
Chapter 19

Social Choice Theory and Multicriteria
Decision Aiding

19.1. Introduction

Many organizations face such complex and important management problems that they
sometimes want their decisions to be somehow supported by a ‘scientific approach’, some-
times called adecision analysis. The analyst in charge of this preparation faces many diverse
tasks: stakeholders identification, problem statement, elaboration of a list of possible actions,
definition of one or several criteria for evaluating these actions, information gathering, sensitiv-
ity analysis, elaboration of a recommendation (for instance a ranking of the actions or a subset
of ‘good’ actions), etc. The desire or necessity to take multiple conflicting viewpoints into ac-
count for evaluating the actions often makes this task even more difficult. In that case, we speak
of multicriteria decision aiding[POM 93, ROY 85, VIN 89]. The expert must then try to syn-
thesize the partial preferences (modeled by each criterion) into a global preference on which a
recommendation can be based. This is calledpreference aggregation.

A very similar aggregation problem has been studied for a long times in the framework of
voting theory. It consists of searching a ‘reasonable’ mechanism (we callit voting system or
aggregation method in the sequel) aggregating the opinionsexpressed by several voters on the
candidates in an election, in order to determine a winner or to rank all candidates in order of
preference. This problem is of course very old but its modernanalysis dates back to the end of
the eighteenth century [BOR 81, CON 85].

The diversity of voting systems actually used in the world shows that this problem is still
important. In the 1950s, the works of [ARR 63, BLA 58, MAY 52] have initiated a huge litera-
ture [KEL 91] forming what is today calledsocial choice theory. It analyzes the links that exists
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(or should exist) between theindividual preferencesof the members of a society and the deci-
sions made by this group when these decisions are supposed toreflect thecollective preference
of the group.

The many results obtained in social choice theory are valuable for multicriteria decision
aiding. There are indeed links between these two domains: itis easy to go from one to the
other by replacing the words ‘action’, ‘criterion’, ‘partial preference’ and ‘overall preference’
by ‘candidate’, ‘voter’, ‘individual preference’ and ‘collective preference’ [ARR 86].

The aim of this chapter is to present some important results in social choice theory in a
simple way and to discuss their relevance for multicriteriadecision aiding. Using some classical
examples of voting problems (section 19.2), we will show some fundamental difficulties arising
when aggregating preferences. We will then present some theoretical results that can help us
better understand the nature of these difficulties (section19.3). We will then try to analyze the
consequences of these results for multicriteria decision aiding (section 19.4). A long list of
references will help the interested reader to deepen their understanding of these questions.

19.2. Introductory examples

Choices made by a society often impact the individuals making up this society. It therefore
seems reasonable to ground these choices on the preferencesof the individuals. The choice of a
candidate (law, project, social state, etc.) then depends on the outcome of an election in which
the individuals (voters) express their preferences. A voting system (or aggregation method)
uses the information provided by the voters in order to determine the elected candidate or, more
generally, the decision made by the group.

In such conditions, how should we conceive a ‘good’ voting system? Common sense tells
us that such a system must be democratic, i.e. it must yield collective preferences reflecting the
individual preferences as much as possible. In many countries (groups, companies, committees),
this is operationalized by themajority rule(or some variant of it): candidatea wins againstb if
the majority of the voters prefera to b. This simple rule is very intuitive. As we will later see,
when there are only two candidates this rule raises almost noproblem [MAY 52].

This rule can be adapted in many ways to face situations with more than two candidates.
These adaptations can lead to surprising outcomes, which will be illustrated by a few examples
in this section. We will begin withuninominalvoting systems, where each voter expresses their
opinion through a ballot that only contains the name of one candidate (section 19.2.1), before
moving to other systems where the voters can express their preferences in more complex ways
(section 19.2.2).

In all examples, we will assume that each voter is able to rank(possibly with ties) all can-
didates in order of preference, i.e. can express preferences by means of a weak order. If a voter
prefersa to b andb to c (thereby preferinga to c), we write ‘a � b � c’. Except if other-
wise stated, we will suppose that the voters are sincere, i.e. they express their ‘true’ preferences.
Finally, notice that most examples presented here are classic. Many more examples and the anal-
ysis of many voting systems can be found in [DUM 84, FIS 77, MOU80, MOU 88, NUR 87].
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19.2.1. Uninominal systems

Example 19.1. Dictatorship of majority
Let {a, b, c, . . . , z} be the set of 26 candidates for an election with 100 voters whose prefer-

ences are:

51 voters have preferencesa � b � c � . . . � y � z,
49 voters have preferencesz � b � c � . . . � y � a.

It is clear that 51 voters will vote fora while 49 vote forz. Thusa has an absolute majority and,
in all uninominal systems we are aware of,a wins. But isa really a good candidate? Almost
half of the voters perceivea as the worst one. And candidateb seems to be a good candidate for
everyone. Candidateb could be a good compromise. As shown by this example, a uninominal
election combined with the majority rule allows a ‘dictatorship of majority’ and doesn’t favor a
compromise. A possible way to avoid this problem might be to ask the voters to provide their
whole ranking instead of their preferred candidate. We willsee some examples in section 19.2.2.

The possibility of a dictatorship of the majority was already acknowledged by classic greek
philosophers. The following examples show that many other strange phenomena can occur with
uninominal voting systems.

Example 19.2. Respect of majority in the British system
The voting system in the United Kingdom isplurality voting, i.e. the election is uninominal

and the aggregation method is simple majority. Let{a, b, c} be the set of candidates for a 21
voters election (or21× 106 voters if one wishes a more realistic example). Suppose that

10 voters have preferencesa � b � c,
6 voters have preferencesb � c � a,
5 voters have preferencesc � b � a.

Then a (respectively,b and c) obtains 10 votes (respectively, 6 and 5) so thata is chosen.
Nevertheless, this might be different from what a majority of voters wanted. Indeed, an absolute
majority of voters prefers any other candidate toa (11 out of 21 voters preferb andc to a).

Let us see, using the same example, if such a problem could be avoided by the two-stage
French system (also called plurality with runoff). After the first stage, as no candidate has an
absolute majority, a second stage is run between candidatesa andb. We suppose that the voters
keep the same preferences on{a, b, c}. So

10 voters have preferencesa � b,
11 voters have preferencesb � a.
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Thusa obtains 10 votes andb 11 votes so that candidateb is elected. This time, none of the
beaten candidates (a andc) are preferred tob by a majority of voters. Nonetheless we cannot
conclude that the two-stage French system is superior to theBritish system from this point of
view, as shown by the following example.

Example 19.3. Respect of majority in the two-stage French system
Let {a, b, c, d} be the set of candidates for a 21 voters election. Suppose that

10 voters have preferencesb � a � c � d,
6 voters have preferencesc � a � d � b,
5 voters have preferencesa � d � b � c.

