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Preface

The idea of publishing a treatise presenting the state of theart on concepts and
methods for decision-support stems from the fact that decision is a multidisciplinary
topic of investigation. Indeed, it lies at the heart of various areas of science such as
economics, psychology, political science, management, operational research and arti-
ficial intelligence. A recurrent temptation is, for any specific research community, to
protect its identity against influences from other areas. Ittherefore seemed to us quite
important to stand against such an attitude, and try to put the contributions of the var-
ious communities which have become involved in this topic ina unified perspective.
In order to grasp all dimensions of decision-support, we have to think in terms of em-
pirical studies, mathematical models and algorithms as well as logic-based and other
types of computerized representation tools. Psychologists, economists, sociologists,
mathematicians, computer scientists – and decision-makers – have every interest to
get together and speak with one another, in order to implement decision-support tools
that are at the same time useful and cogent.

The classical approach

In order to be convinced of the relevance of such a multidisciplinary standpoint,
it is useful to briefly revisit the history of decision sciences. Right after the end of
World War II, the landscape of this area looked empty. Operational research had in-
herited from the neo-classic economics tradition the idea of ‘rational decision’, and
promoted an approach based on the optimization of a single objective function under
constraints. The development of linear programming by George Dantzig (and later
on, of non-linear programming and dynamic programming) provided efficient tools
for implementing this approach on real-sized problems (encountered in military lo-
gistics, in production research and delivery management for industrial firms). In the
same years, John von Neumann and Oscar Morgenstern, followed by Leonard Savage,
broadened the scope of the constraint-based optimization paradigm to situations where
consequences of decisions are risky or uncertain. Very soonthe so-called ‘Decision
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Analysis School’ (led by scholars such as Howard Raiffa and Ward Edwards) demon-
strated the usefulness of such theoretical results on practical case studies in decision
analysis. The extension of these approaches to the construction of objective functions
accounting for several criteria was proposed by Gérard Debreu, Duncan Luce and later
on by Ralph Keeney and Howard Raiffa in situations of certainty, uncertainty or risk.
All in all, the mid-1970s witnessed a well-established, blossoming field which can be
dubbedclassical decision theory.

Questioning the classical theory

Considering such achievements, why bother advancing research in decision sci-
ences? The point is that concurrently to contributions to the validation of the classical
theory, radical criticisms of this theory appeared. Noticeably, the works of Herbert Si-
mon cast doubts on the optimization-based approach to decision as being the unique
admissible paradigm of rationality. In addition, classical methods of operational re-
search could not tackle all large-sized optimization problems. The emergence of com-
plexity theory, proposed by Jack Edmonds and Richard Karp, suggested that the per-
spective of more and more powerful computers was not sufficient to overcome this
difficulty in the near future.

On the side of decision under risk and uncertainty, the Bayesian approach, stem-
ming from the work of Savage, appeared like the prototype of arigorous and elegant
approach to rational decision. However, it was undermined due to empirical studies
run by economists (Maurice Allais and Daniel Ellsberg) and psychologists (Daniel
Kahneman, Amos Tversky and Paul Slovic). Results of such studies demonstrated
that, in some cases, human behavior consistently violated the principles of expected
utility theory when selecting best decisions. Probabilitymeasures seemed to lose their
status of a unique rational tool for modeling uncertainty when information about de-
cision consequences is missing. The fact that expected utility theory could not always
account for the behavior of decision-makers triggered the search for new formal mod-
els relying on non-probabilistic representations of uncertainty. Following the pioneer-
ing works of David Schmeidler and John Quiggin new, more flexible and realistic
mathematical models were proposed. Expected utility was replaced by another more
general integral, proposed by Gustave Choquet in the 1950s.

New trends in operational research

In the area of operational research, scholars became more and more aware of the
practical limitations of the optimization-based approachto all decision problems. It
was not always crystal-clear that a theoretically optimal solution turned out to be an
operationally good one from the viewpoint of the user. One ofthe reasons for such a
discrepancy lies in the presence of more than one criterion to be taken into account in
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order to class a solution to a decision problem as sufficient.From this point of view,
multiattribute utility theory was not entirely satisfying. It assumed the preferences of
the decision-maker to be well structured. However, it was prone to neglect the practical
difficulty of comparing two alternatives with respect to several dimensions. Following
Bernard Roy, new decision analysis methods dedicated to thecase of multiple crite-
ria emerged in the 1970s and 1980s. They acknowledged the ordinal and ill-defined
nature of information available in real-world problems, paving the way for more re-
alistic methodologies for multicriteria decision-support. The idea that an optimization
algorithm could force a decision-maker to use a computed solution was given up. It
was acknowledged that the role of a formal method was to help the decision-maker
build a satisfactory solution. Moreover, the need to consider several criteria presup-
posed a study of the dependencies between these criteria andthe extent to which they
can compensate each other, laying bare the possibility of incomparability between so-
lutions. Finally, the analogy between voting theory (whereinformation from voters is
essentially ordinal) and multiple criteria decision-making triggered the development
of new approaches designed to handle the latter problem.

The emergence of artificial intelligence

Some time passed before the field of artificial intelligence (AI) became concerned
with decision problems. This occurred in the 1990s in connection with planning prob-
lems under uncertainty and partial observability found in robotics, and the design of
user-centered computerized recommender systems and web services. Traditionally,
since the late 1950s, artificial intelligence used to focus on declarative knowledge rep-
resentation and automated reasoning methods, as well as general solving techniques
that may apply to a large class of problems. A systematic use of propositional and
first-order logics as knowledge representation or programming tools was promoted
by scholars such as John McCarthy and Alain Colmerauer. It prompted the emer-
gence of qualitative approaches, even if probability theory and the expected utility
approach was also finally accepted, in more recent years. Qualitative approaches es-
pecially make sense when it is very time-consuming or costlyto build fully fledged
utility functions in some application at hand and a coarse representation of prefer-
ence and uncertainty is good enough to come up with a reasonable decision. In recent
years, AI tried to exploit the formal setting of the classical decision theory. The foun-
dations of some ordinal representations were studied. Someof these works come very
close to formal results in voting theory, albeit adapting them to specific representation
frameworks. In such ordinal setting, possibility theory isthe natural counterpart to
probability theory in the classical decision theory. Formal similarities between voting
theory, decision under uncertainty and multiple criteria decision-making can there-
fore be laid bare where voters, states of nature and criteriaplay the same role in each
respective problem.
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The emphasis of artificial intelligence on representation issues for decision prob-
lems makes sense particularly in problems where the set of states of the world is
huge, so that the explicit description of a probability or possibility distribution on
the state space becomes too burdensome a task. The recent years have therefore wit-
nessed the emergence of powerful tools for the compact representation of uncertainty
or preference, especially graphical representations suchas Bayesian networks, influ-
ence diagrams and conditional preference networks (often called CP-nets). As well as
computer languages for logic programming or constraint-based programming, generic
problem-solvers for Boolean or combinatorial decision problems are provided: in such
approaches, the user is simply requested to express the problem under concern in the
appropriate declarative language. This elementary approach (from the standpoint of
expressiveness) was enriched by the introduction of soft constraints, bridging the gap
with more traditional quantified frameworks for decision analysis.

This treatise

By and large, the progressive questioning of the claims deriving from the classical
theory led to a very wide and active research area devoted to decision analysis and
decision science. Many new concepts and topics emerged fromthis critical assess-
ment of the foundations of decision theory: non-additive frameworks for uncertainty
representation, Choquet integral, possibility theory, bounded rationality models, non-
transitive preference representations, incomparability, interactions and dependencies
between criteria, processing of ordinal information and avoiding threshold effects in
quantitative representations (among others). Recent developments are too scattered
and numerous to be extensively described in these pages, letalone to be able to pre-
dict their evolution. Nevertheless, one specific feature ofcurrent trends deserves to be
emphasized; these works now involve various disciplines. Economists and operational
researchers were joined by psychologists, organizationalsociologists and scholars in
artificial intelligence and theoretical computer sciences. Interestingly, and as a hint
to why this state is unsurprisingex post, let us highlight the key role played by John
von Neumann, a mathematician who is a pioneer in decision theory and operational
research as much as in computer science.

The goal of this treatise is to survey the main results and methods in decision theory
and decision-support, in order to enable the reader to enterthis area and grasp its
extent beyond the specifics of the various areas that contributed to this problem. Each
chapter provides a state-of-the-art overview of a particular approach to decision, in
terms of modeling, representation or problem-solving tool. The book is composed of
three parts. The first part is devoted to mathematical concepts useful for the modeling
of decision problems, as well as compact representation techniques and combinatorial
problem-solving methods. The second part focuses on decision under uncertainty and
the third part reviews the various approaches to multiple criteria decision-making. The
fact that all chapters of this book are written by French-speaking authors should not



Preface xxix

be surprising; research in France and French-speaking countries dealing with decision
problems has been very active in the last 50 years, followinga long tradition initiated
by Borda and Condorcet more than two centuries ago. In the following, we provide a
more extensive description of the contents of this book.

Chapters 1–7: Modeling tools

The first chapter, written by Alexis Tsoukias, places the current trends of deci-
sion theory in a historical perspective, stressing the interaction between this field and
others such as cognitive sciences, organization theory, psychology and artificial in-
telligence, etc. It brings forward a clear distinction between the practice and the pro-
cess of decision-making from the theory and the techniques used to ‘solve’ decision
problems. The latter are simply tools that are instrumentalwithin a general methodol-
ogy for decision-support, whose basic features are discussed by the author. A general
decision-support process is described that can serve as a guideline to practitioners
independently of the specific tool to be employed.

A basic notion in decision theory, whether under uncertainty or multiple criteria, is
that of a preference relation. This kind of construction naturally appears for pairwise
comparison of alternatives that account for the decision-maker opinion. In Chapter 2,
Denis Bouyssou and Philippe Vincke present the main mathematical structures instru-
mental in modeling preference (total order, weak order, interval order and semi-order)
and discuss various ways of representing them (by graphs, matrices and numerical
functions). A brief account of the problem of preference aggregation is provided, a
crucial issue in several chapters of this treatise. This chapter in no way considers the
issue of eliciting preferences from the decision-maker. This issue is dealt with in the
third part of this treatise.

Uncertain information is pervasive in decision problems (as well as in many oth-
ers). There is a recurrent confusion between two kinds of uncertainty, which is not
always easy to resolve in the purely probabilistic setting and is at the origin of many
difficulties and debates. In Chapter 3, Didier Dubois and Henri Prade make a care-
ful distinction between these two forms of uncertainty: aleatory uncertainty (which
results from the intrinsic variability of natural phenomena) and epistemic uncertainty
(mainly due to a lack of information about the reality under concern). Of course, both
types of uncertainty may be simultaneously present in a given problem. The authors
show that specific representation frameworks are suitable for each kind of uncertainty:
probability measures for aleatory uncertainty, sets (e.g.logic and intervals) for incom-
plete information and new uncertainty theories combining the two ingredients. Basic
concepts useful for reasoning and decision are surveyed, especially conditioning and
information fusion methods.

Decision-making is a human activity and, as such, influencedby psycho-physio-
logical effects and subject to cognitive limitations of thehuman mind. In Chapter 4,



xxx Decision Making

Jean-Charles Pomerol interprets decision-making activity as driven by reasoning and
emotion according to recent discoveries in neurobiology. Several basic concepts such
as bounded rationality are introduced. Decision can be triggered by the recognition
of patterns in the state of the world. As a consequence, the author presents the basic
principles of case-based decision-making. He discusses cognitive biases related to the
perception of probabilities.

Multiple criteria analysis is often distinguished from multiple criteria optimiza-
tion. The main difference relates to the techniques for describing solutions. Multi-
ple criteria analysis is characterized by a small number of well-defined options that
can be explicitly enumerated. Multiple criteria optimization deals with intentionally
described (possibly infinite) sets of options defined by means of constraints. In Chap-
ter 5, Jacques Teghem provides an introduction to multiple criteria optimization, a field
where technical difficulties relevant to optimization combine two conceptual difficul-
ties inherent to reasoning with multiple criteria. The scope of the chapter is limited
to multiple criteria linear programming, where both constraints and objective func-
tions can be represented by linear expressions in terms of decision variables. After
a refresher on basic notions, including efficient solutions, Teghem reviews the main
techniques used in various multiple criteria linear programming problems according
to whether variables are continuous, discrete or Boolean. Building on exact and in-
teractive methods, the author also considers approximate methods with special focus
on the use of meta-heuristics. The last two sections of this chapter are devoted to the
case of imperfect information: aleatory data (subject to probabilistic randomness) and
imprecise data (fuzzy multiple criteria linear programming).

Mathematical programming, whether linear or not, is no longer the only tool capa-
ble of solving decision problems where the set of solutions is implicitly described and
may involve a large (possibly infinite) number of solutions.Constraint-based program-
ming is a tool stemming from artificial intelligence, which strengthens and enriches
the gamut of available decision optimization techniques. Many real-world problems
such as scheduling, resource management, pattern recognition and diagnosis can be
modeled as constraint satisfaction problems (CSPs). Chapter 6 provides an outline of
current tools that address such problems. Gérard Verfaillie and Thomas Schiex also
deal with extensions of CSPs where the satisfaction of constraints can be a matter of
degree.

Traditionally, preferences are defined over sets of alternatives described by vec-
tors of local evaluations along various attributes. Globalpreference is analytically
determined by means of a formal preference aggregation model merging preferences
according to each criterion. This process is more preciselydescribed in the third part.
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In Chapter 7, Jérôme Lang takes a more general point of view relying on logi-
cal representations of preference. He presents compact preference representation lan-
guages allowing a simpler expression of preferences between complex entities, ex-
pressed by the decision-maker in natural languages. These languages are supplemented
with efficient algorithms that can compute whether one alternative is preferred to an-
other and find optimal solutions. Such languages are the topic of extensive research in
AI. The author shows how propositional logic-based formalisms can be instrumental
for the representation of preference. Various logics of preference are surveyed, starting
from so-calledceteris paribuspreferences, ending with conditional preference logics
and graphical representations such as CP nets. The chapter concludes with a brief
insight into the potential of multiple-valued and paraconsistent logics.

Chapters 8–14: Decision under uncertainty

This part is a compendium of various mathematical or empirical models for deci-
sion under uncertainty. First, the various existing criteria for decision-making under
uncertainty are reviewed (in the historical order of their appearance): expected util-
ity, subjective expected utility, non-additive extensions thereof and qualitative criteria.
One chapter is devoted to the empirical validity of such criteria from the viewpoint
of cognitive psychology. The final two chapters of this part focus on mastering the
combinatorial complexity of multistage decision-making problems under uncertainty:
Bayesian networks, influence diagrams and Markov decision processes for planning
under uncertainty.

Chapter 8, written by Alain Chateauneuf, Michèle Cohen and Jean-Marc Tallon,
outlines the theory of decision under risk after von Neumannand Morgenstern. As-
sumption of decision under risk is that a probability distribution over the states of the
world is available. In such a situation, any decision is a matter of choosing between
lotteries. von Neumann and Morgenstern proposed necessaryand sufficient conditions
for the justification of:

1) the existence and uniqueness (up to a linear transformation) of a utility function
quantifying the attractiveness of the various consequences of the tentative decisions,
according to the decision-maker;

2) the criterion of expected utility, astherational evaluation basis for ranking de-
cisions.

This chapter puts some emphasis on the issue of representingthe attitude of the
decision-maker in the face of risk. Several approaches to model risk aversion, even
if intuitively distinct, turn out to be equivalent in this setting which shows some lim-
itation in expressiveness. Another limitation is highlighted by means of the Allais
paradox whereby decision-makers, when faced with both sureand uncertain gains,
may consistently violate the independence axiom. Modern approaches to decision un-
der risk that weaken the independence axiom are surveyed.
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Chapter 9, written by Alain Chateauneuf, Michèle Cohen and Jean-Yves Jaffray
is a refresher on the classical theory of decision under uncertainty according to Sav-
age, who axiomatically justified subjective expected utility as a criterion for ranking
decisions. Contrary to the case of decision under risk, the decision-maker does not
know the probabilities of the states of nature. Decisions are construed as functions
(also calledacts) from the state space to a set of consequences. Savage proposed a
set of postulates on the preference between acts implying that this preference can be
represented by an expected utility with respect to a subjective probability distribution.
These postulates imply that the set of states is infinite. In other words, in this approach,
even if the decision-maker is ignorant about the current situation, they behave as if
they knew of a probability distribution on states and rankeddecisions using the crite-
rion proposed by von Neumann and Morgenstern. The chapter presents other settings
where the same result was proved, especially the elegant proposal of Anscombe and
Aumann where the state space is finite but decisions have random consequences mod-
eled by lotteries on a finite set of possible results. The authors then recall the history
of empirical criticisms of this approach, which also suffers from the Allais paradox
and also from the Ellsberg paradox. The latter shows that many decision-makers are
likely to violate the sure-thing principle (the key axiom ofSavage theory) in the face
of incomplete information, which is incompatible with a probabilistic representation
of uncertainty.

Chapter 10, written by Alain Chateauneuf and Michèle Cohen,surveys the numer-
ous decision models and criteria that were proposed as a consequence of the various
critiques of the classical theory. These models were proposed to accommodate the Al-
lais and Ellsberg paradoxes, and to offer refined views of risk and uncertainty aversion.
This chapter considers both extensions of the classical theories under risk and under
uncertainty. In the case of uncertainty, the main step was taken by David Schmeidler
within the Anscombe–Aumann setting. He suggested that the independence axiom
only applies to comonotonic decisions, no mixture of which can help hedging against
the variability of consequences. Under this restriction, the criterion takes the form
of a Choquet integral with respect to a monotonic set function representing uncer-
tainty. Other extensions were later proposed to accommodate the Choquet integral,
for instance in the Savage setting, and are surveyed in this chapter. Let us mention the
multiprior model of Gilboa and Schmeidler, in which decisions are ranked according
to their minimal expected utility with respect to a family ofprobabilities (coinciding
with a Choquet integral w.r.t a lower envelope), and the generalization to belief func-
tions of Hurwicz criterion taking a weighted average between the best and the worst
consequences. These approaches use representations of uncertainty presented in Chap-
ter 3. The last section of this chapter considers the generalization of the von Neuman-
Morgenstern model proposed by Quiggin (the so-called ‘rank-dependent’ model). The
basic idea is that the decision-maker has a subjective perception of objective probabil-
ities. This is encoded by means of a function that models the subjective perception of
objective probabilities, and the criterion is again Choquet integral with respect to this
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distorted probability measure. This model addresses the Allais paradox, distinguish-
ing attitude towards risk (the probability distortion function) and towards sure conse-
quences (the utility function). More recent variants of this approach are discussed.

Chapter 11, written by D. Dubois, H. Fargier, H. Prade and R. Sabbadin, stud-
ies what remains of the classical theory when utility and uncertainty functions are
no longer numerical and are expressed by preference relations studied in Chapter 2.
In the pure relational framework, rational decision rules are qualitative or possibility
theory-based counterparts to Condorcet pairwise majorityrule, and impossibility re-
sults similar to those in the voting framework are found. When a common qualitative
value scale is used, criteria for decision under uncertainty extend the maximin and
maximax criteria introduced by Shackle and Wald in the early1950s in the case of
total uncertainty. The most general one is the Sugeno integral, a qualitative counter-
part to the Choquet integral. This chapter discusses in detail prioritized pessimistic
and optimistic extensions of maximin and maximax criteria respectively, the under-
lying uncertainty theory being possibility theory. In thisapproach, the attitude of the
decision-maker is only expressed by the choice of a set function representing uncer-
tainty. In order to cope with the lack of discrimination of qualitative decision criteria,
techniques to refine the obtained ranking of decisions are surveyed. Especially, it is
shown that the prioritized pessimistic and optimistic extensions of maximin and max-
imax criteria can be refined by expected utility criteria with respect to a so-called
big-stepped probability function, the utility functions being respectively concave or
convex.

Chapter 12, written by Eric Raufaste and Dennis Hilton, considers decision un-
der uncertainty from the viewpoint of cognitive psychology. They report on studies
evaluating the extent to which normative decision theoriesfaithfully account for the
actual behavior of decision-makers. This chapter echoes Chapter 4, which discusses
this issue in a broader context. The works of Daniel Kahnemanand Amos Tversky
demonstrated at length, in a series of experiments, that human beings may fail to com-
ply with normative assumptions. The authors present the so-called Prospect Theory,
somewhat akin, through the use of distortion functions, to the Quiggin decision model
while using a bipolar value scale. Indeed, the bipolar behavior of human decision-
makers can be examined, since a decision-maker does not havethe same attitude in
the face of gains and in the face of losses. The authors then broaden the scope of the
chapter towards a global descriptive approach to human decision, including the case
of several dimensions and the search for Pareto-dominance.An important cause of
deviation between theoretical models and human behavior isthe so-called attentional
focusing, namely the fact that a decision-maker concerned with one aspect of the de-
cision process tends to neglect other aspects. It makes the choice process prone to
manipulation through the way possible choices are described to the user (framing ef-
fect). This chapter also highlights the systematic use of heuristics by decision-makers
as shortcuts to speed up the choice process. The study of suchheuristics, as carried out
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by Gigerenzer, enable some human errors to be predicted. This chapter also discusses
the role of emotions in the decision process.

The next two chapters consider computational issues for large decision-making
problems, especially within the classical expected utility approach. In Chapter 13,
Jean-Yves Jaffray surveys the theoretical background of Bayesian networks and influ-
ence diagrams. A Bayesian network is a concise representation of a large joint prob-
ability distribution on a Cartesian product of finite universes. Its merit is to highlight
the local conditional independence properties between groups of variables via the so-
calledd-separationproperty. A Bayesian net enables the determination of posterior
probabilities to be carried out via local computations for the purpose of belief revision
when some variables are instantiated. This technique is especially efficient when paths
relating variables in the graph are unique. Bayesian nets are extended to the handling
of decision trees. These are structures involving decisionnodes and chance nodes; the
decision-maker tries to find the best decision sequences (policies) in order to maxi-
mize the overall expected utility. The computation of optimal policies is made easier
by folding the decision tree in order to do away with redundancies. Local computation
techniques similar to those in Bayesian nets mentioned in this chapter are possible
due to the additive separability of expected utility. The extension of such methods to
more general decision rules such as the Choquet integral is problematic because this
separability property no longer holds.

Chapter 14, written by Régis Sabbadin, also studies combinatorial aspects of deci-
sion under uncertainty for tree-like structures, such as those found in planning prob-
lems. Here a temporal dimension is added. The basic idea is that each decision causes
the system state to evolve to another state, the aim being to reach a prescribed final
state of interest to the user. Uncertainty lies first in the non-determinism of actions
whose result is poorly known. These problems are formalizedby means of so-called
Markov decision processes(MDPs) where the result of actions only depends on the
previous, supposedly known, state. The optimized criterion is again expected utility
along trajectories, and the computation methods are based on dynamic programming
which is again possible due to the additive separability of expected utility. This chap-
ter surveys several methods for solving MDP problems, and also considers the more
difficult case ofpartially observedMDPs (POMDPs) where the actual result of past
actions cannot be completely known. An account is given of decision processes whose
transition probabilities are only known via learning. The determination of an optimal
policy is carried out simultaneously with the probability learning process. MDPs of-
ten contain redundant parts that can be factorized, in orderto speed up computations.
Concise representations of MDPs exist that are similar to those for decision trees pre-
sented in the previous chapter.

The last part of Chapter 14 is devoted to the qualitative counterpart of MDPs where
the representation of non-deterministic actions and of theinformation about the cur-
rent state is based on possibility theory. Optimistic and pessimistic qualitative criteria
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presented in Chapter 11 are taken advantage of. From a computational point of view,
such criteria preserve a form of separability that makes them amenable to dynamic
programming techniques such as the expected utility techniques. This conforms with
the fact pointed out in Chapter 11, that possibilistic criteria can be refined by expected
utility. Moreover, the increase in complexity when moving from MDPs to POMDPs is
significantly smaller than in the probabilistic setting. Without denying the expressive
power of probabilistic POMDPs, the qualitative approach toplanning under uncer-
tainty is therefore equally attractive.

Chapters 15–20: Multiple criteria decision

The third part of this treatise is devoted to multiple criteria decision analysis and,
more generally, to aggregation methods for multiple and potentially conflicting judge-
ments or pieces of advice. There are three groups of chapters.

The first group deals with decision-support methods based onconjoint measure-
ment theory. This theory aims at determining conditions under which a binary rela-
tion, modeling preferences and defined product set can be represented numerically.
The conditions that allow such a numerical representation lead generally to results
having a constructive proof, and therefore provide guidelines for the elicitation and
the structuring of preferences expressed by a decision-maker.

Chapter 15, prepared by Mohammed Abdellaoui and ChristopheGonzales, presents
the classical theory of conjoint measurement which deals with the numerical represen-
tation of structures that are complete and transitive. An original aspect of this chapter
is its unified presentation framework including (1) the caseof sure information that
mainly leads to additive value functions and (2) the situations under risk and uncer-
tainty that lead to various decompositions (additive, multiplicative or multilinear) of
utility functions according to von Neumann and Morgenstern. Particular attention is
paid in this chapter to encoding methods, i.e. to proceduresfor the elicitation of prefer-
ences from a decision-maker. The extension of these methodsto new decision models
under uncertainty (as in rank-dependent expected utility)is also considered for situa-
tions under risk and uncertainty.

Chapter 16, written by Denis Bouyssou and Marc Pirlot, is devoted to the study
of conjoint measurement models where transitivity or completeness are no longer as-
sumed. It is shown that the use of different forms of the one-dimensional ‘traces’ of
a binary relation on a Cartesian product is instrumental in the derivation of a numer-
ical representation for non-necessarily transitive relations. Models thus obtained can
be viewed as offering a general framework that encompasses different aggregation
methods proposed in the literature. In particular, it is shown how these general models
enable an axiomatic analysis of multicriteria methods based on outranking relations
to be performed (as in the ELECTRE method and related approaches).
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In the above two chapters, the different components of the Cartesian product of the
evaluation domains were not assumed to be expressed on a common scale. The second
group of chapters in this part deals with methods where it makes sense to evaluate
objects according to different points of view on a common scale. Such a hypothesis
may appear to be quite bold. However, it is frequently made when grading student’s
work, or more generally when different experts on a panel usethe same evaluation
scale.

Chapter 17, written by Jean-Luc Marichal, presents an overview of the various
existing models for aggregating scores belonging to a common scale. In particular, it
includes a survey of different types of averages, associative aggregation functions and
aggregations based on the use of non-additive measures (in particular, Choquet and
Sugeno integrals). Particular attention is paid to the question of the meaningfulness
of such aggregation schemes, i.e. to the question of knowingwhether the algebraic
manipulations performed by the aggregation may lead to opposite conclusions if the
evaluation unit on the common scale is changed.

The second chapter of this group (Chapter 18), authored by Michel Grabisch, is
devoted to the practical use and interpretation of the aggregation schemes presented
in the Chapter 17. It is shown, using the MACBETH approach, how it is possible in
practice to evaluate objects on a common scale. Particular emphasis is put on the dis-
tinction between unipolar and bipolar scales. For bipolar scales, there exists a neutral
point expressing indifference inside the scale, and the aggregation of ratings above
the neutral level can be made according to a different logic from that used for ratings
below this level. It leads to considering aggregation schemes that are more general
than those considered in the previous chapter (e.g. based onan integral with respect
to a bi-capacity). The interpretation of parameters involved in such representations
(especially in terms of interaction between criteria) and their practical elicitation are
discussed in detail.

The third and last group of chapters is devoted to the links between multiple cri-
teria analysis and social choice theory. It should indeed beclear that the aggregation
of evaluations according to different criteria is not unrelated to the aggregation of
individual opinions regarding various candidates to an election.

Chapter 19, written by Denis Bouyssou, Thierry Marchant andPatrice Perny, of-
fers a simple introduction to social choice theory. It is shown, by means of various ex-
amples, why the aggregation methods proposed in social choice theory do not satisfy
all the expectations that we might have. These problems are related to more general
results (such as the famous Arrow theorem) that examine the difficulty of designing
a purely ordinal aggregation of various points of view. Thischapter provides a brief
survey of the literature, and stresses the relevance of manyclassical results in social
choice theory for the design or the use of a multiple criteriamethod for decision anal-
ysis.
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Chapter 20, authored by Olivier Hudry, Bruno Leclerc, Bernard Monjardet and
Jean-Pierre Barthélémy, concludes this book. It deals withthe analysis of aggregation
methods based on the search for medians of a collection of binary relations, i.e. rela-
tions that minimize a distance to preference relations in such a collection. This type
of method is very old in social choice theory (and dates back at least to Condorcet).
These techniques are analyzed in great detail according to the type of relations to be
aggregated and the nature of the result under concern. Different algorithmic formu-
lations of these medians are proposed and their complexity studied. The problem of
determining a median of a collection of relations is an example of a more general
one: that of finding medians in a lattice or in a semi-lattice.The results that are thus
obtained at the more general level shed a powerful light on the former problem of
aggregation of preference relations.

Hopefully, the collection of survey articles gathered in this book offers a broad
overview on the representation and the computational aspects of decision problems
and the foundations of decision under uncertainty and multiple points of view. It will
guide the reader trough the abundant literature that existson the topic. The authors of
surveys proposed here are renowned contributors to the study of the questions covered
in this volume. This volume also demonstrates that researchon the use of formal
methods for the study of decision problems is active in French-speaking countries.

Denis Bouyssou, Didier Dubois, Marc Pirlot and Henri Prade
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Chapter 1

From Decision Theory to Decision-aiding
Methodology

1.1. Introduction

Quite often I get asked what my job is. When I reply that I work in decision aiding,
people remain perplexed and quite often ask ‘aiding what decisions?’.

Indeed, decision making is an activity that every person does every day. We all
make decisions constantly, from the simplest ‘should I takemy umbrella?’ [POO 92]
to the more complex ‘how should the international disarmament treaty be applied?’
[JPV 98]. We also make decisions at all levels e.g. individual: ‘should I divorce?’
[WAT 83], organizational: ‘how do we schedule the crew shifts?’ [CAP 98] and inter-
organizational: ‘which trace for the highway?’ [OST 93].

During such decision processes we often ask for help, adviceor support from
friends, experts or consulting companies. Several questions arise. Is it conceivable that
a decision-aiding methodology could exist independently from any specific domain,
one which could be used in all such situations? Can an expert in decision aiding exist
who is not an expert in any particular domain? What would the difference be between
such an expert and a psychotherapist, a physician, a lawyer,an expert in logistics or
your best friend?

What characterizes decision aiding, both from a scientific and a professional point
of view, is the fact that it is both formal and abstract. By ‘formal’ the use of formal

Chapter written by Alexis TSOUKIÀS.
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languages is meant, ones which reduce the ambiguity of humancommunication. By
‘abstract’ the use of languages that are independent from a specific domain of dis-
course is meant. The basic idea is that the use of such languages implies the adoption
of a model of ‘rationality’: a key concept in decision aiding. Does it make sense to use
such a language always and in any context? Obviously not. Being abstract and formal
presents several disadvantages:

– it is much less effective with respect to human communication;

– it has a cost (not necessarily monetary);

– reducing ambiguity might not be desirable; and

– it imposes a limiting framework on people’s intuition and creativity.

Nevertheless, there are also several advantages which, in some circumstances, can
be interesting [BOUY 00].

– It allows the participants in a decision process to talk thesame language, a fact
that improves transparency of the process and possibly increases participation (for an
example see [BAN 01]).

– It allows the identification of the underlying structure ofa decision problem (if
there is any) and therefore allows the re-use of procedures and models (see any text-
book on Operational Research, e.g. [WIL 90]).

– It is not affected by the biases of human reasoning that are due to education or
tradition [RIV 94].

– It may help to avoid the common errors that are due to an informal use of for-
mal methods. A typical case is the use of averages as a universal grading procedure
[BOUY 00].

In general terms, a formal and abstract language allows us tobetter analyze, under-
stand, explain and justify a problem or a solution. It shouldbe noted that organizations,
companies, institutions, entreprises and ourselves ask for and use formal methods of
decision aiding. Students are promoted using the average oftheir grades. Traffic re-
strictions are applied based on a pollution index. Credit demands are rejected because
of the client’s credit rating. Production is scheduled, highways are designed and net-
works are administrated using formal methods of decision support. In reality, decision
aiding is present in many aspects of our everyday life. People do not necessarily use
this term, but there is always a formal and abstract languagewhich is used in all the
above examples. Therefore, when the expression ‘decision aiding’ is used, the use of
a formal and abstract language in order to handle problem situations faced by individ-
uals and/or organizations is meant.

In this chapter we first examine a brief history of the evolution of this domain
from a scientific and a professional point of view (next section). Such a historical re-
construction pretends neither to be complete nor rigorously organized. Several readers
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might feel disappointed that some very important scientificachievements are not rec-
ognized. Indeed, this is an essay which reflects my very personal point of view and is
biased by at least three factors.

– Scientific: I am not an expert in all areas of decision theoryand operational
research and I tend to emphasize in my presentation what I know better.

– Professional: the real world experiences of decision aiding that I had the oppor-
tunity to conduct do not cover all different aspects of practicing decision aiding, so
that I have a partial vision of this complex reality.

– Geographical: being a European (western) I have not been exposed to the bulk
of the contributions produced in decision theory and operational research just behind
the corner [e.g. KEN 83, KWA 62] and this is a severe limitation.

