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Abstract

When we perform algebraic operations on membership degrees, we must be sure that
they are compatible with the kind of scale on which these degrees are measured.
For example, we will not add (in a weighted average) membership degrees that are
measured on an ordinal scale. An important question is therefore how to determine
on which kind of scale we measure the membership.

There are several techniques for measuring membership. In this paper, we present
some of them, based on Stevens’ technique of ratio estimation, and we characterize
them, thereby providing a sound way to determine the level of measurement. We
also discuss the problem of the representation of the union or intersection by a
t-conorm or t-norm.
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1 Introduction

In statistics, it is well-known that the arithmetic mean or the variance of a
random variable U in a sample should be used only if U is measured at least
on an interval scale (interval, ratio or absolute). Similarly, if we want to use
the variation coefficient (su/u), U must be measured at least on a ratio scale
(ratio or absolute). Of course, this also applies to any kind of number on which
we want to perform an algebraic operation and, in particular, to membership
degrees. If we want to perform any algebraic operation on membership degrees,
we need be sure that the membership degrees are on the right type of scale.
But how do we know on what scale our membership degrees are measured? If
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we just ask an expert “What are the membership degrees of x, y and z in the
fuzzy set A?” and he answers “0.8, 0.4 and 0.2,” we cannot say anything about
the scale. We do not know how to interpret these numbers. Does 0.8 indicate
a membership twice as large as 0.4? Or does 0.8 just indicate a membership
larger than 0.4? The ratio 0.8/0.4 is equal to 0.4/0.2. Is this a coincidence or
does it mean that the ratio (not necessarily 2) between the membership of x
and that of y is the same as the ratio between the membership of y and that
of z?

If we want to be able to say something about the properties of membership
degrees, we must ask questions to the expert about the relations between the
membership of different elements. For example:

(1) Is the ratio between the membership of x and that of y in A larger than
or equal to the ratio between the membership of y and that of z in A?

(2) Is the difference between the membership of x and that of y in A larger
than or equal to the difference between the membership of y and that of
z in A?

(3) Is the membership of x in A ∩B larger than or equal to that of x in A?
(4) What is the ratio between the membership of x and that of y in A?

If we ask many such questions, it is then sometimes possible to use some
measurement techniques in order to arrive at membership degrees with some
particular properties and, eventually, on a particular type of scale. Measure-
ment theory is the theory that analyzes these measurement techniques (Krantz
et al., 1971; Roberts, 1979). A few papers have already looked at the measure-
ment problems arising when measuring the membership of some objects in
fuzzy sets and at some techniques that can be used in that context (Norwich
and Türksen, 1982; French, 1984, 1987; Türksen, 1991; Bollmann-Sdorra et al.,
1993; Bilgiç and Türksen, 1995; Bilgiç, 1996; Bilgiç and Türksen, 1997, 2000).
All these papers consider techniques based on questions involving comparisons
(like items 1–3 in the preceding enumeration). Their results are summarized,
analyzed and extended in Marchant (2002).

In the present paper, we follow a different route and consider measurement
techniques based on answers to questions like item 4 in the preceding enu-
meration (for a similar approach in different domains, see Luce, 2002; Narens,
2002). We ask an expert his perception of the ratio between the membership
of two elements x and y in a given fuzzy set. This ratio is of course subjec-
tive: it reflects his knowledge, his experience. We will then try to construct
membership degrees that reflect in some sense (to be defined) his knowledge
and, in particular, the answers to our questions. Because the way the member-
ship degrees must reflect the answers of the expert is not defined a priori, we
have a lot of freedom. For example, if an expert says that the ratio between
the membership of x and that of y in A is 2, we are not forced to choose

2



µA(x) = 2µA(y). Before going further, it is important to make a clear distinc-
tion between, on the one hand, the ratio between the membership of x and
y, as perceived by the expert, and, on the other hand, the ratio between the
membership degrees of x and y, constructed so as to reflect the ratios given
by the expert.

In measurement theory, the elements on which a measurement technique is
based, are called primitives. In this paper, the primitives are

• F = {A, B, C, . . .}, a set whose elements can be interpreted as all fuzzy sets
that are relevant in a particular context,

• X = {x, y, . . .} of any cardinality, the universal set,
• XA, the subset of all elements of X that belong at least to some extent to

A and
• a mapping ρA : X ×X 7→ R+ ∪ {∞} : (x, y) 7→ ρA(x|y), defined for all A in
F and all x, y in X. If ρA(x|y) = a, we interpret this as “the ratio between
the membership of x in A and the membership of y in A is equal to a.”
The numbers ρA(x|y) are called subjective ratios. The expert is told that
ρA(x|x) = 1. The subjective ratio ρA(x|y) is conventionally set at ∞ when
y does not belong at all to A and x belongs to some extent to A. In that
case, we also fix ρA(y|x) = 0. The values 0 and ∞ are used only in those
two cases.

The primitives are empirically observable. They are not explained nor defined
by the theory. In particular, the fuzzy set A has no mathematical structure or
property. It is just an expression in ordinary language (e.g. ‘Old’) that can be
seen as a fuzzy set.

In the rest of the paper, we will present different measurement techniques,
study the conditions (often called axioms) under which they can be used and
analyze the uniqueness of the representations obtained by means of these
techniques.

In the next two sections, we present a simple and intuitive measurement tech-
nique, where only the ordering of the subjective ratios is reflected by the mem-
bership degrees. The conditions characterizing this technique are so weak that
it can probably be used in many instances but it leads to weak representations.
We then turn (Section 4) to another very intuitive but much more demand-
ing technique: we construct membership degrees whose ratios are equal to the
subjective ratios given by the expert. Contrary to the previous sections, the
conditions are here very strong: probably too strong. In the rest of the paper
we then analyze some measurement techniques lying between these two ex-
tremes. Section 5 presents a classical measurement technique called difference
measurement. The next section builds on Section 5 and analyzes the conse-
quence of an invariance condition. In Sections 5 and 6, we use two solvability
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conditions that can look unattractive. Sections 7 shows that these two condi-
tions are extremely natural if X is a continuum, as in many applications. The
last two sections are devoted to the extension of the previous results to the
measurement of the membership of several objects in several fuzzy sets, some
of them being eventually equal to the union or intersection of some others.