After the first stage, as no candidate has absolute majority,a second stage is run between can-
didatesb andc. Candidateb easily wins with 15 out of 21 votes although an absolute majority
(11/21) of voters prefera andd to b.

Because it is not necessary to be a mathematician to figure outsuch problems, some voters
might be tempted not to sincerely report their preferences as shown in the next example.

Example 19.4. Manipulation in the two-stage French system
Let us continue with the example above. Suppose that the six voters having preferencesc �
a � d � b decide not to be sincere and vote fora instead ofc. Then candidatea wins after the
first stage because there is an absolute majority for him (11/21). If they had been sincere (as in
the previous example),b would have been elected. Thus, casting an insincere vote is useful for
those 6 voters as they prefera to b. Such a system, that may encourage voters to falsely report
their preferences, is called manipulable.

This is not the only weakness of the French system, as attested by the following three
examples.

Example 19.5. Monotonicity in the two-stage French system
Let {a, b, c} be the set of candidates for a 17 voters election. A few days before the election,

the results of a survey are as follows:

6 voters have preferencesa � b � c,
5 voters have preferencesc � a � b,
4 voters have preferencesb � c � a,
2 voters have preferencesb � a � c.

In the French system, a second stage would be run betweena andb anda would be chosen
obtaining 11 out of 17 votes. Suppose that candidatea, in order to increase his lead overb
and to lessen the likelihood of a defeat, decides to strengthen his electoral campaign againstb.
Suppose that the survey exactly revealed the preferences ofthe voters and that the campaign has
the correct effect on the last two voters. Hence we observe the following preferences.
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8 voters have preferencesa � b � c,
5 voters have preferencesc � a � b,
4 voters have preferencesb � c � a.

After the first stage,b is eliminated, due to the campaign ofa. The second stage opposesa to c
andc wins, obtaining 9 votes. Candidatea thought that his campaign would be beneficial. He
was wrong. Such a method is called non-monotonic because an improvement of a candidate’s
position in some of the voter’s preferences can lead to a deterioration of his position after the
aggregation.

It is clear with such a system that it is not always interesting or efficient to sincerely re-
port one’s preferences. You will note in the next example that some manipulations can be very
simple.

Example 19.6. Participation in the two-stage French system
Let {a, b, c} be the set of candidates for a 11 voters election. Suppose that

4 voters have preferencesa � b � c,
4 voters have preferencesc � b � a,
3 voters have preferencesb � c � a.

In the French system, a second stage should opposea to c andc should win the election obtain-
ing 7 out of 11 votes. Suppose that 2 of the first 4 voters (with preferencesa � b � c) decide
not to vote becausec, the worst candidate according to them, is going to win anyway. What will
happen? There will only be 9 voters.

2 voters have preferencesa � b � c,
4 voters have preferencesc � b � a,
3 voters have preferencesb � c � a.

Contrary to all expectations, candidatec will loose whileb will win, obtaining 5 out of 9 votes.
Our two lazy voters can be proud of their abstention since they preferb to c. Clearly such a
method does not encourage participation.

Example 19.7. Separability in the two-stage French system
Let {a, b, c} be the set of candidates for a 26 voters election. The voters are located in two
different areas: countryside and town. Suppose that the 13 voters located in the town have the
following preferences.

4 voters have preferencesa � b � c,
3 voters have preferencesb � a � c,
3 voters have preferencesc � a � b,
3 voters have preferencesc � b � a.
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Suppose that the 13 voters located in the countryside have the following preferences.

4 voters have preferencesa � b � c,
3 voters have preferencesc � a � b,
3 voters have preferencesb � c � a,
3 voters have preferencesb � a � c.

Suppose now that an election is organized in the town, with 13voters. Candidatesa andc will
go to the second stage anda will be chosen, obtaining 7 votes. If an election is organized in the
countryside,a will defeatb in the second stage, obtaining 7 votes. Thusa is the winner in both
areas. Naturally we expecta to be the winner in a global election. But it is easy to observethat
in the global election (26 voters)a is defeated during the first stage. Such a method is called
non-separable.

The previous examples showed that, when there are more than 2candidates, it is not an
easy task to imagine a system that would behave as expected. Note that, in the presence of 2
candidates, the British system (uninominal and one-stage)is equivalent to all other systems and
it suffers none of the above-mentioned problems [MAY 52]. Wemight therefore be tempted by
a generalization of the British system (restricted to 2 candidates). If there are 2 candidates, we
use the British system; if there are more than 2 candidates, we arbitrarily choose 2 of them and
we use the British system to select the winner. The winner is opposed (using the British system)
to a new arbitrarily chosen candidate, and so on until no morecandidates remain. This would
requiren−1 votes between 2 candidates. Unfortunately, this method suffers severe drawbacks.

Example 19.8. Influence of the agenda in sequential voting
Let {a, b, c} be the set of candidates for a 3 voters election. Suppose that

1 voter has preferencesa � b � c,
1 voter has preferencesb � c � a,
1 voter has preferencesc � a � b.

The 3 candidates will be considered two by two in the following order or agenda:a andb first,
thenc. During the first vote,a is opposed tob anda wins with absolute majority (2 votes against
1). Thena is opposed toc andc defeatsa with absolute majority.c is therefore elected.

If the agenda isa andc first, it is easy to see thatc defeatsa and is then opposed tob. Hence,
b wins againstc and is elected.

If the agenda isb andc first, it is easy to see thata is finally elected. Consequently, in this
example, any candidate can be elected and the outcome depends completely on the agenda,
i.e. on an arbitrary decision. Let us note that sequential voting is very common in different
parliaments. The different amendments to a bill are considered one by one in a predefined
sequence. The first one is opposed to the original bill using the British system; the second one
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is opposed to the winner and so on. Finally, the result is opposed to the status quo. Clearly, such
a method lacks neutrality. It doesn’t treat all candidates in a symmetric way. Candidates (or
amendments) appearing at the end of the agenda are more likely to be elected than those at the
beginning. We say that such a method is notneutral. Notice that the British and French systems
are neutral because they do not favor any candidate.

Example 19.9. Violation of unanimity in sequential voting
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

1 voter has preferencesb � a � d � c,
1 voter has preferencesc � b � a � d,
1 voter has preferencesa � d � c � b.

Consider the following agenda:a andb first, thenc and finallyd. Candidatea is defeated by
b during the first vote. Candidatec wins the second vote andd is finally elected although all
voters unanimously prefera to d. Let us remark that this cannot happen with the French and
British systems.

Example 19.10. Tie-breaking chairperson
Suppose we use the two-stage French system and, at the secondstage, the two candidates have
the same number of votes. This is very unlikely in a national election but can often occur in
small-scale elections (board of trustees, court jury, Ph.D. jury, etc.). It is then usual to use the
chairperson’s vote to break the tie. In this case, the opinions of all voters are not treated in the
same way. We then say that the voting system is notanonymous, unlike all systems we have
seen so far. Note that using the chairperson’s vote is not theonly possibility: we could break the
tie by choosing, for instance, the oldest of the two candidates (this would not respect neutrality).