In section 1.3, I will present and discuss different decision-aiding approaches that
have been introduced during the 60 years of existence of thisdiscipline: normative,
descriptive, prescriptive and constructive approaches. Iwill try to explain the differ-
ences among these approaches by examining the origin of their particular ‘models of
rationality’. In section 1.4, I will place myself within a constructive decision-aiding
approach and I will discuss how a decision-aiding process isstructured. In order to do
that I will examine the ‘artifacts’ produced by such a process: the representation of a
problem situation, the definition of a problem formulation,the construction of an eval-
uation model and the formulation of a final recommendation. Such a presentation will
allow me to differentiate decision aiding from other areas of scientific investigation
such as automatic decision making.

The ultimate message I wish to deliver with this chapter is that decision aiding is
a human activity that can be (and actually has been) the subject of scientific investi-
gation. Different decision theories have been developed with specific characteristics.
At the same time, different decision-aiding practices havebeen developed either as a
result of testing theoretical conjectures or as a result of aiding real decision makers
(individuals, organization or collective entities) in their work.

There is no one-to-one correspondence between theories andpractices. Neverthe-
less, I consider that all such theories and practices define awhole which I will call
‘decision-aiding methodology’. The reader should note that in the text I use the term
methodology in a very precise way:reasoning about methods. I claim that we have
several methods, but we should establish a common methodology for decision-aiding
purposes. Such reflections are discussed in the conclusionssection. At the end of the
chapter a long but definitely partial list of references is provided (an exhaustive pre-
sentation of the literature being impossible).
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1.2. History

1.2.1. Genesis and youth

We can fix the origin of decision aiding as sometime just before the second world
war, in the studies conducted by the British army on their newradar system installa-
tion and their efforts to break the German secret communication code (1936–37). The
reader can get a flavor of this period in [BOW 04, KIR 02]. It is the first time the term
‘operational research’ (‘operations research’ in the USA)appears.

The problem of how decisions are or ought to be taken by individuals, organi-
zations and institutions was previously discussed by Aristotle [ARI 90] and, more
recently, during the 18th century (see [BERN 38] on probability, [EUL 36] on com-
binatorial problems and [BOR 81, CON 85] on voting and socialchoice procedures)
and also at the beginning of the 20th century ([PAR 06] on economic problems under
multiple dimensions, [FAY 49, TAYL 11] on the scientific management of enterprises,
[DEF 36, DEF 37, KOL 33, RAM 31] on probability theory and [TUR37] on decid-
ability).

In all these contributions, the concept of decision is central. It should be mentioned
that, in order to argue for their thesis that probability only exists in terms of subjective
belief, both Ramsey and de Finetti have used what is known today as comparison
of lotteries and the associated preferences of a decision maker. “If the option ofα
for certain is indifferent with that ofβ if p is true andγ if p is false, we can define
the subject’s degree of belief inp as the ratio of the difference betweenα andγ to
that betweenβ andγ. This amounts roughly to defining the degree of belief inp by
the odds at which the subject could bet onp, the bet being conducted in terms of
differences of values as defined” [RAM 31, p. 179–180].

In any case, it was the undeniable success of operational research in supporting
military and intelligence activities of the allies that grounded the idea that decision
making (and decision aiding) can be studied using a scientific approach and that gen-
eral models of decision support were possible. Towards the end of the 1940s, sev-
eral fundamental contributions appeared in linear programming [DAN 48, KAN 39],
decision and game theory [NAS 50, NAS 51, VON 44] and in algorithmics and the
definition of machines able to solve any problem [TUR 50].

It was during that period that the first scientific societies of operational research
(in the United Kingdom in 1948, in the United States in 1950) and the first scientific
journals appeared [BLA 50]. The first real-world applications of this new discipline
(in non-military applications) appeared [DAN 51] as well asthe first companies spe-
cializing in decision aiding (but this term was not used at that time). The best-known
example is the Rand corporation. Within Rand, operational research was developed
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into a science to be applied to the multiple problems of the new post-war industrial-
ization.

Such first contributions and experiences were characterized by the search for for-
mal structures underlying precise decision problems and the use of mathematics and
logic as a modeling language. For an interesting presentation of the origins of these
contributions as have been perceived by their authors themselves, see [LEN 91]. The
first steps in this direction strengthened the idea that complex decision problems can be
modeled through the use of a simple rationality model (maximize an utility function of
the decision maker’s decision variables, a function which is expected to faithfully rep-
resent the decision maker’s preferences). Von Neumann’s, Morgenstern’s and Nash’s
contributions [NAS 50, VON 44] showed under what conditionssuch functions exist.
Further on, the linear programming algorithm developed by Dantzig [DAN 48] (the
famous Simplex algorithm) introduced the first tools by which such problems could
be effectively solved (even for large dimensions). Turing and also Wiener [WIE 48]
and Ashby [ASH 56] went further to consider the possibility of formulating a general
theory of computation and conceived ‘general problem solver’ machines.

At that time, some critical contributions to this paradigm started to appear (al-
though they were not always conceived as criticism). In 1951, Arrow [ARR 51] pub-
lished his famous impossibility theorem, showing that aggregating the preferences of
rational individuals, under conditions considered natural (universality, independence,
respect of unanimity and non-dictatorship) is impossible.(If the result has to be ratio-
nal, that is a complete order). Arrow’s result closed the discussion opened by Borda
and Condorcet in the sense that we know there is no universal preference aggregation
procedure [BOUY 92, VIN 82a, VIN 82b]. At the same time, it paved the way to the
huge literature on social choice theory [KEL 78, KEL 91, NUR 87, NUR 99, SEN 70,
SEN 86, TAY 95].

Allais [ALL 53] published his famous paradox in 1953 where heshowed that the
axioms, introduced by von Neumann and Morgenstern as necessary and sufficient
conditions for the existence of an utility function‘ (and implicitly assumed necessary
in order to exhibit a rational behavior), are systematically violated in the behavior
of real decision makers when they are confronted by very simple choices [COO 58,
MAY 54]. Such an empirical falsification of the expected utility theory opened another
research direction on integrating the findings of cognitivescience into decision theory
[e.g. ALL 79].

In 1947, Simon [SIM 47] observed decision processes occurring within real or-
ganizations and concluded that the behavior of real decision makers is far from the
postulates of decision theory, at least as this theory was formulated at that time. Dur-
ing the 1950s, Simon [SIM 54, SIM 56, SIM 57] developed his ‘bounded rationality’
theory. This states that a decision maker facing a choice behaves on the basis of a
local satisfaction criterion, in the sense that they will choose the first solution which
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they subjectively consider as satisfactory without tryingto attain an unrealistic (and
useless) optimal solution. Actually, Simon considers decision theory to be based on
three implicit hypotheses (see the discussion in [MOS 84]):

– decision makers always know their problems well;

– such problems can always be formulated as an effectiveness(or efficiency) prob-
lem; and

– the information and the resources necessary to find a solution are always avail-
able.

None of these hypotheses is true as, in reality (following Simon):

– decision makers never have a very precise idea of their problem;

– often their problems can be formulated as the search for a ‘satisfying compro-
mise’; and

– solving a problem is always constrained by the available resources and time.

The innovation introduced by Simon is radical. Decision theory at that moment al-
ways considered the rationality model to exist independently from the decision maker
and their decision process. Simon put at the center of his reflection the decision pro-
cess (the mental activities of a decision maker) and postulated that a rationality model
has to be found within such a process and not outside of it. Theproblem with this
hypothesis is that, while an ‘exogenous rationality model’is compatible with an opti-
mization model (indeed the classic rationality model is based on optimization), this is
not always the case with a subjectively established model (at least not automatically
or necessarily). Simon’s work opened several research directions, both towards the
creation of new decision-aiding approaches [e.g. LEM 77] and towards what today is
known as ‘artificial intelligence’ [SIM 69]. It should be noted that the idea of looking
for a satisfying solution has an immediate application to the problem of finding an ac-
ceptable compromise when the decision is subject to the presence of multiple criteria
[VIN 92].

At the end of the 1950s, several ‘classic’ books appeared. These books were
used to train generations of researchers and practitioners[BER 58, CHA 61, CHU 57,
CONW 67, DAN 63, FAU 68, FOR 62, GAS 58, HIL 67, LUC 57, VAJ 56].

The 1950s and 1960s saw significant increases in research, university classes and
applications in different domains. Typical big clients of such studies were the com-
panies managing networks (water distribution, telecommunications, electricity sup-
pliers, railways and airlines). In addition, several consulting companies specializ-
ing in operational research and decision support appeared.It should be remembered
that these years were when the world was trying to reconstruct itself after the war
and tremendous resources were invested in finding viable andefficient solutions to
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important industrial and economic problems. Unsurprisingly, there were both suc-
cesses and failures. Such experiences allowed the first critical approaches to the now
well-established classic decision theory to become stronger (for early discussions, see
[ACK 62, ADE 69, CHU 67, CRO 69, KOO 56]).

At the beginning of the 1960s, Zadeh published his famous paper [ZAD 65] about
fuzzy sets. The paper introduced a new perspective on the treatment of uncertainty,
ambiguity and linguistic variables. Zadeh’s innovation had a major impact on the fu-
ture of the discipline, since it concerns a fundamental aspect of formal languages: set
theory. The extension of set theory through the introduction of a membership function,
a ‘measure’ of an element’s membership to a given set, allowed the increase of both
the expressivity and the flexibility of formal languages andtherefore of the decision-
aiding models using them.

Another domain which introduced major contributions to thedevelopment of al-
ternative approaches to decision theory is cognitive science and psychology [EDW 54,
FES 64, LIC 69, LIC 71, SHE 64, SLO 68]. Allais’ intuition to experimentally vali-
date the axioms of decision theory was followed by several researchers [e.g. TVE 67,
TVE 69, TVE 77]. Tversky showed that the properties, intuitively considered as ra-
tional for preference relations, are more a theoretical imposition and not necessarily
corresponding to the behavior of real decision makers. Tversky showed that preference
can well be intransitive [TVE 69] and that similarity can be non-symmetric [TVE 77].

Such results emphasized the necessity of pursuing a more thorough study of the
fundamental structures on which decision-aiding models rely, namely the structure of
preference relations [DUS 41, LUC 56, SCO 58] and of the functions which represent
them (value or utility functions [FIS 70, KRA 71]). For further work on this subject,
see [FIS 85, PIR 97, ROB 79, ROU 85]. (See also the recent survey [OZT 05]).

Remaining within the influence of the psychological studies, during the 1960s a
psychotherapy movement known as ‘relational psychotherapy’ appeared, based on an
approach claimed by the authors to be ‘constructive’ [BAT 72, GOF 68, WAT 67].
Within such an approach, the importance of how a problem is formulated was empha-
sized as well as the importance of the relationship between the one who asks for help
and the one who provides such help (the patient and the therapist in their terminology).
This approach also emphasized the fact that a problem is not something given within
a decision process: the process of defining and solving a problem is the same. Under
such a perspective, the solution of a problem is a construction and not the result of a
search in a space of solutions nor a classic inference from a set of sentences (see the
classical dichotomy in artificial intelligence literature[SIM 83]).

The first organizational studies concerning the behavior ofdecision makers and
the structuring of decision processes within real complex organizations were carried
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out in the 1960s. It was again Simon who provided significant direction in this re-
search [CYE 63, EME 62, MAR 58]. In these works, it was shown that the behav-
ior of an organization (supposed to be composed by rational decision makers) does
not correspond to the rational behavior as described by decision theory. (The reader
can study an extreme model in [COH 72], the famous model whereorganizations are
seen as garbage cans.) The problem, already observed by Weber [WEBE 22] in his
studies during the 190s on the bureaucracies, is that withinan organization different
forms of rationality may co-exist [SIM 76]. Later on, related research was condensed
in Mintzberg’s work [MEL 78, MINT 76, MINT 83].

During the 1960s, the concept of ‘decision’ and ‘value’ was the focus of interesting
research in philosophy which posed the question: is it possible to define the concept
of ‘good’ in a formal way? Von Wright [VONWR 63] (see also [HAL57]) published
his ‘Logic of Preference’ within which the sentence ‘x is preferred toy’ is considered
true if all the worlds wherex is true are preferred to the worlds wherey is true. This
research direction was followed by [CHI 66a, CHI 66b, HAN 66a, HAN 66b, JEF 65]
and by the work done in [RES 67, RES 69]. Von Wright continued the development
of his theory in [VONWR 72] (see also [HUB 74]). From this research direction, what
is known today as deontic logic [HILP 71] was further developed. See also the more
recent [AQV 86, NUT 97] and [MUL 79] for a criticism.

Returning to more formal aspects of operational research and decision aiding, it
should be noted that the first works concerning algorithmic complexity appeared dur-
ing the 1960s. Hartmanis and Stearns [HART 65] were the first to pose the problem in
the form we know today. On this basis, Karp [KAR 75] proposed the classification cur-
rently in use. This gave the formal basis used by Garey and Johnson [GAR 79] in order
to compile their famous ‘encyclopedia’ (see also [PAP 82]).This research opened a
big issue in optimization. Several algorithms used to solveclassic operational research
problems (and others) appeared to be less useful in practicesince, in the presence of
large instances of the problem, the resources required to reach an optimal solution are
immense and independent of the computer used.

We also mention the problem of satisfying a logical clause and the famous ‘trav-
elling salesman problem’ [FLO 56, MOR 42]. Littleet al. [LIT 63] introduced one of
the most widely-used algorithms in combinatorial optimization: Branch and Bound.
For a survey see [LAW 85]. Looking for an optimal solution, besides its cognitive,
theoretical and epistemological problems, also became a practical problem.

The research program of artificial intelligence [e.g. NIL 71] oriented towards the
creation of ‘thinking machines’ and the establishment of general problem solving pro-
cedures was boosted by the work of Newell and Simon [NEW 63, NEW 72]. The idea
of looking for a satisfying solution (instead of an optimal one) was a partial reply to
the problem of the resources required to arrive at a conclusion for any decision pro-
cess. The question was re-formulated under a more logical approach by McCarthy
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and Hayes [MCC 69], who opened the way to what is known today asnon-monotonic
reasoning, and by Minsky [MIN 75] who suggested the use of newtechniques to rep-
resent ‘knowledge’, the latter being seen as the source of efficient problem solving.

The first work on the problem of evaluating alternative decisions using multiple
criteria, where the criteria could be conflicting, appearedduring the 1960s. In re-
ality this is the case in most decision situations. It was thechoice (and sometimes
the necessity) of researchers and of practitioners that pushed them to simplify prob-
lems using a single decision criterion. In 1955 Charneset al. proposed the idea of
Goal Programming [CHA 55]. This work was further developed in [CHA 61] opening
the way to what is known today as multi-objective programming [BEN 71, GEO 68,
GEO 73, SHE 64, ZEL 73]. Bernard Roy presented his ideas on this issue for the first
time in 1966 and then in 1968 [BEN 66, ROY 68] opening the way toan approach
known as outranking-based methods. Raiffa produced his famous RAND report on
these types of problems in 1969 [RAI 69]. The first international conference in this
domain [COC 73] took place in 1972. Keeney and Raiffa published their reference
book [KEE 76] extending utility theory [FIS 70] in the presence of multiple criteria in
1976.

The presence of multiple criteria poses a fundamental question. The concept of
‘vector optimum’ makes little sense from a mathematical point of view (at least in the
natural terms of minimizing the value of a function). The only objective definition that
can be introduced is the one of efficient solution [PAR 06]. A solution is considered
efficient if there are no other solutions at least as good as the current one and strictly
better under at least one criterion (dominance). The problem is that the set of efficient
solutions can be extremely large and therefore useless froma practical point of view.
Technically, the different approaches can be distinguished by the procedure used to
explore the set of efficient solutions in order to find the ‘best compromise’ (again a
concept with no precise mathematical definition).

On the one hand, we have approaches based on the establishment of a function that
aggregates the different criteria in a single criterion (a multi-attribute utility function),
the problem thus becoming once more that of optimization. Onthe other hand, we
have approaches based on the idea that the criteria can be seen as individuals having
preferences. We then use methods originating in social theory (for instance voting
procedures) in order to obtain a global preference relationrepresenting the whole set
of criteria. Graph theory is used to obtain a final solution (since such comprehensive
preference relations can be easily seen as a graph).

Details of differences between these two approaches are provided later. However,
it should be noted that it quickly appeared that there were deeper differences than just
the technical ones. These differences were concerned with how decision aiding is con-
ceived and implemented rather than the technical procedures and the use of a specific
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method (for an interesting discussion on this issue see [ROY93]). See section 1.3 for
a discussion of such issues.

This first part of the history is concluded by noting that, at the end of the 1960s,
operational research and decision theory were enjoying a period of strong development
both in theory and in practice. This development, together with the establishment of
a dominant paradigm, allowed the appearance of critical approaches which occupied
the scene during the period referred to as the ‘maturity period’. It is interesting to note
the following.

– The discussion about alternative decision theories has been rooted in practical
problems; it is the quest to help real decision makers involved in real decision pro-
cesses that pushed the research to explore ‘innovative’ or ‘alternative’ approaches
within the discipline.

– The development of operations research (OR) and decision theory created
branches (such as game theory, mathematical programming, decision analysis, etc.)
which began their own independent evolution.

1.2.2. Maturity

In this partial reconstruction of the evolution of decisiontheory, the following
focuses on some research directions briefly introduced in the previous section. As em-
phasized previously, the passing of decision aiding into ‘maturity’ [BOUY 93] implied
the establishment of different branches or specializations:

– the structuring and formulation of decision problems;

– the contribution of cognitive sciences;

– the intersection of artificial intelligence and decision theory;

– the treatment of uncertainty; and

– the development of multiple criteria decision analysis.

Such directions have been followed either within the OR and decision theory com-
munities or by researchers coming from other fields sharing an interest towards the
concept of decision support. These directions do not diverge, but rather have several
common points and potential areas of convergence.

As in other empirical sciences, operational research and decision theory entered
their first official crisis for a practical reason. Towards the end of the 1960s, the British
OR society wanted to create a kind of chartered directory of OR professionals. The
reason was simple: provide the practitioners of the domain aquality label allowing the
discipline and its practice to be better promoted. Not surprisingly, ORSA (in the USA)
published almost at the same time its suggestion about the guidelines of OR practice
[ORS 71].



From Decision Theory to Decision-aiding Methodology 11

The initiative was followed by several questions: what are the boundaries of the
discipline and how are they fixed; should existing methods beused; who decides
whether a decision support method belongs to the discipline; and, given a new method,
how will it be legitimated to enter these boundaries? The difficulty in finding convinc-
ing answers to these questions highlighted the differencesbetween diverse decision
theories and their critics. This debate reached a conclusion only very recently; the
British society finally modified its statutes in order to create the above mentioned di-
rectory in 2001.

The reader can get an idea of this discussion in the famous articles of Ackoff
[ACK 79a, ACK 79b]. A reconstruction of this discussion is also available in the in-
troduction of [ROS 89] and more recently in [KIR 06]. An interesting perspective on
the discussion about the operational research crisis is also in [BOUY 03].

During the 1970s (mainly in the UK) there appeared new approaches to deci-
sion aiding, based on work done within the Tavistock Institute [EMER 59, FRI 69,
STI 67, TRI 93] and by Stafford Beer [BEE 59, BEE 66]. The reader can see a pre-
sentation of such approaches in [ROS 89]. The better-known approaches include: soft
systems methodology [CHE 81]; strategic choice [FRI 69, FRI87]; cognitive mapping
[EDE 83, EDE 88]; robustness analysis [ROS 78, ROS 96].

Recall that, in classic decision theory, a decision problemis formulated in a unique
way. It is always a problem of maximizing a function on the outcomes of all potential
actions. There is no alternative to this formulation; the decision maker has to adapt
the information available and the perception of the problemto the axioms of the the-
ory. In contrast, the new approaches claimed that the most important part within a
decision-aiding process is that concerning the structuring and formulation of the de-
cision problem. This practice was already being followed incertain psychotherapy
methodologies [WAT 74]. Within such new approaches the attention is focused on the
interactions between the client(s) and the analyst(s).

Several techniques were proposed in order to arrive at a definition of a represen-
tation of the problem situation on which all the participants could agree (see also the
work done in [BANV 98, LAN 87, LAN 95, MOS 84]). What these approaches sug-
gest is that, once the decision makers have understood theirproblem, solving it is a
secondary issue and in most cases a simple one. Little attention is indeed paid to how
the problem can be formulated in logical/mathematical terms (this aspect has been
criticized on several occasions). However, it cannot be denied that structuring and for-
mulating a problem remains one of the most critical parts within a decision-aiding
process, as several real-world experiences have shown [BAN99, BELT 97, CHE 90,
ROS 89, STA 03]. This is discussed further in section 1.4.
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As previously mentioned, decision theory has also been criticized on a cognitive
basis. Several experiences (conducted mainly in the laboratory) have shown that deci-
sion makers do not behave as decision theory axioms pretend.Such experiences have
also shown that the frame within which, and the precise way, adecision problem is
formulated have a great influence on the behavior of the decision maker. For instance,
asking for preferences between two alternatives presentedin terms of gains or losses
gives totally different answers. More generally, the cognitive context of the decision
process is fundamental for the final result. For the first experiments conducted in this
direction, see [KAH 79, TVE 80, TVE 93].

A first tentative reply to these theoretical and practical problems was the exten-
sion of utility theory through the introduction of ‘belief coefficients’ which were
expected to take the cognitive context into account. The theory is now known as
‘prospect theory’ [KAH 79]. Although the complete axiomatization of this theory is
still to be done [e.g. WAK 93], it has been the subject of a large research area that is
still extremely active today [BLE 01, CHAT 99, GIL 01, KAH 02,KAH 03, KAS 03,
LUC 94, LUC 96, SLO 02, VONW 86, WAK 02].

Another tentative answer developed at the same time (not necessarily in opposition
to the previous one) had the identification of ‘decision strategies’, the procedures used
by decision makers when facing a problem situation, as an objective. One of the first
to observe such behaviors was Tversky [TVE 72]. Similar types of studies can also
be found in [BART 92, GIG 99, MONT 76, MONT 83]. The common pattern of this
research is always the same: the identification of regularities in the behavior of the
decision makers, such as the progressive elimination of alternatives or the research
for dominance structures. The reader can see reviews of thisapproach in [BART 02,
SVE 96]. What such approaches basically contributed was thecentering of decision
aiding on the decision maker, their cognitive effort and thedecision context. For the
first time, decision aiding was focused on the decision process and not on the decision
theory.

The reader will recognize some of Simon’s cognitive criticism in the approach pre-
sented above. Simon’s contribution found a fertile area of expansion in artificial intel-
ligence (AI). One of the principal points of view of Simon wasthat decision theory
payed (at that time) little attention to the process of problem solving and the necessary
resources. In Simon’s mind, AI could fill this gap. Indeed, a large part of the research
conducted in this area concerned (and concerns) well-knowndecision problems. It is
therefore interesting to observe how these two research areas evolved.

One common area of interest between artificial intelligenceand operational re-
search concerned optimization and planning algorithms with mutual benefits for both
research areas. Indeed, the problem of establishing a plan in order to solve a problem
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has been often viewed in AI as the exploration of a tree structure where the nodes rep-
resent ‘states of the world’ and the arcs represent transitions from one state to another
[FIK 71, NIL 80, RUS 95].

The goal of such exploration is to establish a path from a state of the world which
represents the present situation to a state of the world which represents the solution.
Such an exploration is mostly based on the estimation of the length of the path remain-
ing in order to reach the desired state of the world (the solution), as can be seen in the
famous A∗ algorithm ([HAR 68]). Indeed the state space tree has a structure similar
to that generated by a Branch and Bound algorithm and it is explored using similar
principles. In doing that, AI researchers used (and use) concepts derived from integer
and dynamic programming methods developed in OR [e.g. BON 96, BOU 99b].

At the same time, AI researchers developed the so-called ‘constraint satisfaction’
based methods [TSA 93, VAN 89]. Such methods have been largely applied in typ-
ical operational research problems [APT 99, BAR 98, BOC 98, BRAI 99, DUB 96].
Practically, the two communities were sharing (and still share) a common concern:
how to efficiently solve problems which are or can be considered decision problems.
From this point of view, the development of heuristics for the solution of hard opti-
mization problems common to both communities should be noted [AAR 97, GLO 86,
GLO 97, GOL 89, PIR 96]. A partial bibliography on the above issues can be found
in [JAU 88].

Another interesting interaction was developed around whatis known today as
‘qualitative decision theory’. The issue here is to extend decision theory through the
use of symbolic approaches not requiring the imposition of further hypotheses in order
to quantify information [BOU 94, BOU 99a, BOU 00, BRA 96, BRA 97, BRA 00,
DOY 91, DOY 94, DOY 99, DUB 95, LEH 96, LEH 01b, TAN 94, WEL 91]. The
problem is how to formulate a theory where the preferences are simply order rela-
tions and uncertainty is purely qualitative. The reader cansee an exhaustive presenta-
tion and discussion of this issue in [DUB 02]. The result is that, if we want to remain
within the frame of Savage’s axioms, such a theory is too weak. Indeed, as pointed
out in [DUB 02], the decision rules obtained within such an approach are either not
decisive or overconfident, thus not interesting from an operational point of view. The
reasons for such a negative result are related to the impossibility results present in
social choice theory (the resulting decision rule is likelydominance).

Last, but not least, a field of interesting research has been established in ‘pref-
erential entailment’. Doyle [DOY 85] and Shoham [SHO 87] have observed that a
reasoning system with only simple inferencing capabilities was not able to take into
account preferences which are considered a fundamental element of human capability
to solve problems. Their suggestion was to enhance inference systems, namely those
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able to perform non-monotonic reasoning, with an ordering relation among the possi-
ble interpretations of a logical clause in order to obtain preferred consequences instead
of only true ones.

Such an idea has been followed by several other researchers [ALC 85, BRA 01,
DOY 89, DOY 90, DOY 94, GÄR 88, GÄR 94, KRAU 90, LEH 01a] under different
perspectives. Nevertheless, the problem of aggregating such orders remains once more
within the frame of Arrow’s impossibility theorem, as Doyleand Wellman have shown
[DOY 91] (see also [DUB 02]).

Such results may appear negative. However, they also open interesting research
perspectives, such as relaxing the axiomatic frame within which to look for a solu-
tion [e.g. WEY 84] or exploring the so-called ‘non-rationalizable’ choice functions
[SEN 71, SEN 93].

Another major innovation within the frame of decision theory has been the intro-
duction of fuzzy sets and, more particularly, of possibility theory [DUB 88, ZAD 78].
In order to obtain a general view of how these formalisms contributed to decision
theory, see two other reference books on this subject [FOD 94, SLOW 98].

The focus here is two specific contributions.

– The consideration of preference relations as fuzzy subsets [FOD 94, KAC 88]:
this allows us to relate such concepts to the already existing literature on valued binary
relations and graphs [e.g DOI 86]. The use of fuzzy sets theory has therefore been
extended to other decision-aiding concepts such as choice sets, kernels, etc. [BIS 00,
KIT 93]. See [SLOW 98, chapters 1 and 2] and, for a recent review, [OZT 05].

– The development of new aggregation procedures: aggregating ‘uncertainty mea-
sures’ or ‘fuzzy measures’ are similar to aggregating preferences [PER 92, BOUY 00,
chapter 7]. Consequently, a literature has been developed on the use of new aggrega-
tion operators, mainly based on the use of fuzzy integrals [GRA 00, GRA 95].

More generally speaking, possibility theory introduced the use of formalisms for
representing uncertainty different from probability. Themotivation for that was the
consideration that the additive property of probability was problematic and the con-
sequent conceptual discussion when subjective estimationof uncertainty is consid-
ered [e.g. NAU 01]. The ordinal nature of possibility distributions allowed their use
in a more flexible way for several different domains of decision aiding [e.g. SAB 98,
SAB 01, SLOW 90] although it did not solve all conceptual problems related to un-
certainty modeling. That said, the reader should remember that since the late 1980s
there has been a large discussion on innovating the whole field of decision under
uncertainty and risk [COH 80, FAR 05, GIL 89, GIL 93, GIL 02a, GIL 02b, JAF 88,
JAF 89, JAF 93, MAC 82, MAC 92, MAC 95, NAU 95, QUI 93, SCHM 89].
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The discussion on handling uncertainty is concluded by recalling the contributions
based on the use of other logic formalisms that allow the inevitable uncertainties,
ambiguities and inconsistencies which characterize a decision-aiding process to be
taken into account [FORT 02, PER 98, TSO 95, TSO 02a, TSO 02b].

In the first part of this historical reconstruction, it was argued that the formulation
of a decision problem as an optimization one is a simplification of reality. Decision
problems are almost always situations where we find several different dimensions,
several points of view and several participating actors andstakeholders, each of them
carrying within the decision process their values, preferences and criteria. The opti-
mization simplification does not always allow the consideration of the complexity of
the decision process.

Remember that, from a technical point of view, multiple criteria decision-aiding
methods can be grouped into two categories based on how the set of the potential
alternatives is explored (for a recent survey see [FIG 05]):

1) the establishment of an utility function synthesizing the different criteria; and

2) the use of pairwise comparison procedures and majority principles for estab-
lishing a final recommendation.

Within the first category, we find methods based on the construction of a multi-
attribute utility function [KEE 76] and the methods which interactively explore the
set of efficient solutions of a multi-objective program [GAR97, VAND 89]. Specific
heuristics possibly apply to these types of problems (particularly in the case of dif-
ficult ones such as in combinatorial optimization, see [ULU 94]). For an excellent
reference survey, see [EHR 02]. The construction of the utility function can be ob-
tained either directly [e.g. VONW 86] or indirectly (through, for instance, the AHP
method [SAA 80], the UTA method [JAC 82] or the MACBETH method, [BAN 94]).

We find the methods known as ‘outranking methods’ within the second category.
This name was given by Bernard Roy [ROY 85] to the preference relation repre-
senting the concept ‘at least as good as’. Such methods are based on the principle:
when we comparex to y under multiple criteria,x will be at least as good asy
if it is the case for a weighted majority of criteria and thereare no strong ‘block-
ing minorities’ [TSO 02b]. The reader can obtain more details on these methods in
[ROY 91, ROY 96, SCHÄ 85, SCHÄ 96, VIN 92]. Recently, the possibility of con-
structing such a relation from holistic evaluations of the alternatives provided by
the decision maker was shown in [GRE 99, PAW 94]. More generally, the exten-
sion of the theory of rough sets through the use of dominance-based decision rules
[GRE 01, SLOW 05] allows us to take into account purely ordinal evaluations. For
an axiomatic characterization of this approach in terms of conjoint measurement and
on the equivalence between ‘outranking based’ and ‘decision rules’ based models, see
[GRE 04, SLOW 02].
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Such different methods each present advantages and disadvantages. The construc-
tion of an utility function is more restrictive (in the senseof the conditions to be
fulfilled) and requires a considerable cognitive effort on the part of the decision maker
(not necessarily intuitive). On the other hand, it allows usto obtain a rich result and
is axiomatically well founded. The outranking methods are much more flexible (since
there are less conditions to respect), but there is a risk of avery poor result and they
are sometimes difficult to justify from an axiomatic point ofview. For an interest-
ing discussion on this issue, see [BELTS 02], [BOUY 00, chapter 6] and [BOUY 06,
chapters 4–6].

However, the separation of the above methods into categories can be misleading.
Adopting a conjoint measurement point of view, Bouyssou andPirlot [BOUY 02,
BOUY 04a, BOUY 04b, BOUY 05a, BOUY 05b] have shown that it is possible to
give a common axiomatization to all such methods. Moreover,authors from differ-
ent backgrounds [BELTS 02, DAL 94, FRE 88, GOO 98, KEE 92, KEE 99, ROY 90,
ROY 92, ROY 93, ROY 94, STE 03] have often claimed that, if any differences exist
among the methods, these depend in reality more on how the decision-aiding process
is implemented and less on the specific method adopted.

This historical reconstruction is summarized as follows.

– Despite the specialization of the last years, OR and decision theory can still be
viewed as a unique discipline (as its founders did more than 60 years ago).

– OR and decision theory are deeply rooted in practicing decision support, aiding
real decision makers in real problem situations and involved in real decision processes.
Even the more abstract theoretical results have originatedfrom precise practical prob-
lems and the research for models fitting real demands. Theoretical soundness has al-
ways been accompanied by empirical validation.

– The evolution of the discipline has certainly been influenced by the vitality of
the research conducted within it, but it has greatly benefit from cultural contamination
from other disciplines such as philosophy, psychology, organization theory, political
science, logic, mathematics and computer science.

– There is an increasing interest in issues such as how to structure and formulate a
problem, conduct and implement a decision-aiding process,handle the relations with
the client of the decision support requested, and train young people in the profession of
OR and/or decision analyst. The issue here is to take the development of decision theo-
ries (which are in excellent shape) one step further towardsa decision-aiding method-
ology:a body of knowledge and a coherent structure of reasoning about theories and
practices concerning deciding and aiding to decide. Within such a methodology, it is
possible to distinguish different approaches. Their principal differences are sketched
in section 1.3.
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1.3. Different decision-aiding approaches

In order to be able to assist someone in decision making, we must be able to elab-
orate on preferences. Indeed, what we know are their problems and desires (the prob-
lem situation). This is an elaboration based on the use of a formal language. To move
from the problem situation to a decision-aiding model, and the actions such a model
might imply, requires the use of a ‘model of rationality’. This is a tool enabling the
translation of ‘informal’ information (which is also naturally ambiguous) to a formal
representation (where even ambiguity is represented in an unambiguous way). The
question is where this model of rationality comes from.

