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Abstract

ELECTRE TRI-nB is a method designed to sort alternatives evaluated
on several attributes into ordered categories. It is an extension of ELECTRE
TRI-B, using several limiting profiles, instead of just one, to delimit each
category. ELECTRE TRI-nB comes in two flavours: pseudo-conjunctive
and pseudo-disjunctive. In a previous paper we have characterized the or-
dered partitions that can be obtained with ELECTRE TRI-nB, pseudo-
conjunctive, using a simple axiom called linearity. The present paper is ded-
icated to the axiomatic analysis of ELECTRE TRI-nB, pseudo-disjunctive.
It also provides some combinatorial results.

Keywords: Multiple criteria analysis, Sorting models, ELECTRE TRI-nB.

Statements and Declarations

The authors have no relevant financial or non-financial interests to disclose.

1 Introduction

Given a set of alternatives, multiple criteria decision analysis (MCDA, aka mul-
tiple criteria decision making) is a sub-field of operations research simultaneously
dealing with several criteria or objectives over this set (for an overview of this

aAuthors are listed alphabetically. They have contributed equally.
bFormer Senior Researcher, CNRS, Paris, France, e-mail: dbouyssou@gmail.com.
cGhent University, Department of Data Analysis, H. Dunantlaan, 1, B-9000 Gent, Belgium,

e-mail: thierry.marchant@UGent.be.
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field, see e.g. Belton and Stewart, 2001, Greco, Ehrgott, and Figueira, 2016). The
goal is usually to choose a single most desirable alternative or to rank them by
decreasing order of preference. A problem with such an approach is that the best
alternative may be a poor one, if all other alternatives are even poorer. That is why
some researchers have proposed methods aiming at sorting the alternatives into
a few ordered categories (e.g. good, passable and unacceptable) that are defined
using some kind of norms or references. In sorting methods, the norms defining
a category originally are alternatives that stand at the border of two consecu-
tive categories1. They are called limiting profiles. For a recent survey of sorting
methods, see Belahcène, Mousseau, Ouerdane, Pirlot, and Sobrie (2023a,b). See
also the Special issue on multiple criteria sorting methods (Marchant and Pirlot,
2021). Notice that sorting models are studied not only in MCDA, but also in
decision under risk (Nakamura, 2004) and decision under uncertainty (Bouyssou
and Marchant, 2011).

An important difficulty when applying multiple criteria decision analysis is the
choice of an adequate method (there are hundreds of them in the literature) and
the choice—or elicitation—of parameters (often tens of them) that are reason-
ably compatible with the preferences of the decision-maker (for a survey about
elicitation, see Dias, Morton, and Quigley, 2018). Since the 1960s, many papers
and books (Bouyssou, Marchant, Pirlot, Tsoukiàs, and Vincke, 2006, Keeney and
Raiffa, 1976) have shown that the axiomatic analysis of MCDA methods (for choos-
ing or ranking) within the framework of Multi-attribute Utility Theory (Krantz,
Luce, Suppes, and Tversky, 1971) can provide valuable results for guiding the
choice of the method and of the parameters. More recently, a thread of papers
have done a similar job for MCDA methods aimed at sorting (e.g. Bouyssou and
Marchant, 2007a, S lowiński, Greco, and Matarazzo, 2002).

ELECTRE TRI (or ETRI for short) is a family of sorting methods. The first
method in this family was ETRI-B (Roy and Bouyssou, 1993, Yu, 1992). Then
came several variants, that we do not detail.2 The principle of all ELECTRE
methods is to build a binary relation on the set of alternatives, which represents the
preferences of the decision maker. Basically, an alternative is said to be preferred
to another (or to “outrank” the other) if it is at least as good as the other on a
sufficient coalition of criteria (concordance) and there is no criterion on which it is
unacceptably worse than the other (non discordance). Such a relation, which is not
necessarily transitive, is known as an outranking relation. In the ETRI-B sorting
method, this relation is used to assign alternatives to categories by comparing
them to limiting profiles. There are two versions of ETRI-B. The simpler one,

1Sorting methods have been recently proposed in which the norms defining a category stand
central in that category

2For an overview of ELECTRE methods, we refer to Roy and Bouyssou (1993, Ch. 5 & 6),
Figueira, Greco, Roy, and S lowiński (2013), and Figueira, Mousseau, and Roy (2016).
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called pseudo-conjunctive (aka pessimistic) assigns an alternative to a category
if this alternative is preferred to (i.e., outranks) the lower limiting profile of the
category and is not preferred to its upper limiting profile. The other variant,
called pseudo-disjunctive (or optimistic), assigns an alternative to a category if
the upper limiting profile of the category is strictly preferred to the alternative
while the lower limiting profile of the category is not strictly preferred to it.

Recently, Fernández, Figueira, Navarro, and Roy (2017) proposed a new vari-
ant (named ELECTRE TRI-nB or ETRI-nB for short) that uses several limiting
profiles instead of merely one as in the original ETRI-B. Like ETRI-B, the new
ETRI-nB has two versions: pseudo-conjunctive (pc) and pseudo-disjunctive (pd).