2 Ordinal measurement, with an arbitrary reference

In this section, we choose an arbitrary reference z and we construct a measure
µA on X that reflects the ordering given by ρA(·|z).

Theorem 1 Given the structure 〈X, A, ρA〉 and z in X, there exists µA : X 7→
[0, 1] such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X. (1)

Let µ′A be a strictly increasing transformation of µA. Then µ′A also satisfies
(1). Furthermore, if µ′′A also satisfies (1), then it is a strictly increasing trans-
formation of µA.

Proof. Define

µA =
ρA(·|z)

ρA(·|z) + 1
.

It satisfies (1). The rest of the proof is easy. 2

Note that µA depends on the choice of the reference z.

In most applications, the membership degrees are supposed to be between 0
and 1 and it is assumed that the two extreme values are observed for some
objects. In the next result, we analyze the consequences of such an assumption.

Theorem 2 Given the structure 〈X, A, ρA〉 and z in X, there are u and l
such that ρA(u|z) ≥ ρA(w|z) ≥ ρA(l|z) for all w in X if and only if there
exists µA : X 7→ [0, 1] such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X (2)

and such that µA(x) = 1 for some x and µA(y) = 0 for some y. Let µ′A be a
strictly increasing transformation of µA. Then µ′A also satisfies (2). Further-
more, if µ′′A also satisfies (2), then it is a strictly increasing transformation of
µA.

Obviously, µ′A and µ′′A are not necessarily in [0, 1]. Note that µA(x) = 1 does
not need to be interpreted as “x belongs fully to A.” It just means that, among
all elements of X, x has the highest membership in A.
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3 Ordinal measurement, without reference

In this section, we look for a representation µA that is independent of the
choice of the reference, as it is (implicitely) assumed in most applications.
This is not always possible and the following condition characterizes the cases
where such a representation exists.

A 1 Reference Independence. ρA(x|z) ≥ ρA(y|z) ⇔ ρA(x|w) ≥ ρA(y|w), for
all x and y in X and all z and w in XA .

Theorem 3 The structure 〈X, A,XA, ρA〉 satisfies Reference Independence
(A1) if and only if there exists µA : X 7→ [0, 1] such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y, z ∈ X,∀z ∈ XA. (3)

Let µ′A be a strictly increasing transformation of µA. Then µ′A also satisfies
(3). Furthermore, if µ′′A also satisfies (3), then it is a strictly increasing trans-
formation of µA.

Proof. The necessity of Reference Independence is obvious. Suppose now
that Reference Independence holds. Let us choose w in XA and define

µA =
ρA(·|w)

ρA(·|w) + 1
.

We will prove that µA satisfies (3). We have

µA(x) ≥ µA(y) ⇔ ρA(x|w)

ρA(x|w) + 1
≥ ρA(y|w)

ρA(y|w) + 1
(by construction)

⇔ ρA(x|w) ≥ ρA(y|w)

⇔ ρA(x|z) ≥ ρA(y|z), ∀z ∈ XA (by Ref. Ind.). 2

In Sections 2 and 3, we have taken into account only the ordering of the
subjective ratios. The representation reflects that ordering and nothing else.
We may then consider that the membership degrees are on ordinal scales. But
they are cases where we might wish to reflect more than the ordering. For
example, if an expert says that ρA(x|y) = 1.1 and ρA(x|z) = 10, we know
that the ordering of the memberships is x then y then z (from high to low
membership) but we may also consider that the huge difference between 1.1
and 10 means something. We may then try to construct membership degrees
(a mapping µA) that not only reflects the ordering but also the relations (for
example the ratios) between the subjective ratios. This is what we do in the
next section.
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4 A multiplicative representation

In this section, we look for a representation µA such that ratios of µA have
a interpretation. In particular, µA(x)/µA(y) = ρA(x|y), i.e. the ratio of the
membership degrees is precisely equal to the subjective ratio given by the
expert. In order to characterize it, we need the following condition.

A 2 Multiplicative Property. ρA(x|z) = ρA(x|y)ρA(y|z) ∀x, y, z ∈ X.

Theorem 4 The structure 〈X, A,XA, ρA〉 satisfies Reference Independence
(A1) and the Multiplicative Property (A2) if and only if there exists µA :
X 7→ [0, 1] such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA (4)

and
µA(x)/µA(y) = ρA(x|y) ∀x, y ∈ X. (5)

Let µ′A = pµA with p a positive real number. Then µ′A also satisfies (4) and
(5). Furthermore, if µ′′A also satisfies (4) and (5), then there is a positive real
number q such that µ′′A = qµA.

Because of the strong uniqueness result (the only possible transformation of
the representation is a multiplication by a constant), we can consider that the
membership degrees obtained by means of the technique characterized in this
theorem are on a ratio scale.

Proof. Reference Independence is obviously necessary for the desired rep-
resentation. We now show the necessity of the Multiplicative Property. For all
x, y and z, we have

ρA(x|z) =
µA(x)

µA(z)
=

µA(x)

µA(y)

µA(y)

µA(z)
= ρA(x|y)ρA(y|z).

We now turn to the sufficiency of the conditions. Choose arbitrarily an element
w in XA and define

µA =
ρA(·|w)

κ
,

where κ = maxy∈X{ρA(y|w)}. Because of Reference Independence, the repre-
sentation µA obviously satisfies (4) and is in [0, 1]. We now prove that it also
satisfies (5).

µA(x) = ρA(x|w)/κ (by definition)

= ρA(x|y)ρA(y|w)/κ (by the Mult. Prop.)

= ρA(x|y)µA(y) (by definition).
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Let us discuss now the uniqueness. Clearly, if µA satisfies (4) and (5), then pµA

also satisfies (4) and (5). Suppose now that µ′A satisfies (4) and (5). Because
µA(x) = ρA(x|y)µA(y) and µ′A(x) = ρA(x|y)µ′A(y) for any y, we have

µA(x)

µ′A(x)
=

µA(y)

µ′A(y)
.

So, µ′A = qµA for some positive and real q. 2

The multiplicative property is a very strong one. Even though we have no
experimental data on this, we conjecture that an expert will seldom give sub-
jective ratios satisfying this condition. We will therefore try to use a less
restrictive model.