Up until now, we have assumed that the voters are able to rank all candidates from best to
worst without ties but the only information that we collected was the best candidate. We could
try to palliate the many encountered problems by asking voters to explicitly rank the candidates
in order of preference (some systems, like approval voting,use another kind of information; see
[BRA 82]). This idea, although interesting, will lead us to many other pitfalls as discussed in
the following section.

19.2.2. Systems based on rankings

In this kind of election, each voter provides a ranking without ties of the candidates. Hence
the task of the aggregation method is to extract from all these rankings the best candidate or a
ranking of the candidates reflecting the preferences of the voters as much as possible. Compar-
ing all candidates pairwise in the following way has been suggested [CON 85].

Condorcet method (or majority method) Candidatea is preferred tob if and only if the num-
ber of voters rankinga beforeb is larger than the number of voters rankingb beforea.
In case of tie, candidatesa andb are indifferent.
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Condorcet states the following principle.

Condorcet principle If a candidate is preferred to each other candidate using themajority rule,
then he should be chosen. The candidate, theCondorcet winner, is necessarily unique.

Note that neither the British or French system respect this principle. Indeed, in exam-
ple 19.2, the British system leads to the election ofa while b is the Condorcet winner and,
in example 19.3, the French system electsb while a is the Condorcet winner.

The Condorcet principle seems very sensible and close to theintuitive notion of democracy
(yet it can be criticized, as suggested in example 19.1 wherecandidatea is a Condorcet winner).
It is not always operational: in some situations, there is noCondorcet winner; this is the so-
calledCondorcet paradox. Indeed, in example 19.8,a is preferred tob, b is preferred toc andc
is preferred toa. No candidate is preferred to all others. In such a case, the Condorcet method
fails to elect a candidate. One might think that example 19.8is very bizarre and unlikely to
happen. Unfortunately it isn’t. If you consider an electionwith 25 voters and 11 candidates,
the probability of such a paradox is significantly high: approximately1/2 [GEH 83]. The more
candidates or voters, the higher the probability of such a paradox. Note that, in order to obtain
this result, all rankings are supposed to have the same probability. Such an hypothesis is clearly
questionable [GEH 83].

We must find how to proceed when there is no Condorcet winner. We may, for example,
choose a candidate such that no other candidate defeats him according to the majority rule (weak
Condorcet principle), but such a candidate does also not always exist (as in example 19.8). Many
methods have been proposed for exploiting the relation constructed using the majority method
[FIS 77, LAS 97, NUR 87].

An alternative approach has been proposed by [BOR 81]. He suggests associating a global
score to each candidate. This score is the sum of his ranks in the rankings of the voters.

Borda method Candidatea is preferred tob if the sum of the ranks ofa in the rankings of
the voters is strictly smaller than the corresponding sum for b (we now assume that the
rankings are without tie and we assign rank 1 to the best candidate in the ranking, rank
2 to the second best candidate, and so on; as we will see, the method can be easily
generalized for handling ties).

Example 19.11. Borda and Condorcet methods
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

2 voters have preferencesb � a � c � d,
1 voters have preferencesa � c � d � b.

The Borda score ofa is 5 = 2 × 2 + 1 × 1. Forb, it is 6 = 2 × 1 + 1 × 4. Candidatesc and
d receive 8 and 11. Thusa is the winner and the collective ranking isa � b � c � d. Using
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the Condorcet method, the conclusion is different:b is the Condorcet winner. Furthermore, the
collective preference obtained by the Condorcet method is transitive and yields the ranking
b � a � c � d. The two methods diverge; the Borda method does not verify the Condorcet
principle. Nevertheless, it can be shown that the Borda method never chooses a Condorcet loser,
i.e. a candidate that is beaten by all other candidates by an absolute majority (contrary to the
British system, see example 19.2).

The Borda method has an important advantage with respect to the Condorcet method. In
any situation, it selects one or several winners (those withthe lowest sum of ranks). Further-
more, it always yields a ranking of the candidates from best to worse. The Condorcet method,
on the contrary, sometimes yields non-transitive preferences and it is then impossible to rank
the candidates or even to choose a subset of ‘good’ candidates (see example 19.8). It is easy
to verify that the Borda method is neutral, anonymous, separable, monotonic and encourages
participation.

The Borda method nevertheless sometimes behaves in a strange way. Indeed, consider ex-
ample 19.11 and suppose that candidatesc andd decide on the eve of the election not to compete
because they are almost sure to lose. With the Borda method, the new winner isb. Thusb now
defeatsa just becausec andd dropped out. The fact thata defeats or is defeated byb therefore
depends not only on the relative positions ofa andb in the rankings of the voters but is also
contingent upon the presence of other candidates and on their position with respect to all other
candidates. This can be a problem as the set of candidates is not always fixed. It is even more of
a problem in decision aiding because the set of actions is seldom given and is, to a large extent,
the outcome of a modeling process.

After all these examples, we would like to propose a democratic method with the advantages
of the Borda method (transitivity of the collective preferences) and those of the Condorcet
method (Condorcet principle and absence of contingency problems). We will see in section 19.3
that it is mainly hopeless.

Let us mention that we limited this discussion to voting systems aimed at choosing a candi-
date and not a subset of candidates. The reader might then be tempted to conclude that those sys-
tems are inferior to systems aimed at choosing a representative body with some ‘proportional’
method. But this is too simple, for at least two reasons. First, the definition of what constitues
a fair or democratic proportional representation is complex and most proportional systems lead
to paradoxical situations [BAL 82]. Second, representative bodies must make decisions and, to
this end, they need voting systems aimed at choosing a singleaction.

19.3. Some theoretical results

Based on the preceding examples, we now have the intuition that conceiving ‘good’ prefer-
ence aggregation methods raises serious problems. This is confirmed by some celebrated results
in social choice theory.



750 Decision Making

19.3.1. Arrow’s theorem

Arrow’s theorem is central in social choice theory. It is about voting systems aimed at ag-
gregatingn (n ≥ 3) weak orders (rankings possibly with ties) in a collective weak order. Just
as in section 19.2.2, each voter ranks all the candidates, possibly with ties.

Formalization 19.1. A binary relationR on a setA is a subset ofA × A. We often write
aRb instead of(a, b) ∈ R. A weak order onA is a complete (for alla, b ∈ A we haveaRb
and/or bRa) and transitive (for alla, b, c ∈ A, aRb and bRc imply aRc) binary relation on
A. LetWO(A) denote the set of all weak orders on the setA. The asymmetric part ofR is
the binary relationP defined byaPb ⇔ [aRb and NotbRa]. The symmetric part ofR is the
binary relationI defined byaIb⇔ [aRb andbRa].