A simplified version of ETRI-B-pc received a detailed axiomatic analysis in
Bouyssou and Marchant (2007a,b), Greco, Matarazzo, and S lowiński (2001), S lowiński
et al. (2002). Later, Bouyssou and Marchant (2015) have shown that ETRI-B-pd
is much more difficult to analyze than ETRI-B-pc, although their definitions may
seem dual to each other at first sight.

Bouyssou, Marchant, and Pirlot (2023)—hereafter referred to as BMP23—have
characterized the pseudo-conjunctive version of ETRI-nB making auxiliary use of a
simplified version thereof. This characterization uses a single axiom—Linearity—
that was first proposed by Goldstein (1991). It turns out that ETRI-nB-pc is a
very general sorting model, if the number of limiting profiles is unbounded: any
monotone assignment to ordered categories is representable in this model, using an
appropriate number of limiting profiles. Bouyssou, Marchant, and Pirlot (2022)
have characterized the particular case of ETRI-nB using at most 2 limiting profiles.

The present paper intends to axiomatically analyze ETRI-nB-pd or a simplified
version thereof. Is this model able to represent any monotone assignment rule as
ETRI-nB-pc does, using an appropriate number of limiting profiles? Otherwise,
what are the monotone rules that can be represented in this model? Our main
findings are twofold. The first one is similar to that in Bouyssou and Marchant
(2015): ETRI-nB-pd is much more difficult to analyze than ETRI-nB-pc, although
their definitions may seem dual to each other. Only a subset of the monotone as-
signment rules can be represented in the pseudo-disjunctive model, but we are not
able to characterize which ones do. Our second main finding is a characterization
of a special case of ETRI-nB-pd, involving Linearity and a new condition, rais-
ing some interesting combinatorial questions about maximal antichains in direct
products of chains.
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2 Framework and notation

As in BMP23, we will restrict our attention to the case of two categories. This
allows us to use a simple framework while not concealing any important difficulty.3

For the same reasons, we suppose throughout that the set of objects to be sorted
is finite.

The finite set of alternatives is X = X1 × . . . × Xn, with n ≥ 2. The set
of attributes is N = {1, . . . , n}. For x, y ∈ X, i ∈ N and J ⊆ N , we use
XJ , X−J , Xi, X−i, (xJ , y−J) and (xi, y−i) as usual. Our primitives consist of a
twofold partition ⟨A,U⟩ of the set X, where A (resp. U) contains the sAtisfactory
(resp. Unsatisfactory) alternatives.

An attribute i is influential for ⟨A,U⟩ if there exist xi, yi ∈ Xi and a−i ∈ X−i

such that (xi, a−i) ∈ A and (yi, a−i) ∈ U . If an attribute is not influential, it does
not play any role and can be suppressed. We therefore suppose without loss of
generality that all attributes are influential.

3 Axiomatic analysis of ETRI-nB-pc: a digest

In this section, we recall some definitions and results presented in BMP23. All
ETRI methods start with a preference modelling step during which a preference
relation is built for each attribute. This valued preference relation depends on
a number of parameters that we do not detail here. In a second step, these n
valued preference relations are aggregated into a single valued preference relation
that is afterwards cut to define a crisp outranking relation S. The assignment of
alternatives to categories occurs in a third step. In order to save space, we do not
present the exact definition of ETRI-nB-pc, but an idealization thereof: Model E.
It mostly simplifies steps 1 and 2 and we will later see that this does not entail
any loss of generality. See Fernández et al. (2017) for a complete description of
ETRI-nB-pc and BMP23 for the relationship between Model E and ETRI-nB-pc.

Definition 1 (Models E,Ec, Eu)
We say that a partition ⟨A,U⟩ has a representation in Model E if:

• for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and
symmetric part Ii),

• for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and
is the asymmetric part of a semiorder Ui,

3Bouyssou and Marchant (2007b) have shown how to extend the axiomatic analysis to the case
of more than two categories, in the case of ETRI-B. Their technique applies mutatis mutandis
to ETRI-nB.
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• (Si, Ui) is a homogeneous nested chain of semiorders and Wi is a weak order
that is compatible with both Si and Ui,

4

• there is a set of subsets of attributes F ⊆ 2N such that, for all I, J ∈ 2N ,
[I ∈ F and I ⊆ J ] ⇒ J ∈ F ,

• there is a binary relation S on X (with symmetric part I and asymmetric
part P ) defined by

x S y ⇔ [S(x, y) ∈ F and V (y, x) = ∅] ,

where S(x, y) = {i ∈ N : xi Si yi} and V (x, y) = {i ∈ N : xi Vi yi},

• there is a set P = {p1, . . . , pk} ⊆ X of k limiting profiles, such that for all
p, q ∈ P , Not [p P q],

such that

x ∈ A ⇔

{
x S p for some p ∈ P and

Not [q P x] for all q ∈ P .
(1)

We then say that ⟨(Si, Vi)i∈N ,F ,P⟩ is a representation of ⟨A,U⟩ in Model E.
Model Ec is the particular case of Model E, in which there is a representation that
shows no discordance effects, i.e. in which all relations Vi are empty. Model Eu is
the particular case of Model Ec, in which there is a representation that requires
unanimity, i.e. such that F = {N}. ⌟

In this definition, Si is the idealization of the preference relation on attribute i,
Vi represents all pairs of levels on attribute i for which a discordance could occur
(step 1).5 S is the idealization of the outranking relation (step 2). The third step
(the assignment of alternatives to categories) is described by (1).

