sound
pulse.

Some manipulations are required to adjust the starting
functions p"zj# to the PE grid, for two reasons:
1. the PE vertical grid spacing !z is one tenth of a wave-

length and therefore varies with frequency, while p"zj#
from FDTD is sampled at one tenth of the wavelength
corresponding to the highest frequency,

2. the PE grid may be higher than the FDTD grid.
The first point is solved by interpolation of the starting

function p"zj# at the PE grid points. The second point is
solved by extrapolation of the starting function p"zj# to the
top of the PE grid. We used the following approach: linear
extrapolation of the phase angle of p and linear tapering to
zero of the magnitude of p.

We enforce continuity of the sound pressure but not of
the acoustic velocity at the transition, as PE employs only
the sound pressure as an independent variable. It is not ob-
vious that this approach gives accurate results. The numer-
ical test calculations presented in section 4 show, however,

that the results are accurate. In principle, the coupling of
FDTD and PE may also be disturbed by the one-way prop-
agation approximation of PE, the angular limitation of PE,
and the absorbing top layers employed with FDTD and PE.
These points should be taken into account in the choice of
the computational domains of FDTD and PE.

3.4. PE

We use a 2D GFPE model, which is closely related to
the axisymmetric 3D GFPE model described in Refs.
[9, 10, 11]. The 3D model is based on transformation of
the complex pressure p to the variable q . p

p
r, where r

is propagation range. For an axisymmetric system, the 3D
Helmholtz equation for p corresponds to a 2D Helmholtz
equation for q, which is transformed into a parabolic equa-
tion for one-way sound propagation. So by using q . p
instead of q . p

p
r, we obtain a 2D GFPE model.

A PE calculation starts with a starting function, which is
provided by FDTD in this case. The starting function is ex-
trapolated stepwise in positive x direction on a grid with
rectangular cells (x is equal to range r indicated above).
The vertical grid spacing is one tenth of a wavelength,
while the horizontal grid spacing may be several wave-
lengths [9, 10, 11]. At the top of the PE grid an absorbing
layer is used to prevent spurious reflections. Atmospheric
wind is taken into account by using the effective sound
speed approximation. The ground is modeled by a com-
plex, frequency-dependent impedance. The output of a PE
calculation is the complex sound pressure at the receiver.

3.5. Relative sound pressure levels

Finally the 2D PE results are converted to relative sound
pressure levels (relative SPL), i.e. sound pressure levels
relative to free field:

!L . '% lg
!jpj*jpfreej"(

where p is the complex sound pressure at the receiver and
pfree is the free-field complex sound pressure at the re-
ceiver.

The free field is calculated as follows. First a ‘free’
FDTD signal is recorded at a short distance r# from the
source (typically r# . *m). Source and receiver are lo-
cated far from all boundaries in this calculation. Applica-
tion of FFT to the ‘free’ signal yields the complex sound
pressure pfree!# at distance r#. Next jpfreej is calculated by
the relation

jpfreej . jpfree!#jjH!$"
# "kr#*H

!$"
# "kr##j(

where k is the wave number and H!$"
# is the Hankel func-

tion of order zero and the first kind (i.e. the Green’s func-
tion for a point source in 2D, or a coherent line source in
3D). This relation can be simplified by using the far-field
expansion of the Hankel function:

jpfreej . jpfree!#j
p
r#*r'
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A

B

C

Figure 3. Geometry A with a single noise barrier, geometry B
with two noise barriers and geometry C with a single noise bar-
rier with a T-top.

Table I. Specification of five test cases. xi: FDTD-PE transition
range.

case geometry xi [m] wind

1 A 24 no wind
2 A 24 wind from source to receiver
3 B 21 no wind
4 B 21 wind from source to receiver
5 C 24 wind from source to receiver

4. Numerical examples

In this section we present results of calculations with the
FDTD-PE model for five test cases, and we compare the
results with results from other models.

4.1. Test cases

The test cases are specified in Table 1, with geometries A,
B, and C represented in Figure 3. In cases 1 and 2 we have
a single noise barrier between source and receiver (geome-
try A), without and with wind, respectively. In cases 3 and
4 we have noise barriers on both sides of the source (ge-
ometry B), without and with wind, respectively. In case 5
we have a single barrier with a 2 m wide T-top (geometry
C) and with wind.

In all cases the source is located at range xs . % and
height 0.5 m. The receiver height is 4 m, and the receiver
range xr varies between zero and 500 m. The noise barri-
ers are 4 m high, and have a thickness of 0.1 m. The surface
of the barriers is rigid.