5 Difference Measurement

In this section, we look for a representation µA such that ratios of µA have an
interpretation, but weaker than in the multiplicative representation. The basic
idea in this section is to construct (standard) sequences of elements that are
equally spaced, i.e. such that two consecutive elements are always in the same
subjective ratio. This sequence will then be used as a yard stick to measure the
membership. Suppose that x perfectly belongs to A. If x is the first element
of a standard sequence, then, by making the sequence as long as we want, we
can “reach” any element of XA provided the following conditions are satisfied.

A 3 Reversal. For all w, x, y, z in XA,

ρA(x|y) ≥ ρA(w|z) ⇔ ρA(y|x) ≤ ρA(z|w).

A 4 Weak Monotonicity. For all x, x′, y, y′, z, z′ in XA,

ρA(x|y) ≥ ρA(x′|y′) and ρA(y|z) ≥ ρA(y′|z′) ⇒ ρA(x|z) ≥ ρA(x′|z′).

A 5 Solvability. For all w, x, y, z in XA,

ρA(x|y) ≥ ρA(w|z) ≥ 1 ⇒ ∃z′, z′′ : ρA(x|z′) = ρA(w|z) = ρA(z′′|y).

A 6 Archimedeanness. If x1, x2, . . . , xi, . . . is a strictly bounded standard se-
quence (i.e. ρA(xi+1|xi) = ρA(x2|x1) for every xi, xi+1 in the sequence; ρA(x2|x1) 6=
1; and there exist y, z in XA such that ρA(y|z) > ρA(xi|x1) > ρA(z|y) for all
xi in the sequence), then it is finite.

Theorem 5 If the structure 〈X, A,XA, ρA〉 satisfies Reversal (A3), Weak
Monotonicity (A4), Solvability (A5) and Archimedeanness (A6), then there
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exist VA : R+,∞ 7→ R+,∞, strictly increasing and µA : X 7→ R+ such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA, (6)

and

µA(x)/µA(y) = VA[ρA(x|y)] ∀x, y ∈ X. (7)

The functions µ′A and V ′
A also satisfy (6) and (7) iff there are real positive

numbers p and q such that µA = pµq
A and V ′

A = V q
A.

Moreover, if there is u such that ρA(u|x) ≥ 1 for all x in X, then we can
choose µA such that µA : X 7→ [0, 1] with µA(u) = 1.

The kind of uniqueness obtained in Theorem 5 is typical of interval scales
because it involves two parameters. The term log-interval scale is sometimes
used for such scales (Krantz et al., 1971).

Only Reversal and Weak Monotonicity are necessary conditions in this theo-
rem.

Proof. Let ≥̇ be a binary relation on XA × XA defined by xy≥̇wz iff
ρA(x|y) ≥ ρA(w|z). It is easy to check that the structure 〈X × X, ≥̇〉 is an
algebraic-difference structure as defined in (Krantz et al., 1971, p.151). So, by
Theorem 2 on p.151 of the same book, there is φ : XA 7→ R such that

φ(x)− φ(y) ≥ φ(w)− φ(z) ⇔ xy≥̇wz ⇔ ρA(x|y) ≥ ρA(w|z). (8)

Because the exponential function is strictly increasing, we have

exp(φ(x)− φ(y)) ≥ exp(φ(w)− φ(z)) ⇔ ρA(x|y) ≥ ρA(w|z)

and, letting

µA(x) =

 eφ(x) if x ∈ XA

0 otherwise,

we obtain

µA(x)/µA(y) ≥ µA(w)/µA(z) ⇔ ρA(x|y) ≥ ρA(w|z),

with µA(x) > 0 for all x ∈ XA. This last equivalence implies that, for µA

given, there is VA, strictly increasing and unique, such that µA(x)/µA(y) =
VA[ρA(x|y)]. We now discuss the unicity of µA. By Theorem 2 in (Krantz et al.,
1971, p.151), φ′ verifies (8) iff there are q > 0 and s such that φ′ = qφ + s.
After exponentiation, we obtain exp(φ′) = µ′A = pµq

A, with p = es.

We now prove the last part of the theorem. Suppose ρA(u|x) ≥ 1 for all x in
X. Let κ = µA(u). Obviously, κ ≥ µA(x),∀x ∈ X. Define µ′A = µA/κ. We
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then have µ′A(x) ∈ [0, 1],∀x ∈ X and µ′A(u) = 1. 2

In the following example, we show that X needs not be infinite in Theorem 5.

Example 1 Suppose X = {0, 1/4, 1/2, 3/4, 1} and

ρA(x|y) =



2 if x > y = 0,

1 if x = y = 0,

1 if x, y > 0,

1/2 if y > x = 0.

(9)

This structure satisfies all axioms of Theorem 5.

Archimedeanness is not implied by the other conditions of Theorem 5, even if
X is infinite, as shown in the following example.

Example 2 Suppose X = [0, 1] and ρA(x|y) is defined as in (9). This struc-
ture satisfies Reversal, Weak Monotonicity and Solvability but not Archimedean-
ness. Consider the following infinite standard sequence: {1/2, 1/4, 1/8 . . .}
= {x1, x2, . . . , xi, . . .}, with xi = 1/2i. It is bounded because ρA(0|1) = 1/2 <
ρA(xi|x1) = 1 < ρA(1|0) = 2 for all xi in the sequence.

Note that, when X is finite, Archimedeanness is trivially satisfied because
there is no infinite standard sequence. This is why Archimedeanness is not a
necessary condition.

In the representation characterized by Theorem 5, no attention is paid to the
value of the subjective ratios but only to their ordering. Any other mapping
ρA with the same ordering yields the same representation µA but a different
V .

Note that, although we only spoke of ratios in this section, its title is ‘differ-
ence measurement’. This is not a mistake. In fact the technique to construct
a representation based on differences is the same as the one based on ratios.
The difference is that, with differences, you naturally get an additive represen-
tation whereas, with ratios, you get a multiplicative one. But this difference
is only superficial because, if you have an additive representation, then you
also have a multiplicative one, and vice versa. To go from one to the other
just take the exponential or the logarithm of your representation. So, there
is no essential difference between both and the name difference measurement
is standard for both. That is why we chose that name for this section. For
a deeper discussion on this point, see Krantz et al. (1971), in the section on
difference measurement.
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6 Difference Measurement and Multiplicative Invariance

The Multiplicative Property is very strong in two different ways. It not only
implies that the subjective ratio ρA(x|y) given by the expert must be precisely
equal to a function of ρA(x|z) and ρA(z|y) but, in addition, this function
must be the product of ρA(x|z) and ρA(z|y). In Theorem 5, we relaxed both
constraints. This led us to using only the ordering of the subjective ratios,
so that the subjective ratio ρA(x|y) was no longer a function of ρA(x|z) and
ρA(z|y). In the present section, we will relax only the second constraint: the
function will not necessarily be the product. In order to achieve this, we will
need to use again the value of the subjective ratios and not just their ordering.