Goldstein (1991) has proposed a simple condition that may be satisfied by some
partitions:

Definition 2 (Linearity)
The partition ⟨A,U⟩ is linear on attribute i if, for all xi, yi ∈ Xi and all a−i, b−i ∈
X−i,

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

 ⇒


(yi, a−i) ∈ A

or
(xi, b−i) ∈ A.

(2)

4Wi is the intersection of the weak orders Swo
i and Uwo

i , respectively induced by Si and Ui.
See Appendix A of the supplementary material of BMP23.

5In Definition 1, Si and Vi are supposed to be semiorders. The reason of this assumption
is that the notion of semiorder is related to the existence of thresholds, as they appear in the
modelling of preference and veto in the classical ELECTRE methods.
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The partition ⟨A,U⟩ is linear if it is linear on all attributes. If all partitions that
can be represented in some Model M are linear, we say that Model M satisfies
Linearity. ⌟

Replacing A by U in (2) yields an equivalent definition of Linearity. On each
attribute Xi, we define the relation ≿i letting, for all xi, yi ∈ Xi,

xi ≿i yi if [for all a−i ∈ X−i, (yi, a−i) ∈ A ⇒ (xi, a−i) ∈ A].

By construction, ≿i is transitive and reflexive; it is complete if and only if the
partition is linear on attribute i. The symmetric part of ≿i is denoted by ∼i. It is
not useful to keep in Xi elements that are equivalent w.r.t. the equivalence relation
∼i. Indeed, if xi ∼ yi then (xi, a−i) ∈ A iff (yi, a−i) ∈ A. In order to simplify
notation, we suppose throughout the paper that we are dealing with partitions
on

∏n
i=1Xi for which all relations ∼i are trivial6. This non-restrictive convention

implies that each relation ≿i is antisymmetric.
Let ≿ be the relation on X defined by x ≿ y iff xi ≿i yi for all i ∈ N . This

relation is a partial order (reflexive, transitive and antisymmetric). Let A∗ =
min(A,≿) be the set of minimal elements in A for ≿. By construction, for any
x ∈ A∗ and yi ≺i xi, we have (yi, x−i) ∈ U .

We say Model M is nested in—or is a special case of—Model M ′ (denoted
M ⊆ M ′) if all partitions that can be represented in M can also be represented in
M ′. Models M and M ′ are equivalent (denoted M ≡ M ′) if M ⊆ M ′ and M ′ ⊆ M .
We note M ⊊ M ′ if M ⊆ M ′ and M is not equivalent to M ′. By construction, we
have Eu ⊆ Ec ⊆ E. The main results in BMP23 can now be summarized in the
following theorem.

Theorem 1
1. ETRI-nB-pc ≡ E ≡ Ec ≡ Eu.

2. A partition ⟨A,U⟩ has a representation in any of these models iff it is linear.

3. This representation can always be taken to be ⟨(≿i, Vi = ∅)i∈N ,F = {N},P =
A∗⟩, that is a representation in Model Eu.

We like to stress point 1: although model E and the nested models Ec and Eu

seem to be simplifications of ETRI-nB-pc, they are not: all four models are fully
equivalent.

6If ∼i is not trivial, we can work without loss of generality with the quotient Xi/ ∼i.
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4 ETRI-nB-pd: definition and difficulties

The pseudo-disjunctive version of ETRI-nB consists of three steps. The first and
the second one are identical to steps 1 and 2 in ETRI-nB-pc. The only difference
is the third step: the assignment of alternatives to categories. With ETRI-nB-pc,
an alternative x is assigned to A iff it is weakly preferred (in terms of S) to a
limiting profile and no limiting profile is strictly preferred to x (in terms of P ),
as in (1). With ETRI-nB-pd, an alternative x is assigned to U iff (i) there is a
limiting profile strictly preferred (in terms of P ) to x and (ii) x is not strictly
preferred to any limiting profile. As in Section 3, in order to save space, we do not
present the exact definition of ETRI-nB-pd, but an idealization thereof: Model F .
We define Model F that is to ETRI-nB-pd what Model E is to ETRI-nB-pc.

Definition 3
Model F is defined exactly as Model E, except that we now replace (1) by:

x ∈ U ⇔

{
p P x for some p ∈ P and

Not [x P q] for all q ∈ P .
(3)

The definition of Models F c and F u parallels that of Ec and Eu. ⌟

All pseudo-disjunctive models mentioned so far satisfy linearity.

Lemma 1
If ⟨A,U⟩ has a representation in Model F , then it is linear. The same holds for
ETRI-nB-pd, F u and F c.

Proof
Consider first Model F . Suppose that we have (xi, a−i) ∈ U and (yi, b−i) ∈ U .
We have either xi Wi yi or yi Wi xi since Wi is a weak order. Suppose wlog that
yi Wi xi. Because (yi, b−i) ∈ U , we know that p P (yi, b−i), for some p ∈ P , and
Not [(yi, b−i) P q] for all q ∈ P . Using Lemma 3 in BMP23, we obtain p P (xi, b−i)
and Not [(xi, b−i) P q] for all q ∈ P .7 Hence, (xi, b−i) ∈ U and linearity holds for
Model F . By construction, F u ⊆ F c ⊆ F and linearity thus also holds for these
models.