Figure 4. Vertical profiles of the horizontal wind speed compo-
nent calculated with Fluent for test case 2 (top) and test case 4
(bottom).

The ground surface up to the FDTD-PE transition point
xi (see Table I) is rigid. For the ground surface beyond
this point we consider both rigid ground and absorbing
ground. For absorbing ground we used the Delany and
Bazley impedance model [17] with a flow resistivity of
200 kPa s m!%, a value typical for grassland. The absorb-
ing ground will be referred to as grassland.

As a test of the accuracy of the FDTD-PE model,
FDTD-PE results were compared with FDTD results, i.e.
results from calculations with FDTD applied for the entire
propagation path from source to receiver. For grassland no
FDTD calculations were performed for the reason men-
tioned in section 3.1.

Wind profiles for test cases 2, 4, and 5 were calculated
with CFD software package Fluent [13]. Figure 4 shows
the profiles of the horizontal wind speed component for
test cases 2 and 4. For the flow calculations we used a log-
arithmic inflow profile u"z# . "u#*"# ln"z*z##, with fric-
tion velocity u# . %')m/s, von Kármán constant " . %'),
and ground roughness length z# . %'%&m. This profile
corresponds to wind directed from source to receiver, so
we have downwind sound propagation. We further used
the k& turbulence model, standard wall functions, and a
smooth ground surface (except for the inflow profile). A
homogeneous temperature distribution was assumed.

4.2. Computational parameters

The FDTD computational domain used for the calcula-
tions was f!(m) x ) '+m, %m) z ) )'mg for cases
1, 2, and 5 (single noise barrier), f!&-m) x ) ')m,
%m) z ) )'mg for cases 3 and 4 (two noise barriers).
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We used a grid spacing of 0.05 m and a time step of
0.1 ms. For the Gaussian wavelet emitted by the source
we used the parameters A . &%)Pa/s, t# . %'%' s,
fc . (%%Hz, and % . &%!' s% (corresponding to a band-
width of 158 Hz). The absorbing layers at the boundaries
of the domain consisted of 40 computational cells, and
absorption parameters were optimized such that a sound
wave is reduced by 120 dB upon reflection at normal inci-
dence.

The FDTD time signals should be long enough to cap-
ture all significant reflections in the source region. For
cases 1, 2, and 5 (single noise barrier), a length of 2500
time steps (0.25 s) was sufficient. For cases 3 and 4 (two
noise barriers), a length of 8000 time steps (0.8 s) was
required to capture all significant reflections between the
barriers. Before application of the FFT algorithm, we ex-
tended the signals by ‘zero padding’ to make the number
of samples a power of 2.

We performed PE calculations for three frequencies:
100, 300, and 500 Hz.

Vertical grid spacings were 0.3, 0.1, and 0.06667m, re-
spectively. For the horizontal grid spacing we use a con-
stant value of 1 m (this value may be optimized [9, 10,
11]). For all frequencies, the height of the PE grid was
2048 grid spacings, including an absorbing top layer of
500 grid spacings.

4.3. PE starting functions

As an example, Figure 5 shows the magnitude of the start-
ing function p"z# for PE as calculated with FDTD for case
1 and frequencies 100, 300, and 500 Hz. The sharp decay
of the magnitude in the height interval between 40 m and
42 m is due to the absorbing top layer in FDTD. The start-
ing functions were adjusted to the PE grid by interpolation
and extrapolation as described in section 3.

4.4. Results

Results for test cases 1 to 5 are shown in Figures 6 to 10,
respectively. The graphs show FDTD-PE results up to a
range of 500 m, for rigid ground (graphs on the left) and
for grassland for x + xi (graphs on the right). The graphs
for rigid ground also show FDTD results up to a range of
150 m.

For case 1 with rigid ground we also included results
of a ray model based on the theory of diffraction [18]. For
case 2 with rigid ground we also included results of the PE
model, using the Kirchhoff approximation for the effect of
the noise barrier [19].

For the cases without wind (cases 1 and 3), the agree-
ment between FDTD and FDTD-PE is excellent. For the
cases with wind (cases 2, 4, and 5), the agreement is good,
with differences less than 1 dB except near interference
minima.

For case 1 we have good agreement between the ray
model and FDTD-PE. The ray model is 3D, so the agree-
ment confirms that relative levels in 2D are equal to rela-
tive levels in 3D, in good approximation.