LetN = {1, 2, . . . n} represent the set of voters andA the set of candidates. We assume
that voteri ∈ N expresses their preference by means of a weak orderRi ∈ WO(A) on the set
A. We writePi (respectively,Ii) for the asymmetric (respectively, symmtric) part ofRi.

Arrow was interested in the aggregation methods satisfyingthe following conditions.

Universality Every configuration of rankings is admissible.

Formalization 19.2. We want to find an aggregation functionF yielding a result (a collective
weak order) for every element(R1, R2, . . . , Rn) ofWO(A)n.

This condition excludes any constraint on the set of admissible rankings. The examples
of the previous section have shown that some problems are caused by some specific rankings
or configurations of rankings. A possible way out would then consist of proposing a method
that works only with ‘simple’ configurations. Imposing restrictions on the admissible configu-
rations is sometimes reasonable. For instance, one may sometimes assume that all voters and
candidates are located on a right-left axis and that each voter ranks the candidates in order of
increasing distance between themself and the candidates. The preferences of the voters are then
single-peaked; [BLA 58] showed that a Condorcet winner then necessarily exists. However,
such restrictions imply e.g. the absence of atypical voters. This cannot be excludeda priori.
With a non-universal aggregation method, some ballots would be impossible to analyze.

Transitivity The outcome of the aggregation method must always be a complete ranking, pos-
sibly with ties.

Formalization 19.3. The aggregation function takes its values inWO(A).
When there is no ambiguity, we writeR = F (R1, R2, . . . , Rn) andP (respectively,I) the
asymmetric part (respectively, symmetric) ofR.

This condition imposes that the outcome is transitive irrespective of the preference of the
voters. Whenever the society prefersa to b and b to c, it must therefore prefera to c. We
have seen that the Condorcet method does not satisfy this condition. It is sufficient (but not
necessary) to ensure that the method will, in all cases, designate one or several best candidates
(those with the best positions in the ranking). We will latersee that weakening this condition
does not improve the situation formalized by Arrow’s theorem.
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Unanimity The outcome of the aggregation method may not contradict thevoters when they
vote unanimously.

Formalization 19.4. The aggregation functionF must be such that, for alla, b ∈ A, if aPib
for all i ∈ N , thenaPb.

If a is ranked beforeb in each ranking, then it must be beforeb in the collective ranking.
This condition is very sensible; Example 19.9 neverthelessshows that some methods violate it.

IndependenceThe relative position of two candidates in the collective ranking only depends
on their relative position in the individual rankings.

Formalization 19.5. For all (R1, R2, . . . , Rn), (R′
1, R

′
2, . . . , R

′
n) ∈ WO(A)n and alla, b ∈

A, if aRib⇔ aR′
ib andbRia⇔ bR′

ia, thenaRb⇔ aR′b.

This condition is more complex than the previous conditions. When comparinga andb, it
forbids

– taking preference intensities into account: the only thing that matters is thata is ranked
by the voters before or afterb; and

– taking other candidates into account.

Let us illustrate this condition with an example.

Example 19.12. The Borda method and Independence
Let {a, b, c, d} be the set of candidates. Suppose there are three voters withthe following pref-
erences:

2 voters have preferencesc � a � b � d,
1 voters has preferencesa � b � d � c.

The Borda method yields the ranking:a, c, b, d with the respective scores 5, 6, 8 and 11.

Suppose now that :

2 voters have preferencesc � a � b � d,
1 voters has preferencesa � c � b � d.

The Borda method yields the ranking:c, a, b, d with the respective scores 4, 5, 9 and 12.

Note that, in each individual ranking, the relative position of a andc did not vary across
ballots: one voter prefersa to c while two voters preferc to a. Independence then imposes that
the position ofa andc in the collective ranking be identical. This is not the case with the Borda
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method. Indeed, this method uses the fact that the ‘distance’ betweena andc seems larger in
the rankinga � b � d � c than in the rankinga � c � b � d, becauseb andd lie betweena
andc in the first case.

The dependence of the relative position ofa andc with respect tob andd is ruled out by the
Independence condition. It also excludes any method using,in addition to the rankings, some
information regarding preference intensities.

The last condition used by Arrow states that no voter can impose, in all circumstances,
their preferences to the society. This condition is extremely sensible for anyone willing to use a
democratic method.

Non-dictatorship There is no dictator.

Formalization 19.6. For all i ∈ N and all a, b ∈ A, there is a profile(R1, R2, . . . , Rn) ∈
WO(A)n such thataPib andbRa.

We are now ready to state the following celebrated theorem.

Theorem 19.1. [ARR 63] If the number of voters is finite and there is at least three candi-
dates, no aggregation method can simultaneously satisfy universality, transitivity, unanimity,
independence and non-dictatorship.

Proof. The proof of Arrow’s theorem uses the following definitions.A subsetI ⊆ N of vot-
ers isalmost decisivefor the pair of candidates(a, b) ∈ A2 if, for all (R1, R2, . . . , Rn) ∈
WO(A)n, [aPib,∀i ∈ I andbPja,∀j /∈ I ] ⇒ aPb. Similarly, the subsetI ⊆ N of voters
is decisivefor the pair of candidates(a, b) ∈ A2 if, for all (R1, R2, . . . , Rn) ∈ WO(A)n,
[aPib,∀i ∈ I ]⇒ aPb.

We first show that, ifI is almost decisive for the pair(a, b), thenI is decisive for all pairs
of candidates.

Let c be a candidate distinct froma and b (such a candidate always exists because we
assumedn ≥ 3). Let (R1, R2, . . . , Rn) ∈ WO(A)n be a profile such thataPic, ∀i ∈ I . Let
(R′

1, R
′
2, . . . , R

′
n) ∈ WO(A)n be a profile such that

– aP ′
i bP

′
i c, ∀i ∈ I ,

– bP ′
ja andbP ′

jc, ∀j /∈ I .

SinceI is almost decisive for the pair(a, b), we haveaP ′b. Unanimity imposesbP ′c. Tran-
sitivity then impliesaP ′c. Since the relation betweena andc for the voters outsideI in the
profile (R′

1, R
′
2, . . . , R

′
n) has not been specified, Independence impliesaPc. We have there-

fore proved that wheneverI is almost decisive for the pair(a, b), thenI is decisive for any pair
of candidates(a, c) such thatc 6= a, b. This reasoning is easily generalized to the case wherec
is not distinct froma or b.
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We now show that there is always a voteri ∈ N almost decisive for some pair of candidates.
As shown above, this voter will be decisive for all pairs of candidates and will therefore be a
dictator.

By unanimity,N is almost decisive for all pairs of candidates. SinceN is finite, there is at
least one subsetJ ⊆ N almost decisive for the pair(a, b) with a minimal cardinality. Suppose
|J | > 1 and consider a profile(R1, R2, . . . , Rn) ∈ WO(A)n such that:

– aPibPic, for i ∈ J ,

– cPjaPjb ∀j ∈ J \ {i},
– bPkcPka ∀k /∈ J .