Since we did not formally define ETRI-nB-pd, we cannot provide the proof
that linearity holds for partitions generated by ETRI-nB-pd. For the interested
reader, this proof closely follows that of Corollary 1 in BMP23. 2

Hence, combining Lemma 1 with Theorem 1, we obtain the next proposition.

7Lemma 3 in BMP23 is established under the hypothesis that the partition [A,U ] is repre-
sentable in Model E. Since the proof only uses the properties of relation S, which are common
to Models E and F, the result also holds for partitions representable in Model F.
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Proposition 1
F u ⊆ F c ⊆ F ⊆ E and ETRI-nB-pd ⊆ E ≡ ETRI-nB-pc.

At this stage, given the apparent duality between the definitions of the pseudo-
conjunctive and pseudo-disjunctive models, we can suspect that F u ≡ F c ≡ F ≡
ETRI-nB-pd ≡ E, but the next result shows that it does not hold.

Proposition 2
F u ⊊ F c and F ⊊ E.

Proof
Part 1: F u ⊊ F c

Let N = {1, 2, 3} and Xi = {0, 1} for all i ∈ N , so that X has 23 = 8 ele-
ments. Consider the partition ⟨A,U⟩ such that A = {111, 101, 011} and U =
{110, 100, 010, 001, 000}, abusing notation in an obvious way. It is simple to check
that all attributes are influential for ⟨A,U⟩ and that, for all i ∈ N , we have 1i ≻i 0i.
Notice that we have A∗ = Min(≿,A) = {101, 011} and U∗ = Max(≿,U) =
{110, 010, 001}.

Let us show that this partition cannot be obtained with Model F u. Observe
first that, here, since all attributes are influential and can only take two values, we
must have that Si = ≿i, for all i ∈ N .

Since 110 ∈ U , there must be p ∈ P such that p P 110. Since we are looking
for a representation in Model F u and we know that Si = ≿i, for all i ∈ N , we must
find a profile p ∈ P such that p ≻ 110. The only candidate is 111. But taking
P = {111} together with F = {N} does not lead to the desired partition. Indeed,
we have 111 ≻ 101, so that 101 should be in U .

This partition can be obtained with Model F c, taking Si = ≿i, for all i ∈ N ,
P = {111} and F = {{1, 3}, {2, 3}}.

Part 2: F ⊊ E

Let n = 4 and X1 = X2 = X3 = {2, 1, 0} and X4 = {0, 1}, so that X has 54
elements. Consider the partition ⟨A,U⟩ such that A = {2221, 2211, 2121, 1221,
2111, 1211, 1121, 1111, 2220}. Notice that A∗ = {1111, 2220}. It is easy to check
that all attributes are influential for ⟨A,U⟩ and that, for all i ∈ {1, 2, 3}, we have
2i ≻i 1i ≻i 0i, while 14 ≻4 04. Hence, the partition is linear and, by Theorem 1, it
can be represented in Model E.

In order to show that this partition cannot be obtained in Model F , we
have to examine, all cases of indifference thresholds (associated with the strict
semiorders Si), combined with all cases of veto thresholds (associated with the
strict semiorders Vi), and combined with all choices for F .
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Notice that if an attribute in i ∈ {1, 2, 3} has thresholds (i.e. Si is not a weak
order), this means that 2i Ii 1i and 1i Ii 0i. But veto effects can only occur among
the elements that are strictly preferred. Hence, in this case, the only possibility is
to take 2i Vi 0i.

If {1, 2, 4} ∈ F , then, without veto, 2201 ∈ U outranks all elements in A, a
contradiction. This will remain true unless, there is a veto effect on attribute 3.

If 23 V3 03, the only elements in A that are not strictly beaten by another
element in A are 2220, 1111, and 1121. It is easy to check that taking all of them
or any subset of them as the set of profiles does not lead to the desired partition
(consider 2201 ∈ U). If, furthermore, 23 V3 13, the only elements in A that are
not strictly beaten by another element in A are 2220 and 1111. It is easy to check
that taking all of them or any subset of them as the set of profiles does not lead
to the desired partition (consider 2201 ∈ U).

The analysis of the cases {1, 3, 4} ∈ F and {2, 3, 4} ∈ F is entirely similar.

Suppose now that F = {{1, 2, 3}, N}. Suppose that only attribute 1 has thresh-
olds. Without veto, it is easy to check that 1220 ∈ U outranks all elements in A.
This remains true, whatever the choice of veto thresholds on attributes 2 and 3.
This also remains true if 14 V4 04. But veto effects on attribute 1 are immaterial
since 11 is indifferent to both 21 and 01.

The situation is entirely similar if 2 (resp. 3) is the only attribute to have
thresholds.