Figure 5. Magnitude of starting functions p!z" for PE as calcu-
lated with FDTD for case 1 and frequencies 100, 300, and 500 Hz
(not including the extrapolation indicated in section 3.3).

Figure 6. Relative sound pressure level (relative SPL) calculated
with FDTD and FDTD-PE for test case 1. Graphs on the left
are for rigid ground and graphs on the right are for grassland
for x ! xi. For comparison, results of a 3D ray model are also
included.

For case 2 we see that PE results deviate a bit from
FDTD-PE results and FDTD results. The origin of this de-
viation is probably the use of the Kirchhoff approximation
for the effect of the noise barrier with PE.

Comparison of FDTD-PE results for cases 1 and 3
shows that the barrier on the left of the source (see Fig-
ure 3b) considerably enhances the sound levels at 300 and
500 Hz. In other words, the barrier on the right is less ef-
fective for sound waves reflected by the barrier on the left
than for direct sound waves. Comparison of FDTD-PE re-
sults for cases 2 and 5 shows that the effect of the T-top in
case 5 is small.
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Figure 7. As Figure 6, for test case 2. For comparison, PE results
are also included.

Figure 8. As Figure 6, for test case 3.

Comparison of FDTD-PE results for cases 1 and 2, and
cases 3 and 4, shows that the effect of wind is large, in
particular for grassland. The low levels for grassland with-
out wind are due to destructive interference between di-
rect sound from the barrier top to the receiver and sound
reflected by the ground surface between the barrier and
the receiver. Wind disturbs this destructive interference. In
addition, the paths of sound waves in a downward refract-
ing atmosphere are curved downward, so the barrier on the
right is less effective in cases with wind than in cases with-
out wind.

5. Efficiency of FDTD and PE calculations

In this section we discuss efficiency of the FDTD, PE, and
FDTD-PE models, in terms of computer time and memory.
For this study we used the GFPE implementation of the PE
model, but computer time and memory is of the same order
of magnitude as for the CNPE implementation, although
GFPE may be a little faster than CNPE [7, 8, 9, 10, 11].

Figure 9. As Figure 6, for test case 4.

Figure 10. As Figure 6, for test case 5.

5.1. Memory

For a FDTD calcul ation we use a grid with MFDTD "
NFDTD square cells. We assume cell dimensions of one
tenth of a wavelength: !x . %'&# and !z . %'&#.
The vertical number of cells is given by MFDTD .
zmax*!z, where zmax is the height of the grid. The hor-
izontal number of cells is NFDTD . R*!x, where R
is the horizontal size of the grid, which is of the order
of the horizontal distance between the source and the re-
ceiver. An FDTD calculation requires storage of approxi-
mately nFDTDMFDTDNFDTD numbers, where nFDTD is
the number of variables that must be specified at all grid
points, including variables for storage of intermediate re-
sults. Without background flow we need only three vari-
ables: pressure, horizontal velocity, and vertical velocity,
so nFDTD is 3. With background flow, additional variables
have to be stored to obtain sufficient accuracy. With the
collocated time-integration approachnFDTD is 6, since the
variables are stored at two time levels. With the staggered
time-integration approach with prediction step, nFDTD is
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4 [14]. The latter approach is used here. Let us consider
an example. For R . &%%m, # . &m, nFDTD . ), and
MFDTD . &%%%, 4 million numbers have to be stored. In
practice, the amount of numbers may be larger for the sake
of computational speed and flexibility of the code. Also, a
full sound speed field or wind speed field as in test cases
2, 4, and 5 in section 4 requires storage of up to three ad-
ditional variables.

For GFPE we use a grid with MPE " NPE rectangu-
lar cells. The field is calculated by stepwise extrapola-
tion in the positive x-direction of the field at a column of
grid points. As for FDTD, we assume a vertical cell size
!z . %'&#. The horizontal cell size (or extrapolation step
size) is !x . a#, where a varies roughly between 5 and 50
[9, 10]. A GFPE calculation requires storage of approxi-
mately nPE'MPE numbers, where nPE is the number of
variables that must be specified at all grid points of the
column, and the factor 2 reflects that GFPE uses FFT’s of
length 'MPE. The number of variables nPE is 9 in our
GFPE implementation, including the field itself and some
precalculated vectors used to speed up the extrapolation of
the field. For example, for nPE . - and MPE . '%),
we have to store about 36 thousand numbers. This is a fac-
tor of about 100 smaller than the 4 million numbers to be
stored for FDTD.