In the following example the term ‘client’ is used to represent the person or collec-
tive entity that asks for decision support. The client is potentially, but not necessarily,
a decision maker. Consider a client with a health problem whohas a number of di-
agnoses and a certain number of proposed treatments. Assumethat there is some un-
certainty associated to the diagnoses and therefore to the outcomes of the treatments.
What do we suggest to this client to do?

The classic approach in decision theory is straightforward. To each diagnosis (the
states of the nature) is associated a probability and to eachtreatment (the potential
actions) the respective outcomes. Using any of the standardprotocols for constructing
the client’s value function on the set of the outcomes, we areable to define an utility
function (including uncertainty) which, when maximized, identifies the solution which
should be adopted (since by definition, it is the one which maximizes the client’s
expected utility).

The existence of such a function is guaranteed by a certain umber of axioms that
represent what, following the theory, should be the principles of a rational decision
maker’s behavior [SAV 54]. Preferences are supposed to be transitive (and complete).
The presence of cycles implies that the decision maker will be ready to infinitely
increase what they are ready to pay for any of the solutions, and this is considered in-
consistent with the idea of rationality. Similarly preferences about uncertain outcomes
ought to be independent from probabilities [FIS 70, p. 107]

P � Q, 0 < α < 1 ⇒ αP + (1− α)R � αQ+ (1− α)R,

thus allowing the construction of a mathematical expectation. It should be noted that
there has been no observation of the client behavior and the question of what other
decision makers do in similar situations has not been posed.It is the decision maker
who has to adapt themself and their behavior to the axioms. Otherwise, they are not
rational and the information and their preferences ought tobe modified. This type of
approach is usually callednormative.

It should be noted that although the model handles uncertainty, there is no uncer-
tainty at all associated to the model itself: the diagnoses are all the possible diagnoses
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and so are the treatments. The only issue is to find the best choice for the client.
As with laws or ethical norms, the legitimation of the model of rationality is exter-
nal to the problem situation. The model of rationality is a law of behavior imported
into the decision process. Several classics on this approach include [FIS 70, FIS 82,
LUC 57, SAV 54, WAK 89]. For a discussion on how rational such an approach is, see
[MON 00].

However, it might be the case that the client’s behavior doesnot respect the ax-
ioms of the classic decision theory. As an alternative, one could look for a model of
rationality based on empirical legitimation instead of a theoretical model. If other de-
cision makers followed a certain strategy in order to make a decision under similar
circumstances, why not apply the same to the present one? This is the basic idea of
the approach usually calldescriptive: define models and decision strategies based on
the observation of real decision makers [HUM 83, KAH 81, POU 94, VONW 86].

Once again it should be noted that we impose a model of rationality which is in-
dependent of the problem situation. Nevertheless, there are more degrees of freedom.
The client’s personality is considered as a source of information. The problem is not
necessarily formulated as an optimization one (several alternatives are possible). On
the other hand, as for the normative approach, we are sure about the problem and the
model: we are looking for the best treatment for the client given the diagnoses, the
treatments and the uncertainties of the outcomes. Some of these ideas can be found at
the origin of the research on expert systems [HAT 92].

The problem is that we can find ourselves in a situation where the client cannot be
associated with any model of rationality more or less ready made. They might exhibit
intransitive and/or incomplete preferences. Their perception of the uncertainty might
escape any effort to quantify or to measure it. Moreover, theclient might be aware
that they have to improve the structure of their preferences; however, perhaps there
is no time, will or resources available to do that. Nevertheless, we have to suggest a
recommendation and we have to do ithere and now. An approach could be to look for
a contingent rationality model without searching for it outside the decision process, but
within it. Obviously the validity of such a model is strictlylocal, but its legitimation
is clear: the client themself. Such an approach is referred to asprescriptive.

Identifying such a model of rationality has to obey the constraints of the formal lan-
guage we are using and take into account what the procedures can and cannot do with
the available information [BOUY 00]. See [BEL 88, BELTS 02, KEE 92, LAR 95,
TVE 77, VAND 02, VIN 92, WEB 90] for a discussion of such an approach. The fact
that we do not impose a model of rationality but that we look for it within the problem
situation allows us to be more pragmatic and not to force the client to accept a model
of rationality imposed from outside. However, we have to recognize two hypotheses
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within such an approach. The first is that the client’s problem is what has been pre-
sented to us and the second is that the client has a model of rationality (possibly a very
personal one). The issue is to identify it.

The reality of decision aiding is that quite often the clientdoes not have a very clear
idea of the problem, at least not clear enough to allow the identification of a model of
rationality. Are we sure these are all the possible diagnoses? Did we really consider
all the possible treatments? Is it certain that the problem is to find a treatment for the
client? What if at the end we discover that the best thing for the client is to take a long
vacation (possibly together with the analyst)? In other terms, finding the solution of a
well-formulated problem is always possible. The risk is to find a solution to a problem
the client does not have. The problem is that nobody really knows what the problem
is. In such situations we might adopt an approach referred toasconstructive: we have
to construct the problem and its solution at the same time.

Within such an approach we do not have to look just for the method that best adapts
to the client’s problem. Together with the client we have to establish a representation
of the problem situation, formulate a formal problem with the consensus of the client
and then establish an evaluation model which will help to formulate the final recom-
mendation. There is a fundamental learning dimension in such a process. The models
we are going to formulate are the result of a mutual learning process: the client learns
to reason about their problem in an abstract and formal way (the point of view of
the analyst) and the analyst learns to reason about the client’s problem following the
client’s point of view. Nothing can be considered as given orfixed and everything has
to be constructed. See [BELTS 02, BOUY 00, CHE 81, GEN 02, HAB 90, LAN 83a,
LAN 83b, LAN 96, ROS 89, ROY 96, SCH 88, WAT 67] for more references to such
an approach.

In Table 1.1 [DIA 04] the principal differences of the different approaches are
presented.

Approach Characteristics Process to obtain the model
Normative Exogenous rationality, ideal eco-

nomic behavior
To postulate

Descriptive Exogenous rationality, empirical
behavior models

To observe

Prescriptive Endogenous rationality, coherence
with the decision situation

To unveil

Constructive Learning process, coherence with
the decision process

To reach a consensus

Table 1.1.Differences between approaches
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Some remarks to conclude this section are as follows.

1) It is clear that the differences among the approaches do not concern the methods
used to solve a decision problem. It is possible to use a constructive approach and
a combinatorial optimization procedure if this fits the situation. On the other hand,
imposing the use of a method (as flexible as possible) on the client corresponds to
using a normative or a descriptive approach since the legitimation of this choice is
external to the client.

2) There is no unique model of rationality and rational behavior. A client exhibit-
ing cyclic preferences is not less rational than another client perfectly consistent with
decision theory’s axioms. Transitivity of preferences is necessary only if we interpret
the sentence ‘x is preferred toy’ as ‘I am ready to pay more forx than fory’. If we
interpret the same sentence as ‘there are more reasons in favor of x than in favor of
y’ [SCH 88, TSO 02b] then it is possible to understand that cyclic preferences (in this
case) are due to the existence of a cyclic structure of arguments. This is exactly the
case with Condorcet’s paradox [CON 85].

3) The presence of inconsistency in the client’s arguments is not necessarily a
problem; it can be seen as a source of information for conducting the decision-aiding
process.

4) Conducting a decision-aiding process is decision aidingitself. Asking the ques-
tion: ‘where do you want to go this evening?’ implies that theset of alternatives is
constrained to only external locations, the possibility ofremaining at home not be-
ing considered. Asking ‘do you prefer to hear classical music or jazz?’ implies that
the subject wants to hear music, silence not being considered. This type of implicit
hypotheses enters the decision model just by the way in whichthe decision-aiding
process is conducted and should be an important source of reflection in our profes-
sion.

In the following section, we focus on this last concept (the decision-aiding process)
in order to see how its structuring allows decision theory tooperate in practice.

1.4. The decision-aiding process

As already noted, Simon has suggested that a decision is not an act, but a pro-
cess. Following such a suggestion, rationality cannot be conceived with respect to an
objective (substantial rationality), but with respect to the process itself (procedural ra-
tionality). Rationality becomes a local coherence (with respect to a certain temporal
instance of the process) and is therefore bounded [SIM 57, SIM 79]. In the following,
a descriptive model of the decision process presented in [OST 93] is described.

It is assumed that the client is involved within one or more decision processes
and that their demand for decision support refers to one of these decision processes.
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The activities associated with such a support are grouped under the name ofdecision-
aiding process. The following elements are identified:

– at least two participants, the client and the analyst;

– at least two objects of the process: the client’s concerns and the analyst’s moti-
vations;

– a set of resources including the client’s knowledge of their concern’s domain, the
analyst’s methodological knowledge and the time; and

– a converging object (a meta-object) consisting of a shared(among the par-
ticipants) representation of the client’s concerns (one ormore artifacts [EAS 91,
SIM 69]).

The decision-aiding process is considered as a distributedcognition process. Nev-
ertheless, the author’s point of view will be operational and not cognitive. The hy-
pothesis that the participants actively try to create a shared representation is made.
We attempt to analyze the artifacts which such a process generates (for an expanded
discussion see [PAS 00, STA 03, TSO 07]):

– a representation of the problem situation;

– a problem formulation;

– an evaluation model; and

– a final recommendation.

1.4.1. The problem situation

A representation of the problem situation is the result of aneffort aimed at replying
to questions of the following type.

– Who has a problem?

– Why is this a problem?

– Who decides on this problem?

– What is the commitment of the client on this problem?

– Who is going to pay for the consequences of a decision?

The construction of such an artifact allows, on the one hand,the client to better
understand their position within the decision process for which they asked for decision
support and, on the other hand, the analyst to better understand their role within this
decision process.

From a formal point of view, a representation of the problem situation is a triple:

P = 〈A,O,S〉
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whereA is the set of participants in the decision process;O is the set of stakes each
participant brings within the decision process; andS is the set of resources the partic-
ipants commit on their stakes and the other participants’ stakes.

Such a representation is not fixed within the decision-aiding process, but will usu-
ally evolve. Actually, one reason that such a representation is constructed is to help to
understand the misunderstandings during the client–analyst interaction.

1.4.2. The problem formulation

For a given representation of the problem situation, the analyst might propose to
the client one or more problem formulations. This is a crucial point of the decision-
aiding process. The representation of the problem situation has a descriptive or ex-
plicative scope. The construction of the problem formulation introduces what is ref-
fered to as a model of rationality. A problem formulation reduces the reality of the
decision process within which the client is involved to a formal and abstract problem.
The result is that one or more of the client’s concerns are transformed into formal
problems on which we can apply a method (already existing, adapted from an existing
one or created ad hoc) of the type studied in decision theory.

Example 1.1.Consider the case of a client having the problem of buying newbuses in
order to improve the service offered to the customers. Different problem formulation
are possible:

– choose one among the potential suppliers;

– choose one among the offers received (a supplier may have made more than
one); or

– choose combinations of offers.

The choice of one among the above formulations is not neutral. The first is focused on
the suppliers rather than the offers and enables us to think about the will to establish
a more strategic relationship with one of them. The second one is a more contingent
formulation and introduces the implicit hypothesis that all buses will be bought from
the same supplier. The third is also a contingent problem formulation, but also consid-
ers the possibility of buying from different suppliers. Obviously choosing one of the
above formulations will strongly influence the outcome of the decision-aiding process
and the final decision.

From a formal point of view, a problem formulation is a triple:

Γ = 〈A,V,Π〉

whereA is the set of potential actions the client may undertake within the problem
situation as represented inP ; V is the set of points of view under which the potential
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actions are expected to be observed, analyzed, evaluated and compared, including
different scenarios for the future;Π is the problem statement, the type of application to
perform on the setA and an anticipation of what the client expects [BAN 96, OST 90,
ROY 93]; for a detailed example see [STA 03].

Obtaining the client’s consensus on a problem formulation can lend insight, since
instead of having an ambiguous description of the problem wehave an abstract and
formal problem. Several decision-aiding approaches will stop here, considering that
formulating (and understanding) a problem is equivalent tosolving it; this limits de-
cision aiding to helping to formulate problems, the solution being a personal issue of
the client. Other approaches will instead consider the problem formulation as given.
Within a constructive approach, the problem formulation isone among the products
of the decision-aiding process. It is expected to be used in order to construct the eval-
uation model.

1.4.3. The evaluation model

By evaluation model, the traditional decision-aiding models conceived through
any operational research, decision theory or AI method is meant. Classic decision-
aiding textbooks focus their attention on the constructionof this model. In a normative
approach there is no freedom, the structure of the model being predefined. Within
other approaches more degrees of freedom are possible, at least as far as some of the
model’s parameters are concerned.

An evaluation model is an n-tuple:

M = 〈A,D,E,H,U ,R〉

whereA is a set of alternatives to which the model will apply;D is a set of dimen-
sions (attributes) under which the elements ofA are observed, measured, described,
etc. (such a set can be structured, for instance through the definition of an hierarchy);
E is a set of scales associated to each element ofD;H is a set of criteria (if any) under
which each element ofA is evaluated in order to take into account the client’s prefer-
ences (recall that a criterion is a preference model);U is a set of uncertainty measures
associated toD and/orH ;R is a set of operators enabling synthetic information about
the elements ofA or ofA × A to be obtained, namely aggregation operators (acting
on preferences, measures, uncertainties, etc.).

The reader can observe that a large part of the existing decision-aiding models
and methods can be represented through the above description. Aditionally, such a
description allows us to focus our attention on a number of important remarks.

1) It is easy to understand why the differences among the decision-aiding ap-
proaches do not depend on the adopted decision-aiding method. The fact that we work
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with only one evaluation dimension or a single criterion canbe the result of applying
a constructive approach. We can conduct a decision-aiding process constructively and
end by using a combinatorial optimization algorithm. What is important is to show
that such tools are a consequence of the decision-aiding process and not to choose
them before the problem has been formulated or the evaluation model constructed.

2) The technical choices (typology of the measurement scales, different prefer-
ence, difference models or different aggregation operators) are not neutral. Even when
the client can formulate their problem clearly and is convinced about its formulation
(possibly using one of the techniques aiding in formulatingproblems), the choice of
a certain technique, procedure or operator can have important consequences that are
not discussed at the moment of problem formulation (for a critical discussion see
[BOUY 00]). Characterizing such techniques, procedures and operators is therefore
crucial, since it allows a control of their applicability tothe problem as has been for-
mulated during the decision-aiding process.

3) The evaluation models are subject to validation processes, namely [LAN 83a]:
- conceptual validation (verify the suitability of the concepts used);
- logical validation (verify the logical consistency of themodel);
- experimental validation (verify the results using experimental data); and
- operational validation (verify the implementation and use of the model in

everyday life).

1.4.4. The final recommendation

The final recommendation represents the return to reality for the decision-aiding
process. Usually the evaluation model will produce a result, sayΦ. The final recom-
mendation should translate such a result from the abstract and formal language in
which Φ is formulated to the current language of the client and the decision process
in which they are involved. Some elements are very importantin constructing this
artifact:

– the analyst has to be sure that the model is formally correct;

– the client has to be sure that the model represents them, that they understand it
and that they should be able to use its conclusions (the client should feel they are the
‘owner’ of the results as well as be satisfied by them); and

– the recommendation should be ‘legitimated’ with respect to the decision process
for which the decision aiding has been asked.

We should pay some attention to this last observation. The decision-aiding process
is an activity that introduces a certain distance between the participants and the reality
of the decision process and its organizational dimension. Returning to reality requires
a check of whether the results are legitimated. We should check whether such results
are accepted or not by the participants in the decision process and understand the rea-
sons for their position (such reasons can be completely independent from the decision
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process itself). Being able to put into practice the final recommendation definitely
depends on such legitimation: no legitimation, no implementation [CHU 67].

The presentation of the decision-aiding process through its artifacts is concluded
with the following two remarks.

– Not all such artifacts are necessarily created in all decision-aiding processes.
There might be cases where the evaluation model is not constructed, the client being
satisfied by being enabled to correctly formulate the problem. A final recommenda-
tion might not always be formulated. This presentation tries to give an account of the
possible outcomes of a decision-aiding process.

– The identification of artifacts within the decision-aiding process in the form of
checklists is of course a simplification of the complexity ofreal decision-aiding sit-
uations. The scope of such a presentation is mainly conceived for training purposes:
i.e. what a novice analyst should check when involved in a decision-aiding process.
Experienced analysts may conduct a decision-aiding process in a more holistic way,
but the analysis of such an approach goes beyond the scope of this chapter.

1.5. Conclusion

In this chapter a personal perspective on the evolution of decision theory has been
outlined. The focus was mainly on the appearance and growth of several alternative
approaches to the so-called classic decision theory. This was done in relation both to
empirical validation and to the evolution of related scientific domains such as cognitive
sciences, organization theory and artificial intelligence.

The first hypothesis developed in the chapter is that such alternative approaches are
ultimately related to the classic decision theory. This is because they all share the fun-
damental idea that decision making and decision aiding are human activities that can
be scientifically investigated. It is also possible to use anabstract and formal language
in aiding decision makers to handle the issues arising within the decision processes.
The plural ‘decision theories’ is more appropriate for emphasizing the existence of
several different theoretical approaches and methods studying and implementing the
above idea [WHI 75].

The second hypothesis developed is that decision aiding is abroader concept than
the one of decision theory. This is true as the former includes not only the theoretical
aspects of this activity, but also the practices and the behaviors that can be observed
along the decision-aiding process. One of the characteristics of the decision theories
evolution is the appearance of approaches aiming to includelarge parts of the decision-
aiding process in their field of investigation.

Decision aiding is practiced every day by individuals and organizations and, in
a proportion of cases larger than what the number of relevantscientific publications
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would suggest, decision theories are correctly used. It should be noted that the level
of analysis of such decision-aiding practices is far less important if compared to the
extremely fine theoretical achievements which the decisiontheories can show. Under
such a perspective our scientific area, despite its maturity, is still lacking the establish-
ment of ‘best practices analysis’ as is the case for similar professions such as lawyers,
physicians and psychotherapists.

A third hypothesis developed concerns what decision theoryand operational re-
search owes to other scientific fields such as mathematics, cognitive science, organiza-
tion theory, artificial intelligence and more general computer science. Several critical
advances in our field have been possible thanks to the integration of findings obtained
in such areas. At the same time, the focus of our research on concepts such as deci-
sion, preference, optimal and compromise solution provided invaluable contributions
to these areas (not only, OR and decision theory are applied in fields such as molec-
ular biology, archaeology, engineering, sociology and political science). The ultimate
interdisciplinary nature of decision theory and decision aiding can be best observed
through its practice.

Last, but not least, a personal classification of the decision-aiding approaches was
presented. The differences between such approaches, on thebasis of the origin of the
model of rationality used in order to construct the artifacts of the decision-aiding pro-
cess, were discussed. Under such a perspective a model of thedecision-aiding process,
sufficiently large to include most of the existing methods and techniques, was outlined.
This chapter therefore contributes to the establishment ofa decision-aiding methodol-
ogy (from the Greekµεθoδoλoγια : λóγoζµεóδων, reasoning about methods).
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Chapter 2

Binary Relations and Preference Modeling

2.1. Introduction

This volume is dedicated to concepts, results, procedures and software aiming
at helping people make a decision. It is then natural to investigate how the various
courses of action that are involved in this decision comparein terms of preference.
The aim of this chapter is to propose a brief survey of the maintools and results that
can be useful to do so.

The literature on preference modeling is vast. This can firstbe explained by the
fact that the question of modeling preferences occurs in several disciplines, e.g.

– in Economics, where one tries to model the preferences of a ‘rational consumer’
[e.g. DEB 59];

– in Psychology in which the study of preference judgments collected in experi-
ments is quite common [KAH 79, KAH 81];

– in Political Sciences in which the question of defining a collective preference on
the basis of the opinion of several voters is central [SEN 86];

– in Operational Research in which optimizing an objective function implies the
definition of a direction of preference [ROY 85]; and

– in Artificial Intelligence in which the creation of autonomous agents able to take
decisions implies the modeling of their vision of what is desirable and what is less so
[DOY 92].
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Moreover, the question of preference modeling can be studied from a variety of
perspectives [BEL 88], including:

– anormativeperspective, where one investigates preference models that are likely
to lead to a ‘rational behavior’;

– adescriptiveperspective, in which adequate models to capture judgements ob-
tained in experiments are sought; or

– aprescriptiveperspective, in which one tries to build a preference model that is
able to lead to an adequate recommendation.

Finally, the preferences that are to be modeled can be expressed on a variety of ob-
jects depending on the underlying decision problem. For instance, one may compare:

– vectors inRp indicating the consumption ofp perfectly divisible goods;

– candidates in an election;

– probability distributions modeling the possible financial results of various invest-
ment prospects;

– alternatives evaluated on several criteria expressed in incommensurable units
when comparing sites for a new factory;

– projects evaluated on a monetary scale conditionally on the occurrence of various
events or on the actions of other players.

It would be impossible within the scope of this chapter to exhaustively summarize
the immense literature on the subject. More realistically,we will try here to present
in a simple way the main concepts used in building models of preference. This will
give the reader the necessary background to tackle the remaining chapters in this book.
The reader willing to deepen their understanding of the subject is referred to [ALE 06,
FIS 70, FIS 85, KRA 71, PIR 97, ROB 79, ROU 85].

This chapter is organized as follows. Section 2.2 is devotedto the concept ofbinary
relationsince this is the central tool in most models of preference. Section 2.3 defines
a ‘preference structure’. Section 2.4 introduces two classical preference structures:
complete orders and weak orders. Sections 2.5 and 2.6 introduce several more general
preference structures. Section 2.7 concludes with the mention of several important
questions that we cannot tackle here.

2.2. Binary relations

2.2.1. Definitions

A binary relationT on a setA is a subset of the Cartesian productA × A, i.e. a
set of ordered pairs(a, b) of elements ofA. If the ordered pair(a, b) belongs to the
setT , we will often writea T b instead of(a, b) ∈ T . In the opposite case, we write
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(a, b) 6∈ T or a ¬T b. Except when explicitly mentioned otherwise, we will suppose
in all what follows that the setA is finite.

Remark2.1. Since binary relations are sets, we can apply the classical operations of
set theory to them. For instance, given any two binary relationsT1 andT2 onA, we
will write:

T1 ⊂ T2 ⇔ [a T1 b⇒ a T2 b, ∀a, b ∈ A],

a (T1 ∪ T2) b⇔ a T1 b or a T2 b,

a (T1 ∩ T2) b⇔ a T1 b anda T2 b.

Moreover, theproductT1 · T2 will be defined by:

a T1 · T2 b⇔ ∃c ∈ A : a T1 c andc T2 b.

We denote byT 2 the relationT · T , i.e. the product of the relationT with itself.

Given a binary relationT onA, we define:

– its inverse relationT− such that:

a T− b⇔ b T a;

– its complement, i.e. the binary relationT c such that:

a T c b⇔ a ¬T b;

– its dual relationT d such that:

a T d b⇔ b ¬T a;

– its symmetric partIT such that:

a IT b⇔ [a T b andb T a];

– its asymmetric partPT such that:

a PT b⇔ [a T b andb ¬T a];

– its associated equivalence relationET such that:

a ET b⇔
{
a T c⇔ b T c,
c T a⇔ c T b,

}
, ∀c ∈ A.

Remark2.2. It is easy to check that we have:

T d = T−c = T c−,

IT = T ∩ T−,

PT = T ∩ T d.
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2.2.2. Properties of a binary relation

A binary relationT onA is said to be:

– reflexiveif a T a;

– irreflexiveif a ¬T a;

– symmetricif a T b⇒ b T a;

– antisymmetricif a T b andb T a⇒ a = b;

– asymmetricif a T b⇒ b ¬T a;

– weakly completeif a 6= b⇒ a T b or b T a;

– completeif a T b or b T a;

– transitiveif a T b andb T c⇒ a T c;

– negatively transitiveif a ¬T b andb ¬T c⇒ a ¬T c;

– Ferrers if [a T b andc T d]⇒ [a T d or c T d]; and

– semitransitiveif [a T b andb T c]⇒ [a T d or d T c]

for all a, b, c, d ∈ A.

Remark2.3. The above properties are not independent. For instance, it is easy to check
that

– a relation is asymmetric⇔ it is irreflexive and antisymmetric;

– a relation is complete⇔ it is weakly complete and reflexive;

– an asymmetric and negatively transitive relation is transitive; and

– a complete and transitive relation is negatively transitive.

Whatever the properties ofT , it is clear that

– PT is always asymmetric;

– IT is always symmetric; and

– ET is always reflexive, symmetric and transitive.

Remark2.4. It is possible to reformulate the above properties in a variety of ways.
For instance, observe that:

– T is complete⇔ T ∪ T−= A×A;

– T is asymmetric⇔ T ∩ T−= ∅;

– T is transitive⇔ T 2 ⊂ T ;

– T is Ferrers⇔ T · T d · T ⊂ T ; and

– T is semi-transitive⇔ T · T · T d ⊂ T .

An equivalenceis a reflexive, symmetric and transitive binary relation (hence, the
binary relationET defined earlier is an equivalence whatever the properties ofT ). Let
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E be an equivalence onA. Given an elementa ∈ A, the equivalence class associated
to a, denoted by[a]E , is the set{b ∈ A : a E b}. It is always true thata ∈ [a]E . It is
easy to show that∀a, b ∈ A, either[a]E = [b]E or [a]E ∩ [b]E = ∅. An equivalence
therefore partitionsA into equivalence classes. The set of all these equivalence classes
is called the quotient ofA for E and is denotedA/E.

2.2.3. Graphical representation of a binary relation

A binary relationT onA can be represented as a directed graph(A, T ) whereA
is the set of vertices of the graph andT is the set of the arcs of the graph (i.e. ordered
pair of vertices). The particular properties of a binary relation can easily be interpreted
using the sagittal representation of the graph(A, T ). The reflexivity ofT implies the
presence of a loop on each vertex. The symmetry ofT means that when there is an arc
going froma to b, there is also an arc going fromb to a. The transitivity ofT means
that as soon as there is a path of length2 going froma to b, there is an arc froma to
b. Taking the inverse relation is tantamount to inverting theorientation of all arcs in
the graph. Taking the complement consists of adding all missing arcs and deleting all
existing ones.

Observe that a symmetric relation can be more conveniently represented using a
non-oriented graph, in which the ordered pairs(a, b) and (b, a) of the relation are
represented using a single edge between the verticesa andb.

2.2.4. Matrix representation of a binary relation

Another way to represent a binary relationT onA is to associate to each element
ofA a row and a column of a square matrixMT of dimension|A|. The elementMT

ab of
this matrix, being at the intersection of the row associatedto a and at the intersection
of the column associated tob, is 1 if a T b and 0 otherwise.

With such a representation, the reflexivity ofT implies the presence of 1 on the
diagonal of the matrix, provided that the elements ofA have been associated in the
order of the row and columns of the matrix. Under this hypothesis, the symmetry ofT
is equivalent to the fact thatMT is equal to its transpose. Taking the inverse relation
consists of transposing the matrixMT . The matrix associated to the product of two
binary relations is the boolean product of the two corresponding matrices.

2.2.5. Example

LetA = {a, b, c, d, e}. Consider the binary relation

T = {(a, b), (b, a), (b, c), (d, b), (d, d)}.
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A matrix representation ofT is the following:

	 a b c d e
a 0 1 0 0 0
b 1 0 1 0 0
c 0 0 0 0 0
d 0 1 0 1 0
e 0 0 0 0 0

.

A sagittal representation of the graph(A, T ) is depicted in Figure 2.1.

a

b c

d

e

Figure 2.1. Sagittal representation of the graph(A, T )

2.3. Binary relations and preference structures

Consider an ordered pair(a, b) of objects. It is classically supposed that there can
only be two answers to the question ‘is objecta at least as good as objectb?’: yes or
no, these two answers being exclusive. Asking such a question for all ordered pais of
objects leads to the definition of abinary relationS on the setA of all objects letting
a S b if and only if the answer to the question ‘isa at least as good asb?’ is yes. In
view of its definition, it is natural to consider thatS is reflexive; we will do so in all
that follows.

Definition 2.1. A preference structure onA is a reflexive binary relationS onA.

Remark2.5. The preceding definition raises a question ofobservability. If the idea
of preference is to be based on observable behavior, the primitive may be taken to be
choices made on various subsets of objects. This change of primitive is at the heart of
‘revealed preference’ theory in which the relationS is inferred from choices that are
observable. Such an inference requires that choices are essentially ‘binary’, i.e. that
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choices made on pairs of objects are sufficient to infer choice made on larger sets of
objects. The conditions allowing such a rationalization ofa choice function through a
binary relation are classical [e.g. SEN 70, SEN 77]. They have recently been severely
questioned [MAL 93, SEN 93, SUG 85].

Remark2.6. In some cases, one may envisage answers other than yes or no tothe
question ‘isa at least as good asb?’, e.g.

– answers such as ‘I do not know’;

– answers including information on theintensity of the preference, e.g. ‘a is
strongly/weakly/moderately preferred tob’;

– answers including information on thecredibility of the proposition ‘a is at least
as good asb’, e.g. ‘the credibility of the ‘a is at least as good asb’ is greater than the
credibility of the proposition ‘c is at least as good asd’ ’ or even ‘the credibility of the
proposition ‘a is at least as good asb’ is α ∈ [0; 1]’.

Admitting such answers implies using a language that is richer than that of binary
relations, e.g.

– the language offuzzy relations[DOI 86, FOD 94, PER 92], each assertion of the
typea S b having adegree of credibility;

– languages tolerating hesitation [e.g. ROY 87];

– languages using the idea ofintensity of preference[COS 94, DOI 87], an asser-
tion such thata S b and b ¬S a being further qualified (weak, strong or extreme
preference, for instance); or

– languages making use ofnon-classical logics[TSO 92, TSO 95, TSO 97] al-
lowing the capture of the absence of information or, on the contrary, the existence of
contradictory information (with such languages, the truthvalue of the assertiona S b
can take values different from just ‘true’ or ‘false’ and include ‘unknown’ and ‘con-
tradictory’).

We do not consider such extensions in this paper.

Let us consider a preferenceS on a setA. For all pairs of objects{a, b}, we are in
one of the following four situations (see Figure 2.2):

1) [a S b andb S a], denoted bya IS b, interpreted as ‘a is indifferentto b’;

2) [a ¬S b andb ¬S a], denoted bya JS b, interpreted as ‘a is incomparableto
b’;

3) [a S b andb ¬S a], denoted bya PS b, interpreted as ‘a is strictly preferredto
b’; and

4) [a ¬S b andb S a], denoted byb PS a, interpreted as ‘b is strictly preferredto
a’.
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b S a b ¬S a
a S b a I b a P b
a ¬S b b P a a J b

Figure 2.2. Four exhaustive and mutually exclusive situations

When there is no risk of ambiguity, we useI, J andP instead ofIS , JS andPS .

By construction,I andJ are symmetric andP is asymmetric. SinceS is reflexive,
I is reflexive andJ is irreflexive. The three relationsP , I andJ are:

– mutually exclusive, i.e.P ∩ I = P ∩ J = I ∩ J = ∅ and

– exhaustive, i.e.P ∪ P− ∪ I ∪ J = A2.

Remark2.7. Many works use% instead ofS,� instead ofP and∼ instead ofI.

Remark2.8. Given a preference structure ofS onA, it may be useful to consider the
relation induced byS on the quotient setA/ES , whereES denotes the equivalence
associated toS. This allows the simplification of many results.

Remark2.9. Since a preference structure is a reflexive binary relation,we can use
the graphical and matrix representations introduced earlier to represent it. In order to
simplify graphical representations, we will systematically omit reflexivity loops and
will use the conventions introduced in Figure 2.3.

a

b

a

b

a

b

a P b a I b a J b

Figure 2.3. Graphical conventions

Example 2.1. LetA = {a, b, c, d, e} and the preference structureS = { (a, a), (a, b),
(a, c), (a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, a), (d, b), (d, c), (d, d), (e, a), (e, c),
(e, e) }. We have:

P = {(a, c), (d, a), (d, b), (d, c), (e, c)},
I = {(a, a), (a, b), (a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, d), (e, a), (e, e)},
J = {(b, e), (d, e), (e, b), (e, d)}.
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Using the above conventions, we obtain the matrix representation (Figure 2.4) and the
graphical representation (Figure 2.5) ofT .

	 a b c d e
a 1 1 1 0 1
b 1 1 1 0 0
c 0 1 1 0 0
d 1 1 1 1 0
e 1 0 1 0 1

Figure 2.4. Matrix representation

a

b c

d

e

Figure 2.5. Graphical representation

2.4. Classical preference structures

2.4.1. Total order

2.4.1.1.Definition

A preference structureS is a total order if:

– S is complete;

– S is transitive; and

– S is antisymmetric.

In a total order, the incomparability relation is empty (J = ∅) and the indifference
relationI is limited to pairs of identical objects (I = {(a, a) : a ∈ A}). The strict
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preference isP is weakly complete and transitive. A total order therefore consists of
a ranking of the objects fromA from best to worst (using the relationP ) without the
possibility ofex aequo.