Suppose that only attributes 1 and 2 have thresholds. Without veto, it is easy
to check that 1120 ∈ U outranks all elements in A. This remains true, whatever
the choice of veto thresholds on attributes 1 and 2 since 11 (resp. 12) is indifferent
to 21 and 01 (resp. 22 and 02). This also remains true if 14 V4 04. Clearly, the veto
threshold on attribute 3 is immaterial.

The analysis of the cases in which 1 and 3 or 2 and 3 have thresholds is entirely
similar.

It remains to tackle the case F = {N}.
Suppose that only attribute 1 has thresholds. Without veto, there are only 3

elements in A that are not strictly beaten by another element in A: 2220, 1111
and 2111. It is easy to check that taking all of them or any subset of them as
the set of profiles does not lead to the desired partition. It is simple to check that
whatever the choice of veto we make on attributes 2, 3 and 4, the situation remains
the same.

There is only one possibility to put a veto on attribute 1, i.e. 21 V1 01. In this
case there are only 2 elements in A that are not strictly beaten by another element
in A: 2220 and 1111. In any case, it is impossible to recover the desired partition.

The situation is entirely symmetric in the case only attribute 2 or only attribute
3 has thresholds.
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Suppose that both attributes 1 and 2 have thresholds. Without veto, there
are only 5 elements in A that are not strictly beaten by another element in A:
2220, 1111, 2211, 2111, and 1211. It is easy to check that taking all of them or
any subset of them as the set of profiles does not lead to the desired partition. It
is simple to check that whatever the choice of veto we make on attributes 3 and
4, the situation remains the same. There is only one possibility to put a veto on
attribute 1 (resp. 2), i.e. 21 V1 01 (resp. 22 V2 02). It is simple to check that any
of the three possible choices for the veto on these attributes does not alter the
situation.

The situation is entirely symmetric in the case only attributes 1 and 3 or only
attributes 2 and 3 have thresholds.

Finally, if all attributes have thresholds, there is only one element in A that is
not strictly beaten by another element in A: 2220. It is easy to check that taking
this element to be the unique profile, does not lead to the desired partition. Now,
the choice of veto thresholds (they must be of the type 2i Vi 0i) on attributes 1, 2,
and 3 is immaterial. But it is also simple to check that adding a veto on attribute
4 does not change the situation. 2

Given Propositions 1 and 2, it would be highly desirable to know whether
ETRI-nB-pd ≡ E or ETRI-nB-pd ≡ F . Unfortunately, we are presently unable
to prove or disprove these equivalences. This shows that the relations between
the pseudo-disjunctive models are more complex than between the corresponding
pseudo-conjunctive models.

5 Two characterizations

In view of the above-metioned difficulties, we devote this section to two simpler
problems: (1) the characterization of Models F c, F, E and ETRI-nB-pc when all
attributes are binary and (2) the characterization of a special case of Model F u.

5.1 The case of binary attributes

Suppose the partition ⟨A,U⟩ is linear on attribute i. We say attribute i is binary if
the weak order ≿i has exactly two equivalence classes. Such attributes are common
in many applications. The case in which all attributes are binary corresponds to
the well-developed theory of monotone Boolean functions (see Crama and Hammer,
2011).

Proposition 3
F c ≡ F ≡ E ≡ ETRI-nB-pc whenever all attributes are binary.
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Proof
When all attributes are binary, each Xi contains only two elements that we can
denote by 1i and 0i with 1i ≻i 0i. Each element in X corresponds to a unique
coalition C(x) = {i ∈ N : xi = 1i} ⊆ 2N . Hence, all linear partitions have a
representation in F c with Si = ≿i, for all i ∈ N , P = {111} and F = {C(x) : x ∈
A}. 2

Since the proof uses a set P containing only one limiting profile, the reader
may have the impression that Proposition 3 only applies to ETRI-B and not to
ETRI-nB. What the result actually says is that any partition generated by a
model F c, F, E or ETRI-nB-pc (irrespective of the number of limiting profiles)
can be represented in the other three models. The proof further shows that the
representation can be chosen so that P is a singleton.

5.2 A special case of Model F u

In order to reduce the complexity of the models, let us assume that the data are
of good quality—in the sense of Roy (1996, Section 8.2)—meaning that there is
no imprecision, uncertainty, or inaccurate determination. In that case, there is
no need to use preference or indifference thresholds and the relation Si is a weak
order. Since ≿i is also a weak order and we cannot have xi ≻i yi while yi Si xi, it
must be the case that Si is a refinement of ≿i (i.e. Si ⊆ ≿i). But since we have
assumed that the relation ∼i is trivial, the equality Si = ≿i must hold.

So, in this section, we restrict our attention to partitions having a represen-
tation in Model F u such that Si = ≿i is a weak order for all i ∈ N . Model F u

together with this additional constraint will be denoted by F u. In such a model,
S = ≿, P = ≻ and Condition 3 reduces to x ∈ U iff p ≻ x, for some p ∈ P .
Indeed, we may not have p ≻ x ≻ q for q ∈ P , otherwise p ≻ q, a contradiction.
Notice that F u ⊆ F u ⊊ F c ⊆ F ⊊ E.