We will need the following conditions.

A 7 Multiplicative Invariance.

ρA(u|v) = λρA(x|y)

ρA(v|w) = λρA(y|z)

⇒ ρA(u|w) = λ2ρA(x|z).

A 8 Solvability 2. For any r, r′ > 0 there are x, y and z such that r = ρA(x|y),
r′ = ρA(y|z).

Theorem 6 If the structure 〈X, A,XA, ρA〉 satisfies Reversal (A3), Weak
Monotonicity (A4), Solvability (A5), Solvability 2 (A8), Archimedeanness (A6)
and Multiplicative Invariance (A7), then there exists µA : X 7→ R+ such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA (10)

and
µA(x)/µA(y) = α[ρA(x|y)]β ∀x, y ∈ X, (11)

with α, β > 0.The function µ′A and the numbers α′ and β′ also satisfy (10) and
(11) iff there are real positive numbers p and q such that µ′A = pµq

A, α′ = αq

and β′ = qβ.

Moreover, if there is u such that ρA(u|x) ≥ 1 for all x in X, then we can
choose µA such that µA : X 7→ [0, 1] with µA(u) = 1.

The uniqueness result tells us that, under the conditions of Theorem 6, we
can consider the membership degrees as on a log-interval scale, just like in
Theorem 5. The advantage of this result, compared to Theorem 5, is that we
now have an analytic form for V . It can therefore be estimated from a small
number of observations.

Only Reversal, Weak Monotonicity and Multiplicative Invariance are necessary
conditions in this theorem.
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Proof. By Solvability 2, for any λ > 0, r, s > 0 there are x, y, z, u, v and w
such that r = ρA(u|v) = λρA(x|y) and s = ρA(v|w) = λρA(y|z). So, by Mul-
tiplicative Invariance, ρA(u|w) = λ2ρA(x|z). Thanks to Theorem 5, we know
that there is µA and VA such that (10) holds and µA(u) = VA[ρA(u|v)]µA(v).
Therefore, VA[ρA(u|w)] = VA[ρA(u|v)]VA[ρA(v|w)]. So,

VA[λ2ρA(x|z)] = VA

[
λ2V −1

A (VA[ρA(x|y)]VA[ρA(y|z)])
]

= VA[λρA(x|y)]VA[λρA(y|z)].

So, we have come to the functional equation

VA

(
λ2V −1

A [VA(a)VA(b)]
)

= VA(λa)VA(λb), ∀a, b, λ > 0. (12)

Keeping λ fixed, with the notations H(a) = VA(λa), G(a) = VA(λ2a), VA(a) =
u and VA(b) = v, we obtain

G
[
V −1

A (uv)
]

= H[V −1
A (u)]H[V −1

A (v)].

The general solution to this Pexider equation is well-known to be (Aczél, 1966)

H[V −1
A (u)] = puk ; G[V −1

A (u)] = p2uk.

Letting λ vary again, we have

H[V −1
A (u)] = VA(λa) = p(λ)VA(a)k(λ) (13)

and

G[V −1
A (u)] = VA(λ2a) = p(λ)2VA(a)k(λ) (14)

There are now two cases.

(1) k is identically 1. Then VA(λa) = p(λ)VA(a), for all λ > 0. The unique
solution of this Pexider equation is well-known to be

VA(a) = qaδ, (15)

where q and δ are positive constants.
(2) k is not identically 1. Then VA(λa) = p(λ)VA(a)k(λ), for all λ > 0. Taking

the logarithm on both sides, ln VA(λa) = ln p(λ)+k(λ) ln VA(a). Introduce
the notation λ = em, a = en, W (u) = ln VA(eu), R(u) = ln p(eu) and
S(u) = k(eu). We obtain

W (m + n) = R(m) + S(m)W (n), m, n ∈ R. (16)

Given its definition, S cannot be identically 1 because, by assumption, k
is not identically 1. Therefore, the unique solution of (16) is given by

W (m) = αeβm + d, (17)
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with α, β 6= 0 (Aczél, 1966, p.150). Hence, VA(a) = t exp(αaβ), with
t > 0. If we replace VA in (12), we find that β must be equal to 0 and,
so, VA is constant. But this is not possible. So, the only solution of (12)
is the power function defined by (15).

The last part of the theorem is proved as in Theorem 5. 2

7 When X is a continuum

So far, we considered a set X without any particular structure. For example,
X = {Ann, Barbara, Caroline} and we are interested by the membership of
A, B and C in the fuzzy set “Old”.

But in many applications, the set X of elements whose we want to measure
the membership in a fuzzy set is a continuum: it has a topological structure
similar to that of 〈R+,≥〉. For example we want to determine the membership
of any age (any strictly positive real number) in the fuzzy set “Old”. In this
section, we try to exploit this structure in the formulation of our axioms. More
specifically, we will drop the solvability conditions and replace them by other
conditions linked to the structure of X.

We say that 〈X, �〉 is a continuum (Cantor, 1895; Narens, 1985) if 〈X, �〉 is
isomorphic to 〈R,≥〉, that is there exists a one-to-one mapping φ : X 7→ R
such that

x � y ⇔ φ(x) ≥ φ(y).

In such a case, it is reasonable in many applications to assume that the sub-
jective ratios given by the expert vary continuously. Formally,

A 9 Continuity. 〈X, �〉 is a continuum and ρA(x|y) is a continuous function
of x and y.

We can now prove a lemma that will soon prove useful.

Lemma 1 If the structure 〈X, �, A, ρA〉 is Continous, then 〈X, A, ρA〉 satis-
fies Solvability.