Remark2.10. It is easy to check that an equivalent definition of a total order consists
of saying thatS is complete and the only circuits in this relation are loops.

It is clear that, ifS is a total order,

– P is weakly complete and transitive;

– I is transitive;

– I · P ⊂ P ; and

– P · I ⊂ P .

Remark2.11. Checking if a preference structure is a total order is quite simple us-
ing the matric representation ofS. Indeed, labeling rows and columns of the matrix
according toP , we obtain a matrix that has only 0 below the diagonal and 1 else-
where. The relationP corresponds to off-diagonal 1’s. In the graphical representation,
if vertices are ranked according toP , all arcs are going from left to right.

Example 2.2. LetA = {a, b, c, d, e}. Consider the preference structureS = {(a, a),
(a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (d, e),
(e, e)}.

It is easy to check that it is a total order using the matrix representation shown on
Figure 2.6 or its graphical representation shown on Figure 2.7.

	 a b c d e
a 1 1 1 1 1
b 0 1 1 1 1
c 0 0 1 1 1
d 0 0 0 1 1
e 0 0 0 0 1

Figure 2.6. Matrix representation of a total order

a b c d e

Figure 2.7. Graphical representation of a total order
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2.4.1.2.Numerical representation

Let S be a total order onA. One may associate a number to each object in such a
way that this number reflects the position of the object in therelationS. We leave the
easy proof of the following result to the reader.

Theorem 2.1. A preference structureS on a finite setA is a total order if and only if
there is a functiong : A→ R such that∀a, b ∈ A:

{
a S b⇔ g(a) ≥ g(b),
g(a) = g(b)⇒ a = b.

Remark2.12. The numerical representation of a total order is not unique.It is easy to
show that given a numerical representationg satisfying the conditions of Theorem 2.1,
any increasing transformation applied tog leads to another admissible representation.
Conversely, ifg andh are two numerical representations of the same total order inthe
sense of Theorem 2.1, there is an increasing functionφ such thatg = φ◦h. The scale
g is said to be anordinal scale.

Let g be a function satisfying the condition of the above theorem.It is possible
to compare differences such asg(a) − g(b) andg(c) − g(d). These comparisons are
nevertheless clearly dependent upon the choice of the particular functiong: another
legitimate choice can lead to other comparisons of differences. Hence, in general, it is
impossible to give a particular meaning to these comparisons.

Remark2.13. Theorem 2.1 remains true ifA is countably infinite (g is defined by an
easy induction argument). It is clear that the result is no more true in the general case.
Let us illustrate this fact by two examples.

1) It is well know that the cardinality ofP(R) (i.e. the set of subsets ofR) is strictly
greater than that ofR. Any total order onP(R) cannot have a numerical representation
in the sense of Theorem 2.1. A natural question arises: is Theorem 2.1 true when
attention is restricted to setsA, having at most the cardinality ofR? This is not so, as
shown by the following famous example.

2) LetA = R × {0, 1}. It is easy to show thatA has the same cardinality asR.
Consider the lexicographic order defined, letting:

(x, y) P (z, w)⇔
{
x > z or
x = z andy > w,

and

(x, y) I (z, w)⇔ x = z andy = w.

It is easy to show that the structureS = P ∪ I is a total order. It does not have a
numerical representation in the sense of Theorem 2.1. Indeed, suppose thatg is such
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a representation. We would have∀x ∈ R, (x, 1) P (x, 0) so thatg(x, 1) > g(x, 0).
There exists a rational numberµ(x) such thatg(x, 1) > µ(x) > g(x, 0). We have
(y, 1) P (y, 0) P (x, 1) P (x, 0) ⇔ y > x. Hence,y > x impliesµ(y) > µ(x). The
functionµ built above is therefore a bijection betweenR andQ, a contradiction.

Beardonet al. [BEA 02] propose a detailed analysis of the various situations in
which a total order does not have a numerical representation. The necessary and suffi-
cient conditions ensuring that a total order has a numericalrepresentation are known
[BRI 95, DEB 54, FIS 70, KRA 71]. They amount to supposing thatS on A has a
behavior that is ‘close’ to that of≥ in R.

2.4.2. Weak orders

2.4.2.1.Definition

A preference structureS is a weak order if:

– S is complete; and

– S is transitive.

Weak orders generalize total orders since they do not have tobe antisymmetric.
Hence, indifference between distinct elements is allowed in weak orders.

Remark2.14. An equivalent definition of a weak order is thatS is complete and any
circuit of S has noP arc.

It is clear that, ifS is a weak order,

– P is transitive;

– P is negatively transitive;

– I is transitive (I is therefore an equivalence);

– I · P ⊂ P ;

– P · I ⊂ P ; and

– the relationS induces a total order on the quotient setA/I.

Remark2.15. Let T be an asymmetric and negatively transitive binary relationonA.
LetS = T ∪ (T− ∩ T d). It is easy to show thatS is a weak order.

Remark2.16. If the rows and columns of the matrix representation of a weakorder
are ordered according to a relation that is compatible withP (the ordering of the rows
and columns for indifferent elements being unimportant), we obtain a matrix in which
the 1’s are separated from the 0’s by a stepped frontier that is below the diagonal and
touches the diagonal. In a similar way, the graphical representation of a weak order
generalizes that of a total order.
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Example 2.3.LetA = {a, b, c, d, e}. Consider the preference structureS = (a, a), (a, b),
(a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, c), (d, d),
(d, e), (e, e)}. It is easy to check that this is a weak order, considering thematrix repre-
sentation depicted in Figure 2.8 or the graphical representation depicted in Figure 2.9.

	 a b c d e
a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 1 1
d 0 0 1 1 1
e 0 0 0 0 1

Figure 2.8. Matrix representation of a weak order

a

b

c

d

e

Figure 2.9. Graphical representation of a weak order

2.4.2.2.Numerical representation

Remembering that weak order induces a total order on the quotient setA/I, it is
easy to prove the following result.

Theorem 2.2. A preference structureS on a finite setA is a weak order if and only if
(iff) there is a functiong : A→ R such that∀a, b ∈ A

a S b⇔ g(a) ≥ g(b).
Remark2.17. As above, the numerical representation of a weak order is defined up
to an increasing transformation. The functiong is an ordinal scale and most of the
assertions that can be obtained using arithmetic operations on the values ofg have a
truth value that depends on the functiong that was chosen: they are not meaningful in
the sense of [ROB 79].
Remark2.18. It is clear that the above result remain true whenA is countably infi-
nite (since in this case a total order structure always has a numerical representation).
As was the case with total orders, extending this result to arbitrary sets implies the
introduction of additional conditions.
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2.4.3. Classical problems

In most studies involving preferences, the weak order modelis used: the function
g representing the weak order is the function that should be maximized. Depending on
the context, it is referred to as the value function, objective function, criterion or value
function. It is striking that decision problems have been dealt with so often in this way
without much investigation on the adequateness ofg as a model of preference.

We discuss here a few classical questions that have been dealt with using the weak
order model.

2.4.3.1.Choosing on the basis of binary relation

Suppose that we have a weak orderS on a setA and consider the situation (com-
mon in Economics) in which a choice must be made in a subsetB ⊆ A. How should
the information contained inS be used to guide such a choice? A natural way to define
the setC(B,S) of chosen objects (note that since we do not requireC(B,S) to be
a singleton, it would be more adequate to speak of objects that are susceptible to be
chosen) inB on the basis ofS is to let

C(B,S) = {b ∈ B : Not[ a P b ] for all a ∈ B}.

An objecta belongs to the choice set as soon as there is no other object that is
strictly preferred toa. It is not difficult to show thatC(B,S) is always non-empty as
soon asB is finite (the general case raises difficult questions, see [BER 75]) andS is
a weak order. Let us observe that, whenB is finite, imposing thatS is a weak order is
only a sufficient condition for the non-emptyness ofC(B,S).

A classic result [SEN 70] states that, whenB is finite,C(B,S) is non-empty as
soon asP is acyclic inB (it is never true that, for alla1, a2, . . . , ak in B, a1 P
a2, a2 P a3, . . . , ak−1 P ak and ak P a1). The use of structures that are more
general than the weak order also allows a simple answer to theproblem to be derived.

We note that there are situations (e.g. a competitive exam) in which it is desirable
to rank order all elements in a subsetB ⊆ A and also to define the choice setC(B,S).
The weak order model allows a trivial answer to this problem to be derived since the
restriction of a weak order onA to a subsetB ⊆ A is a weak order onB.

2.4.3.2.Aggregating preferences

Suppose that you have collectedn ≥ 2 preference structures onA, for example
because the objects are evaluated according to various points of view (voters, criteria
or experts). In such a situation, it is natural to try to builda ‘collective’ preference
structureS that aggregates the information contained in(S1, S2, . . . , Sn).
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In general, one looks for a mechanism (e.g. an electoral system or an aggrega-
tion method) that is able to aggregateany n-tuple of preference structures onA
into a collective preference structure. When the weak ordermodel is used, defining
such a mechanism amounts to defining an aggregation functionF fromWO(A)n in
WO(A), whereWO(A) is the set of all weak orders onA.

The work of Arrow [ARR 63] has clearly shown the difficulty of such a problem.
Imposing a small number of apparently reasonable conditions onF (unanimity, in-
dependence with respect to irrelevant alternatives and absence of dictator) leads to a
logical impossibility: it is impossible to simultaneouslysatisfy all these principles (for
a rich synthesis of such results, see [CAM 02, SEN 86]). The simple majority method
can be used to illustrate the problem uncovered by Arrow’s result. This method con-
sists of declaring that ‘a is collectively at least as good asb’ if there are more weak
orders in which ‘a is at least as good asb’ than weak orders for which ‘b is at least
as good asa’. Such a method seems highly reasonable and in line with our intuitive
conception of democracy.

It does not always lead to a collective weak order; it may evenlead to a collective
relation having a cycle in its asymmetric part. This is the famous Condorcet paradox:
A = {a, b, c}, n = 3, a P1 b P1 c, c P2 a P2 b and b P3 c P3 a gives the
simplest example of such a situation. Using a collective preference structure in which
strict preference may be cyclic in order to choose and/or to rank order is far from
being an easy task. Many works have investigated the question [e.g. LAS 97, MOU 86,
SCH 86].

2.4.3.3.Particular structure of the set of objects

In many situations, it is natural to suppose that the set of objectsA has a particular
structure. This will be the case in:

– decision with multiple criteria in which the elements ofA are vectors of evalu-
ations on several dimensions, attributes or criteria (A ⊆ A1 × A2 × · · · × An where
Ai is the set of possible evaluations of the objects on theith dimension);

– decision under risk in which the elements onA are viewed as probability dis-
tribution on a set of consequences (A ⊆ P(C) whereP(C) is a set of probability
distributions on a set of consequencesC); or

– decision under uncertainty in which the elements ofA are characterized by con-
sequences occurring contingently upon the occurrence of ‘several states of nature’
(A ⊆ Cn whereC is a set of consequences, supposing thatn distinct states of nature
are distinguished).

In all these cases it is tempting to add to the weak order modeladditional con-
ditions that will allow us to take advantage of the particular structure of the setA.
Among these condition, let us mention the following.
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1) Preference independence[KEE 76, KRA 71, WAK 89]: In the case of decision-
making with multiple criteria, this implies that the comparison of two objects differing
only on a subset of criteria is independent from their commonevaluations:

(aI , c−I) S (bI , c−I)⇔ (aI , d−I) S (bI , d−I)

whereI is a subset of criteria{1, 2, . . . , n} and where(aI , c−I) denotes the object
e ∈ A such thatei = ai if i ∈ I andei = ci otherwise.

2) Independence with respect to probabilistic mixing[FIS 70, FIS 88]: In the case
of decision-making under risk, this implies that the preference relation between two
probability distributions is not altered when they are bothmixed with a common prob-
ability distribution:

a S b⇔ (aαc) S (bαc)

where(aαb) denotes the convex combination of the probability distributionsa andb
with the coefficientα ∈ (0; 1).

3) The sure-thing principle[FIS 70, SAV 54, WAK 89]: In the case of decision-
making under uncertainty, this implies that the preferencebetween two acts does not
depend on common consequences obtained in some states of nature, i.e.

(aI , c−I) S (bI , c−I)⇔ (aI , d−I) S (bI , d−I)

whereI is a subset of states of nature and(aI , c−I) denotes the acte ∈ A such that
ei = ai if i ∈ I andei = ci otherwise.

When these conditions are applied to sets of objects that aresufficiently ‘rich’ (and
when it is required thatS behaves coherently with this richness [FIS 70, WAK 89]),
we obtain some famous models based on that of the classical theory.

– The model ofadditive value functionsin the case of decision with multiple cri-
teria:

a S b⇔
n∑

i=1

ui(ai) ≥
n∑

i=1

ui(bi)

whereui is a real-valued function onAi and the evaluation of objecta on theith
criterion is denoted byai.

– Theexpected utilitymodel in the case of decision making under risk:

a S b⇔
∑

c∈C

pa(c)u(c) ≥
∑

c∈C

pb(c)u(c)

whereu is a real-valued function onC andpa(c) is the probability to obtain conse-
quencec ∈ C with objecta.



Binary Relations and Preference Modeling 65

– Thesubjective expected utilitymodel in the case of decision-making under un-
certainty:

a S b⇔
n∑

i=1

piu(ai) ≥
n∑

i=1

piu(bi)

whereu is a real-valued function onC and thepi’s are non-negative numbers summing
to 1 that can be interpreted as the subjective probabilitiesof the various states of nature.

One of the major aims of these models is to allow a numerical representationg of S
that is much more specific than that given by Theorem 2.2. The additional conditions
mentioned above imply that, whenA is adequately rich (e.g. thatA = A1×A2×· · ·×
An in the case of decision making with multiple criteria, and that eachAi has a rich
structure [WAK 89]),g can be additively decomposed. The numerical representation
obtained is an interval scale (unique up to the choice of origin and unit). It is then
possible to use sophisticated elicitation techniques to assessg and, therefore, structure
a preference model [KEE 76, KRA 71, WAK 89].

These additional conditions were subjected to many empirical tests. In the fields of
decision making under risk and uncertainty, it was show thatthe conditions at the heart
of the expected utility model (independence axiom and sure-thing principle) were fal-
sified in a predictable and reproducible way [ALL 53, ELL 61, KAH 79, MCC 79].
This has generated numerous studies investigating models using only weakening of
these additional conditions (see [FIS 88, MAC 82, QUI 82, QUI93, YAA 87] for de-
cision under risk and [DUB 01, GIL 87, GIL 89, SCH 89, WAK 89] for decision under
uncertainty).

Dutch book-like arguments (adhering to these generalized models may transform
an individual into a ‘money pump’) have often been used to criticise these models
[RAI 70]. The validity of such arguments nevertheless raises difficult questions (see
[MAC 89, MCC 90] for a criticism of such arguments for decision making under risk).

Finally, let us mention that other structures forA can be usefully studied. For in-
stance, whenA is endowed with a topological structure, it is natural to investigate
numerical representation having continuity properties [BOS 02a, BRI 95, JAF 75].
Similarly, if A is endowed with a binary operation allowing the combinationof its
elements (this is the case in decision under risk using ‘probabilistic mixing’ of two
objects), a numerical representation is sought that is somehow compatible (most often
through addition) with this operation [KRA 71].

2.5. Semi-orders and interval orders

In weak orders, the indifference relationI is transitive. This hypothesis is some-
times inadequate since it amounts to supposing a perfect discrimination between close
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but distinct objects. Luce [LUC 56] was the first to suggest a preference structure in
which indifference may be intransitive [PIR 97]. He suggested the following example.

Example 2.4. Consider a setA consisting of 101 cups of coffee numbered from 0–
100 and identical except that there arei grains of sugar in theith cup. It is likely that
an individual comparing these cups will not be able to detecta difference between two
consecutive cups. Hence, it is likely that we obtain:

a0 I a1, a1 I a2, . . . , a99 I a100.

If the relationI is supposed to be transitive, we should havea0 I a100, which seems
unlikely as the individual is supposed to prefer sugared coffee.

The two preference structures introduced in this section aim to model situations in
which indifference is not transitive, while maintaining our other hypotheses (transitiv-
ity of P , no incomparability) made so far.

2.5.1. Semi-order

2.5.1.1.Definition

A preference structureS is a semi-order if:

– S is complete;

– S is Ferrers; and

– S is semitransitive.
Remark2.19. It is easy to check that an equivalent definition of a semi-order is to
suppose thatS is complete and all circuits ofS have moreI arcs thanP arcs.

Moreover, it is easy to prove that ifS is a semi-order:

– P is transitive;

– P is Ferrers;

– P is semi-transitive;

– P · I · P ⊂ P ;

– P · P · I ⊂ P ;

– I · P · P ⊂ P ; and

– P 2 ∩ I2 = ∅.

As will become apparent later, semi-orders arise when an indifference threshold
is introduced when comparing objects evaluated on a numerical scale. As an easy
exercise, the reader may wish to check that any weak order is asemi-order.
Remark2.20. The graphical representation of a semi-order is characterized by the fact
that the four configurations depicted in Figure 2.10 are forbidden (whatever appears on
the diagonal and with the possibility that two indifferent elements may be identical).
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a d

b c

a d

b c

a d

b c

a d

b c

Figure 2.10.Forbidden configurations in a semi-order

2.5.1.2.Weak order associated with a semi-order

Let S is be a binary relation onA. The binary relationS± onA defined by

a S± b⇔
{
b S c⇒ a S c,
c S a⇒ c S b,

}
∀c ∈ A

is called the trace ofS. It is clear that the trace of a relation is always reflexive and
transitive. We leave the easy proof of the following result to the reader.

Theorem 2.3. LetS be a reflexive binary relation onA. S is a semi-order if and only
if its traceS± is complete.

Remark2.21. WhenS is a semi-order, the weak orderS± is obtained by ranking the
elements ofA according to their degree inS (i.e. number of arcs leaving a vertex
minus the number of arcs entering it). One can check that a weak order is always
identical to its trace.

2.5.1.3.Matrix representation [JAC 78]

By ordering the row and columns of the matrix representationof a semi-order, by
using an order that is compatible with the trace of the relation, we obtain a matrix in
which the 1’s are separated from the 0’s by frontiers that arestepped and located below
the diagonal. This follows immediately from the definition of the trace. In contrast
with what happens with weak orders, the frontier separatingthe 1’s and the 0’s does
not necessarily touch the diagonal.

Example 2.5. Let A = {a, b, c, d, e, f}. Consider the preference structureS =
{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f) (b, a), (b, b), (b, c), (b, d), (b, e), (b, f),
(c, b), (c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e),
(e, f), (f, e), (f, f) }. We obtain the matric representation shown in Figure 2.11.
This relation is not a weak order: we have e.g.e S c andc S b bute ¬S b.
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	 a b c d e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 0 1 1

Figure 2.11.Matrix representation of a semi-order

2.5.1.4.Numerical representation

Theorem 2.4. LetA be a finite set. The following propositions are equivalent.

1) S is a semi-order onA.

2) There is a functiong : A→ R and a constantq ≥ 0 such that∀a, b ∈ A:

a S b⇔ g(a) ≥ g(b)− q.

3) There is functiong : A→ R and a functionq : R→ R+ such that∀a, b ∈ A:

g(a) > g(b)⇒ g(a) + q(g(a)) ≥ g(b) + q(g(b))

and

a S b⇔ g(a) ≥ g(b)− q(g(b)).

Proof: See [FIS 85], [PIR 97, theorem 3.1], [SCO 58] or [SUP 89, chapter 16].

This result shows that semi-orders naturally arise when objects evaluated on a
numerical scale are compared on the basis of the scale, however, differences that are
less than a constant threshold are not perceived or are not considered to be significant.
The threshold is not necessarily constant provided that we never haveg(a) > g(b) and
g(b) + q(g(b)) > g(a) + q(g(a)). Let us observe that the generalization of this result
to arbitrary sets raises delicate problems [BEJ 92, CAN 02, FIS 73, FIS 85].

Remark2.22. Let us build the numerical representation of the semi-orderfor which
we gave the matrix representation earlier. Having chosen anarbitrary positive value
for q, e.g.q = 1, the functiong is built associating increasing values to the elements
f, e, d, c, b, a (i.e. considering the lower elements in the weak orderS± first), while
satisfying the desired numerical representation. In such away, we obtain:g(f) = 0,
g(e) = 0.5, g(d) = 1.1, g(c) = 1.2, g(b) = 2.15 andg(a) = 3.

Remark2.23. The numerical representation of a semi-order is not unique.All increas-
ing transformation applied tog gives another acceptable representation provided that
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the same transformation is applied toq. However, all representations of a semi-order
cannot be obtained in this way as shown by the following example. The scale that is
built is more complex than an ordinal scale.

Example 2.6. Let A = {a, b, c, d}. Consider the preference structureS = {(a, d),
(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (c, d), (d, c)}. It
is easy to check, e.g. using a matrix representation, that this structure is a semi-order.
Table 2.1 gives two numerical representations ofS that cannot be obtained from one
another by an increasing transformation.

a b c d threshold
g 2 1.1 1 0 1.5
g′ 2 1 1 0 1.5

Table 2.1.Two numerical representations of a semi-order

2.5.2. Interval order

2.5.2.1.Definition

A preference structureS is an interval order if:

– S is complete; and

– S is Ferrers.

This structure generalized all structures introduced so far. As we will later see, it
arises naturally when one wishes to compare intervals on an ordinal scale.

Remark2.24. It is easy to check that an equivalent definition of an interval order con-
sists of saying thatS is complete and that all circuits inS have at least two consecutive
I arcs.

It is easily checked that, ifS is an interval order,

– P is transitive;

– P is Ferrers; and

– P · I · P ⊂ P .

Remark2.25. The graphical representation of an interval order is characterized by the
fact that the three configurations depicted on Figure 2.12 are forbidden (anything can
appear on the diagonal).
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a d

b c

a d

b c

a d

b c

Figure 2.12.Forbidden configurations in an interval order

2.5.2.2.Weak orders associated to an interval order

Let S be a binary relation onA. Let us define a relationS+ onA, setting

a S+ b⇔ [b S c⇒ a S c, ∀c ∈ A].

Similarly, we define the relationS− setting

a S− b⇔ [c S a⇒ c S b, ∀c ∈ A].

The relationS+ (respectivelyS−) is called the right trace (respectively left trace) of
S. It is clear thatS+ andS− are always reflexives and transitives.

The proof of the following result is easy and left to the reader.

Theorem 2.5. LetS be a reflexive binary relation onA. The following three proposi-
tions are equivalent:

1) S is an interval order;

2) S+ is complete; and

3) S− is complete.

Remark2.26. WhenS is an interval order, the weak orderS+ (respectivelyS−) can
be obtained ranking the elements ofA according to their out-degree (respectively in-
degree) inS.

2.5.2.3.Matrix representation

Let us rank the rows of the matrix representation in a way thatis compatible with
S+ taking care to rank indifferent elements according toS+ using an order that is
compatible withS−. Let us perform a similar operation on the columns of the matrix,
permuting the roles ofS+ andS−. We obtain a matrix in which the 1’s are separated
from the 0’s by a stepped frontier that is below the diagonal.
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Example 2.7. Let A = {a, b, c, d, e, f}. Consider the following structure:S = {
(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, a), (b, b), (b, c), (b, d), (b, e), (b, f),
(c, b), (c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e),
(e, f), (f, e), (f, f) }.

We obtain the following matrix representation:

	 a b d c e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 1 1 1

This structure is an interval order. It is not a semi-order sincef S c andc S b but
f ¬S d andd ¬S b. It is therefore impossible to represent this structure using a
stepped matrix with a similar order on rows and columns.

2.5.2.4.Numerical representation

The proof of the following result can be found in [PIR 97, theorem 3.11] or [FIS 85].

Theorem 2.6. LetA be a finite set. The following propositions are equivalent:

1) S is an interval order onA; and

2) there are two functionsg : A→ R andq : R→ R+ such that∀a, b ∈ A:

a S b⇔ g(a) + q(g(a)) ≥ g(b).

We refer to [BRI 95, CHA 87, FIS 73, FIS 85, NAK 02, OLO 98] for the problems
involved in generalizing this result to arbitrary sets.

Remark2.27. For instance, it is possible to build the numerical representation of the
interval order presented earlier as follows. The values ofg are arbitrarily chosen pro-
vided they increase from the first to the last row of the matrix. The values ofg + q
are then defined in such a way that they increase from the first to the last column of
the matrix and they satisfy the desired representation. Forinstance, we successively
obtain:

g(f) = 0, g(e) = 5, g(c) = 10, g(d) = 15, g(b) = 20, g(a) = 25,

(g + q)(f) = 12, (g + q)(e) = 17, (g + q)(d) = 19,

(g + q)(c) = 23, (g + q)(b) = 28, (g + q)(a) = 30.
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Letting g = g andg = (g + q), it is clear that the numerical representation of an
interval order amounts to associating an interval[g, g] with eacha ∈ A such that:





a P b⇔ g(a) > g(b),

a I b⇔
{
g(a) ≤ g(b),
g(b) ≤ g(a),

which leads to the representation depicted in Figure 2.13.

0 30

f d b

e a

c

Figure 2.13. Interval representation of an interval order

2.5.3. Remarks

Remark2.28. Interval orders may be generalized using a threshold depending on
both objects compared. One then obtains a threshold representation of all relations for
which the asymmetric part is acyclic [ABB 93, ABB 95, AGA 93, ALE 06, DIA 99,
SUB 94]. We do not tackle such models here.

Remark2.29. In an interval order, the relationP is transitive and hence is acyclic. For
all non-empty finite subsetsB ⊂ A, C(B,S) is therefore always non-empty. Using
one of the structures introduced in this section does not raise major problems when it
comes to linking preferences and choices.

Remark2.30. We saw that whenA has a particular structure and thatS is a weak order,
it is interesting to use such a structure to try to arrive at a numerical representation
that is more constrained than an ordinal scale. These extensions make central use of
the transitivity of indifference in order to build these numerical representations. It is
therefore not simple to do similar things on the basis of a semi-order or an interval
order [DOM 71, KRA 67, LUC 73, SUP 89].

Remark2.31. Building a collective preference that is a semi-order or an interval order
does not significantly contribute to the solution of the aggregation problem of weak
orders uncovered by Arrow’s theorem [SEN 86]. As soon as|A| ≥ 4, the theorem still
holds if the collective preference is required to be complete and Ferrers (or complete
and semi-transitive).
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2.6. Preference structures with incomparability

In all the structures envisaged so far, we supposed thatS was complete. This hy-
pothesis may seem innocuous, in particular when preferences are inferred from ob-
served choices. It is not without problems however. Indeed,it may well happen that:

– information is poor concerning one or several of the elements ofA;

– comparing elements ofA implies synthesizing on several conflicting points of
view; and

– the objects are not familiar to the individual.

In such cases, it may prove useful for preference modeling touse structures that ex-
plicitly include incomparability [FLA 83, ROY 85].

2.6.1. Partial order

A preference structureS is a partial if:

– S is reflexive;

– S is antisymmetric; and

– S is transitive.

Intuitively, a partial order is a structure in which, given two distinct objects, either
object is strictly preferred to the other or the two objects are incomparable, with strict
preference being transitive.

Remark2.32. It is easy to check that, ifS is a partial order,

– P is transitive; and

– I is limited to loops.

A fundamental result [DUS 41, FIS 85] shows that all partial orders on a finite set
can be obtained intersecting a finite number of total orders on this set. The minimal
number of total orders that are needed for this is called thedimensionof the partial
order. This easily implies the following result.

Theorem 2.7. LetA be a finite set. The following propositions are equivalent:

1) S is a partial order onA; and

2) there is a functiong : A→ R such that∀a, b ∈ A:

{
a S b⇒ g(a) ≥ g(b),
g(a) = g(b)⇒ a = b.
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a b d e

c

Figure 2.14.Graphical representation of a partial order

Example 2.8. LetA = {a, b, c, d, e}. Consider the preference structure:S = { (a, a),
(a, b), (a, c), (a, d), (b, b), (b, d), (b, e), (c, c), (c, e), (d, d), (d, e), (e, e) }. A graphi-
cal representation of this structure is depicted in Figure 2.14.

It is easy to check that the structure is partial order with dimension2, obtained by
intersecting the two total orders (using obvious notation):

a > b > d > c > e and

a > c > b > d > e.

Let us note that the detection of a partial order of dimension2 can be done in poly-
nomial time. On the contrary, the determination of the dimension of a partial order is
NP -difficult [DOI 84, FIS 85].

2.6.2. Quasi-order

A preference structureS is a quasi-order if:

– S is reflexive; and

– S is transitive.

Quasi-orders generalize partial orders by allowing indifference between distinct ele-
ments, the indifference relation being transitive.

Remark2.33. It is easy to check that, ifS is a quasi-order,

– P is transitive;

– I is transitive;

– P · I ⊂ P ; and

– I · P ⊂ P .

As with partial orders, it is easy to show that any quasi-order on a finite set can
be obtained intersecting a finite number of weak orders [BOS 02b, DON 98]. This
implies the following result.
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Theorem 2.8. LetA be a finite set. The following propositions are equivalent:

1) S is a quasi-order onA; and

2) there is a functiong : A→ R such that∀a, b ∈ A:

a S b⇒ g(a) ≥ g(b).

Remark2.34. Alternatively, one can build a numerical representation ofa quasi-order
considering a set of numerical representations of weak orders [OK 02].

Example 2.9.LetA = {a, b, c, d, e, f}. Consider the preference structureS= {(a, a),
(a, b), (a, c), (a, d), (a, e), (a, f) (b, b), (b, d), (b, e), (b, f), (c, c), (c, e), (c, f), (d, b),
(d, d), (d, e), (d, f), (e, e), (e, f), (f, e), (f, f)}. It is easy to check that this is a quasi-
order. Its graphical representation is depicted in Figure 2.15.

a c

e

f

b

d

Figure 2.15.Graphical representation of a quasi-order

Remark2.35. It is possible to extend classical models of decision under risk to deal
with quasi-orders [AUM 62, FIS 70]. The multi-attribute case was only studied in the
finite case [FIS 70, SCO 64]. Let us also mention that allowingfor incomparability
in the collective preference does not significantly contribute to the solution of the
problem uncovered by Arrow’s theorem [WEY 84].

Remark2.36. Roubens and Vincke [ROU 85] proposed definitions of partial semi-
orders and interval orders. They allow an intransitive indifference relation at the same
time as incomparability situations. We do not detail this point here.

2.6.3. Synthesis

We summarize in Table 2.2 the properties of preference structures that have been
introduced so far.
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Structures Definition

Total order
S complete
S antisymmetric
S transitive

Weak order
S complete
S transitive

Semi-order
S complete
S Ferrers
S semi-transitive

Interval order
S complete
S Ferrers

Partial order
S reflexive
S antisymmetric
S transitive

Quasi-order
S reflexive
S transitive

Table 2.2.Common preference structures

2.7. Conclusion

2.7.1. Other preference structures

In all the structures introduced so far, the relationP was transitive and, hence,
was acyclic. This seems a natural hypothesis. Abandoning itimplies reconsidering the
links existing between ‘preference’ and ‘choice’ as we already saw. Nevertheless, it is
possible to obtain such preferences in experiments [MAY 54,TVE 69] when subjects
are asked to compare objects evaluated on several dimensions. They are also common
in social choice due to Condorcet’s paradox. Indeed, a famous result [MCG 53] shows
that with a simple majority, any complete preference structure can be be obtained
as the result of the aggregation of individual weak orders. With other aggregation
methods, all preference structures may occur [BOU 96].

The literature on Social Choice abounds with studies of adequate choice procedure
on the basis of such preferences. The particular case oftournaments(complete and
antisymmetric relations) have been explored in depth [LAS 97, MOU 86].

More recently, it was shown that it is possible to build numerical representations of
such relations [BOU 86, BOU 99, BOU 02, FIS 82, FIS 88, FIS 91a,FIS 91b, FIS 92,
TVE 69, VIN 91]. In the models proposed in [BOU 02], we have setsA being Carte-
sian products (as in decision under uncertainty or in decision with multiple attributes):

a S b⇔ F (p1(a1, b1), p2(a2, b2), . . . , pn(an, bn)) ≥ 0
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wherepi are functions fromA2
i to R, F is a function from

∏n
i=1 pi(A

2
i ) to R and

where, for example,F can be increasing in all its arguments. This model generalizes
the classical additive difference model proposed in [TVE 69] in which:

a S b⇔
n∑

i=1

ϕi(ui(ai)− ui(bi)) ≥ 0

whereui are functions fromAi to R andϕi are odd increasing functions onR.

Similarly, in the models studied in [FIS 82, FIS 88] for the case of decision-making
under risk, the numerical representation is such that:

a S b⇔
∑

c∈C

∑

c′∈C

pa(c)pb(c
′)φ(c, c′) ≥ 0

whereφ is a function fromC2 to R andpa(c) is the probability to obtain the conse-
quencec ∈ C with objecta.

A common criticism of such models is that cycles leave the door open to apparently
‘irrational’ behavior and makes an individual vulnerable to Dutch books [RAI 70]. As
in the case of decision under risk mentioned earlier, it is not clear that the arguments
are actually convincing [FIS 91b].