The precise amounts of memory required for FDTD and
PE depend on the implementations, but it is obvious that
FDTD requires much more memory than PE does. The
reason for this is that FDTD holds in memory the acous-
tic field at all cells of the grid, while PE holds in memory
the acoustic field at a single column that is extrapolated
stepwise through the grid.

The large memory required for FDTD can be reduced
by using a ‘moving window’ that follows a sound pulse
traveling through the atmosphere [4], as explained in sec-
tion 3.2. This approach is only efficient if the sound pulse
at the receiver is sufficiently short, such as in cases 1, 2,
and 5 with a single noise barrier. In cases 3 and 4, however,
the sound signal at the receiver is long due to multiple re-
flections between the two barriers, so the moving-window
approach is not efficient.

With the hybrid FDTD-PE model, we keep computer
memory small by using FDTD only in the source region.
Since the amount of numbers to be stored with FDTD is
proportional to the total number of cells in the grid, the
memory required for FDTD-PE can be kept much smaller
than the memory required for FDTD.

5.2. Computational speed

Comparison of the computational speeds of FDTD and PE
is difficult, since computing times depend strongly on the
implementation of the models. To get an impression, how-
ever, we compared computing times of a C++ implemen-
tation of FDTD and a Matlab implementation of PE, both
running on a Pentium IV PC. The Matlab PE code employs
a built-in C-routine for the time-consuming evaluation of
the FFT. Using the computational parameters given in sec-
tion 4.2, we found that the FDTD computing time is larger

than the PE computing time by a factor of approximately
&+n $ '*% without background flow and &%"&+n $ '*%#
with background flow, where n is the propagation distance
expressed in wavelengths. The offset for n . % corre-
sponds to the time needed to prepare various variables be-
fore the actual calculation starts. For large n, the speed ra-
tio increases linearly with distance n. This corresponds to
a quadratic increase of FDTD computing time and a linear
increase of PE computing time with n (assuming that the
height of the computational grid is kept constant). For a
frequency of 500 Hz and a propagation distance of 100 m,
the speed ratio is 2750 without flow and 27500 with flow. It
should be noted that the speed ratio can be reduced consid-
erably by using the efficient moving-window implementa-
tion of FDTD.

The expressions for the speed ratio given above apply
to a calculation for a single frequency. A major advantage
of FDTD, however, is that it works in the time domain,
so a full spectrum can be obtained from a single calcula-
tion for a broadband sound pulse. For a spectrum with 100
frequencies, for example, the speed ratio between PE and
FDTD is reduced by a factor of 100.

With the hybrid FDTD-PE model, we keep computing
times small by using FDTD only in the source region.
FDTD computing times increase with the square of prop-
agation distance, so FDTD-PE is much faster than FDTD
except for small distances.

6. Conclusions

The FDTD-PE model presented in this article is useful for
situations with several obstacles near the source, such as a
road with noise barriers on both sides, or an industrial site
with noise sources surrounded by barriers and buildings.
Results of the model for five test cases agree well with
results of other models. This confirms that the coupling of
FDTD and PE by transformation from the time domain to
the frequency domain works well.

Computer times and memory use are much larger for
FDTD than for PE. Consequently, FDTD-PE is a more ef-
ficient model than FDTD, for situations in which obstacles
and complex flow are localized in a small region around
the source, so that PE can be applied in the large region
outside the source region.

The FDTD-PE model used for this work is a 2D model,
but it has been shown that relative sound pressure levels
in 2D are equal to relative sound pressure levels in 3D,
in good approximation. Application of FDTD-PE in 3D
does not appear feasible on common computers in the near
future, except for situations with small source regions or
very low frequencies.

Appendix
Relative sound pressure levels in 2D and 3D
Objective

In this appendix we show that 2D calculations can be used
for predicting sound levels generated by a point source in
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Figure A1. 3D representation in perspective of a situation with a
line source, a screen, and a receiver. Line source and screen are
parallel to the y axis.

Figure A2. 2D cross-section of Figure A1 in the xz plane. Dis-
tances rs, rr, and r in the xz plane are indicated.

3D. We first consider the geometry shown in Figures A1
and A2, with a homogeneous atmosphere, a single noise
screen, and no ground surface (the screen extends down to
z . !(). The more general case with several reflecting
obstacles and a reflecting ground surface is discussed in
the last paragraph below.