Proof. Suppose ρA(x|y) ≥ ρA(w|z) ≥ 1. We know that ρA(x|x) = 1. So, by
Continuity, there is z′ such that ρA(x|z′) = ρA(w|z). Similarly, ρA(y|y) = 1.
By Continuity again, there is z′′ such that ρA(z′′|y) = ρA(w|z). 2

We can thus restate an equivalent of Theorem 5 for continua, without Solv-
ability.
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Theorem 7 If the structure 〈X, �, A,XA, ρA〉 satisfies Reversal (A3), Weak
Monotonicity (A4), Continuity (A9) and Archimedeanness (A6), then there
exists VA : R+,∞ 7→ R+,∞, strictly increasing and µA : X 7→ R+ such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA, (18)

and
µA(x)/µA(y) = VA[ρA(x|y)] ∀x, y ∈ X. (19)

The function µ′A and V ′
A also satisfy (18) and (19) iff there are real positive

numbers p and q such that µ′A = pµq
A and V ′

A = V q
A.

Moreover, if there is u such that ρA(u|x) ≥ 1 for all x in X, then we can
choose µA such that µA : X 7→ [0, 1] with µA(u) = 1.

We are now ready to restate Theorem 6 without Solvabilty nor Solvability 2.

Theorem 8 Suppose ∅ 6= XA  X. If the structure 〈X, �, A,XA, ρA〉 satisfies
Reversal (A3), Weak Monotonicity (A4), Continuity (A9), Archimedeanness
(A6) and Multiplicative Invariance (A7), then there exists µA : X 7→ R+ such
that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA (20)

and
µA(x)/µA(y) = α[ρA(x|y)]β ∀x, y ∈ X, (21)

with α, β > 0. The function µ′A and the numbers α′ and β′ also satisfy (20) and
(21) iff there are real positive numbers p and q such that µ′A = pµq

A, α′ = αq

and β′ = qβ.

Moreover, if there is u such that ρA(u|x) ≥ 1 for all x in X, then we can
choose µA such that µA : X 7→ [0, 1] with µA(u) = 1.

Proof. By Theorem 7, there exists µA : XA 7→ R+ and VA : R+,∞ 7→ R+,∞

such that µA(x) = VA[ρA(x|y)]µA(y). Because µA(x) = VA[ρA(x|x)]µA(x), we
obtain VA(1) = 1. Because VA is strictly increasing, x ≥ 1 ⇔ VA(x) ≥ 1.
Note also that 1 = VA[ρA(x|x)] = VA[ρA(x|y)]VA[ρA(y|x)]. We now prove that
〈XA, �, A, ρA〉 satisfies Solvability 2. There are four cases we need to consider:

(1) r ≥ 1, r′ ≥ 1. Because ρA is continuous, ρA(x|x) = 1 and ρA(x|w) = ∞
for w /∈ XA, there exists y such that ρA(x|y) = r ≥ 1. Because ρA is
continuous, ρA(y|y) = 1 and ρA(y|w) = ∞ for w /∈ XA, there exists z
such that ρA(y|z) = r′ ≥ 1.

(2) If r ≥ 1, r′ < 1, then two cases can arise.
• Suppose VA(r)VA(r′) ≤ 1. Because ρA is continuous and ρA(w|w′) = 0

for w /∈ XA, w′ ∈ XA, there exists y, z such that ρA(y|z) = r′. Using the
representation of Theorem 7, we obtain VA[ρA(z|y)] = 1/VA[ρA(y|z)] =
1/VA(r′) ≥ VA(r). So, ρA(z|y) ≥ r. Because ρA(y|y) = 1 and by Conti-
nuity, there exists x such that ρA(x|y) = r.
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• Suppose VA(r)VA(r′) > 1. As above we can find x and y such that
ρA(x|y) = r. Using the representation of Theorem 7, we obtain VA[ρA(y|x)] =
1/VA[ρA(x|y)] = 1/VA(r) < VA(r′). So, ρA(y|x) < r′. But we also
have r′ < 1 = ρA(y|y). Hence, by Continuity, there is z such that
ρA(y|z) = r′.

(3) r < 1, r′ ≥ 1. As above, we can find x and y such that ρA(x|y) = r.
Because ρA(y|y) = 1 and by Continuity, there is z such that ρA(y|z) = r′.

(4) r < 1, r′ < 1. By Continuity, we can find y and z such that ρA(y|z) = r′.
We have ρA(y|y) = 1 and ρA(w|y) = 0, for w /∈ XA. So, by Continuity,
there is x such that ρA(x|y) = r.

So, we have proven that Solvability 2 holds. By Lemma 1, Solvability also
holds. Hence, we can apply Theorem 6 and the proof is complete. 2

The two results in this section show that Solvability and Solvability 2, in many
cases, are very reasonable structural conditions.

8 Measuring the membership in different fuzzy sets simultaneously

In the introduction, we said that one of our primitives was F = {A, B, . . .},
the set of all fuzzy sets that are relevant in a particular context. But so far,
we worked only with one fuzzy set, namely A. Of course, the analysis also
applies to B, C and so on. We can ask subjective ratios to an expert for the
membership of x and y in A or in B, etc. In doing so, we can construct different
membership degrees functions µA, µB, etc. One for each fuzzy set in F .

Because these representations for the membership in different set are con-
structed separately, they are not related to each other and we may not, in
general, claim that x belongs more to A than to B because µA(x) > µB(x).
The following example illustrates this point.

Example 3 Suppose X = {w, x, y, z}, XA = {w, x, y}, XB = {x, y, z} and
the subjective ratios are given by Table 1. We have two structures satisfying

ρA w x y

w 1 2 4

x 1/2 1 2

y 1/4 1/2 1

ρB x y z

x 1 1/2 2

y 2 1 8

z 1/2 1/8 1
Table 1
The subjective ratios of Example 3

all axioms of Theorem 6. So, we can construct two representations as in The-
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orem 6. Table 2 shows two equally valid pairs of representations. For the first
one, VA(s) = s and VB(s) = 4s2 whereas for the second one, V ′

A(s) = s2,
V ′

B(s) =
√

2s. If we compare µA(x) to µB(x), we are tempted to conclude that
x belongs more to A than to B but if we compare µ′A(x) to µ′B(x), we are led
to the opposite conclusion. In fact, we have no way to make the comparison.
We did not collect the data that would allow us to draw such a conclusion.

w x y z

µA 1 1/2 1/4 0

µB 0 1/16 1 1/256

w x y z

µ′A 1/2 1/8 1/32 0

µ′B 0 1/2 1 1/4
Table 2
Two different representations for Example 3

In the next pages, we will therefore try to see what we need in order to
make comparisons across sets. The first piece of information we can ask to the
expert is, for each fuzzy set A in F , the subset of elements fully belonging
to A, denoted by XA. The following example illustrates what we can do with
this new primitive.