2.7.2. Other problems

This brief survey of classical preference structures used in preference modeling
will hopefully give the reader enough clues to tackle a vast and complex literature.
This chapter has neglected many important questions, including

– the question of the approximation of preference structureby another one, e.g.
the search for a total order at minimal distance of a tournament [BAR 89, BAR 81,
BER 72, CHA 92, HUD 96, MON 79, SLA 61];

– the way to collect and validate preference information in agiven context
[WIN 86];

– the links between preference modeling and the question of meaningfulness in
measurement theory [ROB 79];

– the statistical analysis of preference data [COO 64, GRE 88]; and

– deeper questions on the links between value systems and preferences [BRO 91,
COW 88, TSO 92, WRI 63].
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Chapter 3

Formal Representations of Uncertainty

3.1. Introduction

The recent development of uncertainty theories that account for the notion of be-
lief is linked to the emergence, in the 20th century, of decision theory and artificial
intelligence (AI). Nevertheless, this topic was dealt withvery differently by each area.
Decision theory insisted on the necessity to found representations on the empirical
observation of individuals choosing between courses of action, regardless of any other
type of information. Any axiom in the theory should be liableto empirical valida-
tion. Probabilistic representations of uncertainty can then be justified with a subjec-
tivist point of view, without necessary reference to frequency. Degrees of probability
then evaluate to what extent an agent believes in the occurrence of an event or in the
truth of a proposition. In contrast, AI adopted a more introspective approach aiming
at formalizing intuitions and reasoning processes throughthe statement of reasonable
axioms, often without reference to probability. Until the 1990s, AI essentially focused
on purely qualitative and ordinal (in fact, logical) representations.

Historically, the interest in formalizing uncertainty began in the middle of the 17th
century, involving scholars such as Pascal, Fermat, Huyghens, the chevalier de Méré
and Jacob Bernoulli. Two distinct notions were laid bare andstudied: the objective
notion of chance, related to the analysis of games, and the subjective notion of prob-
ability in connection with the issue of the reliability of witnesses in legal matters. In
pioneering works such as those of Bernoulli, chances were quickly related to the eval-
uation of frequency and were therefore naturally additive.However, probabilities were
not considered so in the first stand.
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However, with the fast developments of hard sciences in the 18th century, the in-
terest in the subjective side of probability waned and the additive side of probability
became prominent; so much so that some late works on non-additive probabilities (for
instance those of Lambert) became unpalatable to other contemporaneous scholars
[SHA 78]. From then on, under the influence of Laplace and for along times, proba-
bilities would be additive whether frequentist or not. It was therefore very natural that
in the 20th century, pioneering proposals formalizing probability independently from
frequency [DEF 37, RAM 80] tried to justify the additivity axiom, especially in the
framework of a theory of gambles for economic decision problems.

The rise of computer and information sciences in the last part of the 20th century
renewed the interest for human knowledge representation and reasoning. The latter is
often tainted with imprecision, uncertainty and contradiction. These new fields were
developed independently of progress made in probability and decision theories. They
focused on qualitative logical formalisms (especially in AI), as well as the representa-
tion of the gradual nature of linguistic information (especially fuzzy set theory). This
trend has also triggered the revival of non-additive probabilities for modeling uncer-
tainty, a revival already pioneered by the works of Good [GOO62], Smith [SMI 61],
Shackle [SHA 61], Dempster [DEM 67], Kyburg [KYB 74] and Shafer [SHA 76].

In addition, the logic school rediscovered ancient modal concepts of possibility and
necessity, quite relevant for epistemic issues, introduced by Aristotle and exploited by
medieval religious philosophy. At the heart of the logical approach, the idea of in-
complete knowledge is basic and comes close to issues in imprecise probability (as
opposed to the use of a unique probability distribution advocated by the Bayesian
school). In the imprecise probability view, possibility and necessity respectively for-
malize subjective plausibility and certainty by means of upper and lower probability
bounds. Such non-classical incertainty functions appeared independently within deci-
sion theory itself. This was due to the questioning of the empirical validity of Savage’s
postulates underlying expected utility theory [SCH 89], after observing systematic vi-
olations of some of these postulates.

The gap created in the early 20th century between logicians (mainly interested
by the foundation of mathematics) and statisticians is now reducing. To date, logic
in its classical and non-classical versions (modal, non-monotonic, probabilistic and
possibilistic) is again considered as a formal tool for the representation of human
knowledge and the mechanization of reasoning processes; itis no longer confined to
metamathematics.

It therefore sounds more natural to propose that, when statistical data is missing,
the probabilistic knowledge possessed by an individual be represented by a set of log-
ical propositions each having its probability, rather thanby a probability distribution
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over an exhaustive set of mutually exclusive elements. However, the former represen-
tation generally characterizes a family of probability functions and not a unique distri-
bution. This logical view of probability is present in the 19th century in the works of
Boole [BOO 58] whose magnum opusThe Laws of Thoughtlaid the formal founda-
tions of probabilistic logic at least as much as those of classical logic. In addition,AI
and cognitive psychology share the concern of studying the laws of thought (even if
with totally different goals).

The aim of this chapter is to propose a unified overview of various approaches to
representations of uncertainty which have come to light during the last 50 years or so
in the areas of AI and decision theory. The focus is on ideas and intuitions rather than
on mathematical details. It is pointed out that apart from the central issue of belief
representation, other aspects of the imperfection of information are currently studied
for their own sake, such as the non-Boolean nature of linguistic predicates and the
concept of granularity.

This chapter is organized as follows. Section 3.2 considersthe notion of infor-
mation in its semantic side and proposes a typology of defects of information items
possessed by a cognitive entity (a human agent or a computer). Section 3.3 recalls
some basics of probability theory, which in any case stands as a landmark. Injecting
incomplete information into probability theory leads to a hierarchy of representations
involving convex sets of probabilities, including Shafer’s theory of evidence [SHA 76]
and the numerical variant of possibility theory [DUB 87b, DUB 00].

These approaches are reviewed in section 3.4, which also discusses bridges be-
tween possibility and probability. It is shown that some results and methods in non-
Bayesian statistics can be reinterpreted and systematizedin possibility theory, such
as the maximum likelihood principle and confidence intervals. Moreover, the insuf-
ficient reason principle of Laplace can be extended to derivea probability measure
from a possibility measure, or conversely in order to justify possibility distributions as
cautious substitutes of subjective probability distributions.

Section 3.5 presents ordinal and logical representations of uncertainty. Qualita-
tive possibility theory [DUB 98b] is tailored to handle incomplete information and is
shown to stand as the simplest among ordinal approaches to uncertainty.

Section 3.6 discusses the important notion of conditioningin uncertainty theories,
using the key concept of conditional events as a guideline. The bottom line is that,
in probability theory, Bayesian conditioning is a unique tool instrumental for several
distinct problems, but each problem requires a specific conditioning tool in the non-
additive frameworks.
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Finally, Section 3.7 deals with uncertain fusion information, and shows that the
framework of uncertainty theories leaving room to incompleteness leads to a recon-
ciliation of probabilistic fusion modes (based on averaging) and logical modes (based
on conjunction and disjunction).

3.2. Information: a typology of defects

The terminformationrefers to any collection of symbols or signs, produced either
through the observation of natural or artificial phenomena or by cognitive human ac-
tivity, with a view to helping an agent understand the world or the current situation,
make decisions or communicate with other human or artificialagents. In this section
we focus on the mathematical representation of informationitems. We draw several
important distinctions in order to charter this area.

A first distinction separates so-calledobjectiveinformation stemming from sensor
measurements from the direct perception of events fromsubjectiveinformation typi-
cally uttered by individuals (e.g. testimonies) or conceived without resorting to direct
observations.

Another distinction is betweenquantitativeinformation modeled in terms of num-
bers, typically objective information (sensor measurements, from the direct percep-
tion of events or from subjective information) andqualitativeor symbolic information
(typically subjective information, e.g. expressed in natural language). Nevertheless,
this partition is not as strict as it looks: subjective information can be numerical and
objective information can be qualitative (e.g. a color identified by means of a symbolic
sensor). Quantitative information can assume various formats: numbers, intervals and
functions. Structured symbolic information is often encoded in logical or graphical
representations. There are hybrid representations such asweighted logics or proba-
bilistic networks.

Yet another very important distinction must be drawn between singular and generic
information.Singular information refers to a particular situation or a response to a
question on the current state of affairs: e.g. an observation (a patient has fever at a
given time point) or a testimony (the crazy driver’s car was blue). Genericinforma-
tion refers to a collection or a population of situations; itcould be a physical law, a
statistical model built from a representative sample of observations or a piece of com-
monsense knowledge such as ‘birds fly’. This distinction is important when consider-
ing problems of inference or revision of uncertain information. Moreover, topics such
as induction or learning processes deal with the construction of generic knowledge
from several items of singular information. Conversely, statistical prediction can be
viewed as the use of some piece of generic knowledge on the frequency of an event to
derive a degree of belief in the singular occurrence of this event in a specific situation
[HAC 75].
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An agent is supposed to have some information about the current world. Theepis-
temic stateof the agent is supposed to be made of three components: generic knowl-
edge, singular observations and beliefs [DUB 04a]. Beliefsare understood as pertain-
ing to the current situation. They are singular and derived from the two former kinds
of information. They are instrumental in making decisions.Decision making involves
another kind of information possessed by an agent which thischapter does not deal
with: preferences.

In order to represent the epistemic state of an agent, a representation of the state
of the world is needed in agreement with the point of view of this agent, i.e. high-
lighting the relevant aspects by means of suitable attributes. Letv be the vector of
attributes relevant to the agent andS the domain ofv. S is called aframe; it is the set
of (descriptions of) all states of the world. A subsetA of S, viewed as a disjunction
of possible worlds, is called aneventand is seen as a proposition that assertsv ∈ A.
It is not supposed that the setS be explicitly known as a primitive object. It can also
be reconstructed, at least partially, from pieces of information supplied by the agent in
the form of asserted propositions.

Four kinds of qualification of the imperfection of pieces of information expressible
on the frameS can be considered: incomplete (or yet imprecise), uncertain, gradual
and granular information.

3.2.1. Incompleteness and imprecision

A piece of information is said to beincompletein a given context if it is not suffi-
cient to allow the agent to answer a relevant question in thiscontext. We interpret im-
precision as a form of incompleteness, in the sense that an imprecise response provides
only incomplete information. The kind of question which theagent tries to answer is
of the form ‘what is the current value of some quantityv?’ or, more generally, ‘does
v satisfy some property of interest?’ The notion of imprecision is not an absolute one.
For instance, if the quantity of concern is the age of a person, the termminor is precise
if the proper frame isS = {minor,major} and the question of interest is ‘can the
person vote?’ On the contrary, ifS = {0, 1, . . . , 150} (in years), the termminor is
imprecise; it provides incomplete information if the question of interest is the date of
birth of the person.

The typical form of a piece of incomplete information isv ∈ A whereA is a
subset ofS containing more than one element. An important remark is that elements
in A seen as possible values ofv are mutually exclusive (since the quantity takes on a
single value). Hence, a piece of imprecise information takes the form of a disjunction
of mutually exclusive values. For instance, to say that ‘Pierre is between 20 and 25
years old’ i.e.v = age(Pierre)∈ {20, 21, 22, 23, 24, 25} is to supposev = 20 or
v = 21 or v = 22 or v = 23 or v = 24 or v = 25. In classical logic, incompleteness



90 Decision Making

explicitly appears as a disjunction. Asserting the truth ofp ∨ q means that one of the
following propositionsp ∧ q, p ∧ ¬q or ¬p ∧ q is true. More generally, one of the
models ofp ∨ q is true.

A set used for representing a piece of incomplete information is called adisjunc-
tive set. It contrasts with the conjunctive view of a set considered as a collection of
elements. A conjunctive set represents a precise piece of information. For instance,
consider the quantityv = sisters(Pierre) whose range is the set of subsets of pos-
sible names for Pierre’s sisters. The piece of informationv = {Marie, Sylvie} is
precise and means that Pierre’s sisters are MarieandSylvie. Indeed, the frame is then
S = 2NAMES , whereNAMES is the set of all female first names. In this setting,
a piece of incomplete information would be encoded as a disjunction of conjunctive
subsets ofNAMES.

A piece of incomplete information defines a so-calledpossibility distributionon
S. If the available information is of the formv ∈ A, it means that any value ofv
not in A is considered impossible, but any value ofv in the setA is possible. The
possibility distribution encoding the piece of informationv ∈ A, denoted byπv, is the
characteristic function ofA. It is a mapping fromS to {0, 1} such thatπv(s) = 1 if
s ∈ A, and 0 otherwise. Conventions forπv(s) are therefore 1 forpossibleand 0 for
impossible.

In the possibilistic framework, extreme forms of partial knowledge can be cap-
tured:

– complete knowledge: for some states0, πv(s0) = 1 andπv(s) = 0 for other
statess (only s0 is possible); and

– complete ignorance:πv(s) = 1, ∀s ∈ S (all states are totally possible).

Two pieces of incomplete information can be compared in terms of information
content: a piece of informationv ∈ A1 is said to bemore specificthan a piece of
informationv ∈ A2 if and only ifA1 is a proper subset ofA2. In terms of respective
possibility distributions, sayπ1 for v ∈ A1 andπ2 for v ∈ A2, it corresponds to
the inequalityπ1 < π2. Note that a possibility distribution always contains some
subjectivity in the sense that it represents information possessed by an agent at a given
time point, i.e. it reflects an epistemic state. This information is likely to evolve upon
the arrival of new pieces of information; in particular, it often becomes more specific.
The acquisition of a new piece of information comes down to deleting possible values
of v. If v ∈ A1 is more specific thanv ∈ A2, the first epistemic state is accessible
from the second one by the acquisition of new information of the same type.

Given a collection of pieces of incomplete information of the form{v ∈ Ai : i =
1, . . . , n}, the least arbitrary possibility distribution that represents this collection is
the least specific disjunctive set among those that are compatible with each piece of
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informationv ∈ Ai, i.e.v ∈ ∩i=1,...,nAi. It corresponds to computing the possibility
distributionπv = mini=1,...,n πi. These notions lie at the roots of possibility theory
[DUB 87b, ZAD 78] in its Boolean version.

This type of representation of incomplete information can be found in two areas:
classical logic and interval analysis. In both settings, either logic or interval analysis,
the kind of information represented is the same. What differs is the type of variable
used to describe the state spaceS: Boolean in the first case and numerical in the second
one.

In propositional logic, a collection of information items is a setK, often called be-
lief base, of Boolean propositionspi expressed by well-formed formulae by means of
literals and connectives. Givenn Boolean variables with domain{true, false}, then
S = {true, false}n is made of2n elements calledinterpretations. They are maximal
conjunctions of literals, which is equivalent to assigninga value in{true, false} to
each variable. Models ofK form a disjunctive subset ofS containing all interpreta-
tions that make all propositions inK true.K is then understood as the conjunction of
propositionspi. If models ofpi form the setAi, the set of models ofK form the set
∩i=1,...,nAi which corresponds to apossibilistichandling of incomplete information.

In interval analysis [MOO 66], numerical information itemstake the form of closed
real intervalsvi ∈ [ai, bi] describing incomplete knowledge of parameters or inputs
of a mathematical model described by a real functionf . A typical problem is to com-
pute the set of values off(v1, . . . , vn) when thevi lie in the sets[ai, bi]. That is,
A = {f(s1, . . . , sn) : si ∈ [ai, bi], i = 1, . . . , n}.

3.2.2. Uncertainty

A piece of information is said to beuncertainfor an agent when the latter does
not know whether this piece of information is true or false. If a primitive item of in-
formation is a proposition, i.e. a statement that an event occurred or will occur or a
proposition is modeled by a subset of possible values of the form v ∈ A, one may
assign a token of uncertainty to it. This token, or uncertainty qualifier, is located at the
metalevel with respect to the pieces of information. It can be numerical or symbolic
(e.g. linguistic). For instance, consider the statements:

– the probability that the activity takes more than one hour is 0.7;

– it is very possible that it will snow tomorrow; and

– it is not absolutely certain that Jean will come to the meeting tomorrow.

In these examples, uncertainty qualifiers are a number (a probability) and symbolic
modalities (possible, certain). The most usual representation of uncertainty consists of
assigning to each proposition or eventA, viewed as a subset ofS, a numberg(A) in
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the unit interval.g(A) evaluates the likelihood ofA, the confidence of the agent in
the truth of proposition assertingv ∈ A. This proposition can only be true or false by
convention, even if the agent may ignore this truth value. The requirements

g(∅) = 0; g(S) = 1 (3.1)

sound natural, as do the monotonicity with respect to inclusion:

if A ⊆ B theng(A) ≤ g(B). (3.2)

Indeed, the contradictory proposition∅ is impossible, and the tautologyS is cer-
tain. Moreover, ifA is more specific thanB in the wide sense (hence implies it), the
agent cannot be more confident inA than inB. All things being equal, the more im-
precise a proposition the more certain it is. In an infinite setting, continuity properties
with respect to converging monotonic sequences of sets mustbe added. Under these
properties, the functiong is sometimes called acapacity[CHO 53] (with explicit ref-
erence to electricity) and sometimes afuzzy measure[SUG 77]. In order to stick to
the uncertainty framework, it is referred to as aconfidence functionhere. Easy but
important consequences of postulates (3.1) and (3.2) are:

g(A ∩B) ≤ min(g(A), g(B)); g(A ∪B) ≥ max(g(A), g(B)). (3.3)

An important particular case of confidence function is the probability measure
g = P which satisfies the additivity property

if A ∩B = ∅, thenP (A ∪B) = P (A) + P (B). (3.4)

Given an elementary piece of incomplete information of the form v ∈ E, held as
certain, other types of confidence functions taking on values in{0, 1} can be defined:

– apossibility measureΠ such thatΠ(A) = 1 if A ∩E 6= ∅ and 0 otherwise; and

– anecessity measureN such thatN(A) = 1 if E ⊆ A and 0 otherwise.

It is easy to see thatΠ(A) = 1 if and only if propositionv ∈ A is not inconsistent
with information itemv ∈ E, and thatN(A) = 1 if and only if propositionv ∈ A is
entailed by information itemv ∈ E. This is the Boolean version of possibility theory
[DUB 88].

Π(A) = 0 means thatA is impossible ifv ∈ E is true.N(A) = 1 expresses that
A is certain ifv ∈ E is true. Moreover, to say thatA is impossible (A ∩ E = ∅) is to
say that the opposite event isA is certain. So, functionsN andΠ are totally related to
each other by the conjugateness property

N(A) = 1−Π(A). (3.5)
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This conjugateness relation is the main difference betweennecessity and possi-
bility measures on the one hand and probability measures on the other, which are
self-conjugate in the sense thatP (A) = 1− P (A).

Uncertainty of the possibilistic type is clearly at work in classical logic. IfK is
a propositional belief base with a set of modelsE and p is the syntactic form of
propositionv ∈ A, thenN(A) = 1 if and only if K implies p andΠ(A) = 0 if
and only ifK ∪ {p} is logically inconsistent. Note that the presence ofp in K means
thatN(A) = 1, while its negation¬p in K is used to meanΠ(A) = 0. However,
in propositional logic, it cannot be stated thatN(A) = 0 or Π(A) = 1. To do so,
a modal logic is needed [CHE 78] that prefixes propositions with modalities such as
possible (3) and necessary (2). In a modal belief baseKmod, 3p ∈ Kmod encodes
Π(A) = 1, and2p ∈ Kmod encodesN(A) = 1 (which is encoded byp ∈ K in
classical logic). The conjugateness relation (3.5) is wellknown in modal logic, where
it reads:3p = ¬2¬p.

It is easy to check that each of possibility and necessity measures saturates one of
the inequalities (3.3):

Π(A ∪B) = max(Π(A),Π(B)). (3.6)

N(A ∩B) = min(N(A), N(B)). (3.7)

Possibility measures are said to bemaxitiveand characterized (in the finite setting)
by the maxitivity property (3.6). Similarly, necessity measures are said to beminitive
and are characterized (in the finite setting) by the minitivity property (3.6). These
properties are taken as postulates even when possibility and necessity values lie in
[0, 1]. In the Boolean setting, they read3(p∨ q) = 3p∨3q and2(p∧ q) = 2p∧2q
and are well known in modal logics. In fact, it also holds thatN(A) > 0 implies
Π(A) = 1, and the Boolean possibilistic setting is therefore captured by the modal
logic KD45, which is typical of Hintikka’s epistemic logic [HIN 62].

In general, possibility measures are distinct from necessity measures. Maxitivity
and minitivity properties cannot simultaneously hold for all events, except ifN = Π
corresponds to precise information (E = {s0}). It then also coincides with a Dirac
probability measure, since theng(A) = 1 if and only if g(A) = 0. However,
note that it may occur thatN(A ∪ B) > max(N(A), N(B)) and Π(A ∩ B) <
min(Π(A),Π(B)). Namely, it is easy to check that if it is not known whetherA is
true or false (becauseA ∩ E 6= ∅ andA ∩ E 6= ∅), thenΠ(A) = Π(A) = 1
andN(A) = N(A) = 0. However, by definitionΠ(A ∩ A) = Π(∅) = 0 and
N(A ∪ A) = N(S) = 1. The possibilistic approach therefore distinguishes between
three extreme epistemic states:

– the certainty thatv ∈ A is true:N(A) = 1 which impliesΠ(A) = 1;
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– the certainty thatv ∈ A is false:Π(A) = 0 which impliesN(A) = 0; and

– the ignorance as to whetherv ∈ A: Π(A) = 1 andN(A) = 0.

The item of Boolean informationv ∈ E may also lead to the definition of a prob-
ability measure. Whenever this is the only available information, the Insufficient Rea-
son principle of Laplace proposes assigning (in the finite setting) the same probability
weight to each element inE (by symmetry, i.e. lack of reason not to act so), which
implies letting

P (A) =
Card(A ∩ E)

Card(E)
.

The idea is thatE should be defined in such a way that all its elements have equal
probability. This probability measure is such thatP (A) = 1 if and only if E ⊆
A andP (A) = 0 if and only if E ∩ A = ∅. It plays the same role as the pair
(Π, N) and it refines it since it measures to what extentA overlapsE. Nevertheless,
probabilities thus computed depend on the number of elements insideE. In the case of
total ignorance (E = S) some contingent events (different fromS and∅) will be more
probable than others, which sounds paradoxical. The possibilistic framework proposes
a less committal representation of ignorance: all contingent events and only them are
equally possible and certain (they have possibility 1 and necessity 0). The situation of
total ignorance is not faithfully rendered by a single probability distribution.

3.2.3. Gradual linguistic information

The representation of a proposition as an entity liable to being true or false (or,
of an event that may occur or not) is a convention. This convention is not always
reasonable. Some kinds of information which an agent can assert or understand do
not lend themselves easily to this convention. For instance, the proposition ‘Pierre is
young’ could be neither totally true, nor totally false: it sounds more true if Pierre is 20
years old than if he is 30 (in the latter case, it neverthelessmakes little sense to say that
Pierre is not young). Moreover, the meaning of ‘young’ will be altered by linguistic
hedges expressing intensity: it makes sense to say ‘very young’, ‘not too young’, etc.
In other words, the proposition ‘Pierre is young’ is clearlynot Boolean. It underlies
a ranking, in terms of relevance, of attribute values to which it refers. This kind of
information is taken into account by the concept offuzzy set[ZAD 65]. A fuzzy set
F is an application fromS to a (usually) totally ordered scaleL often chosen as the
interval[0, 1].F (s) is the membership degree of elements toF . It is a measure of the
adequacy between situations and propositionF .

It is natural to use fuzzy sets when dealing with a piece of information expressed
in natural language and referring to a numerical attribute.Zadeh [ZAD 75a, ZAD 75b,
ZAD 75c] introduced the notion oflinguistic variableranging in a finite ordered set
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of linguistic terms. Each term represents a subset of a numerical scale associated to
the attribute and these subsets forms a partition of this scale. For instance, the set of
termsF ∈ {young, adult, old} forms the domain of the linguistic variableage(Pierre).
It partitions the scale of this attribute. Nevertheless, itseems that transitions between
age zones corresponding to terms are gradual rather than abrupt. In the case of the
predicateyoung, it sounds somewhat arbitrary to define a precise thresholds? on a
continuous scale such thatF (s) = 0 if s > s? and 1 otherwise. Such linguistic
terms are referred to asgradual predicates. You can spot them by the possibility of
altering their meaning by intensity adverbs such as the linguistic hedge ‘very’. The
membership scale [0, 1] is but the mirror image of the continuous scale of the attribute
(here, the age). Not all predicates are gradual. For instance, it is clear that ‘single’ is
Boolean.

It is important to tell degrees of adequacy (often calleddegrees of truth) from
degrees of confidence or belief. Already, within natural language, sentences ‘Pierre is
very young’ and ‘Pierre is probably young’ convey differentmeanings. According to
the former sentence, the membership degree ofage(Pierre)to F = youngis clearly
high; according to the latter, it is not totally excluded that Pierre is old. A membership
degree is interpreted as a degree of adequacy if the valueage(Pierre) = s is known
and the issue under concern is to provide a linguistic qualifier to describe Pierre. The
term ‘young’ is adequate to degreeF (s).

The standpoint of fuzzy set theory is to consider any evaluation function as a set.
For instance, a utility function can be viewed as a fuzzy set of gooddecisions. This
theory defines gradual, non-Boolean extensions of classical logic and its connectives
(disjunction, conjunction, negation and implication). Ofcourse, natural questions may
be raised such as the measurement of membership functions and the commensurability
between membership functions pertaining to different attributes. These are the same
questions raised in multifactorial evaluation. The membership degreeF (s) can actu-
ally be seen as a degree of similarity between the values and the closest prototype of
F , namely somes0 such thatF (s0) = 1.F (s) is inversely proportional to the distance
between this prototypes0 and the values. The membership degree often has such a
metric interpretation, which relies on the existence of a distance inS.

When the only available information is of the formv ∈ F , whereF is a fuzzy
set (for instance ‘Pierre is very young’) then, as in the Boolean case, the membership
function is interpreted as a possibility distribution attached tov: πv = F [ZAD 78].
Now, however, it is a gradual possibility distribution on the scaleL, here[0, 1]. Values
s such thatπv(s) = 1 are the most plausible values forv. The plausibility of a values
for v is then all the greater ass is close to a totally plausible value.

Possibility theory is driven by the principle of minimal specificity. It states that any
hypothesis not known to be impossible cannot be ruled out. A possibility distribution
is said to be at least as specific as another one if and only if each state is at least as
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possible according to the latter as to the former [YAG 83]. Inthe absence of sufficient
information, each state is allocated the maximal degree of possibility: this is the mini-
mal specificity principle. Then, the least specific distribution is the least restrictive and
informative, or the least committal.

Plausibility and certainty evaluations induced by the information itemv ∈ F con-
cerning a propositionv ∈ A can be computed in terms of possibility and necessity
degrees of eventA:

Π(A) = max
s∈A

πv(s); N(A) = 1−Π(A) = min
s/∈A

1− πv(s) (3.8)

It is clear that a gradual information item is often more informative than Boolean
information:v ∈ F , whereF is gradual, is more specific thanv ∈ A whenA =
support(F ) = {s, F (s) > 0} because the former suggests a plausibility ranking be-
tween possible values ofv in A. This representation of uncertainty through the use
of gradual linguistic terms leads to quantifying plausibility in terms of distance to an
ideally plausible situation, not in terms of frequency of occurrence, for instance.

3.2.4. Granularity

In the previous subsections, assumptions that underlie thedefinition of the setS
of states of affairs were not laid bare. Nevertheless the choice of S has a clear im-
pact on the possibility or not to represent relevant information. In decision theory, for
instance, it is often supposed thatS is infinite or detailed enough to completely de-
scribe the problem under concern. Nevertheless, this assumption is sometimes hard
to sustain. On the real line, for instance, only so-called measurable sets can be as-
signed a probability even if, intuitively, it should be possible to do so to any event that
makes sense in a situation [GOO 62]. In fact, using real numbers is often due to the
continuous approximation of information that is intrinsically discrete, or perceived as
such.

For instance, probability distributions derived from statistical data can be viewed
as idealizations of histograms (which are finite entities) not only because they repre-
sent a finite number of observations but also from our inability to perceive the dif-
ference between very close values. This indistinguishability can also be encountered
when representing preferences of an agent accounting for indifference thresholds on
the utility function.

Moreover, the setS is seldom taken for granted. In the approach by De Finetti
[DEF 74], as in the logical approach to AI, the primitive information consists of a
collection of propositions expressed in some prescribed language to which an agent
assigns degrees of confidence. The state spaceS is then generated from these propo-
sitions (mathematically, its subsets form the smallest Boolean algebra containing the
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subsets of models of these propositions). This way of proceeding has non-trivial con-
sequences for representing and revising information.

For instance if a new proposition is added, it may result in a modification or a
refinement of the setS. This is called agranularity changefor the representation. A
setS2 is a refinement ofS1 [SHA 76] if there is an onto mappingρ fromS2 toS1 such
that the reciprocal images of elements inS1 via ρ, namely the sets{ρ−1(s) : s ∈ S1},
form a partition ofS2 (Zadeh [ZAD 97] speaks ofS1 being a ‘granulation’ ofS2).

It is clear that the probabilistic representation of incomplete information by means
of the Insufficient Reason principle does not resist a changeof granularity: the image
on S1 of a uniform probability onS2 via ρ is not generally a uniform probability.
This principle applied toS1 inside equivalence classes ofS2 may not produce a uni-
form probability onS2 either. The probabilistic representation of ignorance therefore
sounds paradoxical as it seems to produce information out ofthe blue while chang-
ing the frame. This anomaly does not appear with the possibilistic representation: the
image of a uniform possibility distribution onS2 via ρ is a uniform possibility distri-
bution indeed. Conversely, applying the minimal specificity (or symmetry) principle
in two steps (toS2 thenS1) produces a uniform possibility distribution onS1.

The simplest case of granularity change is the following: let Ω be a set of entities
described by means of attributesV1, V2, . . . , Vk with respective domainsD1, D2, . . . ,
Dk. ThenS is the Cartesian productD1 ×D2 × · · · ×Dk. Each element inS can be
refined into several elements if a(k + 1)th attribute is added. Suppose a collection of
individualsΩ exists, described by such attributes. Nothing forbids different individuals
from sharing the same description in terms of these attributes. Then letΞ be a subset
of Ω. It is not generally possible to describe it by means ofS. Indeed, letR be the
equivalence relation onΩ defined by the identity of descriptions of elementsω of Ω:
ω1Rω2 if and only if Vi(ω1) = Vi(ω2), ∀i = 1, . . . , k. Let [ω]R be the equivalence
class ofω. Each element inS corresponds to an equivalence class inΩ. Then, the the
setΞ can only be approximated by the language ofS but not exactly described by it.
Let Ξ∗ andΞ∗ be the upper and lower approximations ofΞ, defined

Ξ∗ = {ω ∈ Ω : [ω]R ∩ Ξ 6= ∅}; Ξ∗ = {ω ∈ Ω : [ω]R ⊆ Ξ}. (3.9)

The pair(Ξ∗,Ξ∗) is called arough setby Pawlak [PAW 91]. Only setsΞ∗ andΞ∗

of individuals can be perfectly described by combinations of attribute valuesV1, V2,
. . . , Vk corresponding to the subsets ofS. Note that histograms and numerical im-
ages correspond to this very notion of indistinguishability and granularity, equivalence
classes corresponding to boxes of the histogram and to pixels.

When changing granularity by adding a new attribute that is logically independent
from others, each element inS1 is refined into as many elements inS2 and a uniform
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probability on one set is compatible with a uniform probability on the other. In the
case of adding a proposition that is not logically independent from others, the induced
refinement is not always that homogeneous.

3.3. Probability theory

Probability theory is the oldest of uncertainty theories, the most mathematically
developed as well as the most widely acknowledged. Probability theory can be envis-
aged from a purely mathematical side, which is often the casesince the emergence of
Kolmogorov axioms in the 1930s (and typically in France where statistics is a branch
of applied mathematics). Under this view, the starting point is a sample spaceΩ, an
algebra of measurable subsetsB and a measure of probabilityP i.e. a mapping from
B in [0, 1] such that

P (∅) = 0; P (Ω) = 1; (3.10)

if A ∩B = ∅ thenP (A ∪B) = P (A) + P (B). (3.11)

The triple(Ω,B,P) is called a probability space. A random variable is construed
as a mappingV from Ω in some representation spaceS (often the real line). In the
simplest case,S is supposed to be a finite set, which prescribes a finite partitioning of
Ω according to the procedure described in section 3.2.4. The family of measurable sets
B can be defined as the Boolean algebra induced by this partition. The probability dis-
tribution associated to the random variableV is then characterized by an assignment
of weightsp1, p2, . . . , pcard(S) to elements ofS i.e.pi = P (V −1(si)), such that

card(S)∑

i=1

pi = 1.

Beyond a basically consensual mathematical framework (up to discussions on the
meaning of zero probabilities and the issue of infinite additivity), significantly di-
verging views of what a probability degree may mean can be found in the literature
[FIN 83]. This section reviews some of these controversies,emphasizing the limita-
tions of uncertainty representations relying on the use of aunique probability distri-
bution.