SinceJ is almost decisive for the pair(a, b) we haveaPb. It is impossible thatcPb. Indeed, by
independence, this would implyJ \{i} is almost decisive for the pair(c, b) and, hence, decisive
for all pairs, contrary to our hypothesis. We therefore havebRc and transitivity impliesaPc.
This implies that{i} is almost decisive for the pair(a, c). �

This negative result applies only when there are at least three candidates. It is easy to verify
that the majority method satisfies the five conditions of Arrow’s theorem with two candidates.
Arrow’s theorem explains to a large extent the problems we met in section 19.2 when we were
trying to find a ‘satisfying’ aggregation procedure. Observe, for instance, that the Borda method
verifies universality, transitivity, unanimity and non-dictatorship. Hence, it cannot verify inde-
pendence, as shown in example 19.12. The Condorcet method respects universality, unanimity,
independence and non-dictatorship. It cannot therefore betransitive, as shown in example 19.8.

Notice that Arrow’s theorem uses only five conditions. In addition to these, we might wish
to impose also neutrality, anonymity, monotonicity, non-manipulability, separability or Con-
dorcet’s principle. What makes Arrow’s theorem so strong isprecisely that it uses only five
conditions, all seemingly reasonable. This is enough to prove an impossibility.

Arrow’s theorem initiated a huge literature, a good overview of which can be found in
[CAM 02, FIS 87, KEL 78, SEN 86]. Let us mention that weakeningtransitivity does not solve
the problem revealed by Arrow’s theorem. For instance, if weimpose quasi-transitivity (i.e.
transitivity of the asymmetric part) instead of transitivity, then we can always determine one or
several winners. However, it is possible to prove that replacing transitivity by quasi-transitivty
in Arrow’s theorem leads to an oligarchy instead of a dictatorship. An oligarchy is a subset of
voters that can impose their preferences when they are unanimous and such that each of them
can veto any strict preference i.e. if a member of the oligarchy strictly prefersa to b, thenb
cannot be strictly better thana in the collective preference [GIB 69, MAS 72].

Example 19.13. Let us consider six voters numbered fromi = 1 to 6 and an aggregation
method yielding the relationR = F (R1, R2, . . . , R6) by means of:

xPy ⇔ ∑
{i:xPiy}

wi > λ,

xIy otherwise,

with w1 = w2 = 0.4, w3 = w3 = w5 = w6 = 0.05 andλ = 0.7. This method is oligarchic.
Indeed, consider the setO containing voters 1 and 2. It is easy to verify that, for any profile of
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preferences,

[xP1y andxP2y]⇒ xPy,

[xP1y or xP2y]⇒ Not yPx.

The existence of an oligarchy is as problematic as the existence of a dictator. Indeed, if the
oligarchy contains all voters (this is the only possibilityif we want a democratic method) then,
because of the veto right of each voter, the collective preference will not be very decisive since
it will not discriminate much between candidates. On the contrary, an oligarchy containing only
one voter is a dictatorship. Between these two extreme cases, no solution is satisfactory.

We can weaken transitivity even more and impose that there isno circuit in the asymmetric
part of the collective preference relation. This conditionis necessary and sufficient to guarantee
the existence of maximal elements in any finite set of candidates [SEN 70]. However, it is then
possible to prove the existence of a voter with an absolute veto [MAS 72] so this does not really
help much.

19.3.1.1.Arrow’s theorem and fuzzy preferences

Why is it impossible to aggregate voters’ preferences in a satisfactory way (i.e. while re-
specting Arrow’s conditions)? There are mainly two reasons:

– The information contained in the weak orders describing the voters’ preferences is too
poor; it is ordinal. If we use richer structures, we can hope to escape Arrow’s theorem. In
particular, if we represent the voters’ preferences by means of fuzzy relations, we can not only
speak of the preference ofa overb but also of the intensity of this preference.

– The global preference must be a weak order and this is a strong constraint. If we weaken
this condition, we may consider aggregation methods yielding relations with more flexibility,
such as fuzzy relations.

Some authors [e.g. BAR 86, BAR 92, LEC 84, PER 92a] have analyzed the consequences of
imposing that the outcome of the aggregation is a fuzzy relation, that is a mappingR fromA2 to
[0, 1]. Their findings are unfortunately largely negative: if we impose that the fuzzy relation has
some properties permitting the easy designation of a winneror construction of a ranking, then
we find that the only possible aggregation methods give very different powers to the various
voters (as in oligarchies or dictatorships). In particular, it is the case if we impose that the
collective preference relation verifies min-transitivity, i.e. for alla, b, c ∈ A:

R(a, c) ≥ min(R(a, b),R(b, c)).

This condition guarantees that the relationRλ defined by

aRλb⇔ R(a, b) ≥ λ,

is transitive for any value ofλ. Hence, starting from a min-transitive relation, it is not difficult
to designate a winner or to rank the candidates.

However, there are some positive results in the literature which use weaker transitivity con-
ditions [e.g. OVC 91]. It is then tempting to believe that Arrow’s theorem does not hold with
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fuzzy relations. But these apparently positive results aremisleading: the transitivity condition
they use is so weak that is not incompatible with Condorcet cycles, as shown in the following
example.

Example 19.14. The transitivity condition used by [OVC 91] can be expressedas follows. For
all a, b, c ∈ A:

R(a, c) ≥ R(a, b) +R(b, c)− 1. (19.1)

Suppose we want to aggregate the preferences ofn voters. We can define the collective fuzzy
preference relation by

R(a, b) =
1

n
#{i ∈ A : aRib}.

It is easy to show that it satisfies equation (19.1). Let us nowconsider 3k voters with the fol-
lowing preferences:

k voters have preferencesa � b � c,
k voters have preferencesb � c � a,
k voters have preferencesc � a � b.

We obtain:R(a, b) = 2/3, R(b, c) = 2/3 andR(c, a) = 2/3; this is indeed compatible with
equation (19.1). However, note that this relation is in somesense cyclic and does not permit
us to designate a winner or to rank the candidates. Therefore, this does not solve the problem
raised by Arrow’s theorem.

In summary, unless we consider a very weak transitivity relation (without any practical
interest), aggregation methods yielding fuzzy relations do not escape Arrow’s theorem.

19.3.2. Some other results

Arrow’s theorem and its many extensions represent only a part of the numerous results in
social choice theory. For a comprehensive overview of this field, see [CAM 02, SEN 86]. In this
paper, we will roughly group the results into three categories as follows:

1) Impossibility results, as for Arrow’s theorem, show thatsome conditions are incompat-
ible. These results help us to understand better why it is difficult to find a ‘good’ aggregation
method.

2) Characterization results present a set of conditions that a given aggregation method and
only this one simultaneously respects. Such results help usunderstand better the essential char-
acteristics of a method. It is then easier to compare it with other methods.