Example 4 Suppose all data are as in Example 3 plus we have XA = {w}
and XB = {y}. We can impose, in addition to (6) and (7), that µA(x) =
1, ∀x ∈ XA,∀A ∈ F . This is a kind of normalization of the scales and can be
considered as very reasonable. Unfortunately, this is not enough, as shown in
Table 3, where VA(s) = s, VB(s) = 4s2,V ′

A(s) = s2 and V ′
B(s) =

√
2s With the

first representation, we are tempted to conclude that y belongs more to A than
x to B whereas, with the second one, we are led to the opposite conclusion.
We are still not able to make comparisons across sets for the objects that are
not in XA nor in XA, i.e. the most interesting objects.

w x y z

µA 1 1/2 1/4 0

µB 0 1/16 1 1/256

w x y z

µ′A 1 1/4 1/16 0

µ′B 0 1/2 1 1/4
Table 3
Two different representations for Example 4

A possible way to solve this problem is to ask the expert to make more complex
estimations. For example, “what is the ratio between the membership of x in
A and the membership of y in B?” (for all x, y ∈ X, A,B ∈ F). That would
give us data that, if consistent, would permit us to construct two (or more if
there are more fuzzy sets) mappings µA and µB such that comparisons between
them would be meaningful. But there is a better way: asking questions of the
form “Is the membership of x in A larger than the membership of y in B?”
This information is much more easy to get than complex ratios. In fact, it
amounts to asking if the subjective ratio between the membership of x in A
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and the membership of y in B is larger than 1 (instead of asking its precise
value). It turns out that it is also sufficient to construct a representation for
the membership degrees.

More formally, we have to include one more primitive in our framework: the
binary relation % on (X × A) to be interpreted as follows: (x, A) % (y, B)
means “the membership of x in A is at least as large as the membership of y
in B.” The relation % needs to be consistent in some sense with the subjective
ratios, as expressed by the following condition.

A 10 Condition U. For all A, B ∈ F , for all x, y, z, w ∈ XA, x′, y′, z′, w′ ∈
XB, if (x, A) ∼ (x′, B), (z, A) ∼ (z′, B) and (w, A) ∼ (w′, B), then

(y, A) % (y′, B) iff
ln ρA(x|y)

ρA(x|z)

ln ρA(x|w)
ρA(x|z)

≤
ln ρB(x′|y′)

ρB(x′|z′)

ln ρB(x′|w′)
ρB(x′|z′)

.

This condition is difficult to interpret. We will discuss this further.

Theorem 9 Suppose that, for all A, B in F , there is xAB, wAB, zAB ∈ XA

and xBA, wBA, zBA ∈ XB such that (xAB, A) ∼ (xBA, B), (zAB, A) ∼ (zBA, B),
(wAB, A) ∼ (wBA, B) and (x, A) � (w,A) � (z, A). If the structure 〈X,F , %
, (XA, XA, ρA)A∈F〉 satisfies U (A10), and, for all A in F , Reversal (A3),
Weak Monotonicity (A4), Solvability (A5), Solvability 2 (A8), Archimedean-
ness (A6) and Multiplicative Invariance (A7), then, for all A ∈ F there exists
µA : X 7→ R+ such that, ∀x, y ∈ X,∀z ∈ XA,∀A, B ∈ F ,

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), (22)

µA(x) ≥ µB(y) ⇔ (x, A) % (y, B), (23)

and
µA(x)/µA(y) = αA[ρA(x|y)]βA , (24)

with αA, βA > 0. The function µ′A and the numbers α′A, β′A also satisfy (22)
and (24) iff there are real positive numbers p and q such that, for all A ∈ F ,
µ′A = pµq

A, α′A = αq
A and β′A = qβA.

Moreover, if (x, A) ∼ (y, B) for all A, B ∈ F , x ∈ XA and y ∈ XB, then for
every A in F , we can choose µA so that µA(x) = 1 for all x in XA.

Proof. By Theorem 6, for each A in F there is µA : X 7→ R+ and αA, βA > 0
such that

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), ∀x, y ∈ X,∀z ∈ XA

and
µA(x) = αA[ρA(x|y)]βAµA(y) ∀x, y ∈ X.
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Because µA, αA and βA are not unique we can choose them in such a way that

µA(xAB) = a (25)

µA(zAB) = b (26)

µA(wAB) = c (27)

where a, b and c are some arbitrary positive real numbers. In order to do so,
we divide (25) by (26) and we obtain

αAρA(xAB|zAB)βA = a/b. (28)

Similarly, we divide (25) by (27).

αAρA(xAB|wAB)βA = a/c. (29)

We now divide (28) by (29) and we find

(
ρA(xAB|zAB)

ρA(xAB|wAB)

)βA

= c/a.

From this equation, we find the value of βA. We replace in (28) or in (29) and
we find the value of αA. Because (xAB, A) ∼ (xBA, B), (zAB, A) ∼ (zBA, B)
and (wAB, A) ∼ (wBA, B) we want also that µB(xBA) = a, µB(zBA) = b and
µB(wBA) = c. Following the same resaoning as above, we find

αBρB(xBA|zBA)βB = a/b

and (
ρB(xBA|zBA)

ρB(xBA|wBA)

)βB

= c/a.

From this system of two equations, we can find the values of αB and βB. Using
the representation that we just obtained, we can compute µB(x) for any x in X.
In particular for xBC , zBC and wBC .Because (xBC , B) ∼ (xCB, C), (zBC , B) ∼
(zCB, C) and (wBC , B) ∼ (wCB, C) we want also that µB(xBC) = µC(xCB),
µB(zBC) = µC(zCB) and µB(wBC) = µC(wCB). Following the same reasoning
as above, we find

αCρC(xCB|zCB)βC =
µB(xBC)

µB(zBC)

and (
ρC(xCB|zCB)

ρC(xCB|wCB)

)βC

=
µB(xBC)

µB(wBC)
.

Note that this system of two equations has only two unknowns, αC and βC ,
because µB has been fixed at the previous step. So, we can find the values
of αC and βC . Using these values, we then compute µC(xCD), µC(zCD) and
µC(wCD) that we use in turn to find αD and βD and so on.