3.3.1. Frequentists and subjectivists

We consider probability theory as a tool for representing information. For this pur-
pose, probabilities must be given a concrete meaning. Traditionally, there is at least
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three interpretations of probability degrees. The oldest and simplest is in terms of
counting equally possible cases, due to Laplace at the turn of the 19th century. For
instance,Ω is supposed finite andpi is proportional to the number of elements in
V −1(si). The probability of an event is the number of favorable cases, where this
event occurs, divided by the total number of possible cases.The validity of this ap-
proach relies on (i) Laplace’s Insufficient Reason principle stating that equally possi-
ble states are equally probable and (ii) the capability of constructingS in such a way
that its elements are indeed equipossible. This can be helped by appealing to symme-
try considerations, justifying assumptions of purely random phenomena (as in games
with unbiased coins, dice, etc.).

To date, the most usual interpretation of probability is frequentist. Observations
(that form a relevant sampling of the setΩ) are collected (say a finite subsetΩ(n) ⊂ Ω
with n elements). These observations are supposedly independentand made in the
same conditions. Frequencies of observingV = si can be calculated as:

fi =
card(V −1(si) ∩ Ω(n))

n

or, if S is infinite, a histogram associated to the random variableV can be set up
considering frequencies of members of a finite partition ofS.

It is supposed that, as the number of observations increases, Ω(n) becomes fully
representative ofΩ and that frequenciesfi converge to ‘true’ probability valuespi =
limn→∞ fi. The connection between frequency and probability dates toBernoulli’s
law of large numbers proves that when tossing a fair coin a great number of times, the
proportion of heads tends to become equal to the proportion of tails.

This definition of probabilities requires a sufficient number of observations (ideally
infinite) of the phenomenon under concern. Then, assigning aprobability to an event
requires a population of situations and reveals a trend in this population. A probability
distribution is then viewed as generic knowledge. This framework also forbids assign-
ing probabilities to non-repeatable events. Only statistical prediction is allowed, that
is, a degree of confidence in obtaining ‘head’ at the next tossof the coin reflects the
proportion of heads observed so far in a long sequence of experiments. However, the
idea that statistical experiments are rigorously repeatable is debatable. The frequentist
assumption of independent observations collected in identical conditions is often only
approximately verified. One might suspect some contradiction between the identity of
experimental conditions and the independence of the observations, as when measuring
the same quantity several times with the same sensor.

In general, even when they are independent, experimental conditions under which
observations are collected may only be similar to one another. A frequentist approach
can then still be developed [GIL 00]. In the case of non-repeatability (e.g. testimonies
or elections), one is led to a subjectivist view of probabilities which then directly
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represents degrees of belief of agent about the occurrence of singular events or the
truth of relevant propositions for the problem at hand. Thispoint of view meets a
caveat: how to justify the additivity law of probabilities seen as degrees of belief?

In the case of repeatable phenomena, considered random, theuse of frequencies
is in agreement with the additivity axiom (3.11). The role offrequencies for non-
repeatable events is played by amounts of money bet on the occurrence or the non-
occurrence of singular events [DEF 37, RAM 80].

The degree of confidence of an agent in the occurrence of eventA is the price
P (A) this agent (referred to as a player) would accept to pay in order to buy a lottery
ticket that brings back 1 euro if eventA occurs (and 0 euro if not). The more the
player believes in the occurrence ofA, the less risk is involved in buying a lottery
ticket for a price close to 1 euro. In order to force the latterto propose a fair price,
it is moreover assumed that the person that sells lottery tickets (the banker) will not
accept the transaction if prices proposed by the player are too low. In particular, if the
proposed price is too low, the banker is allowed to exchange roles with the player. In
this case, the latter is obliged to sell the lottery ticket atpriceP (A) and to pay 1 euro
to the banker if eventA occurs.

This approach relies on a principle of coherence that presupposes a rational agent,
i.e. a player that tries to avoid sure loss. Suppose that the player buys two lottery
tickets pertaining to two opposite propositionsA andA. The principle of coherence
then enforcesP (A) + P (A) = 1. Indeed, only one of the two eventsA or A occurs
in this one-shot setting. Prices must therefore be such thatP (A) + P (A) ≤ 1, lest
the player surely losesP (A) + P (A) − 1 euros. However, if the player proposes
prices such thatP (A) + P (A) < 1 then the banker would also turn into a player in
order to avoid sure loss. Similarly, with three mutually exclusive propositionsA,B
andA ∪B, it can be shown that onlyP (A) + P (B) + P (A ∪B) = 1 is rational.
SinceP (A ∪B) = 1− P (A ∪B), it follows thatP (A ∪B) = P (A) + P (B).

This framework can be used on problems having a true answer, e.g. ‘what is the
date of birth of the current Brazilian president?’ Clearly no statistical data can be ac-
curately useful for an agent to answer this question if this agent does not know the
answer beforehand. The above procedure might result in a subjective probability dis-
tribution on possible birth dates, and the resulting outcome can be checked. Note that
here uncertainty is due to incomplete information, while ina coin-tossing experiment
it is due to the variability of the outcomes.

The subjectivist approach sounds like a simple reinterpretation of the frequen-
tist probability framework. Actually, as pointed out by De Finetti and his followers
[COL 02, DEF 74], this is not so straightforward. In the subjectivist approach, there is
no sample space. The starting point is a set of Boolean propositions{Aj : j = 1, n}
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to which an agent assigns coherent degrees of confidenceci and a set of logical con-
straints between these propositions. The state spaceS is then constructed on the basis
of these propositions and constraints. By virtue of the principle of coherence, the agent
is supposed to choose degrees of confidencecj according to some probability measure
P in such a way thatcj = P (Aj), ∀j = 1, . . . , n. While the frequentist approach
is to start from a unique probability measure (obtained by estimation from statisti-
cal data) that models the repeatable phenomenon under study, there is no equivalent
in the subjective setting. There may even be several probability measures such that
cj = P (Aj), ∀j = 1, . . . , n. Each of them is rational, but the available information
may not allow their isolation. There may also be no probability measure satisfying
these constraints if the agent is not coherent. Computing the probabilityP (A) of any
eventA based on the knowledge of pairs{(Aj , cj) : i = 1, n} requires the solution of
a linear programming problem whose variables are probability weightspi attached to
elementary events [DEF 37], namely:

maximize (or minimize)
∑

si∈A
pi under the constraints

cj =
∑

sk∈Aj

pk, ∀j = 1, . . . , n.

In this sense, the subjectivist approach to probability is an extension of the logical
approach to knowledge representation and of classical deduction [ADA 75]. More-
over, the subjectivist approach does not require theσ-additivity ofP (i.e. axiom (3.11)
for an infinite denumerable set of mutually exclusive events), contrary to the frequen-
tist Kolmogorovean approach. More differences between subjective and frequentist
probabilities can be laid bare when the notion of conditioning comes into play.

3.3.2. Conditional probability

It is obvious that assigning a probability to an event is not carried out in the abso-
lute. It is done inside a certain context embodied by the frameS. In practice,S never
containsall possible states of the world, but only those that our currentknowledge
or working assumptions do not rule out. For instance, in the dice-tossing problem,S
contains the six facets of the dice, not the possibility for the dice to break into pieces.
It is suggested to write the probabilityP (A) in the formP (A | S) to highlight this
aspect. If the agent later obtains new information that leads to the further restriction of
the set of states of the world, the context of these probabilities will change. LetC ⊂ S
be the current relevant context andP (A | C) be the probability ofA in such a con-
text. The transformation fromP (A) toP (A | C) essentially consists of renormalizing
probabilities assigned to states whereC is true i.e.

P (A | C) =
P (A ∩ C)

P (C)
. (3.12)
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This definition retrievesP (A) under the formP (A | S). It is easy to justify in the
frequentist case sinceP (A | C) is the limit of a relative frequency.

Two known results can then be derived.

– The total probability theorem: If {C1, . . . , Ck} forms a partition ofS, then

P (A) =
k∑

i=1

P (A | Ci)P (Ci).

– Bayes theorem:

P (Cj | A) =
P (A | Cj)P (Cj)∑k
i=1 P (A | Ci)P (Ci)

.

The first result enables the probability of an event to be computed for a general
contextS given known probabilities of this event in more specific contexts, provided
that these contexts form a partition of possible states and that probabilities of each of
these contexts are known. It is instrumental for backward calculations in causal event
trees.

Bayes theorem can deal with the following classification problem: Considerk
classesCj of objects forming a partition ofS. If the probabilityP (A | Cj) of
propertyA for objects of each classCj is known, as well as the prior probabilities
P (Cj), j = 1 . . . , k that an object is of classCj , then for any new object which is
known to possess propertyA, it is possible to derive the probabilityP (Cj | A) that
this object belongs to classCj . In diagnosis problems, replace class by fault type and
property by symptom.

Bayes’ theorem is also instrumental in model inference, or learning from statistical
data. Then

– the set of classes is replaced by the range of valuesθ ∈ Θ of the model parame-
ter;

– P (A | θ) is the likelihood function known when the type of statistical model is
known andθ is fixed;

– the setA represents a series of observed outcomes;

– a prior probability distribution is given on the parameterspaceΘ (in case of
ignorance, a non-informative prior according to the objective Bayesian school is used);
and

– the posterior probabilityP (θ | A) is viewed as the new knowledge of the param-
eter model after observingA, which leads to a possible update of this model.
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In a subjectivist framework, the situation of conditioningis different. The proba-
bility P (A | C) is now assigned by the agent to the hypothetical occurrence of the
conditional eventA | C. Conditional probability is now considered as a primitive
notion (no longer derived from a probability measure). Namely, A | C represents
the occurrence of eventA in the hypothetical context whereC is true. The quantity
P (A | C) is then still interpreted as an amount of money bet onA, but now this
amount is given back to the player if eventC does not occur and the bet is then called
off [DEF 74]. In this operational framework, it can be shown that coherence requires
that the equalityP (A ∩C) = P (A | C) · P (C) be satisfied.

The definition of conditional probability under the form of aquotient presupposes
thatP (C) 6= 0, which may turn out to be too restrictive. Indeed, in the framework
proposed by De Finetti where elicited probabilities may be assigned to any conditional
event, the available set of beliefs to be reasoned from takesthe form of a collection
of conditional probabilities{P (Ai | Cj), i = 1, . . . ,m; j = 1, . . . , n} corresponding
to various potential contexts (some of which have zero probability of occurring in
the current world). However, by defining conditional probability as any solution to
equationP (A ∩ C) = P (A | C) · P (C), it still makes sense as a non-negative
number whenP (C) = 0 [COL 02]. Besides, in the tradition of probability theory,
an event of zero probability is understood as practically impossible, not intrinsically
impossible. In other words, it is an exceptional event only (such as the dice breaking
into pieces). The general reasoning problem in the conditional setting is to compute
probabilityP (A | C) from a set of known conditional probabilities{P (Ai | Cj), i =
1, . . . ,m; j = 1, . . . , n} [PAR 94], a problem much more general than that underlying
the theorem of total probability.

Under this view, probabilistic knowledge consists of all valuesP (Ai | Cj) known
in all contexts. An agent only selects the appropriate conditional probability based on
the available knowledge on the current situation, a view completely contrasting with
that of revising a probability measure based on the arrival of new knowledge. Indeed,
some scholars justify conditional probability as the result of a revision process. The
quantityP (A | C) is then viewed as thenewprobability ofA when the agent hears
that eventC occurred [GÄR 88].

Basic to belief revision is the principle of minimal change:agents minimally revise
their beliefs in order to absorb the new information item interpreted by the constraint
P (C) = 1. A simple encoding of the principle of minimal change is to suppose that
probabilities of states that remain possible do not change in relative value, which en-
forces the usual definition of conditioning [TEL 84].

Another, more general, approach is to look for the new probability measureP+ that
minimizes an informational distance to the prior probability P under the constraint
P+(C) = 1 [DOM 85]. If relative entropy is chosen as a measure of distance, it can
be shown thatP+ is indeed the conditional probability relative toC.
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Note that interpreting the contextC as the constraintP+(C) = 1 is questionable
in the frequentist setting as, in this case, a probability measure refers to a class of
situations (a population) while the information itemC often refers to a unique situation
(one of the specific problems which the agent tries to solve).Indeed, the constraint
P (C) = 1 might misleadingly suggest thatC is true for the whole population while
C occurred only in the specific situation the agent is interested in. In the subjectivist
scope, conditioning is but hypothetical and the known occurrence ofC only helps in
selecting the correct reference class.

3.3.3. The unique probability assumption in the subjective setting

The so-calledBayesianapproach to subjective probability postulates the unicity
of the probability measure that represents beliefs of an agent, as a prerequisite to
any further consideration [e.g. LIN 82]. Indeed, if the agent decides to directly assign
subjective probabilities to elements ofS, the principle of coherence leads to the spec-
ification of a unique probability distribution by fear of a sure loss of money (this is
also called the Dutch book argument).

If the available knowledge is insufficient to uniquely characterize a probability
distribution, the Bayesian approach may appeal to selection principles such as that of
Insufficient Reason that exploits the symmetries of a problem, or the maximum en-
tropy principle [JAY 79, PAR 94]. Resorting to the latter in the subjectivist framework
is questionable because it only selects the uniform distribution whenever possible, as
in the following example.

Example 3.1. Suppose the agents describe their knowledge of a biased coinby pro-
viding rough estimates of the probabilityp of getting a tail. If they consider the bias is
towards tail and, if cautious, they just provide an estimatep in the form of an interval
such as[0.5, 0.8]. Applying the maximum entropy principle enforces the choice of the
uniform distribution, while selectingp = 0.65 (the mid-point of the interval) sounds
more sensible and faithful to the trend expressed by the incomplete information sup-
plied by the agent.

In any case (and in the above example), the Bayesian credo states that any epis-
temic state of an agent is representable by a unique prior probability distribution. An
additional argument in favor of this claim is Savage Decision Theory (see Chapter 9).
It demonstrates that in an infinite setting, if the agent makes decisions in an uncer-
tain environment while respecting suitable rationality axioms (in particular the fact
that the preference between two acts does not depend on states in which they have the
same consequences), the decision process can be explained as if the agent’s knowledge
were encoded as a unique probability distribution and decisions were rank-ordered
according to their expected utility. In addition, the subjectivist approach is somewhat
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convergent with the frequentist approach because it is agreed that if the agent pos-
sesses reliable statistical information in the form of frequencies, they should be used
to quantify belief in the next event.

The systematic use of a unique probability as the universal tool for representing
uncertainty nevertheless raises some serious difficulties.

– There is no difference between uncertainty due to incomplete information and
uncertainty due to variability in past results observed by the agent. In the dice game,
how can a uniform distribution provided by an agent that describes the epistemic state
of the dice be interpreted in a non-ambiguous way? Namely, itmay be the case that
the agent knows the dice is unbiased and that the limit frequency distribution should
be uniform (pure randomness). However, if the agents ignoreeverything about that
particular dice, because they were not given a chance to try it, then the uniform dis-
tribution is but the result of the symmetry principle (the agent has no reason to bet
more money on one facet rather than another), expressing ignorance. What this means
is that there is no bijection between the possible epistemicstates of the agent (which
are clearly different in the above two situations) and probability distributions, even if
it is correct to consider that the proposed prices for buyingthe lottery tickets by the
player do result from their epistemic state. It does not makeperfect sense toiden-
tify betting rates to degrees of confidence or belief. This limitation in expressivity is
somewhat problematic in a dynamical framework where the amount of available infor-
mation evolves, as shown later. When a new piece of information is obtained, should
agents modify their bets by means of a revision rule, or revise their epistemic state and
propose new betting rates accordingly?

– It was pointed out earlier that the choice of frameS depends on the language
used, hence on the source of information. One agent may perceive distinct situations
another agent will not discern. If several points of view or several languages are simul-
taneously used in a problem, there will be several framesS1, S2, . . . , Sp (rightly called
‘frames of discernment’ [SHA 76]) involved to describe the same quantityV and com-
patibility relations between these frames. Each subset ofSi may only be represented
by a rough subset ofSj (in the sense of section 3.2.4). It may become impossible to
represent mutually consistent epistemic states on the various frames of discernment
by means of a unique probability distribution on each setSi. Indeed, a uniform distri-
bution on one set may fail to correspond with a uniform distribution on another. For
instance, consider the example of the possibility of extra-terrestrial life [SHA 76].

Example 3.2. Generally, people ignore whether there is life or not. Hence
P1(Life) = P1(Nolife) = 1

2 on S1 = {Life,Nolife}. However, if the agent
discerns between animal life (Alife) and vegetable life only (V life), with frame
S2 = {Alife, V life,Nolife}, the ignorant agent is bound to proposeP2(Alife) =
P2(V life) = P2(Nolife) = 1

3 . SinceLife is the disjunction ofV life andAlife,
distributionsP1 andP2 are incompatible while they are supposed to stem from the
same epistemic state.
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The same phenomenon occurs on the continuous real line when apiece of in-
complete information of the formx ∈ [a, b] is represented by a uniform probabil-
ity density on[a, b]. The latter representation is not scale-invariant. Indeed, consider
a continuous increasing functionf . Statingx ∈ [a, b] is then equivalent to stating
f(x) ∈ [f(a), f(b)]. However, ifx has a probability distribution with uniform den-
sity, the density off(x) is generally not uniform. It looks as if ignorance on[a, b] can
create information on[f(a), f(b)].

– The usual debate between normative and descriptive representations of informa-
tion is relevant when dealing with uncertainty. If the Bayesian approach is normatively
attractive, it may prove to be a poor model to account for the way agents handle con-
fidence degrees [KAH 79]. More recent experimental studies seem to suggest that a
human agent may, in some situations, follow the rules of possibility theory instead
[RAU 03].

– Finally, there is a practical measurement difficulty in thecase of subjective prob-
abilities. The agent is not capable of supplying, even via price assessments, infinitely
precise probability values. What can be expressed consistsof fuzzy probabilities (as
surprisingly acknowledged even by Luce and Raiffa [LUC 81]). Such probabilities
would be more faithfully represented by intervals, if not fuzzy intervals. In some sit-
uations, they are only linguistic terms (very probable, quite improbable, etc.). One
may therefore argue that subjective probabilities should be represented in a purely
symbolic way or, on the contrary, by fuzzy subsets (as in section 3.2.3) of [0, 1]
[BUD 95, COO 05, ZAD 84]. Some authors even propose higher-order probabilities
[e.g. MAR 75] which sounds like recursively solving a problem by creating the same
problem one step higher.

Note that these defects essentially affect the Bayesian representation of subjective
belief in the case of poor information. They are partially irrelevant in the case of
frequentist probabilities based on sufficient experimental data. For instance, the lack
of scale-invariance of probability densities is no paradoxin the frequentist view. If the
collected information in terms of values forx ∈ [a, b] justifies a uniform distribution,
it is unsurprising that the encoding of the same informationin terms of values forf(x)
may not lead to a uniform distribution. However, the frequentist framework does not
pretend to express subjective ignorance.

These caveats motivated the development of alternative representations of subjec-
tive uncertainty. In some of them, the numerical framework is replaced by ordinal
structures that underlie subjectivist numerical representations. In other representa-
tions, incompleteness is acknowledged as such and injectedinto probability theory
yielding various approaches, some being more general than others. In all approaches,
possibility theory (qualitative or quantitative, [DUB 98b]) is retrieved as the simplest
non-trivial non-probabilistic representation of uncertainty.
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3.4. Incompleteness-tolerant numerical uncertainty theories

It is now clear that representations of belief using subjective probabilities, under
the Bayesian approach, tend to confuse uncertainty due to variability and uncertainty
due to incompleteness of information, because of the principle of symmetry or in-
difference. This choice of representation is often motivated by the stress put on the
subsequent decision step supposed to justify any attempt atrepresenting uncertainty.
However, it is legitimate to look for representations of uncertainty that maintain a dif-
ference between variability and incompleteness [FER 96]. For instance in risk analy-
sis, an ambiguous response due to a lack of information does not lead to the same kind
of decision as when it is due to uncontrollable but preciselymeasured variability. In
section 3.2.1, it was pointed out that incompleteness can beconveniently modeled by
means of disjunctive sets, in agreement with interval analysis and classical logic.

Allowing for incompleteness in uncertainty representations comes down to com-
bining disjunctive sets and probabilities. There are two options:

1) consider disjunctive sets of probabilities, assuming the agent is not in a position
to single out a probability distribution; or

2) randomize the disjunctive set based representation of incompleteness of sec-
tion 3.2.1.

Representing incompleteness is coupled with modal notionsof possibility and ne-
cessity. The generalized probability frameworks will be based on numerical extensions
of such modalities. The first line was studied at length by Walley [WAL 91], who re-
lies on the use of upper and lower expectations characterizing closed and convex sets
of probabilities. The second option, due to Dempster [DEM 67] and Shafer [SHA 76]
was further developed by Smets [SME 94, SME 98]. It is equivalent to randomiz-
ing the modal logic of incompleteness, assigning to each event degrees of belief and
plausibility. The resulting theory turns out to be a specialcase of the former mathe-
matically, but is philosophically different.

In the first theory, the agent represents subjective knowledge by means of maximal
buying prices of gambles. The imprecise probability approach can also be interpreted
as performing sensitivity analysis on a probabilistic model, i.e. there exists a true prob-
ability distribution but it is unknown and lies in some subjectively assessed probability
family. In the Shafer–Smets approach, the agent uses degrees of belief and plausibility
without any reference to some unknown probability.

Numerical possibility theory [DUB 87b, DUB 98b, DUB 00, ZAD 78] whose ax-
ioms were laid bare in section 3.2.2 and used in the representation of linguistic infor-
mation in section 3.2.3 turns out to be a special case of the two above approaches, now
interpreted in terms of imprecise probability. Section 3.2.3 is dedicated to this special
case.



108 Decision Making

All numerical representations of incompleteness-tolerant uncertainty have the fol-
lowing common feature: the uncertainty of each eventA, a subset ofS, is character-
ized by two (upper and lower) evaluations referred to as degrees ofepistemic possi-
bility andcertainty, denotedEp andCer respectively (adopting a subjectively biased
language). Epistemic possibility refers to a lack of surprise. These two degrees define
confidence functions on the frameS (in the sense of section 3.2.2) such that

∀A ⊆ S,Cer(A) ≤ Ep(A). (3.13)

They are supposedly self-conjugate, i.e.

∀A ⊆ S,Cer(A) = 1− Ep(A). (3.14)

The first condition (3.13) postulates that an event must be epistemically possible
prior to being certain. The second condition (3.14) states that an event becomes more
certain as its opposite becomes less epistemically possible. These functions formally
generalize possibility measures (Ep(A) = Π(A)) and necessity measures (Cer(A) =
N(A)) of sections 3.2.2 and 3.2.3 respectively and also probability measures (P (A) =
Ep(A) = Cer(A)). This framework has the merit of unambiguously encoding three
epistemic states pertaining to eventA as follows.

1) The case whenA is certainly true:Cer(A) = 1 (henceEp(A) = 1, Ep(A) =
0, Cer(A) = 0).

2) The case whenA is certainly false:Ep(A) = 0 (henceCer(A) = 0).

3) The case when the agent does not know ifA is true or false:Cer(A) = 0 and
Ep(A) = 1 (thenEp(A) = 1;Cer(A) = 0).

The amount of incompleteness of the information pertainingtoA is the difference
Ep(A) − Cer(A). When information onA is totally missing, there is a maximal gap
between certainty and epistemic possibility. The non-certainty of A (Cer(A) = 0)
is carefully distinguished from the certainty of its negation A. The distinction be-
tween ignorance and what could be understood as a random variability ofA (or totally
conficting information about it) is also made. (The latter occurs whenCer(A) =
Ep(A) = 1

2 = P (A)). The two approaches to the representation of uncertainty
presented here, namely imprecise probabilities and belieffunctions, use pairs of set-
functions of the (Cer,Ep) kind.

3.4.1. Imprecise probabilities

Suppose that the information possessed by an agent is represented by a family of
probability measures onS. This situation may sometimes correspond to the idea of an
imprecise probabilistic model. This imprecision may have various origins as follows.
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– In the frequentist framework, the assumptions that frequencies converge may no
longer be made. At the limit, it is only known that the frequency of each elementary
event belongs to an interval [WAL 82].

– There may be incomplete information about which is the right stochastic model
of a repeatable phenomenon. For instance, the nature of a parametric model is known
but the value of some parameter such as the mean or the variance is incompletely
known. Bayesians then choose a prior probability distribution on possible values of
parameters. This is precisely what is not assumed by imprecise probabilists [BER 05].

– Pieces of incomplete information are supplied by an agent about a probabil-
ity distribution (support, mean value, mode, median and some quantiles) in a non-
parametric framework [BAU 06] .

– In the subjectivist framework, conditional propositionsalong with (bounds
of) probabilities incompletely characterize a subjectiveprobability after De Finetti
[DEF 37] and his followers [COL 02].

– Walley [WAL 91] gives up the idea of exchangeable bets and allows the agent
to propose maximal buying prices and minimal selling pricesfor gambles that may
differ from each other. Gambles are functions fromS to the real line, wheref(s)
is the relative gain in states, generalizing events. The maximal buying (respectively
minimal selling) price of a gamble is interpreted as a lower (respectively upper) ex-
pectation, thus defining closed convex sets of probabilities calledcredal setsthat can
be interpreted as epistemic states [LEV 80].

– Gilboa and Schmeidler [GIL 89] provide a decision-theoretic justification of the
assumption that an agent uses a family of prior probabilities for making choices among
acts by relaxing the Savage axiom in a suitable way. In order to hedge against uncer-
tainty, when evaluating the potential worth of each act the agent selects the probability
measure ensuring the least expected utility value (see alsoChapter 10.)

In this section, the certainty functionCer(A) and epistemic possibility function
Ep(A) are interpreted as lower and upper bounds, respectively, ofa probabilityP (A)
for each eventA. The additivity ofP forces the following inequalities to be respected
by these bounds [GOO 62]:∀A,B ⊆ S, such thatA ∩B = ∅,

Cer(A)+Cer(B) ≤ Cer(A∪B) ≤ Cer(A)+Ep(B) ≤ Ep(A∪B) ≤ Ep(A)+Ep(B).

(3.15)

ThenCer andEp are clearly monotonic under inclusion and self-conjugate (since
Cer(A) must be a lower of bound1 − P (A), it follows thatP (A) ≥ Cer(A), ∀A is
equivalent toP (A) ≤ Ep(A), ∀A). Nevertheless, this approach is not satisfactory as
it may be the case that the set of probabilities that functionCer is supposed to bound
from below (or, for functionEp, from above), namely the set{P : ∀A ⊆ S, P (A) ≥
Cer(A)}, is empty.
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Conversely, we may start from a familyP of probability measures and compute
the bounds [SMI 61]:

P∗(A) = inf
P∈P

P (A); P ∗(A) = sup
P∈P

P (A). (3.16)

LettingCer(A) = P∗(A) andEp(A) = P ∗(A), functionsP∗ andP ∗ duly ver-
ify properties (3.13–3.15).P∗ andP ∗ are referred to aslower and upper envelopes
respectively [WAL 91]. The width of interval[P∗(A), P ∗(A)] represents in some way
the degree of ignorance of the agent relative to propositionA. When this interval co-
incides with the whole unit interval, the agent has no information aboutA. When this
interval narrows down to a point, probabilistic information is maximal.

Generally, the only knowledge of upper and lower envelopes of events is not
enough to recoverP . This is typically the case ifP is not convex. Indeed, the set of
probability measuresP(P∗) = {P : ∀A ⊆ S ,P(A) ≥ P∗(A)} called thecoreof P∗,
and derived from the lower envelope, is convex and contains the convex closure of the
original setP (if P1 ∈ P(P∗) andP2 ∈ P(P∗) then∀λ ∈ [0, 1], λ ·P1 +(1−λ) ·P2 ∈
P(P∗)). P andP(P∗) induce the same lower and upper envelopes. In fact, the strict
inclusionP ⊂ P(P∗) may hold even ifP is convex, because upper and lower proba-
bility bounds on events cannot characterize the sets of closed convex sets of probability
functions. To achieve this characterization, we need all lower expectations of all gam-
bles associated to a convex setP and the notion of coherence ensuring estimates of
these lower expectations are maximal. This is why Walley [WAL 91] uses gambles as
generalizations of events for developing his theory; the logic of gambles is the proper
language for describing (convex) credal sets.

Coherentlower probabilitiesP are lower probabilities that coincide with the lower
envelopes of their core, i.e. for all eventsA of X , P (A) = minP∈P(P ) P (A). It also
means for every eventA, the bounds are reachable i.e. there is a probability distribu-
tionP in P(P ) such thatP (A) = P (A). A characteristic property of a coherent upper
probability (hence generated by a non-empty set of probabilities) was found by Giles
[GIL 82]. Let us use the same notation forA and its characteristic function (a gamble
with values in{0, 1}: A(s) = 1 if s ∈ A and 0 otherwise). A set-functionEp is a
coherent lower probability if and only if for any familyA0, A1, . . . , Ak of subsets of
S, and any pair of integers(r, s) such that

∑k
i=1Ai(·) ≥ r+ s ·A0(·), the expression

k∑

i=1

Ep(Ai) ≥ r + s · Ep(A0)

holds. This condition makes sense in terms of gambles and involves optimal mini-
mal selling prices of an agent who sellsk + 1 lottery tickets corresponding to events
A0, A1, . . . , Ak and is protected against a sure loss of money. It also provides a tool
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to compute least upper probability bounds (in case assignedbounds are not optimal)
and, in this sense, restoring coherence is like achieving a deductive closure in the
logical sense. Since all representations considered in this paper correspond to partic-
ular instances of coherent lower probabilities, we will restrict ourselves to such lower
probabilities on events.

An important particular case of coherence is obtained by weakening probabilistic
additivity, requiring a condition stronger than equation (3.15), called2-monotonicity
[CHO 53]:

Cer(A) + Cer(B) ≤ Cer(A ∪B) + Cer(A ∩B), ∀A ⊆ S. (3.17)

A 2-monotonic function is also called aconvex capacity. Its adjoint functionEp is
said to be 2-alternating, which corresponds to the property(3.17) where the inequal-
ity is reversed. Due to equation (3.17), it is ensured that the coreP(Cer) = {P :
∀A ⊆ S ,P(A) ≥ Cer(A)} is not empty and thatCer is a coherent lower proba-
bility. However, a coherent lower probability is not always2-monotone. The property
of 2-monotonicity can be extended tok-monotonicity fork = 3, 4, . . ., changing the
equality (appearing in the probabilistic additivitity property written withk events) into
inequality. However, while probabilistic 2-additivity impliesk-additivity ∀k > 2, this
is no longer true fork-monotonicity: the latter does not implyk + 1-monotonicity
(even ifk + 1-monotonicity impliesk-monotonicity). There is therefore a countable
hierarchy of types of coherent upper and lower probabilities [CHA 89].

An important example of credal set is generated by so-calledprobability intervals.
They are defined over a finite spaceS as lower and upper probability bounds restricted
to singletonssi [CAM 94]. They can be seen as a set of intervalsL = {[li, ui], i =
1, . . . , n} defining the family

PL = {P |li ≤ p(si) ≤ ui, ∀si ∈ S}.
It is easy to see thatPL is totally determined by only2|S| values.PL is non-empty
provided that

∑n
i=1 li ≤ 1 ≤∑n

i=1 ui. A set of probability intervalsL will be called
reachable if, for eachsi, each boundui andli can be reached by at least one distribu-
tion of the familyPL. Reachability is equivalent to the condition

∑

j 6=i

lj + ui ≤ 1 and
∑

j 6=i

uj + li ≥ 1.

Lower and upper probabilitiesP∗(A), P ∗(A) are calculated by

P∗(A) = max(
∑

si∈A

li, 1−
∑

si /∈A

ui),

P ∗(A) = min(
∑

si∈A

ui, 1−
∑

si /∈A

li).
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De Camposet al. [CAM 94] have shown that these bounds are coherent and the lower
bounds are 2-monotonic.

Another practical example of credal set is ap-box[FER 03]. It is defined by a pair
of cumulative distributions(F , F ) on the real line such thatF ≤ F , bounding the
cumulative distribution of an imprecisely known probability functionP . It is a form
of generalized interval. The probability familyPp−box = {P, F (x) ≥ P ((−∞, x]) ≥
F (x), ∀x ∈ R} is a credal set. Ap-box is a covering approximation of a parameterized
probability model whose parameters (such as mean and variance) are only known to
belong to an interval.

3.4.2. Random disjunctive sets and belief functions

The approach adopted in the theory of evidence [SHA 76] is somewhat reversed
with respect to that of the imprecise probability schools. Instead of augmenting the
probabilistic approach with higher order uncertainty due to incompleteness described
by sets of probabilities, the idea is to inject higher order probabilistic information to
the disjunctive set approach to incompleteness.

Instead of a representation of the formx ∈ A whereA is a set of possible values
of x, a (generally) discrete probability distribution is defined over the various possible
assertions of the formx ∈ A (assuming a finite frameS). Let m be a probability
distribution over the power set2S of S. The functionm is referred to asmass assign-
ment, m(A) the belief massallocated to the setA and focal setany subsetA of S
such thatm(A) > 0. LetF be the collection of focal sets. Usually, no positive mass is
assigned to the empty set (m(∅) = 0 is assumed). However, the Transferable Belief
Model (TBM) after Smets [SME 94] does not make this assumption.m(∅) therefore
represents the degree of internal contradiction of the massassignment. The condition
m(∅) = 0 is a form of normalization. Asm is a probability distribution, the condition∑

A⊆Sm(A) = 1 must hold anyway.