3) ‘Analysis’ results: given a set of desirable conditions,these results compare different
methods in order to see which satisfies the most axioms. This can help to find a satisfactory
method (within the limits revealed by impossibility results).
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This distinction is of course to some extent arbitrary, and the three kinds of results are not
contradictory. They often use the same conditions.

We will now informally mention some results that we find important or interesting for un-
derstanding some phenomena presented in the examples of section 19.2.

19.3.2.1.Impossibility results

Among the impossibility results in social choice theory, two are particularly important:

1) Gibbard-Satterthwaite’s theorem [GIB 73, SAT 75]. This result shows that there is no
aggregation method (for choosing a single candidate) verifying universality, non-dictatorship
and non-manipulability when there are at least three candidates. The French electoral system
is clearly non-dictatorial and satisfies universality. If we neglect the ties than can occur during
the second stage, Gibbard-Satterthwaite’s theorem tells us that there is at least one situation
where a voter would benefit from voting not sincerely. We haveseen such a situation in exam-
ple 19.4. Note that this result initiated a huge literature analyzing voting problems in terms of
non-cooperative games [DUM 84, MOU 80, MOU 88, PEL 84].

2) Sen’s theorem of the ‘Paretian liberal’ [SEN 70]. Supposea society must vote to choose
one of several social states. These are defined in such a way that they concern the private sphere
of an individual. Clearly, there are conflicts between the majority principle, possibly yielding to
a dictatorship of majority (see example 19.1), and the respect of this individual for his private
sphere, in which he should decide alone. The theorem of the Paretian liberal tells us much more
than this: it proves that the respect of a private sphere is incompatible with universality and
unanimity. This result initiated a large literature, a goodoverview of which can be found in
[SEN 83, SEN 92].

19.3.2.2.Characterizations

Among the many characterization results (many such resultsare presented in [SEN 86]),
those about the Borda method (section 19.2.2) are particularly interesting. Indeed, this method
satisfies most conditions encountered so far and it is very easy to implement.

19.3.2.2.1. A characterization of the Borda method

In this section, we present a characterization of the Borda method proved by [YOU 74].
This method is considered as a choice procedure, i.e. a procedure mapping each profile of weak
orders onA to a non-empty subset ofA. In this context, the Borda method works as follows:
for each candidatea, we calculate a score (Borda score)B(a) equal to the sum of the ranks of
candidatea in the weak orders of the voters. In case of tie, we use the meanrank. The choice set
then contains the candidate(s) with the smallest score. Example 19.11 illustrates how the scores
are computed. Note that, in this example, the Borda method isused to rank and not to choose.

Formalization 19.7. A choice procedure is a functionf : WO(A)n → 2A \ ∅. To eachn-
uple of weak orders,f associates a non-empty subset ofA, interpreted as the set of the best
candidates. The Borda method is defined by:

f(R1, R2, . . . , Rn) = {a ∈ A : B(a) ≤ B(b), ∀b ∈ A},
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whereB(a) is the Borda score of candidatea and is defined by :

B(a) =
n∑

i=1

[#{b ∈ A : bRia} −#{b ∈ A : aRib}] . (19.2)

This formalization is not exactly the sum of the ranks but thereader will easily check thatB(a),
defined by equation(19.2), is an affine transformation of the sum of the ranks and therefore,
using equation(19.2)or the sum of the ranks always yields the same result. We will use equa-
tion (19.2)because it is more convenient than the sum of the ranks.

In order to characterize the Borda method, [YOU 74] uses fourconditions.

Neutrality The choice set depends only on the position of the candidatesin the preferences of
the voters and not, for instance, on the name of the candidates or on their age.

Formalization 19.8. LetP be the set of all permutations onA, π an element ofP andR a
binary relation onA. We writeπ(T ) for the binary relation such thatπ(a) π(T ) π(b)⇔ aRb.
A choice method is neutral if and only iff(R1, . . . , Rn) = π(f(π(R1), . . . , π(Rn))) for any
permutationπ in P .

This condition imposes that all candidates be treated in thesame way. It excludes, for in-
stance, methods where the older candidate wins in case of tie. Similarly, sequential voting (ex-
ample 19.8) is ruled out.

Faithfulness If there is only one voter, then the choice set must contain the best candidates
according to this unique voter.

Formalization 19.9. f(R1) = {a ∈ A : aR1b, ∀b ∈ A}.

This condition is extremely intuitive. Inedeed, if there isonly one voter, why not respect
their preferences?

Consistency Suppose, as in example 19.7, that the voters are divided intotwo groups. We use
the same choice method in both groups. If some candidates belong to both choice sets,
then these candidates and only these should belong to the choice set which results from
applying the same choice method to the whole set of voters.

Formalization 19.10.

f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn) 6= ∅⇒

f(R1, . . . , Rn) = f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn).
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Consistency is quite sensible. If two groups agree that somecandidate, saya, is one of the
best, then it is difficult to understand whya would not be a winner when both groups vote
together.

Many such conditions, involving two groups of voters, have been used in the literature. They
are often called separability. Consistency is one of these conditions.

Cancellation Let us consider two candidatesa andb and suppose the number of voters prefer-
ring a to b is equal to the number of voters preferringb to a. This is not very particular.
Suppose now this is true not only fora andb but for all pairs of candidates, simultane-
ously. We then face a very particular situation. In such a situation, cancellation requires
that the choice set contains all candidates.

Formalization 19.11.

∀a, b ∈ A, #{i ∈ N : aRib} = #{i ∈ N : bRia} ⇒ f(R1, . . . , Rn) = A.

Among the four conditions used by Young, cancellation is probably the most questionable
one. In some sense, it is reasonable: when, for each paira, b of candidates, there are as many
voters in favor ofa as in favor ofb, we can indeed prudently consider that no candidate is
better than the other. But there are other situations when prudence recommends considering
all candidates tied. For instance, when the majority relation is cyclic (see above, Condorcet
paradox). Choosing cancellation rather than another condition imposing a complete tie in case
of a cyclic majority relation or in another case is rather arbitrary.

The reader will easily verify that the Borda method verifies neutrality, faithfulness, consis-
tency and cancellation. The following theorem, proved by Young, tells us much more.

Theorem 19.2. [YOU 74] One and only one choice method verifies neutrality, faithfulness,
consistency and cancellation: the Borda method.

Since the proof of this theorem is quite long, we do not present it in this chapter. Notice
that a similar characterization exists for the borda methodused to rank [NIT 81]. Moreover,
different generalizations of this result have been proved for the Borda method used to aggregate
many different kinds of binary relations and even fuzzy binary relations [DEB 87, MAR 96,
MAR 98, MAR 00, OUL 00].