17



We now have a representation of our structure and, by construction, we know
that it gives the right values for µ when we want to compare the membership
of xAB in A to that of xBA in B, for any A, B. But we have to check that the
values of µ are also the right ones when we compare the membership of any
x in A to that of any y in B, for any A, B. More precisely, we have to check
that µA(x) ≥ µB(y) if and only if (x, A) % (y, B). In the next lines, we will
show that it is so, provided that condition U holds.

µA(x) ≥ µB(y)⇔ µA(xAB)

µA(x)
≤ µB(xBA)

µB(y)

⇔αAρA(xAB|x)βA ≤ αBρB(xBA|y)βB

⇔ ρA(xAB|x)βA

ρA(xAB|wAB)βA
≤ ρB(xBA|y)βB

ρB(xBA|wBA)βB

⇔ βA ln
ρA(xAB|x)

ρA(xAB|wAB)
≤ βB ln

ρB(xBA|y)

ρB(xBA|wBA)

⇔ βA

βB

≤
ln ρB(xBA|y)

ρB(xBA|wBA)

ln ρA(xAB |x)
ρA(xAB |wAB)

.

Because (xAB, A) ∼ (xBA, B) and (zAB, A) ∼ (zBA, B), we have

βA

βB

=
ln ρB(xBA|wBA)

ρB(xBA|zBA)

ln ρA(xAB |wAB)
ρA(xAB |zAB)

.

So,

µA(x) ≥ µB(y)⇔
ln ρB(xBA|wBA)

ρB(xBA|zBA)

ln ρA(xAB |wAB)
ρA(xAB |zAB)

≤
ln ρB(xBA|y)

ρB(xBA|wBA)

ln ρA(xAB |x)
ρA(xAB |wAB)

⇔ (x, A) % (y, B). 2

A major problem with Theorem 9 is that condition U is not easily inter-
pretable. That is why we now present two other conditions, much more ap-
pealing but also stronger.

A 11 Strong Consistency. For all A, B ∈ F , for all x, y ∈ XA, x′, y′ ∈ XB, if
(x, A) ∼ (x′, B), then

(y, A) % (y′, B) iff ρA(x|y) ≤ ρB(x′|y′).

This condition imposes that the expert uses the same subjective scale when
he compares the membership of two objects in A or in B.
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A 12 Consistency. For all A, B ∈ F , for all x, y, w ∈ XA, x′, y′, w′ ∈ XB, if
(x, A) ∼ (x′, B) and (w,A) ∼ (w′, B), then

(y, A) % (y′, B) iff
ρA(x|y)

ρA(x|w)
≤ ρB(x′|y′)

ρB(x′|w′)
.

This condition does not impose that the scale be the same but they must be
homothetic. It is easy to check that Strong Consistency implies Consistency
which, in turn, implies condition U and, so, we have the following corollary.

Corollary 1 Theorem 9 holds when condition U is replaced by Consistency
or Strong Consistency.

Condition U, Consistency and Strong Consistency are not equivalent, as shown
in the following examples.

Example 5 Suppose X = XA = XB = {w, x, y, z}, (x, A) ∼ (x, B), (y, A) ∼
(y, B), (z, A) ∼ (z, B), (w, A) ∼ (w, B) and the subjective ratios are given by
Table 4. It is simple to check that all conditions of Theorem 9 are satisfied,

ρA x y z w

x 1 2 4 8

y 1/2 1 2 4

z 1/4 1/2 1 2

w 1/8 1/4 1/2 1

ρB x y z w

x 1 4 16 64

y 1/4 1 4 16

z 1/16 1/4 1 4

w 1/64 1/16 1/4 1
Table 4
The subjective ratios of Example 5

including condition U, but not Consistency nor Strong Consistency.

Example 6 Suppose X = XA = XB = {x, y, z}, (x, A) ∼ (x, B), (y, A) ∼
(y, B), (z, A) ∼ (z, B) and the subjective ratios are given by Table 5. It is

ρA x y z

x 1 2 4

y 1/2 1 2

z 1/4 1/2 1

ρB x y z

x 2 4 8

y 1 2 4

z 1/2 1 2
Table 5
The subjective ratios of Example 6

simple to check that all conditions of Theorem 9 are satisfied, plus Consistency
but not Strong Consistency.
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9 Modelling the union and the intersection

So far, the fuzzy sets in F were just abstract objects and no relation was
supposed to hold among them. But it would be interesting to consider elements
of F of the form A∩B or A∪B, where ∩ or ∪ are not the (fuzzy) set-theoretic
operators but their subjective and empirical equivalents; they are primitives
of our theory. For example, we can ask an expert “What is the ratio between
the membership of John and that of Ann in the set ‘Old and Intelligent’ ?”
The answers of the expert (ρA∩B(x|y) for all x, y ∈ X) would permit us to
construct a membership function µA∩B representing the subjective ratios given
by the expert. Similarly, we can also construct a membership function µA∪B.

Instead of constructing the membership function µA∩B from the subjective
ratios ρA∩B(x|y), it is tempting to compute it from µA and µB, using, as it
is usual in fuzzy sets theory, a t-norm. For example, µA∩B = min(µA, µB) or
µA∩B = max(0, µA +µB−1). But this will make sense only if µA∩B, computed
via a t-norm, is a representation of (or is compatible with) the subjective ratios
ρA∩B(x|y) given by the expert for all x and y. This section is devoted to the
analysis of the conditions that make this derivation of µA∩B from µA and µB

compatible with the observed subjective ratios.

First we show why ∩ cannot be represented by the  Lukasiewicz t-norm. Sup-
pose we ask an expert whether John belongs more to the set ‘Old’ or ‘Old
and Old’. It is almost certain that the expert will answer that the membership
in both sets is the same. If he does not, we may wonder if he understands
the question. So, we have the relation µA∩A(x) = µA(x), for any x in X. This
is definitely not representable by means of the  Lukasiewicz t-norm. In fact,
this example shows why any non-idempotent t-norm will not work. So, we
are left with the only idempotent t-norm: the minimum. We must now find
the conditions we need to add to those of Theorem 9 so that the subjective
ratios given by the expert and the relation % can be represented by some
membership function and the minimum. These conditions were first presented
by Bollmann-Sdorra et al. (1993) in a context where only % is observed but
not the subjective ratios. They can also be found in Marchant (2002). Because
these conditions involve only comparisons of the form (x, A) % (x, B) we state
them in terms of the relation %x defined by

A %x B ⇔ (x, A) % (x, B). (30)

A 13 Order of Operations. For all A, B in F , A ∪B %x A ∩B.