In this hybrid representation of uncertainty, it is important to understand the mean-
ing of the mass function. It is also essential not to confusem(A) with the probability of
occurrence of eventA. Shafer [SHA 76] stated thatm(A) is the belief mass assigned
toA only and to none of its subsets. One may also seem(A) as the amount of proba-
bility pending over elements ofA without yet being assigned, by lack of knowledge.
An explanation in the subjective line consists of saying that m(A) is the probability
that only the agent knows thatx ∈ A. There is therefore an epistemic modality im-
plicitly present inm(A), but absent fromP (A). It explains why functionm is not
required to be inclusion-monotonic.m(A) > m(B) > 0 is allowable even ifA ⊂ B,
when the agent is sure that what is known is of the formx ∈ A. In the language of
modal logic, one should writem(A) = P (2A) where2 represents a modality such
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as ‘only the agent knows that. . . ’. In particular,m(S) is the probability that the agent
is completely ignorant.

In practice, a mass assignment results from a situation where the available pieces
of information only partially determine the quantity of interest. This is typically the
case when there is only a compatibility relation (instead ofa mapping) between a
probability space and the frameS of interest to the agent. LetΩ be a set of possible
observations andP a probability measure onΩ supposedly available. Suppose there is
a multimappingΓ that defines for each valueω ∈ Ω of the quantityv the setΓ(ω) of
possible values of the unknown quantityx in S. If the agent knowsv = ω, they only
know thatx ∈ Γ(ω) and nothing else. From the knowledge of a probability function
onΩ, only a mass assignment onS is derived, namely:

∀A ⊆ S,m(A) = P ({ω : Γ(ω) = A}) if ∃ω ∈ Ω, A = Γ(ω),

and 0 otherwise. This technique for generating a mass assignment from a multiple-
valued function was proposed by Dempster [DEM 67].

Example 3.3. Consider an unreliable watch. The failure probabilityε is known. The
setΩ describes the possible states of the watchU = {KO,OK}. The agent wishes
to know what time it is.S is therefore the set of possible time-points. Suppose the
watch indicates timet. Then the multimappingΓ is such thatΓ(OK) = {t} (if the
watch is in order, it provides the right time) andΓ(KO) = S (if the watch does not
work properly, the time is unknown). The induced mass assignment onS is therefore
m({t}) = 1 − ε andm(S) = ε, which is indeed the probability of not knowing what
time it is.

The mass assignment obtained in this example is called asimple supportbecause
the mass is shared between a single subsetA of S andS itself. It is a good model of an
unreliable source assertingx ∈ A that an agent believes is irrelevant with probability
ε. This value is assigned toS so thatm(A) = 1− ε.

The probability spaceΩ can be considered as a sample space as in the framework
of frequentist probabilities. However, it is then assumed that observations are impre-
cise.

Example 3.4. Consider an opinion poll pertaining to a French presidential election.
The set of candidates isS = {a, b, c, d, e}. There is a populationΩ of n individuals
that supply their preferences. However, since the opinion poll takes place well before
the election, individuals may not have made a final choice even if they do have an
opinion. The opinion of individuali is modeled by the subsetΓ(i) ⊆ S. For instance,
a left-wing vote is modeled byΓ(i) = {a, b}; for an individual having no opinion,
Γ(i) = S, etc. In this framework, if individual responses of this form are collected,
m(A) is the proportion of opinions of the formΓ(i) = A.
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Another method for constructingΓ can be devised when the frameS is multidi-
mensionalS1 × S2 × . . .× Sk, a probability distributionP is available on part of the
frame such asS1 × S2 × . . .× Si, and there is a set of constraints relating the various
parametersx1, x2, . . . , xk, thus forming a relationR onS.R represents all admissible
tuples inS. LetU = S1 × S2 × . . .× Si. Then ifu = (s1, s2, . . . , si), denote the set
of tuples inS starting withu as[u]; thenΓ(ω) = R ∩ [u]. The above watch example
is of this kind.

A mass assignmentm induces two set-functions: a belief functionBel and a plau-
sibility functionPl, defined:

Bel(A) =
∑

E⊆A,E 6=∅

m(E) (3.18)

Pl(A) =
∑

E∩A 6=∅

m(E). (3.19)

Whenm(∅) = 0, it is clear thatBel(S) = Pl(S) = 1, P l(∅) = Bel(∅) = 0 and
Bel(A) = 1 − Pl(A) i.e. these functions are another example of certainty (Cer =
Bel) and epistemic possibility (Ep = Pl). Belief functionsBel arek-monotonic for
any positive integerk, i.e.

Bel(∪i=1,...,kAi) ≥
k∑

i=1

(−1)i+1
∑

I:|I|=i

Bel(∩j∈IAj). (3.20)

Plausibility functions satisfy a similar property, reversing the direction of the above
inequality.

Conversely, knowing functionBel, a unique mass assignmentm can be calculated
from the equations that defineBel(A) for all subsets ofS, considering valuesm(E) as
unknowns. This is the Moebius transform. This transform, say M(g), actually applies
to any set-functiong and in particular to the lower envelopeP∗ of a probability family.
Solving these equations is always possible and yields a unique solution in the form of
a set-functionm = M(P∗) such that

∑
A⊆Sm(A) = 1 which, however, may not be

everywhere positive.

Links between the cardinality of subsets with positive massand the order of the
k-monotonicity of a confidence function were studied by Chateauneuf and Jaffray
[CHA 89]. The positivity of the Moebius transform of a confidence function is charac-
teristic of belief functions. This property shows that belief functions are a special case
of coherent lower envelopes, i.e. thatBel(A) = inf{P (A) : P ∈ {P : P ≥ Bel}}.
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Nevertheless, this property is generally not exploited in the setting of belief functions.
For instance, the TBM [SME 94] considersBel(A) as the degree of belief inA for an
agent, not as a lower bound of some unknown objective or subjective probability. This
non-probabilistic point of view affects calculation rules(for conditioning or combina-
tion) that must then be devised independently, instead of being induced by probability
theory. Smets [SME 97] tried to justifyBel(A) as a genuine non-probabilistic degree
of belief through an axiomatic derivation.

Two important particular cases of belief functions must be pointed out.

1) Probability functions are retrieved by assuming focal sets are singletons. It is
clear that ifm(A) > 0 implies∃s ∈ S,A = {s}, thenBel(A) = Pl(A) = P (A)
for the probability function such thatP ({s}) = m({s}), ∀s ∈ S. Conversely,Bel is
a probability function if and only ifBel(A) = Pl(A)∀A ⊆ S.

2) Plausibility functions are possibility measures (or viaadjunction, belief func-
tions are necessity measures) if and only if focal sets are nested, i.e.∀A 6= B ∈
F ,A ⊂ B orB ⊂ A. Then,Pl(A ∪ B) = max(Pl(A), P l(B)) andBel(A ∩ B) =
min(Bel(A), Bel(B)).

Belief functions were first defined on finite frames. Their extension to infinite sets
poses tricky mathematical problems in the general case [SHA79]. Nevertheless, it
is possible to define a belief function on the real numbers, based on a continuous
mass density bearing on closed intervals [STR 84]. For any pair of real numbersx ≤
y, the mass densitym([x, y]) is defined by the bi-dimensional probability density
p(x, y) taking value 0 ifx > y. Then, belief and plausibility degrees of intervals
of the form [−∞, s] (which are actually a lower cumulative distributionF∗(s) =
Bel([−∞, s]) and an upper distributionF ∗(s) = Pl([−∞, s])) can be obtained as
integrals ofp(x, y) on the domains{(x, y), y ≤ s} and{(x, y), x ≤ s}, respectively
[SME 05].

Contrary to the case of probabilities, these cumulative functions are not sufficient
to reconstruct the mass density function (except when focalintervals are nested), nor to
compute belief and plausibility or other events. Clearly the pairs (F∗, F

∗) arep-boxes
that provide a useful summary of the information contained in a belief function, when
the question of interest is one of violating a threshold. Thelack of information is all the
greater asF∗ andF ∗ stand far away from each other. The credal setP(F , F ) induced
by anyp-box is in fact representable by a belief function whose focal elements are
of the form{x, F (x) ≥ α} \ {x, F (x) ≥ α} [KRI 05]. However, the belief function
equivalent to the probability box induced by a belief function is less informative than
the original.

Smets [SME 90] tried to reconcile the theory of exchangeablebets (justifying sub-
jective probabilities) and the postulate that beliefs of anagent are represented by belief
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functions. A major objection to subjective probability theory is its lack of distinc-
tion between situations of known variability (unbiased dice) and ignorance (unknown
dice), as emphasized in section 3.2. The theory of belief functions enables this distinc-
tion to be captured: the case of total ignorance is expressedby the mass assignment
m?(S) = 1, encoding a situation whereBel(A) = 0, P l(A) = 1, ∀A 6= S,∅ (corre-
sponding to the uninformative possibility distributionπ? in section 2.1). In contrast, a
uniform probability distribution correctly states that all realizations of a variablev are
known to be equiprobable.

If agents ignore all information about variablev, they are therefore led to propose
a uniform probability distribution onS following the Insufficient Reason principle of
Laplace. If the agent has some knowledge in the form of a belief function with mass
assignmentm, Smets [SME 90] suggests that the agent should bet with a probability
distribution defined by replacing each focal setE by a uniform probability distribution
with supportE, then computing the convex mixing of these probabilities weighted by
massesm(E). This is the so-calledpignistic probability defined by the distribution
BetP :

BetP (s) =
∑

E:s∈E

m(E)

Card(E)
. (3.21)

This transformation of a belief function into a probabilityfunction was originally
proposed by Dubois and Prade [DUB 82] with a view to generalizing the Laplace
principle. Smets [SME 90] provided an axiomatic justification, finding the probability
function satisfying a linearity property (the pignistic probability of a convex sum of
belief functions is the convex sum of their pignistic probabilities) and a property of
anonymity (the pignistic probability of an event should notchange when realizations
of this event are exchanged). In fact, the pignistic probability has been known in coop-
erative game theory since the 1950’s under the nameShapley value. Smets axioms are
mathematically the same as those proposed by Shapley [SHA 53] in a quite different
context.

Belief functions can be compared in terms of their informative content. Note that
belief functions model imprecise and uncertain information at the same time; one may
wish to evaluate their imprecision and their uncertainty separately. A natural impreci-
sion index of a belief function is the expected cardinality of its mass assignment:

Imp(m) =
∑

E⊆S

m(E) · Card(E). (3.22)

It is clear thatImp(m?) = Card(S) andImp(m) = 1 if the mass assignment is a
probability. It can be checked thatImp(m) =

∑
s∈S Pl({s}), i.e. it only depends on

the plausibility of the singletons. This numerical index isin agreement with relations
comparing belief functions in terms of their imprecision.
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– A mass assignmentm1 is said to be at least as specific as a mass assignmentm2 if
∀s ∈ S, P l1({s}) ≤ Pl2({s}). This is a natural requirement due to the property of the
cardinality-based imprecision index, viewing the functionPl({s})∀s ∈ S (referred to
as thecontour functionby Shafer [SHA 76]) as a possibility distribution.

– A mass assignmentm1 is said to be more precise than a mass assignmentm2 if
and only if for all eventsA, the interval[Bel1(A), P l1(A)] is included in the interval
[Bel2(A), P l2(A)]. Due to the adjunction property betweenPl andBl, it is enough
that inequality∀A,P l1(A) ≤ Pl2(A), holds. In other words, the narrower the interval
[Bel(A), P l(A)], the closer it is to a single probability. IfP(m) = {P, P (A) ≤
Pl(A), ∀A}, m1 being more precise thanm2 means that the credal setP(m1) is a
subset ofP(m2). The functionm is therefore maximally precise when it coincides
with a unique probability, and minimally precise ifm = m?.

– A mass functionm1 is aspecializationof a mass assignmentm2 if and only if
the following three conditions are verified.

1) Any focal set ofm2 contains at least one focal set ofm1.
2) Any focal set ofm1 is included in at least one focal set ofm2.
3) There is a stochastic matrixW whose termwij is the fraction of the mass

m1(Ei) of the focal setEi of m1 that can be reallocated to the focal setFj of m2

in order to retrieve the massm2(Fj), namely,m2(Fj) =
∑

iwij · m1(Ei), with
constraintwij > 0 only if Ei ⊆ Fj .

The latter relation is more demanding than the former: ifm1 is a specialization of
m2, thenm1 is also more precise and more specific thanm2. It is also obvious that
if m1 is a specialization ofm2, thenImp(m1) ≤ Imp(m2). The converse properties
do not hold. Comparing contour functions is less demanding than comparing plausi-
bilities, andPl1 < Pl2 does not imply thatm1 is a specialization ofm2 [DUB 86b].

Example 3.5. S = {s1, s2, s3}. Supposem1({s1, s2}) = 1
2 , m1({s1, s3}) = 1

2 ,
m2({s1}) = 1

2 andm2(S) = 1
2 . It is easy to see that none of these mass assignments

is a specialization of another (the inclusion requirementsbetween focal sets are vi-
olated). However,m1 is less precise thanm2 (becausePl1(A) = Pl2(A) except if
A = {s2, s3}, for whichPl1({s2, s3}) = 1 > Pl2({s2, s3}) = 0.5). However, the
two contour functions are the same.

The uncertainty of a belief function can be evaluated by a generalization of entropy
H(P ) = −∑card(S)

i=1 pi · lnpi. Several extensions were proposed [DUB 87a].

– A measure of dissonance:D(m) = −∑E⊆Sm(E) · lnP l(E), maximal for
uniform probability distributions, minimal (= 0) as soon asPl(E) = 1 for all focal
setsE (i.e. they intersect:∩{E : m(E) > 0} 6= ∅).

– A measure of confusion:D(m) = −∑E⊆Sm(E) · lnBel(E), high (in fact,
maximal for index obtained by deleting the logarithm and theminus sign from this
expression; [DUB 93b]) for uniform mass assignments over all sets with cardinality
card(S)

2 and minimal (= 0) as soon asm(E) = 1 for some focal set (incomplete and
crisp information).
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– Klir and Parviz [KLI 92] proposed measuring the uncertainty of a mass assign-
mentm by means of the entropy of its pignistic probability, which evaluates the
amount of indecision of an agent faced with a betting situation under uncertainty.
More recently, other suggestions include maximizing and minimizingH(P ) whenP
ranges in the credal set associated with the belief function.

3.4.3. Quantitative possibility theory

Like imprecise probability and evidence theories, possibility theory represents un-
certainty by means of two adjoint set-functions: a necessity measureN that is ‘mini-
tive’ and a possibility measureΠ that is ‘maxitive’. They have already been introduced
in sections 3.2.2 and 3.2.3.

In this section, one sees these set-functions as lower and upper probabilities since
they can be generated from mass functions associated with nested focal sets. While
Zadeh [ZAD 78] defines possibility distributions from linguistic pieces of information,
the idea of considering possibility measures as counterparts to probability measures is
due to the economist Shackle [SHA 61], who named the degree ofpotential surprise
of eventA the quantityN(A) = 1−Π(A).

Possibility theory, in its numerical variant, proposes a very simple model of uncer-
tainty tailored for imprecise information and it can encodeparticular families of prob-
abilities in a very concise way. This model not only enables us to represent linguistic
information (according to Zadeh), but it also generalizes the set-based representation
of information (propositional logic and interval analysis). It can, in an approximate
way, represent imprecise statistical information [DUB 00].

3.4.3.1.Possibility theory and belief functions

More precisely, letm be a mass function on a finite setS. One defines the possi-
bility distributionπ induced bym, also called its contour function, by lettingπ(s) =
Pl({s}) (plausibility of singletons), i.e.

∀s ∈ S, π(s) =
∑

s∈E

m(E). (3.23)

It is easy to see thatπ takes its values on [0, 1] and is normalized (π(s) = 1 for
some states ∈ S) as soon as the focal sets have a common non-empty intersection
(in particular, this is the case when they are nested). Recoveringm from π is possible
only when the focal sets are nested or disjoint. Assume that the focal sets are nested.
Then they can be rank ordered in an increasing sequenceE1 ⊂ E2 ⊂ . . . ⊂ En where
Ei = {s1, . . . , si}, then

π(si) =
n∑

j=i

m(Ej).
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The possibility and necessity measuresΠ andN , defined by equation (3.8) fromπ,
coincide with the plausibility and belief functions induced bym. The mass function
can then be recalculated fromπ as follows (lettingπ(sn+1) = 0):

mπ(Ei) = π(si)− π(si−1), i = 1, . . . , n. (3.24)

We can therefore see that, in the finite consonant case,mπ andπ contain the same
information and thatPl = Π andBel = N . However, in the infinite case, the rela-
tion between consonant random sets and possibility measures is more complex in the
general case [MIR 02, MIR 04].

For possibility measures, the precision and specialization orderings coincide with
the specificity ordering of possibility distributions on the singletons.mπ1 is a spe-
cialization ofmπ2 if and only if Π1(A) ≤ Π2(A), ∀A ⊆ S if and only if π1(s) ≤
π2(s), ∀s ∈ S [DUB 86b].

In the general case,π is only an approximation ofm and it can be checked thatπ is
the least specific possibility distribution such thatPl ≥ Π andBel ≤ N [DUB 90b].
It is worth noticing that if the focal sets are imprecise observations coming from a
random experiment, equation (3.23) represents the possibilistic counterpart of a his-
togram.

3.4.3.2.Possibility theory and imprecise probabilities

As belief functions mathematically correspond to a particular case of family of
probability measures, this is especially true for possibility distributions. Let us again
consider the case of an increasing sequence of nested setsE1 ⊂ E2 ⊂, . . . ,⊂ Ek.
Let ν1 ≤ ν2 ≤ . . . ≤ νk be lower bounds of probability and letP = {P, P (Ei) ≥
νi, ∀i = 1, . . . , k}. This is typically the kind of information provided by an expert who
expresses himself in an imprecise way about the value of a parameter. He suggests that
x ∈ Ei with a confidence degree at least equal toνi. ThenP∗(A) = infP∈P P (A) is
a necessity measure andP ∗(A) = supP∈P P (A) is a possibility measure, based on
the possibility distribution [DUB 92a]:

∀s ∈ S, π(s) = min
i=1,...,k

max(Ei(s), 1− νi) (3.25)

with Ei(s) = 1 if s ∈ Ei and 0 otherwise. See De Cooman and Aeyels [DEC 99] for
an extension of this result to the infinite case.

In this framework, eachEi is a kind of confidence set (an interval in the case where
S = R) and the probability of belonging to this set is at leastνi. The probability of
not belonging toEi is therefore at most1− νi. This confidence set weighted by a cer-
tainty degree corresponds to the possibility distributionmax(Ei(s), 1−νi). The above
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equation is nothing but the conjunction of these local distributions. It is clear that dis-
tributionπ encodes in a very compact way the family of probabilitiesP . Conversely,
a possibility distributionπ encodes the credal set defined byP(π) = {P, P (A) ≤
Π(A), ∀A measurable} = {P, P (A) ≥ N(A), ∀A measurable}.

In the case whereS = R, an important particular case of possibility distribution
is a fuzzy interval. Distributionπ is supposed to be upper semi-continuous and quasi-
concave (∀a, b, c ∈ R, π(c) ≥ min(π(a), π(b))); its level cuts{s, π(s) ≥ α}, α ∈
(0, 1] are then nested closed intervals[a−α , a

+
α ]. One can associate toπ a mass density

mπ uniformly distributed over its level cuts. The lower and upper cumulative functions
F∗(s) = N([−∞, s]) andF ∗(s) = Π([−∞, s]) are of the form

F ∗(s) = π(s), s ∈ (−∞, a−1 ], and 1 if s≥ a−1 (3.26)

and

F∗(s) = 1− π(s), s ∈ [a+
1 ,+∞) and 0 if s≤ a+

1 , (3.27)

respectively.

Let us consider an intervalA = [x, y] including the core ofπ. The inequality
P (A) ≤ Π(A) impliesF (x) + 1 − F (y) ≤ max(π(x), π(y)) whereF is the cu-
mulative function ofP . One can check that the credal setP(π) is precisely equal to
{P, ∀x ≤ a−1 , ∀y ≥ a+

1 , F (x)+1−F (y) ≤ max(π(x), π(y))}. It is generally strictly
included in the credal set{P, F ∗ ≥ F ≥ F∗} [DUB 91] of the correspondingp-box.
The mean interval[e−(π), e+(π)] of π is the set of mean values of the probability
distributions inP(π). Its bounds are nevertheless the mean values induced byF ∗ and
F∗, respectively.

3.4.3.3.Clouds and generalizedp-boxes

Interestingly, the notion of cumulative distribution is based on the existence of
the natural ordering of numbers. On a finite set, no obvious notion of cumulative
distribution exists. In order to make sense of this notion overX , one must equip it
with a complete preordering. It is reduced to a family of nested confidence sets∅ ⊆
A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ S, with Ai = {s1, . . . , si}. Consider two cumulative
distributions according to this ordering, which form ap-box. The credal setP can
then be represented by the following restrictions on probability measures

αi ≤ P (Ai) ≤ βi i = 1, . . . , n (3.28)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 andβ1 ≤ β2 ≤ . . . ≤ βn ≤ 1. If we takeS = R and
Ai = (−∞, si], it is easy to see that we retrieve the usual definition of ap-box.

The credal setP described by such a generalizedp-box can be encoded by a pair
of possibility distributionsπ1, π2 s.t.P = P(π1) ∩P(π2) whereπ1 comes from con-
straintsαi ≤ P (Ai) andπ2 from constraintsP (Ai) ≤ βi. Again, it is representable
by a belief function [DES 07c].
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A cloud[NEU 04] can be seen as an interval-valued fuzzy setF such that(0, 1) ⊆
∪x∈SF (s) ⊆ [0, 1], whereF (s) is an interval[δ(s), π(s)]. It implies thatπ(s) = 1
for somes (π is a possibility distribution) andδ(s′) = 0 for somes′ (1 − δ is also a
possibility distribution). A probability measureP onS is said to belong to a cloudF
if and only if ∀α ∈ [0, 1]:

P (δ(s) ≥ α) ≤ 1− α ≤ P (π(s) > α) (3.29)

under all suitable measurability assumptions. From this definition, a cloud(δ, π) is
equivalent to the cloud(1 − π, 1 − δ). If S is a finite space of cardinalityn, letAi =
{si, π(si) > αi+1} andBi = {si, δ(si) ≥ αi+1}. A cloud can therefore be defined
by the following restrictions [DES 07c]:

P (Bi) ≤ 1− αi ≤ P (Ai) andBi ⊆ Ai i = 1, . . . , n (3.30)

where1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0, ∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆
An ⊆ An+1 = S and∅ = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1 = S.

Let P(δ, π) be the credal set described by the cloud (δ, π) on a frameS. Clouds
are closely related to possibility distributions andp-boxes as follows [DES 07c].

– P(δ, π) = P(π) ∩ P(1− δ) using the credal sets induced by the two possibility
distributionsπ and1− δ.

– A cloud is a generalizedp-box withπ1 = π andπ2(si+1) = 1−δ(si) if and only
if the sets{Ai, Bi, i = 1, . . . , n} form a nested sequence (i.e. there is a complete order
with respect to inclusion). In other words, it means thatπ andδ are comonotonic. A
comonotonic cloud is a generalizedp-box and generates upper and lower probabilities
that are plausibility and belief functions.

– When the cloud is not comonotonic,P(δ, π) generates lower probabilities that
are not even 2-monotone [DES 07c]. It is anyway possible to approximate upper and
lower probabilities of events from the outside by possibility and necessity measures
based onπ and1− δ:

max(Nπ(A), N1−δ(A)) ≤ P (A) ≤ min(Ππ(A),Π1−δ(A)).

The belief and plausibility functions of the random setm(Ai \Bi−1) = αi−1−αi
are inner approximations ofP(δ, π), which become exact when the cloud is mono-
tonic.

Whenπ = δ, the cloud is said to be thin. In the finite case,P(π, π) = ∅. To
ensure it is not empty, we need a one-step index shift such that (assuming theπ(si)
are decreasingly ordered)δ(si) = π(si+1) (with π(sn+1) = 0).P(δ, π) then contains
a single probability distributionp such thatp(si) = π(si)−π(si+1). In the continuous
case,P(π, π) contains an infinity of probability measures and corresponds to a random
set whose realizations are doubletons (the end-points of the cuts ofπ).
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The strong complementarity between possibilistic and probabilistic representa-
tions of uncertainty is noticeable. While a probability distribution naturally represents
precise pieces of information with their variability (whatis called statistical data), a
possibility distribution encodes imprecise, but consonant, pieces of information (ex-
pressed by the nestedness of focal sets).

One may consider that the possibilistic representation is more natural for un-
certain subjective information, in the sense that from a human agent one rather ex-
pects consonant pieces of information with some imprecision, rather than artificially
precise but scattered pieces of information. The fact that aprobability measure is
lower bounded by a necessity measure and upper bounded by a possibility measure
(N(A) ≤ P (A) ≤ Π(A), ∀A) expresses a compatibility principle between possibility
and probability: for any event, being probable is more demanding than being possi-
ble, and being somewhat certain is more demanding than beingprobable [ZAD 78].
A probability measureP and a possibility measureΠ are said to becompatibleif and
only if P ∈ P(π).

3.4.3.4.Possibility-probability transformations

It is legitimate to look for transformations between probabilistic and possibilistic
representations of information. There are several reasonsfor that. On the one hand,
with a view of fusing heterogeneous pieces of information (linguistic pieces of infor-
mation, measurements issued from sensors), one may wish to have a unique repre-
sentation framework at our disposal. Besides, the useful information extracted from
probability distributions is often much less informative than the original distribution
(a prediction interval, a mean value, etc.).

Conversely, the subjectivist interpretation of probabilities by the betting theory
can be regarded as a probabilistic formalization of the often incomplete pieces of in-
formation provided by an agent. Lastly, possibility theoryallows us to systematize
notions that already exist in the practice of statisticiansunder an incompletely de-
veloped form. The transformation between a probability measureP and a possibility
measureΠ should obey natural requirements as follows.

– Possibility-probability consistency: P andΠ should be compatible.

– Ordinal faithfulness: One cannot require the equivalence betweenP (A) ≥
P (B) andΠ(A) ≥ Π(B), ∀A,B ⊆ S, since the ordering induced on the events byP
will always be more refined than that induced byΠ. Then one should only ensure an
ordinal equivalence between the distributionsp andπ, i.e.p(si) ≥ p(sj) if and only if
π(si) ≥ π(sj), ∀si, sj ∈ S. One may also only require a weaker ordinal equivalence,
for instance considering thatp(si) > p(sj) impliesπ(si) > π(sj) but p(si) = p(sj)
does not entailπ(si) = π(sj).

– Informativity: Probabilistic representation is more precise, thus richer than pos-
sibilistic representation. Information is lost when goingfrom the first to the second;
information is gained in the converse way. From possibilityto probability, one should



Formal Representations of Uncertainty 123

try to preserve the symmetries existing in the possibilistic representation. From prob-
ability to possibility, one should try to lose as little information as possible if the
probability measure is statistically meaningful. The caseof a subjective probability is
different since it often corresponds to poorer knowledge artificially increased by the
probabilistic representation, so that a least commitment principle might prevail.

3.4.3.4.1. From possibility to probability

To change a possibility distribution into a probability distribution, it is natural
to use the pignistic transformation [SME 90]. Ifcard(S) = n, let us denoteπi =
π(si), i = 1, . . . , n, assuming thatπ1 ≥ π2 ≥ . . . ≥ πn. The pignistic transform is
a probability distributionp ordinally equivalent toπ, such thatp1 ≥ p2 ≥ . . . ≥ pn,
with pi = p(si), i = 1, . . . , n:

pi =
n∑

j=i

πj − πj+1

j
, ∀i = 1, . . . , n. (3.31)

In the case of a fuzzy interval, the mass density associated to [a−α , a
+
α ] is changed

into a uniform probability over this interval, and one considers the uniform probabilis-
tic mixture obtained by integrating overα ∈ [0, 1]. This amounts to building the prob-
ability measure of the process obtained by picking a numberα ∈ [0, 1] at random and
then an elements ∈ [a−α , a

+
α ] at random [CHA 88]. The mean value of the pignistic

probability is the middle of the mean interval ofπ introduced in section 3.4.3.2. This
transformation generalizes the Laplace Insufficient Reason principle, since it yields
the corresponding uniform probability when applied to a uniform possibility distribu-
tion over an interval.

3.4.3.4.2. From subjective probability to possibility

For the converse change, from probability to possibility, one should distinguish the
case where one starts with a subjective probability from thesituation where there exist
statistics justifying the probability distribution. In the subjectivist framework, and in
agreement with the debatable nature of the unique probability provided by an expert,
one assumes that the knowledge of the agent is a belief function with massm over a
finite frameS. The elicitation process forces them to provide a probability distribution
p that is considered to be the pignistic transform ofm. By default, one considers that
the least biased belief function is the least informative one, if it exists, among those
whose pignistic transform isp [SME 00]. If one looks for the mass assignment that
maximizes the imprecision indexImp(m) =

∑n
j=i πj (equation (3.22)), it can be

proved that this mass assignment is unique, that it is consonant and that it is also min-
imally specific (w.r.t. the plausibility of singletons) [DUB 03]. By noticing that the
pignistic transformation is a one-to-one mapping between probability and possibil-
ity, the least biased representation of the agent’s knowledge leading to the subjective
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probability distributionp is obtained by reversing equation (3.31):

πi =

n∑

j=1

min(pi, pj), ∀i = 1, . . . , n. (3.32)

This transformation has been independently introduced by Dubois and Prade; [see
DUB 83].

3.4.3.4.3. From objective probability to possibility

In the case of an objective probability distribution, when changing representation
one should try to lose as little information as possible. This leads to the search for a
possibility distributionπ among the most specific ones such thatP ∈ P(π) and which
is ordinally equivalent top.

Let us first consider the discrete case. Ifp1 > p2 > . . . > pn andEi = {s1, . . . , si},
it is enough to letΠ(Ei) ≥ P (Ei)∀i = 1, . . . , n in order to makep andπ compatible.
By forcing equalities, one obtains a unique possibility distribution, maximally specific
and ordinally equivalent top [DUB 82]:

πi =

n∑

j=i

pj , ∀i = 1, . . . , n. (3.33)

Unicity is preserved when the inequalities between thepi are no longer strict but
the transformation is writtenπi =

∑
j:pj≤pi

pj , ∀i = 1, . . . , n which maintains ordi-
nal faith. If we relax this constraint, one may get possibility distributions compatible
with p that are more specific than the former. In particular, equation (3.33) always
yields a possibility distribution that is maximally specific and consistent withp. For
instance, ifp is a uniform distribution, there aren! ways of orderingS and equa-
tion (3.33) givesn! non-uniform possibility distributions, maximally specific and con-
sistent withp.

In the case of a unimodal continuous densityp overR, this possibility-probability
transformation can be extended by considering the level cuts of p, i.e. the subsets
Eλ = {s, p(s) ≥ λ}, λ ∈ (0, sup p]. If we denoteEλ = [x(λ), y(λ)], then the
possibility distributions that are maximally specific and ordinally equivalent top are
defined by

π(x(λ)) = π(y(λ)) = 1− P (Eλ). (3.34)

Indeed, it can be proved more generally that, ifP (Eλ) = q, the measurable setA
having the smallest measure such thatP (A) = q isEλ [DUB 93a, DUB 04b]. Ifp is
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unimodal,Eλ is the interval with lengthL = y(λ) − s(λ) that is the most legitimate
representative of the probability densityp, in the sense whereEλ is the interval with
lengthL having maximal probabilityP (Eλ) ≥ P ([a, b]), ∀a, b such thatb− a = L.

The transformation equation (3.34) can therefore be related to a view of a predic-
tion interval as an imprecise substitute of a probability density, with a given confidence
level (often 0.95). Most of the time, this type of interval isdefined for symmetrical
densities and the considered intervals are centered aroundthe mean. The interval with
confidence 0.95 is often defined by the 0.025 and 0.975 percentiles. Characterizing
the prediction interval with confidence 0.95 by these percentiles when the distribu-
tions are non-symmetrical is not very convincing since thismay eliminate values with
higher density than those of the values in this interval. It is much more natural to look
for λ such thatP (Eλ) = 0.95.

More generally, theα level cut of the possibility distributionπ obtained by equa-
tion (3.34) fromp is the smallest interval with confidence1 − α deducible fromp.
One can find in the statistical literature a proposal for comparing probability densities
according to their ‘peakedness’ [BIR 48]. This is a comparison of their possibilistic
transforms in terms of their relative specificity. Moreover, the information ordering of
probability measures by means of the entropy index refines the partial specificity of
their possibilistic transforms [DUB 07].

The transformation equation (3.34) builds a family of nested sets around the mode
of p. One may systematically build a possibility measure consistent withp by consid-
ering any characteristic values∗ in the support ofp and a family of subsetsAλ nested
arounds∗, indexed byλ ∈ [0, ω] such thatAω = {s∗} andA0 = support(p).

For instance, ifs∗ is the meanmea of p with standard deviationσ, and if one
setsAλ = [mea − λ · σ,mea + λ · σ], the Chebychev inequality gives usP (Aλ) ≤
min(1, 1

λ2 ). The possibility distribution obtained by lettingπ(mea−λ·σ) = π(mea+
λ · σ) = min(1, 1

λ2 ) is therefore consistent with any probability measure with mean
mea and standard deviationσ.