19.3.2.3.Generalizations of the Borda method

The Borda method is a particular case of a general family of aggregation methods called
scoring rules. These rules associate a number (a score) to each position ina binary relation.
In order to aggregaten preference relations, we compute, for each candidate, the sum of its
scores in the preference relations of then voters. The winner is the candidate with the smallest
total score. The Borda method is a particular scoring rule where the numbers associated to each
rank are equally spaced. The British system is also a scoringrule where the best candidate in a
preference relation receives 1 point and all the others receive the same score, say 2.
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It has been shown that scoring rules are essentially characterized by neutrality, anonymity
and separability [SMI 73, YOU 74, YOU 75]. (If we then add cancellation, we obtain a char-
acterization of the Borda method.) For an overview of many results about scoring rules, see
[SAA 94]. The French system is not a scoring rule because of the second stage. However, it is
neutal and anonymous. It is therefore not separable, as shown in example 13.7. We have noticed
in section 13.2 that the British system and the Borda method do not satisfy the Condorcet prin-
ciple (see examples 19.2 and 19.10). This is not a surprise: indeed, it is possible to prove that
no scoring rule can satisfy the Condorcet principle [MOU 88].

The French system can be considered as a scoring rule with iteration: at the first stage, it
uses the British system for selecting two candidates. The same system is then used at the second
stage. Note that there are many ways to iterate a scoring rule(one could for example use more
than two stages). A result by [SMI 73] shows that no iterated scoring rule is monotonic. The
violation of monotonicity by the French system (example 19.5) is simply a consequence of this.

19.3.2.4.A characterization of simple majority

In this section, we present the characterization of simple majority of [MAY 52] for two
candidates. In this case, the distinction between choosingand ranking is no longer meaningful
but, in order not to use a new formalism, we adopt here the choice formalism. May considers a
choice procedure, i.e. a method designating one or several winners, based on the preferences of
the voters. A formal definition of a choice method was presented above, in relation to the Borda
method.

A candidate belongs to the choice set with a simple majority if the number of voters sup-
porting them is not smaller than the number of voters supporting their contender.

Formalization 19.12. The simple majority choice method is defined by:a ∈ f(R1, . . . , Rn) if
and only if

#{i ∈ N : aRib} ≥ #{i ∈ N : bRia}.

Note that voters that are indifferent betweena andb have no effect on the outcome of the
election. Their votes are counted on both sides of the inequality. The outcome would be the same
if they did not exist. In order to characterize simple majority, [MAY 52] used three conditions.

Anonymity The choice set depends only on the preferences of the voters and not, for instance,
on their name or age.

Formalization 19.13. Let S be the set of all permutations onN = {1, . . . , n}. A choice
method is anonymous if and only iff(R1, . . . , Rn) = f(Rσ(1), . . . , Rσ(n)) for any permuta-
tion σ in S .

This condition rules out, for example, the methods where some voters weigh more than
others and methods where a voter (usually the chairperson ofthe committee) has the power to
decide in case of a tie.
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Neutrality See above.

Strict monotonicity Given the preferences of the voters, if the candidatesa andb are chosen
and if one of the voters changes his preferences in favor ofa (the other voters do not
change anything), then onlya is chosen. If, onlya was chosen at the beginning, thena
stays alone in the choice set.

Formalization 19.14. Consider two weak ordersRi andR′
i identical apart from the fact there

is a pair of candidates(a, b) such that:

– NotaRib andaR′
ib or

– bRia and NotbR′
ia.

Strict monotonicity then imposes:

f(R1, . . . , Ri, . . . , Rn) = {a} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a},

and

f(R1, . . . , Ri, . . . , Rn) = {a, b} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a}.

A consequence of this condition is that, in case of a tie, a single voter changing their mind is
enough to break the tie. Simple majority clearly verifies thethree above-mentioned conditions.
Moreover, no other method satisfies them all.

Theorem 19.3. [MAY 52] When there are exactly two candidates, the only choice method sat-
isfying neutrality, anonymity and strict monotonicity is simple majority.

To understand why this theorem only applies to the case of twocandidates, note that many
different choice methods coincide when there are only two candidates. In particular, the Borda
method and many scoring methods always yield the same resultas simple majority with two
candidates. You may then question the interest of this characterization. Actually, Arrow’s theo-
rem has shown us that simple majority cannot be extended to more than two candidates (without
deeply modifying it). The characterization with two candidates is therefore essential.

19.3.2.5.Analysis

The few aggregation methods presented so far are just a smallsample of all the methods
proposed in the literature. In particular, we did not mention the methods using the majority
relation (constructed by the Condorcet method) to arrive ata choice set or a ranking. Similarly,
the properties (such as neutrality or monotonicity) presented so far are also a very small subset
of all those studied in the literature. For an overview of methods and properties, see [ARR 63,
DED 00, FEL 92, FIS 77, LEV 95, NUR 87, RIC 75, RIC 78a, RIC 78b, RIC 81].
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19.4. Multicriteria decision aiding and social choice theory

19.4.1. Relevance and limits of social choice results

We have seen in section 19.1 that aggregation problems in multicriteria decision aiding and
social choice are formally very close to each other. The examples of section 19.2 and the results
of section 19.3 taught us that conceiving a satisfactory aggregation method is a challenging task.
Some authors [e.g. GAR 82] have then concluded that muticriteria decision aiding is doomed
to failure. For a detailed answer to this objection, see [ROY93]. We nonetheless mention the
following points:

1) Such a conclusion flows from a biased and too radical interpretation of the available
results in social choice theory. There are some impossibility results but this does not mean that
resorting to an aggregation method to try to find a collectivedecision is a futile exercise. It
is a demanding task requiring compromises to be made betweenseveral exigencies that are in
general not compatible.

These results, when combined with characterization and analysis results, provide a good
support to motivate the choice of a method. There is no ideal method but some are perhaps
more satisfactory than others. See [SAA 94] for a convincingplea in favor of the Borda method
or [BRA 82] for approval voting.

2) The formal proximity between both problems does not implythat both problems are
identical. In particular:

- The goal of a multicriteria decision aiding process is not always to choose one and
only one action. There are many other kinds of outcomes, unlike in social choice theory
[ROY 85].

- Some conditions look intuitive in social choice theory butare questionable in multicri-
teria decision aiding, and conversely. Let us mention, for example, that anonymity is not relevant
in multicriteria decision aiding as soon as we wish to take criteria of different importance into
account. Conversely, the set of potential actions to be evaluated is seldom given in multicriteria
decision aiding (contrary to the set of candidates in socialchoice theory); it can evolve. The
conditions telling us how an aggregation method should behave when this set changes (some
actions are added or removed) are therefore more important in multicriteria decision aiding than
in social choice theory.

- The preferences to be aggregated in multicriteria decision aiding are the outcome of
a long modeling phase along each criterion [BOU 90]. This modeling phase can sometimes
lead to incomplete preferences, fuzzy preferences or preferences such that indifference is not
transitive [FOD 94, PER 92c, PER 98, ROU 85]. In some circumstances, it is possible to finely
model preference intensities or even to compare preferencedifferences on different criteria
[KEE 76, VON 86]. Let us mention that handling uncertainty, imprecision or indeterminacy
is often necessary to arrive at a recommendation in multicriteria decision aiding [BOU 89],
contrary to social choice theory.