A 14 Weak Commutativity. For all A, B in F ,

A ∪B ∼x B ∪ A and
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A ∩B ∼x B ∩ A.

A 15 Weak Associativity. For all A, B, C in F ,

A ∪ (B ∪ C) ∼x (A ∪B) ∪ C and

A ∩ (B ∩ C) ∼x (A ∩B) ∩ C.

A 16 Weak Absorption. For all A, B in F ,

A ∼x A ∩ (A ∪B) and

A ∼x A ∪ (A ∩B).

A 17 Weak Right Monotonicity. For all A, B, C in F ,

A %x B implies A ∩ C %x B ∩ C and

A %x B implies A ∪ C %x B ∪ C.

Thanks to these conditions, we can formulate our last result.

Theorem 10 Suppose all conditions of Theorem 9 are fulfilled. Then, for all
x in X, the structures 〈F , %x,∪,∩〉 derived according to (30) satisfy Order
of Operations (A13), Weak Commutativity (A14), Weak Associativity (A15),
Weak Absorption (A16) and Weak Monotonicity (A17) if and only if, for all
A ∈ F there exists µA : X 7→ R+ such that, ∀x, y ∈ X,∀z ∈ XA,∀A, B ∈ F ,

µA(x) ≥ µA(y) ⇔ ρA(x|z) ≥ ρA(y|z), (31)

µA(x) ≥ µB(y) ⇔ (x, A) % (y, B), (32)

µA∩B(x) = min(µA(x), µB(x)), (33)

µA∪B(x) = max(µA(x), µB(x)), (34)

and
µA(x)/µA(y) = αA[ρA(x|y)]βA , (35)

with αA, βA > 0. The function µ′A and the numbers α′A, β′A also satisfy (31)
and (35) iff there are real positive numbers p and q such that, for all A ∈ F ,
µ′A = pµq

A, α′A = αq
A and β′A = qβA.

Moreover, if (x, A) ∼ (y, B) for all A, B ∈ F , x ∈ XA and y ∈ XB, then for
every A in F , we can choose µA so that µA(x) = 1 for all x in XA.

Proof. Because all conditions of Theorem 9 are fulfilled, we have a repre-
sentation satisfying (31), (32) and (35). From (32), it is clear that % is a weak
order (a complete and transitive relation). We can therefore apply Theorem 4
of Marchant (2002), saying that there are numerical representations for the
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membership satisfying (33) and (34). According to the same theorem, these
representations are unique up to a strictly increasing transformation. We can
therefore choose them equal to the representations derived from Theorem 9. 2

In Sections 8 and 9, we have chosen to build on Theorem 6 because we think
it is the most interesting one. But we could of course use the conditions of
Bollmann-Sdorra et al. (1993) in conjunction with any theorem presented in
this paper. This would yield about a dozen of new theorems. We do not present
these theorems because it would make this paper much too long and, to some
extent, repetitive.

10 Conclusion

In Sections 2 to 8, we have considered several alternative numerical represen-
tations for the membership of some objects in fuzzy sets. For each kind of
representation, we have shown under which conditions it is possible to con-
struct membership degrees representing the subjective ratios given by an ex-
pert. Each result was accompanyied by a uniqueness result saying how unique
the representation is. Based on these uniqueness results, we can say which
technique leads to an ordinal, an interval or a ratio scale.

But in Section 9, we have shown that, even if an interval scale is necessary for
the use of many t-norms (for example the  Lukasiewicz t-norm), it is not always
sufficient. If an algebraic operation is used for representing an empirically
observable operation on the primitives, then the algebraic operation must
have properties that reflect those of the empirical operation. For example,
because the union is almost certainly idempotent, the algebraic operation
used to represent the union must also be idempotent, independently of the
scale, of the level of measurement. It is therefore important, when choosing a
particular algebraic operation, to consider not only the kind of scale but also
the properties of the empirical operation and those of the algebraic one.

Of course, not all algebraic operations are meant to represent empirical ones.
For example, if two experts give you estimations of the membership degree
of x in a fuzzy set A (directly or using a measurement technique), and if you
want to aggregate these two estimations into one membership degree, you
might want to use a uninorm or some kind of aggregation operator. But this
operation would not reflect any empirically observable operation. There does
not exist, or no expert can give you, an aggregated membership degree. The
aggregated membership degree is something you define but cannot observe. In
such a case, it seems then that only the level of measurement is important.
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It is important to remember that the conditions guaranteeing that some mea-
surement technique can be used are conditions on the empirically observable
primitives. Therefore, whether we actually may or not use such techniques
must be empirically checked. We must verify that an expert is able to give
subjective ratios satisfying the conditions characterizing the representation we
want to use.

We finally indicate some directions for future research.

• In Marchant (2002) and in the present paper, we have discussed the mea-
surement of membership. But in the fuzzy literature, we do not have only
fuzzy sets, we also have fuzzy logic, where truth values play a role similar to
membership degrees. Some of our results can probably be easily transposed
to fuzzy logic but perhaps not all of them. An important problem with
fuzzy sets that has no equivalent in fuzzy logic is the problem of commensu-
rability of the membership degrees in two different sets. Using for example
the technique of Theorem 5, we can construct µA and µB but not be able
to compare µA(x) to µB(x). In fuzzy logic, such a problem does probably
not arise. Other examples of domains where our results can eventually be
transposed are fuzzy preference modelling and possibility theory.

• In Marchant (2002) and in the present paper, besides the measurement of
the membership degrees, we also addressed the problem of the representa-
tion of the union, the intersection and the complementation. There might
be other interesting empirical operations. For example, the implication in
fuzzy logic.

• In Marchant (2002), we did not pay any attention to the structure of X but
only to statements (in the form of comparisons) about the membership of
the elements of X in some sets. In the present paper, except in Section 7,
we did not look either at the structure of X. Though we think it would
be extremely useful to have a measurement technique whose output would
be a membership function analytically defined on X. This is of course only
possible if we take into account the structure of X.
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