For simplicity, we choose the origin of the xyz coordi-
nate system shown in Figure A1 at the screen top, so we
have the following positions:
$ source "xs( ys( zs#,
$ receiver "xr ( yr . %( zr#,
$ screen top "x . %( y( z . %#, with !( ) y )(.
For the line source shown in Figure A1 we have !( )
ys )(. For the point source we have ys . %.

If we perform a 2D calculation in the xz plane with a
point source (Figure A2), we are effectively simulating the
3D system with the line source. We are interested, how-
ever, in the 3D system with the point source.

We will show that the relative SPL (i.e. SPL relative to
free field; see section 3.5) generated by the line source is a
very good approximation of the relative SPL generated by
the point source at ys . %:

!L% & !L&"ys . %#' (A1)

Here, !L% is the relative SPL of the line source, obtained
from a 2D calculation, and !L&"ys . %# is the relative
SPL of the point source at ys . %.

Sound field of point source and line source

The (diffracted) sound pressure generated by the point
source at arbitrary ys can be written as

p& . D
e ikRd

Rd

' (A2)

Here D is a spherical-wave diffraction coefficient (derived
from the diffraction theory of Hadden and Pierce, for ex-
ample; see [18]), k is the wave number, and Rd is the
length of the diffracted sound ray from the source to the
receiver:

Rd .
q
r%d $ y%s ( (A3)

where rd . rs $ rr is the length of the diffracted sound
ray in the plane perpendicular to the screen, with rs .p
x%s $ z%s and rr .

p
x%r $ z%r (see Figure A2).

The sound pressure generated by the line source follows
by integration over ys:

p% .

Z
#

!#

p& dys( (A4)

as can be verified by substitution into the inhomogeneous
2D Helmholtz equation [4]. The relative SPL of the line
source is

!L% . '% lg

' jp%j
jp%!freej

(
( (A5)

with p%!free . i$H
!$"
# "kr#,

where r .
p
"xr ! xs#% $ "zr ! zs#% is the distance

from the line source to the receiver. The relative SPL of
the point source is

!L& . '% lg

' jp&j
jp&!freej

(
( (A6)

with p&!free . exp"ikR#*R, where R .
p
y%s $ r% is the

distance from the point source to the receiver.

Proof

In this section we give a proof of equation (A1). We evalu-
ate the integral in equation (A4) with the method of sta-
tionary phase (see [11], for example). This method ap-
plies for large wave number k (in this case krd ' &),
and is therefore consistent with the geometrical-acoustics
approximation.

The point of stationary phase is at ys . %. We find:

p% . D#

r
'$

krd
exp"ikrd $ i$*)#( (A7)

with D# % D"ys . %#. Analogously, we find the follow-
ing stationary-phase approximation of the free-field sound
pressure p%!free .

R
#

!#
p&!free dys:

p%!free .

r
'$

kr
exp"ikr $ i$*)#' (A8)
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This expression agrees with the asymptotic form of p%!free
. i$H

!$"
# "kr# for large k, using equation 9.2.3 from [20].

From equations (A7) and (A8) we find the following
expression for the normalized sound pressure of the line
source:

p%
p%!free

. D#

r
r

rd
exp"ikrd ! ikr#' (A9)

The corresponding relative SPL is

!L% . '% lg
%
jD#j

r
r

rd

&
' (A10)

The normalized sound pressure of the point source at ys .
% is

p&
p&!free

. D#
r

rd
exp"ikrd ! ikr#' (A11)

The corresponding relative SPL is

!L& . '% lg
%
jD#j

r
r

rd

&
' (A12)

The phase angles of the normalized sound pressures given
by equations (A9) and (A11) are equal, and the amplitudes
differ by a factor

p
r*rd. The factor

p
r*rd is close to

unity in most practical situations (while jD#j is not close
to unity, in general), so we find that equation (A1) holds.

General case

In general, we have several reflecting obstacles and a re-
flecting ground surface. We use the geometrical-acoustics
approximation: the sound pressure at the receiver is equal
to the sum of contributions from all sound rays. Each con-
tribution is of the form of equation (A.2), with diffraction
coefficient D replaced by a product of diffraction coeffi-
cients and reflection coefficients. The product corresponds
to the various diffractions and reflections along the sound
ray. With this replacement, the derivation given in sec-
tion A.3 applies to each sound ray. After summation we
find, with the approximation

p
r*rd & &, that equation

(A1) holds also in the general case.
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