By construction, the set A∗ = Min(≿,A) is an antichain in the poset (X,≿),
remembering our convention that each relation ∼i is trivial. Observe that in the
first part of the proof of Proposition 2, the antichain A∗ = {101, 011} is not a
maximal antichain, i.e. it is strictly included in the antichain {110, 101, 011}. As
shown below, a characteristic feature of partitions that can be represented in Model
F u is that A∗ is a maximal antichain in the poset (X,≿).

Theorem 2
Let X =

∏n
i=1 Xi be a finite set and ⟨A,U⟩ be a twofold linear partition of X.

The partition ⟨A,U⟩ has a representation in Model F u iff the antichain A∗, in the
poset (X,≿), is maximal.

11



Proof
Necessity. Suppose that A∗ is not a maximal antichain. Hence there is x ∈ X such
that x is incomparable, using ≿, w.r.t. all elements in A∗. In view of the definition
of A∗, it is impossible that x ∈ A (since this would imply that x ≿ z, for some
z ∈ A∗). Hence, we must have x ∈ U , so that there must be a profile p ∈ P such
that p ≻ x. This profile must be in A. But, by hypothesis, this profile cannot
belong to A∗. Hence, by construction, we know that p ≻ y, for some y ∈ A∗ ⊆ A,
which implies y ∈ U , a contradiction.

Sufficiency. Since ⟨A,U⟩ is linear, we know that it has a representation in Model
Eu using the representation ⟨(≿i, Vi = ∅)i∈N ,F = {N},P = A∗⟩. Since A∗ is a
maximal antichain, it is easy to see that this representation is also a representation
in Model F u. Indeed, by construction, it is impossible that x ∈ U is incomparable,
using ≿, to all p ∈ P = A∗. Let q ∈ P be such that x and q are comparable using
≿. It is impossible that x ≿ q since this would imply that x ∈ A, in view of the
definition of A∗ = P . Hence, we must have that q ≻ x. 2

The next result shows that F u ⊊ F u, thereby showing that the hypothesis that
the representation is such that Si = ≿i, for all i ∈ N , is not innocuous.

Proposition 4
F u ⊊ F u.

Proof
Let N = {1, 2, 3, 4} and Xi = {0, 1, 2} for all i ∈ N , so that X has 34 = 81
elements. Consider the partition ⟨A,U⟩ such that A = {2222, 2221, 2220, 2212,
2211, 2210, 2202, 2201, 2200, 2122, 2121, 2120, 2112, 2111, 2110, 2102, 2101, 2022,
2021, 2020, 2012, 2011, 2010, 2002, 2001, 1222, 1221, 1220, 1212, 1211, 1210, 1202,
1201, 1200, 1122, 1121, 1120, 1112, 1111, 1110, 1102, 1101, 1022, 0222, 0221, 0220,
0212, 0211, 0210, 0202, 0201, 0122, 0121, 0120, 0112, 0111, 0110, 0102, 0101, 0022}.
The set A has 60 elements. It is easy to check that we have A∗ = {2010, 2001,
1200, 0110, 0101, 0022}.

We have 2012 ∈ A, 1012 ∈ U , 1200 ∈ A, 0200 ∈ U , so that 21 ≻1 11 ≻1 01.
Similarly, we have: 2200 ∈ A, 2100 ∈ U , 1101 ∈ A, 1001 ∈ U , so that 22 ≻2

12 ≻2 02. We also have: 0022 ∈ A, 0012 ∈ U , 2110 ∈ A, 2100 ∈ U , so that
23 ≻3 13 ≻3 03. Finally, we have: 0022 ∈ A, 0021 ∈ U , 2101 ∈ A, 2100 ∈ U , so
that 24 ≻4 14 ≻4 04 (notice that the role of attributes 3 and 4 is entirely symmetric,
in this example).

Hence, using Theorem 2, this partition cannot be represented in Model F u.
Indeed, the antichain A∗ is not maximal: the element 2100 is incomparable, using
≿, to all elements in A∗.

Yet it is cumbersome but easy to check that this partition can be obtained
in Model F u, taking P = {2200, 0022}, F = {N}, Si = ≿i, for i = 2, 3, 4, and
21 P1 01, 21 I1 11, and 11 I1 01. 2
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Let us define Eu in the same way as F u. By Theorem 1, Eu is equivalent to
Eu. Summarizing Proposition 4 and previous results, we have that F u ⊊ F u ⊊
F c ⊆ F ⊊ E ≡ Ec ≡ Eu ≡ Eu. This long chain of inclusions and equivalences
illustrates the strong asymmetry between the families of pseudo-conjunctive and
pseudo-disjunctive models. In order to explore the gap between both families,
we devote the rest of the paper to comparing the numbers of partitions that can
be represented in models F u and Eu (or any of the pseudo-conjunctive models
discussed in this paper). This will help us quantify how restrictive F u is compared
to Eu.

6 Counting maximal antichains

The number of partitions that can be represented in model F u (resp. model Eu)
is the number of maximal antichains (resp. antichains) in the poset (X,≿). This
poset can be seen as a direct product of n chains, where n is the number of at-
tributes and the ith chain (i ∈ {1, . . . , n}) is the set [mi] = {1, . . . ,mi} ordered
by ≥ (the natural order on the integer interval [mi]), with mi being the num-
ber of equivalence classes of the weak order ≿i. Notice that antichains in the
direct product of n chains also plays an important role in the analysis of mul-
tichoice cooperative games, as shown by Grabisch (2016a). More generally, the
importance of studying discrete mathematics structures in decision theory was
powerfully stressed in Grabisch (2016b).