- In multicriteria decision aiding, contrary to social choice, it is not always necessary
to completely construct the global preference. Indeed, it can occur that the decision maker can
express their global preference with respect to some pairs of alternatives. For example, they are
able to state that they preferx to z andy to z but they hesitate betweenx andy. If they then use
an aggregation method, it is in order to construct the preference only betweenx andy and not
on the whole set of alternatives. Of course, these preferences that we construct on some pairs of



762 Decision Making

alternatives must be based on the single-criterion preferences of the decision maker but also on
the global preferences stated.

In multicriteria decision aiding, we therefore have a new element at our disposal: the
global preferences. These do not exist in social choice theory. They are of course (very) incom-
plete but they can nevertheless help construct the global preference relation. In practice, these
global preferences are often used by analysts in order to setthe value of some parameters of
the aggregation method they use. For instance, with the methods based on multi-attribute value
theory (MAVT), the decision maker must compare (sometimes fictitious) alternatives in order
to assess the value functions. The existence of these globalpreferences, totally non-existing
in social choice theory, breaks the symmetry between multicriteria decision aiding and social
choice theory. Few theoretical results have so far taken theglobal preferences of the decision
maker into account. More research is needed [MAR 03].

Even if both domains are formally close to each other and if some conditions used in so-
cial choice theory can also be found in multicriteria decision aiding, we must beware of crude
transpositions due to the many specificities of multicriteria aggregation.

Conversely, we must not conclude that both domains are unrelated and that the examples
and results of sections 19.2 and 19.3 are of no consequence for multicriteria anlysis. It has
clearly been shown [VAN 86a] that it is possible and useful toconsider multicriteria aggregation
methods in the light of social choice theory. Let us mention that, for example, the difference
between the Condorcet and the Borda method can be found in multicriteria anlysis between
the ordinal methods [ROY 91, ROY 93] and the cardinal ones where the idea of preference
difference is central [KEE 76, VON 86]. In the light of Arrow’s theorem, it is not surprising
that ordinal methods often lead to global preference relations from which a recommendation is
not always easy to derive [VAN 90].

Many results of social choice theory still need to be adaptedand/or extended to make them
relevant to multicriteria analysis. Among the works in thisdirection, let us mention:

– impossibility results [ARR 86, BOU 92a, PER 92b],

– characterization results [BOU 92b, BOU 86, BOU 92c, MAR 96,PIR 95, PIR 97] and

– analysis results [BOU 97, LAN 96, LAN 97, PÉR 94, PÉR 95, PIR 97, VIN 92].

However, there is still much to do [BOU 93].

19.4.2. Some results in close relation with multicriteria analysis

So far, we have tried to sketch a global overview of social choice theory and to show the
links with multicriteria decision aiding and the limits of this analogy. In this last section, we
mention some results of social choice theory that are directly relevant for the analysis of some
popular aggregation methods in multicriteria decision aiding.

19.4.2.1.TACTIC [VAN 86b]

The first relevant result is the characterization of a simplemajority with two alternatives
by [MAY 52], presented higher. This aggregation method can be seen as a particular case of
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TACTIC, with a concordance threshold equal to1, without weights and without discordance.
For the case of two alternatives, a result by [FIS 73] characterizes simple majority with weights.

Another article worth mentioning here is by [MAR 03]. It presents two characterizations of
weighted simple majority with any number of alternatives. It is therefore slightly more general
than the results of May and Fishburn. It corresponds to a particular case of TACTIC with a
concordance threshold equal to1 and no discordance.

19.4.2.2.Multi-attribute value theory (MAVT) [KEE 76, VON 86]

The methods of this family are usually analyzed in the framework of measurement theory
[KRA 71, WAK 89]. There are however some relevant results in social choice theory and, in
particular, in cardinal social choice theory. In this part of social choice theory, the information
to be aggregated is not ordinal (not a binary relation) but cardinal: it consists of utilities, that
is, numbers representing preferences [ROB 80]. As far as we know, none of these results have
been transposed in multicriteria decision aiding.

19.4.2.3.Weighted sum

The weighted sum is a particular case of MAVT methods. The previous section is there-
fore relevant for the weighted sum. Let us highlight a particular result: [ROB 80, theorem 2]
characterizes the weighted sum. See also [BLA 54, D’A 77].

19.4.2.4.ELECTRE and PROMETHEE [ROY 91, ROY 93, VIN 89]

With ELECTRE and PROMETHEE, each alternative is represented by a vector ofRn,
x = (x1, . . . , xn) wherexi represents the performance ofx on criterioni (we suppose that all
criteria are to be maximized).

The first step in PROMETHEE consists of choosing, for each criterion, a preference func-
tion fi [MAR 88]. This is used to compute, for each pair of alternativesx, y, a number be-
tween0 and1 representing a preference degree denoted byPi(x, y) and defined byPi(x, y) =
fi(xi, yi). At the end of the first step, we therefore have a fuzzy preference relation for each
criterion,Pi being the fuzzy relation associated to criterioni andPi(x, y) the value of this
relation for the pairx, y.

In the next step, these fuzzy relations are aggregated by means of a generalization of the
Borda method. This generalization has been characterized by [MAR 96]. Some variants of this
characterization are presented in [MAR 98, MAR 00, OUL 00].

The ELECTRE methods use a somehow similar construction but with veto effects [ROY 91,
ROY 93]. The preference relation constructed at the end of the aggregation phase uses some
functionsfi andgi with values in[0; 1] in order to define (1) concordance indicesCi(x, y) =
fi(xi, yi) representing to what extentxi is at least as good asyi and (2) discordance indices
Di(x, y) = gi(xi, yi) expressing to what extent the differenceyi − xi is compatible with
a global preference ofx over y. Whenyi − xi exceeds a certain threshold (veto threshold),
Di(x, y) equals1 and the aggregation method then forbids a preference ofx overy [PER 92c].



764 Decision Making

The ELECTRE and PROMETHEE methods therefore use aggregation procedures based
on the construction and aggregation of fuzzy relations. They therefore do not escape the im-
possibility results mentioned in section 19.3.1.1 or aboutthe aggregation of fuzzy relations
[PER 92b]. This is why a last phase (exploitation) is necessary in order to reach a recommen-
dation [ROY 93, VAN 90] This last phase is often difficult and the problems it raises can also
be analyzed in the light of axiomatic results on ordinal aggregation of preferences. For in-
stance, some non-monotonicity phenomena arising with exploitation procedures based on an
iterated choice function [FOD 98, PER 92a] can be explained by Smith’s theorem presented in
section 19.3.2.3 or by more recent axiomatic analyses in thesame direction [BOU 04, JUR 03].

Let us finally mention that [BOU 96] has extended the classic results of [MCG 53] regarding
simple majority to ELECTRE and PROMETHEE.
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