The number of antichains (maximal antichains) in [m1] × . . . × [mn] will be
denoted by dE(m1, . . . ,mn) (resp. dF (m1, . . . ,mn)). When m1 = . . . = mn =
m, the numbers dE(m1, . . . ,mn) and dF (m1, . . . ,mn) are respectively denoted by
DE(m,n) and DF (m,n). We first tackle two special cases (n = 2 and m = 2) and
then the general case, for which we have few results.

6.1 The case n = 2

Let N denote the set of positive integers. The next result, due to Covington (2004),
presents a recurrence relation for dF (m1,m2).

Theorem 3
For all m1,m2 ∈ N, dF (m1,m2) is equal to

dF (m1 − 1,m2 − 1) +

m1−2∑
i=0

dF (i,m2 − 1) +

m2−2∑
i=0

dF (m1 − 1, i). (4)

A detailed proof of this result can be found in Bouyssou, Marchant, and Pirlot
(2024). For dE(m1,m2), the following result easily follows from Berman and Köhler
(1976).
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Corollary 1
For all m1,m2 ∈ N, we have

dE(m1,m2) =

(
m1 + m2

m1

)
.

Proof
According to Berman and Köhler (1976), the number of antichains in [m1]× [m2]×
[m3] is equal to

m3−1∏
i=0

(
m1+m2+i

m1

)(
m1+i
m1

) . (5)

Setting m3 = 1 in this expression yields the desired result. 2

For illustration purpose, we computed some numerical results under the con-
straint that m1 = m2 (to save space). Some terms of the sequences DE(m, 2) and
DF (m, 2) can be found in Table 1, with the corresponding ratios DF (m, 2)/DE(m, 2).
For small values of m, the difference of expressivity between models F u and Eu is
not very large, but it grows for large values of m, since the ratio seems to converge
to 0.

m DF (m, 2) DE(m, 2) DF (m, 2)/DE(m, 2)
1 1 2 0.5
2 3 6 0.5
3 9 20 0.45
4 27 70 0.385714286
5 83 252 0.329365079
6 259 924 0.28030303
7 817 3432 0.238053613
8 2599 12870 0.201942502
9 8323 48620 0.171184698

10 26797 184756 0.145039945
11 86659 705432 0.122845292
12 281287 2704156 0.104020256
13 915907 10400600 0.088062900
14 2990383 40116600 0.074542284
15 9786369 155117520 0.06309003

100 3.76527E+51 9.05485E+58 4.15829E-08

Table 1: Number DF (m, 2) of maximal antichains, number DE(m, 2) of antichains
and ratio of these numbers in [m]2 for m ∈ [15] and m = 100. Values of DF (m, 2)
are computed by means of (4).
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DF (m, 2) and DE(m, 2) are respectively sequences A171155 and A000984 in
the On-line Encyclopedia of Integer Sequences OEIS (2023). A recurrence relation
is mentioned by Alois P. Heinz (without proof) for DF (m, 2) in OEIS (2023):
DF (m, 2) is equal to

(4m− 3)DF (m− 1, 2) − (2m− 5)DF (m− 2, 2) + DF (m− 3, 2) − (m− 3)DF (m− 4, 2)

m
.

Some other results (old and new) about the case n = 2 are presented in Bouys-
sou et al. (2024). Therein, in addition to enumeration results, correspondences
(bijections) between (maximal) antichains in products of chains and other math-
ematical structures are established.

6.2 The case m = 2

DF (2, n) is sequence A326358 in OEIS (2023). No expression seems to be known
for this sequence and the highest known value corresponds to n = 7. Some terms
can be found in Table 2.

DE(2, n) corresponds to the Dedekind numbers (sequence A000372 in OEIS
(2023)), for which no expression is known. The highest known value corresponds
to n = 9. Some terms can be found in Table 2 with the corresponding ratios
DF (2, n)/DE(2, n). Here again, for small values of n, the difference of expressivity
between models F u and Eu is not very large, but for large values of n, the ratio
seems to converge to 0.

n DF (2, n) DE(2, n) DF (2, n)/DE(2, n)
1 2 3 0.6666667
2 3 6 0.5
3 7 20 0.35
4 29 168 0.172619
5 376 7581 0.04959768
6 31746 7828354 0.004055259
7 123805914 2414682040998 0.00005127214

Table 2: Number DF (2, n) of maximal antichains, number DE(2, n) of antichains
and ratio of these numbers in [2]n for n ∈ [7].

6.3 The general case

In the general case, analytic expressions for DF (m,n) and DE(m,n) are difficult
to obtain and we therefore only provide a lower bound for DF (m,n) and some
numerical results.
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6.3.1 A lower bound for DF (m,n)

Proposition 5
The number of maximal antichains in [m]n is at least the number of antichains of
[m]n−1, that is DF (m,n) ≥ DE(m,n− 1).

Proof
The set {x ∈ [m]n : xi = m} is the set of elements x ∈ X having their ith
coordinate equal to m. We shall prove that any antichain, not necessarily maximal,
in {x ∈ [m]n : xi = m} can be extended into a maximal antichain of X, which
has no other element with its ith coordinate xi equal to m. This will establish
Proposition 5 since any antichain of X−i is in one-to-one correspondence with an
antichain of {x ∈ [m]n : xi = m}.

We take wlog i = 1. If the antichain in {x ∈ [m]n : x1 = m} is maximal,
the result is obvious. Otherwise, let A be any non-maximal antichain in {x ∈
[m]n : x1 = m}. Since A is not maximal in {x ∈ [m]n : x1 = m}, there is at
least one element x = (m,x2, . . . , xn) that is incomparable to all elements in A.
Let x′ = (m − 1, x2, . . . , xn). We have that x ≻ x′ and x′ is incomparable to any
element in A. Indeed, for no y ∈ A, we have x′ ≿ y (otherwise x ≿ y would
hold too) and, for no y ∈ A, we have y ≿ x′ (otherwise y ≿ x would also hold).
Consider the set of all elements in {x ∈ [m]n : x1 = m} that are incomparable
to all elements in A. Select the minimal elements from this set. Change the first
coordinate of each minimal element x into x1 = m − 1, yielding an element x′.
Let A′ be the set obtained by adding all such elements x′ to the antichain A.
These elements are incomparable to all elements in A and incomparable to one
another. Therefore, A′ is an antichain. It is easy to see that it is maximal in X.
Furthermore, the intersection of A′ with the set {x ∈ [m]n : x1 = m} is exactly
A. 2

Since DF (m,n) is nondecreasing with m and n, we may conclude in particular
that the number of maximal antichains in X is at least the number of antichains in
[2]n−1, which is Dedekind number DE(2, n− 1). Table 2 suggests that this bound
is very weak. It also suggests that DF (m,n) grows extremely fast with n even for
m = 2.

6.3.2 Some numerical results

Table 3 presents some values of DF (m,n) for small values of m and n, computed
with the help of the software system Macaulay2 (Grayson and Stillman, 2021). For
[3]3, we used the function maximalAntichains provided by the package Posets

in the software system Macaulay2 (Grayson and Stillman, 2021) and manually
checked the result. For [4]3 and [3]4, we also used the function maximalAntichains,
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but without manual check. For larger values (except when m = 2 or n = 2), the
calculations are prohibitively long (indicated by question marks in Table 3).

DF (m,n) n = 1 2 3 4
m = 1 1 1 1 1

2 2 3 7 29
3 3 9 144 116547
4 4 27 10631 ?
5 5 83 ? ?

Table 3: Number of maximal antichains (DF (m,n)) for small values of m and n.
Boldface entries are new.

For [3]3, using (5), we find DE(3, 3) = 980 so that the ratio DF (3, 3)/DE(3, 3)
is equal to 0.14693878. Similarly, for [4]3, we obtain DE(4, 3) = 232848 so that the
ratio DF (4, 3)/DE(4, 3) is equal to 0.04565639, which implies a huge difference of
expressivity between F u and Eu.

7 Conclusion

We provided characterizations for two special cases of ETRI-nB-pd. These cases
are not extremely restrictive and definitely correspond to applications. For these
two special cases, our results can be used to develop elicitation techniques for the
parameters of the method.

In addition, although our results about ETRI-nB-pd and its special cases are
partial, we have axiomatic and combinatorial results showing that

1. the analysis of the pseudo-disjunctive models is far more complex than that
of the pseudo-conjunctive models;

2. there is a whole variety of pseudo-disjunctive models that are not all equiv-
alent, contrary to what we observed for pseudo-conjunctive models;

3. most pseudo-disjunctive models are strict special cases of the corresponding
pseudo-conjunctive models;

4. the pseudo-disjunctive model F u is much more restrictive than the corre-
sponding pseudo-conjunctive model.

The strong asymmetry between the pseudo-conjunctive and pseudo-disjunctive
models can be ascribed to the central role played by the relation P in the definition
of ETRI-nB-pd while S is central in ETRI-nB-pc. Indeed, Bouyssou and Pirlot

17



(2015a,b) have shown that the nature of the relation P is rather different from
that of the relation S in the ELECTRE methods.

Hence, paralleling Bouyssou and Marchant (2015), we suggest to define the
dual of ETRI-nB-pc not by means of (3), but rather by

x ∈ U ⇔

{
p S x for some p ∈ P and

Not [x P q] for all q ∈ P .
(6)

It is easy to see that ETRI-nB-pc and its dual now correspond via the transposition
operation consisting in inverting the direction of preference on all criteria and
permuting A and U (see Almeida-Dias, Figueira, and Roy, 2010, Bouyssou and
Marchant, 2015, Roy, 2002).

Mimicking Bouyssou et al. (2023, Th. 15), it is clear this dual model is char-
acterized by Linearity. Instead of taking A∗ as the set of profiles to delimit A,
we now take U∗ = Max(≿,U) to delimit the category U , still using Si = ≿i and
F = {N}.

If we replace (3) by (6) in the definition of Models F, F c and F u, it is also
simple to see that they are all equivalent to the dual of ETRI-nB-pc.
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