The probability-possibility transforms can yield other probabilistic inequalities. It
has been shown that a symmetrical triangular possibility distribution with bounded
support[a, b] is consistent with any unimodal symmetrical probability function hav-
ing the same support, and contains the prediction intervalsof all these probability
measures [DUB 04b]. Moreover, it is the most specific one having these properties (it
is consistent with the uniform density over[a, b]). This provides, for this distribution
family, a probabilistic inequality that is much stronger than that of Chebychev, and
justifies the use of triangular fuzzy intervals for representing incomplete probabilis-
tic information. See Baudrit and Dubois [BAU 06] for possibilistic representations of
probability families induced by partial knowledge of distribution characteristics.
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3.4.4. Possibility theory and non-Bayesian statistics

Another interpretation of numerical possibility distributions is the likelihood func-
tion in non-Bayesian statistics [DUB 97, SME 82]. In the framework of an estimation
problem, one is interested in the determination of the valueof some parameterθ ∈ Θ
that defines a probability distributionP (· | θ) overS. Suppose that we observed event
A. The functionP (A | θ), θ ∈ Θ is not a probability distribution, but a likelihood
functionL(θ). A valuea of θ is considered as being all the more plausible ifP (A | a)
is higher and the hypothesisθ = a will be rejected ifP (A | a) = 0 (or is below some
relevance threshold). Often, this function is renormalized so that its maximum is equal
to 1. We are allowed to letπ(a) = P (A | a) (thanks to this renormalization) and to
interpret this likelihood function in terms of possibilitydegrees. In particular, it can
be checked that∀B ⊆ Θ, bounds for the value ofP (A | B) can be computed as:

min
θ∈B

P (A | θ) ≤ P (A | B) ≤ max
θ∈B

P (A | θ)

which shows that the maxitivity axiom corresponds to an optimistic computation of
P (A | B) = Π(B). It is easy to check that lettingP (A | B) = maxθ∈B P (A | θ)
is the only way for building a confidence function aboutθ from P (A | θ), θ ∈ Θ.
Indeed, the monotonicity w.r.t. inclusion of the likelihood functionL forcesP (A |
B) ≥ maxθ∈B P (A | θ) to hold [COL 03].

The maximum likelihood principle originally due to Fisher consists of choosing
the value of the parameterθ = θ∗, induced by the observationA, that maximizes
P (A | θ). It is clear that this selection principle for the estimation of a parameter is in
total agreement with possibility theory.

Another element of non-Bayesian statistical analysis is the extraction of a con-
fidence interval forθ on the basis of repeated observations. Let us suppose that the
observationss1, s2, . . . , sk result in an estimation̂θ of the actual valueθ∗. Let Iθ be a
confidence interval forθ such thatP (Iθ | s1, s2, . . . , sk) ≥ 1− ε. One can choose the
tightest intervalEε of values ofθ with probability1− ε, by taking a cut of the density
p(Iθ | s1, s2, . . . , sk) (as suggested by the probability-possibility transformations). It
is the smallest confidence interval containing the value ofθ∗ with a confidence level
1 − ε. One often takesε = 0, 05, which is arbitrary. It is clear that by lettingε vary
between 0 and 1, one obtains a family of nested setsEε providing information about
θ∗. Statistical analysis by means of confidence intervals can thus be understood as
the construction of a possibility distribution that provides an imprecise estimate of the
value of parameterθ. It can be viewed as a possibility distribution (of order 2) over
probability measuresP (·|θ).
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3.5. Qualitative uncertainty representations

It seems more natural in an ordinal framework to represent the relative confidence
that an agent has between various propositions expressing their knowledge rather than
trying to force them to deliver numerical evaluations. It isindeed easier to assert that a
proposition is more credible than another, rather than assessing a belief degree (whose
meaning is not always simple to grasp), or even to guess a frequency for each of them.
The idea of representing uncertainty by means of relations over a set of events dates
back to De Finetti [DEF 37], Koopman [KOO 40] and Ramsey [RAM 80], who tried
to find an ordinal counterpart to subjective probabilities.Later, philosophers of logic
such as Lewis [LEW 86] have considered other types of relations, including compar-
ative possibilities in the framework of modal logic. This section offers an overview of
ordinal representations of uncertainty, in relation to their numerical counterparts.

The ordinal approaches represent uncertainty by means of a relative confidence
relation between propositions (or events) interpreted as subsets of the setS of the
states of the world. Such a relation expresses the more or less high confidence of an
agent in some propositions rather than in others. Let us denote by≥κ the confidence
relation defined on the set of propositions (subsets ofS).A ≥κ B means that the agent
is at least as confident in the truth ofA as in the truth ofB. This relation is in general
a partial preorder, since the agent may not know the relativeconfidence between all
the propositions.>κ denotes the strict part of≥κ (i.e.A >κ B if and only ifA ≥κ B
but notB ≥κ A). It states that the agent is strictly more confident inA than inB.
The agent has equal confidence inA and inB when bothA ≥κ B andB ≥κ A
hold, which is denotedA =κ B. These relations are supposed to satisfy the following
properties:

– reflexivityof ≥κ: A ≥κ A, ∀A;

– non-trivialityS >κ ∅;

– coherence with logical deduction, expressed by two properties:
1)A ⊆ B entailsB ≥κ A (monotony w.r.t. inclusion of≥κ); and
2) if A ⊆ B, C ⊆ D andA >κ D, thenB >κ C (well-ordered relation);

– transitivity of>κ: if A >κ B andB >κ C thenA >κ C.

These four hypotheses are difficult to challenge. The two coherence conditions
w.r.t. deduction are independent except if the relation≥κ is complete (i.e. we have
A ≥κ B or B ≥κ A, ∀A,B) or transitive. Transitivity and completeness of≥κ
become natural if the confidence relation can be representedby a confidence function
g with values in[0, 1]. In this case, the confidence relation≥κ is a complete preorder.
A confidence functiong represents a confidence relation as soon as

A ≥κ B if and only if g(A) ≤ g(B), ∀A,B.
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All the set-functions used for modeling uncertainty (probability measures, pos-
sibility measures and belief functions) correspond to complete preorders between
propositions, satisfying particular properties. (This isexcept for the set-functions stud-
ied by Friedman and Halpern [FRI 96] under the name ofplausibility measures, which
induce partial preorders of relative confidence. This nameplausibility measuresis mis-
leading as they have no relationship to Shafer’s plausibility functions.)

Comparative probability relations are the first relations of uncertainty that were
introduced [DEF 37, KOO 40]. They have been studied in detailby Savage [SAV 72]
in the framework of decision theory. A comparative probability relation≥prob is a
complete and transitive confidence relation on the propositions, which satisfies the
preadditivityproperty ifA,B,C are three subsets such asA ∩ (B ∪ C) = ∅,

B ≥prob C if and only if A ∪B ≥prob A ∪ C.

It is clear that any relation between events induced by a probability measure is
preadditive. The converse is false as shown by Kraftet al. [KRA 59] by means of the
following counter-example on a setS with five elements. Let a comparative probabil-
ity relation satisfy the following properties:

s4 >prob {s1, s3};

{s2, s3} >prob {s1, s4};
{s1, s5} >prob {s3, s4};
{s1, s3, s4} >prob {s2, s5}.

The reader can easily check that a comparative probability relation satisfying the
above conditions exists, but that there does not exist a probability measure satisfy-
ing them. A comparative probability relation is therefore an object that is partially
non-probabilistic and less easy to handle than a probability function. In particular, a
probability measure on a finite set is completely defined by the probabilities of the
elements, but a comparative probability relation is not fully characterized by its re-
striction on singletons.

Confidence relations that have this simplicity are possibility and necessity rela-
tions. Comparative possibility relations were independently introduced in the 1970s
[LEW 76] in the framework of modal logics of counterfactualsas well as from a de-
cision theory perspective [DUB 86a]. Comparative possibility relations≥Π are com-
plete and transitive confidence relations satisfying the following characteristic prop-
erty ofdisjunctive stability:

∀C,B ≥Π A entailsC ∪B ≥Π C ∪A.
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Their numerical counterparts in the finite setting are (and are only) the possibility
functionsΠ with values in a totally ordered setL with bottom element 0 and top
element 1. Each possibility relation can be entirely specified by means of a unique
complete preorder≥π on the states of the world.s1 ≥π s2 means that the states1 is
in general at least as plausible (i.e. normal, unsurprising) as states2. The possibility
relation on events is then defined as follows:

B ≥Π A if and only if ∃s1 ∈ B, ∀s2 ∈ A, s1 ≥π s2.

The degree of possibility of eventA therefore reflects the plausibility of the state
of the world which is the most normal whereA is true. The case where the preorder
on the events is induced by a partial order onS was studied by Halpern [HAL 97].
Possibility relations are not invariant by negation. Comparative necessity relations are
defined by duality:B ≥N A if and only ifA ≥Π B. The relationB ≥N Ameans that
A is at least as certain asB. These necessity relations satisfy a characteristic property
calledconjunctive stability:

∀C,B ≥N A entailsC ∩B ≥N C ∩A.

The corresponding set-functions are necessity measures such thatN(A ∩ B) =
min(N(A), N(B)). Any possibility distributionπ from S to a totally ordered setL
representing≥π (i.e. π(s1) ≥ π(s2) if and only if s1 ≥π s2) is defined up to a
monotonic transformation. The complete preorder≥π encodes under a very simple
form the generic knowledge of an agent about the relative plausibility of the states of
the world. One often assumes then that for each states, π(s) > 0, expressing that no
state of the world is totally excluded.

Possibility and necessity relations enjoy a remarkable property. By ‘belief’ we
mean any eventA such thatA >Π A. Then the set of beliefs induced by a possibility
relation≥Π is deductively closed. In particular, ifA andB are beliefs, the conjunction
A∩B is also a belief. A belief is said to be accepted if an agent accepts it as true (and
therefore applies the inference rules of classical logic toit). It follows that possibility
relations account for the notion of accepted belief [DUB 04a].

This property remains when the possibility relation is restricted to a contextC ⊆
S. By ‘belief in contextC ’, one implies any eventA such thatA∩C >Π A∩C. The
set of beliefs induced by a possibility relation≥Π in a contextC is also deductively
closed. This result relies on the following property of possibility relations (referred to
as ‘negligibility’): if A,B,C are three disjoint sets, then

A ∪ C >Π B and A ∪B >Π C entailsA >Π B ∪C.

This property clearly indicates thatA >Π B means that the plausibility ofB is
negligible w.r.t. that ofA, since in cumulating withB events that are less plausible
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thanA, the plausibility ofA cannot be attained. This feature is typical of possibility
theory.

There are two main ways of generalizing comparative probability and possibility
relations in weakening their characteristic axioms. A firstmethod consists of adopting
a restricted form of disjunctive stability, replacing equivalence by implication in the
preadditivity axiom: ifA,B,C are three subsets such asA ∩ (B ∪ C) = ∅:

B ≥κ C entailsA ∪B ≥κ A ∪C. (3.35)

The results proved in Dubois [DUB 86a] and Chateauneuf [CHA 96] show that the
class of set-functions captured by the weak preadditivity axiom (3.35) exactly contains
the pseudo-additive (or decomposable) confidence functions g, i.e. such that there
exists an operation⊕ on the codomain ofg such that for each pair of disjoint subsets
A,B, g(A ∪ B) = g(A) ⊕ g(B). The cases where⊕ = max and⊕ = + cover
possibility and probability measures, respectively.

The other extension consists of restricting the scope of theweak preadditivity ax-
iom to subsetsA,B,C such asA∩(B∪C) = ∅ andC ⊆ B. Any relative confidence
relation≥κ obeying this restriction of the preadditivity axiom is representable by a
plausibility function in the sense of Shafer [WON 93].

3.6. Conditioning in non-additive representations

The generalization of the notion of probabilistic conditioning to other theories of
uncertainty is not straightforward for two reasons.

– As pointed out in section 3.3.2, probabilistic conditioning is often directly de-
fined as a ratio of two quantities and not as the probability ofa genuine conditional
event. However, splitting the conditional event from the probability measure, one may
better understand how to generalise the notion of conditioning.

– Probabilistic conditioning has been used for several types of very different tasks:
learning from observations, prediction from a statisticalmodel and the revision of
uncertain information. Moreover, there are several ways offormally generalizing the
probabilistic conditioning. It is not obvious that the various tasks can be modeled by
the same form of conditioning.

First, a clarification is required. The quantityP (A | C) is often presented as the
probability of eventA whenC is true. The example below, due to Roman Scozzafava,
shows that it is a misconception.

Example 3.6. Let us consider balls drawn from a bagS containing five balls num-
bered from 1 to 5. It is clear thatP (even | {1, 2, 3}) = P (even | {3, 4, 5}) = 1

3 . If
one understands these results as:if the ball is in{1, 2, 3}, then the probability that it
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is even is1
3 andif the ball is in{3, 4, 5}, then the probability that it is even is13 , one

is logically led to conclude that the probability of the ballbeing even is13 in any case
sinceS = {1, 2, 3} ∪ {3, 4, 5}. However,P (Pair | S) = 2

5 .

The reason for this paradox is a misinterpretation of the conditional probability
P (A | C). In fact, this is the probability ofA when one does not know anything
else than the truth ofC (e.g. if it is only known that the number of the ball is in
the set{1, 2, 3} in the example above). Note that ‘knowing only that the ball is in
{1, 2, 3} or that the ball is in{3, 4, 5}’ is not equivalent to knowing nothing. Thus,
one should understandP (A | C) as the probability of an eventA | C which involves
a non-classical implication. The conditional eventA | C is different from the material
implicationC ∪ A since it is generally false thatP (A | C) = P (C ∪ A). Moreover,
it is not true thatP (A | C) ≤ P (A | C ∩B) (lack of monotonicity) while, of course,
P (C ∪A) ≤ P (C ∩B ∪A).

It is important to distinguish the prediction problem from the revision problem.
When dealing with prediction, we have at our disposal a modelof the world under the
form of probability distributionP issued e.g. from a representative set of statistical
data. This is what we call ‘generic information’ or ‘genericknowledge’ (e.g. medical
knowledge synthesized by causal relations between diseases and symptoms). Assume
we have some observations on the current state of the world, i.e. a particular situation
referred to as singular information, under the form of a propositionC (e.g. some med-
ical test results for a patient). One then tries to formulatesome statementsA about the
current world with their associated degrees of belief (e.g.predict the disease of the
patient). The conditional probabilityP (A | C) (e.g. the frequency of observation of
A in contextC) is then used for estimating a degree of belief that the current world
satisfiesA.

The revision scenario is different: given a probability distributionP (which may or
may not represent generic information), one learns that theprobability of an eventC
is 1 (and notP (C) < 1 as it was supposed before). Then the problem is to determine
the new probability measureP ′ such thatP (C) = 1, which is the closest toP in some
sense, in order to comply with a minimal change principle. Itcan then be shown that
if we use an appropriate relative information measure, it follows thatP ′(A) = P (A |
C), ∀A [WIL 80]. Note that, in the prediction problem, generic knowledge remains
unaffected by singular evidence which is handled separately.

Finally, learning can be viewed as bridging the gap between generic and singular
information. Bayes’ theorem is instrumental for letting prior knowledge be altered by
singular evidence when the validity of predictions have been checked. An important
problem is to see what remains of Bayesian learning when prior knowledge is in-
complete. While the answer to this question is not yet well understood, the imprecise
Dirichlet model [BER 05] provides some insight into this problem for imprecise prob-
abilities. For belief functions, little has been done as it is a theory of handling singular
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uncertain evidence and not so much an extension of Bayesian probabilistic modeling.
In the following, we focus on prediction, revision and fusion of evidence.

3.6.1. Conditional events and qualitative conditioning

De Finetti [DEF 36] was the first to regard the conditional probabilityP (A | C) as
the probability of atri-eventA | C that should be read ‘if what is known is described
by C then concludeA’, whereA andC represent classical propositions (interpreted
as subsets ofS). A tri-eventA | C partitions the set of statess ∈ S into three subsets:
either

– s ∈ A∩C, thens is said to be anexampleof the rule ‘ifC thenA’; the tri-event
is then true (value 1) ats; or

– s ∈ A ∩ C, thens is said to be acounter-exampleof the rule ‘ifC thenA’; the
tri-event is then false (value 0) ats; or

– s ∈ C, thens is said to beirrelevant to the rule ‘ifC thenA’, i.e. the rule does
not apply tos; the tri-event then takes a third truth value (I) ats.

The third truth value can be interpreted in various ways. According to Goodmanet
al. [GOO 91], it corresponds to an hesitation between true and false, i.e.I = {0, 1}.
This is philosophically debatable but suggests the equivalence between a tri-event
and a family of subsets ofS, lower bounded byA ∩ C (this is the case when we
chooseI = 0) and upper bounded byC ∪ A representing material implication (this
is the case when we chooseI = 1). It is easy to check that any subsetB such as
A ∩ C ⊆ B ⊆ C ∪ A satisfies the identityA ∩ C = B ∩ C. One therefore has an
Bayesian-like equality of the form:

A ∩ C = (A | C) ∩ C (3.36)

as this identity is valid for any representative of the family {B : A∩C ⊆ B ⊆ C∪A}.
This family is an interval in the algebra of subsets ofS, fully characterized by the
nested pair(A ∩ C,C ∪A).

The third truth valueI may be also seen as expressing ‘inapplicable’ [CAL 87].
This underlies the definition of a conjunction of conditional events, by means of a truth
table with three values, in a non-monotonic three-valued extension of propositional
logic [DUB 94a]. Lastly, for De Finetti and his followers [COL 02], the truth valueI
should be changed into the probabilityP (A | C). Indeed, the probabilityP (A | C) is
then seen as the price of a lottery ticket in a conditional betthat yields (if conditionC
is satisfied) 1 euro whenA takes place and 0 whenA does not take place. If condition
C (which is the precondition for the game to take place) turns to be false, the price
paid is reimbursed (the bet is called off).
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Relation (3.36) is the Boolean variant of Bayes equationP (A ∩ C) = P (A |
C) ·P (C). Moreover,P (A | C) is indeed a function ofP (A∩C) andP (C∪A) only,
since (ifP (C) > 0):

P (A | C) =
P (A ∩ C)

P (A ∩ C) + 1− P (C ∪A)
. (3.37)

It is therefore possible to separate the tri-event from the conditional probability.
There are therefore two ways of generalizing the probabilistic conditioning of confi-
dence functionsg that differ from probabilities.

1) Either one states thatg(A ∩ C) only depends ong(A | C) andg(C) via a
functionφ. This is the approach followed by Cox [PAR 94]. The constraints induced
by the Boolean algebra of events, together with some naturaltechnical conditions such
as the strict increasing ofφ, enforceg(A ∩ C) = g(A | C) · g(C) in practice.

2) Alternatively, the conditional measureg(A | C) is directly defined by replacing
P by g in equation (3.37).

The equivalence between the two approaches, which holds forprobabilities, is no
longer true for more general set-functions.

In the case of non-numerical possibility theory, with possibility values on a finite
scaleL, only the first option generalizing equation (3.36) is possible. We then state,
for lack of product operation:

Π(A ∩ C) = min(Π(A | C),Π(C)). (3.38)

This equation has no unique solution. Nevertheless, in the spirit of possibility theory,
one is led to select the least informative solution, i.e. forC 6= ∅ andA 6= ∅:

Π(A | C) = 1 if Π(A ∩ C) = Π(C), andΠ(A ∩ C) otherwise. (3.39)

This is similar to conditional probability, but there is no longer any division byΠ(C).
If Π(C) = 0, thenΠ(A | C) = 1 provided thatA 6= ∅. Conditioning by an impossible
event destroys information.

The conditional necessity measure is then defined byN(A | C) = 1−Π(A | C).
It coincides with the necessity of the material implicationexcept ifΠ(A∩C) = Π(C).
Note that the dual equationN(A ∩ C) = min(N(A | C), N(C)) is not very inter-
esting, since its minimal solution isN(A | C) = N(A ∩ C) = min(N(A), N(C))
which is the same as statingΠ(A | C) = Π(C ∪ A). On the other hand, the solution
of equation (3.38) captures ordinal conditioning of the previous section, since it can
be checked thatN(A | C) > 0 ⇐⇒ Π(A ∩ C) > Π(A ∩ C) whenΠ(C) > 0.
This means that a propositionA is accepted as true in contextC if it is more plausible
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than its negation in this context. The non-monotonic natureof this type of condi-
tional possibility can be seen by noticing that we may have bothN(A | C) > 0 and
N(A | B∩C) > 0, i.e. the arrival of informationB may lead to the rejection of propo-
sitionA which was previously accepted in contextC. See Benferhatet al. [BEN 97]
for a more detailed study of non-monotonicity in this framework.

3.6.2. Conditioning for belief functions and imprecise probabilities

Most of the time, the information encoded by a probability distribution refers to a
population (the set of situations that correspond to the results of the statistical tests).
This is a form of generic information, typically frequentist. This information can be
used for inferring beliefs about a particular situation forwhich we have incomplete
but clear-cut observations. This is called prediction. IfP (A | C) is the (frequentist)
probability of havingA in contextC, the confidence of the agent in propositionA
when they know informationC is estimated by quantityP (A | C), assuming that the
current situation is typical of environmentC. The belief of the agent in propositionA
in the current situation changes fromP (A) to P (A | C) when it has been observed
that C is true in the current situation and nothing else. Conditioning is used here
for updating the beliefs of the agent about the current situation by exploiting generic
information.

In the example of section 3.6, the probability measureP represents the medical
knowledge (often compiled under the form of a Bayesian network). The singular in-
formationC represents the results of tests for a patient.P (A | C) is the probability
of having diseaseA for patients for whomC has been observed; this value also es-
timates the singular probability (belief) that this patient has this disease. Note that in
this type of inference, the probability measureP does not change; only singular be-
liefs change. One only applies the available generic knowledge to a reference classC.
This is referred to asfocusing[DUB 98a].

When probabilityP is subjective, it may also have a singular nature (when betting
on the occurrence of a non-repeatable event). In this case, conditioning can be inter-
preted as updating a singular probabilityby a piece of information of the same nature.
In this case, informationC is interpreted asP (C) = 1, which represents a constraint
that has to be taken into account when revisingP .

An example of this is the case when some investigator suspects Peter, Paul and
Mary of being involved in a criminal affair with probabilistic confidence degrees14 , 1

4
and 1

2 respectively, and then learns that Peter has an alibi i.e.P ({Mary, Paul}) = 1
[DUB 96]. We then have to revise these singular probabilities. The use of conditional
probability for handling this revision of the probabilities is often proposed (and jus-
tified by the minimal change principle) which yields probabilities 1

3 and 2
3 for Paul
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and Mary, respectively. However, the problem of revisingP is different from that of
updating singular beliefs on the basis of generic information.

Lastly, one may also want to justify the revision of a frequentist probability af-
ter the occurrence of major events. In the example of the opinion poll about a future
election, let us suppose that the frequentist probability of being elected has been ob-
tained for each candidate (i.e. everyone supplied a precisefavorite candidate). Sup-
pose now that a candidate withdraws. What becomes of the probabilities? Applying
Bayesian conditioning in this situation is questionable, since it assumes that the votes
of the electors that previously supported the withdrawn candidate are transferred to the
other candidates in proportion to the number of potential votes previously estimated.
It would be more convincing to make the assumption that the transfer will be done
towards the nearest neighbors of the withdrawn candidate interms of political affinity
(which corresponds to the ‘imaging’ rule proposed by Lewis [LEW 76]). This case
questions the alleged universality of Bayesian conditioning, even for probabilities. In
such a situation, it would be better to run the opinion poll again.

In the case where the generic knowledge of the agent is represented by imprecise
probabilities, Bayesian plausible inference is generalized by performing a sensitiv-
ity analysis on the conditional probability. LetP be a family of probability measures
on S. For each propositionA, a lower boundP∗(A) and an upper boundP ∗(A) of
the probability degree ofA are known. In the presence of singular observations sum-
marized under the form of a contextC, the belief of an agent in a propositionA is
represented by the interval[P∗(A | C), P ∗(A | C)] defined by

P∗(A | C) = inf{P (A | C), P (C) > 0, P ∈ P}

P ∗(A | C) = sup{P (A | C), P (C) > 0, P ∈ P}.
It may happen that the interval[P∗(A | C), P ∗(A | C)] is larger than[P∗(A), P ∗(A)],
which corresponds to a loss of information in specific contexts. This property reflects
the idea that the more singular information is available about a situation, the less in-
formative is the application of generic information to it (since the number of statistical
data that fit this situation may become very small). We see that this form of condition-
ing does not correspond at all to the idea of enriching generic information; it is only a
matter of querying it.

Belief and plausibility functions in the sense of Shafer [SHA 76] are, mathemat-
ically speaking, important particular cases of lower and upper probabilities although
these functions were independently introduced without anyreference to the idea of
imprecise probability. Information is supposed to be represented by the assignment of
non-negative weightsm(E) to subsetsE of S. In a generic knowledge representation
perspective,m(E) is e.g. the proportion of imprecise results of the formx ∈ E in a
statistical test on a random variablex. In this framework, plausible inference in context
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C consists of evaluating the weight functionm(· | C) induced by the mass function
m on the set of statesC, taken as the new frame. Three cases should be considered.

1) E ⊆ C: In this case,m(E) remains assigned toE.

2) E ∩ C = ∅: In this case,m(E) no longer matters and is eliminated.

3) E ∩ C 6= ∅ andE ∩ C 6= ∅: In this case, some fractionαE ·m(E) of m(E)
remains assigned toE ∩ C and the rest, i.e.(1 − αE) ·m(E), is allocated toE ∩ C.
Note that this sharing process is unknown.

The third case corresponds to incomplete observationsE that neither confirm nor
disconfirmC. We do not have enough information in order to know if, in eachof
the situations corresponding to these observations,C is true or not, since onlyE is
known. Suppose that the values{αE , E ⊆ S} were known. It is always known that
αE = 1 andαE = 0 in the first and second cases, respectively. Then, we can build
a mass functionmC

α (·). Note that a renormalization of this mass function is generally

necessary as soon asPl(C) < 1 (lettingmα(· | C) =
mC

α (·)
Pl(C) ). If one denotes the

belief and plausibility functions obtained by focusing onC by Belα(A | C) and
Plα(A | C), based on the allocation vectorα, the conditional belief and plausibility
degrees onC are defined by

Bel(A | C) = inf
α
Belα(A | C)

and
Pl(A | C) = sup

α
Plα(A | C).

One still obtains belief and plausibility functions [JAF 92] and necessity and possi-
bility measures if we start with such measures [DUB 92a]. Thefollowing results show
that what is obtained is a generalization of Bayesian inference:

Bel(A | C) = inf{P (A | C) : P (C) > 0, P ≥ Bel} =
Bel(A ∩C)

Bel(A ∩ C) + Pl(A ∩ C)
,

P l(A | C) = sup{P (A | C) : P (C) > 0, P ≥ Bel} =
Pl(A ∩C)

Pl(A ∩C) +Bel(A ∩C)
.

It is easy to see thatPl(A | C) = 1 − Bel(A | C), and that these formulae
generalize probabilistic conditioning under equation (3.37).Bel(A | C) is indeed a
function ofBel(A ∩ C) and ofBel(C ∪ A) (and similarly forPl(A | C)). Note that
if Bel(C) = 0 andPl(C) = 1 (complete ignorance regardingC), then all the focal
sets ofm overlapC without being contained inC. In this case,Bel(A | C) = 0 and
Pl(A | C) = 1, ∀A 6= S,∅; one cannot infer anything in contextC.
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The other conditioning, referred to as ‘Dempster conditioning’ and proposed by
Shafer [SHA 76] and Smets [SME 94], systematically assumesαE = 1 as soon as
E ∩C 6= ∅. It supposes a transfer of the full mass of each focal setE toE ∩ C 6= ∅
(followed by a renormalization). This means that we interpret the new informationC
as modifying the initial belief function in such a way thatPl(C) = 0; situations where
C is false are considered as impossible. If one denotes the plausibility function after
revision asPl(A || C), we have:

Pl(A || C) =
Pl(A ∩ C)

Pl(C)
.

This constitutes another generalization of probabilisticconditioning in the sense
of equation (3.36). The conditional belief is then obtainedby dualityBel(A || C) =
1−Pl(A || C). Note that with this conditioning the size of focal sets diminishes, thus
information becomes more precise, and the intervals[Bel, P l] become tighter (they
are always tighter than those obtained by focusing). Dempster conditioning therefore
corresponds to a process where information is enriched, which contrasts with focusing.
If Bel(C) = 0 andPl(C) = 1 (complete ignorance aboutC), conditioning onC in
the sense of Dempster rule significantly increases the precision of resulting beliefs.

In the more general framework of imprecise probabilities, ablind application of
revision by a piece of informationC consists of adding the supplementary constraint
P (C) = 1 to the familyP , i.e.

P∗(A || C) = inf{P (A | C), P (C) = 1, P ∈ P}.

P ∗(A || C) = sup{P (A | C), P (C) = 1, P ∈ P}.
However, it may happen that the set{P ∈ P , P (C) = 1} is empty (it is always the
case in the classical Bayesian framework sinceP is a singleton). One then applies the
maximal likelihood principle [GIL 92] and we replace the condition P (C) = 1 by
P (C) = P ∗(C) in the above equation. In this way, we generalize Dempster condi-
tioning (which is recovered ifP ∗ is a plausibility function).

This type of conditioning has nothing to do with the previously described focus-
ing problem since, in the view of Shafer and Smets, the mass functionm does not
represent generic knowledge but rather uncertain singularinformation (non-reliable
testimonies, more or less valuable clues) collected about aparticular situation. These
authors consider a form of reasoning under uncertainty where generic knowledge is
not taken into account, but where all the pieces of information are singular.

In the crime example, suppose that the organizer of the crimetossed a coin for
deciding whether a man or a woman is recruited to be the killer. This piece of uncertain
singular information is represented by the mass functionm({Peter, Paul}) = 1

2 (there
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is no information available about Peter alone and Paul alone), andm({Mary}) = 1
2 .

Now, if we learn that Peter has an alibi, the focal set{Peter, Paul} reduces to{Paul}
and we deduce, after revision, thatP ({Mary}) = P ({Paul}) = 1

2 . Note that the
Bayesian approach would split the massm({Peter, Paul}) equally between Peter and
Paul. Bayesian conditioning then yieldsP ({Mary}) = 2 ·P ({Paul}) = 2

3 , which may
sound debatable when dealing with uncertain singular pieces of information (let alone
at a court of law).

3.7. Fusion of imprecise and uncertain information

The problem of fusing distinct pieces of information from different sources has
become increasingly important in several areas such as robotics (multisensor fusion),
image processing (merging of several images), risk analysis (expert opinions fusion)
or databases (fusion of knowledge bases). However, fusion has received little attention
in the probabilistic tradition. In the frequentist view, one works with a unique proba-
bility distribution issued from a set of observations. In the subjectivist tradition, one
often considers that uncertainty is expressed by a unique agent. In the last thirty years,
the problem of fusing pieces of information has emerged as a fundamental issue when
representing information from several sources.

The fusion of pieces of information differs from the fusion of multiple criteria
or multiple agent preferences. In the latter case, one usually looks for a compromise
between points of view or agents. Each agent may be led to accept options that they
had not proposed at the beginning. In contrast, the aim of information fusion is to lay
bare what is true among a collection of data that are often imprecise and inconsistent.
Consequently, the operations that are natural for fusing different pieces of information
are not necessarily those needed for fusing preferences.

The fusion problem can be stated in similar terms independently from the rep-
resentation of uncertainty that is used: in each uncertainty theory, one can find the
same fusion modes even if they are expressed by different operations. In addition,
the fusion problem differs from the revision of informationupon the arrival of a new
piece of information (which is based on the notion of conditioning). The fusion prob-
lem is by nature symmetrical; sources play similar roles even if they may be (and are
often) heterogeneous. This contrasts with revision, whereprior information is mini-
mally changed on the basis of new information. When fusing pieces of information,
there may be no prior knowledge available. If there is any, itis modified by the pieces
of information coming from several sources in parallel.

In its simplest form a fusion problem, when the sources provide incomplete pieces
of information, can be stated as follows. Assume there are two sources 1 and 2 that
inform us about the value of a variablex taking its value inS. According to the first
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sourcex ∈ A1, while according to the second sourcex ∈ A2. The fusion problem con-
sists of deducing the most useful plausible information contained in what the sources
delivered. It is obvious that the result should depend on thequality of the sources.
There are three kinds of assumptions as follows.

1) The two sources are reliable. One concludes thatx ∈ A1 ∩ A2. This reasoning
presupposes that the pieces of information that we start with are coherent. IfA1∩A2 =
∅, then the hypothesis that the two sources are reliable no longer holds.

2) At least one of the two sources is reliable. One concludes thatx ∈ A1 ∪ A2.
This reasoning no longer presupposes that the pieces of information that we start with
are coherent. Thus ifA1 ∩ A2 = ∅, one can still deduce a non-trivial piece of infor-
mation (except ifx is an all-or-nothing variable). However, there is an important loss
in precision.

3) The two sources are identical and provide independent information. In this case,
one can consider thatA1 ∩ A2 is the set of values that are the most plausible (since
both sources declare them as feasible). The values in(A1 ∩ A2) ∪ (A1 ∩ A2) are
less plausible but not excluded (since at least one of the twosources declare them as
possible).

These three kinds of combination can be found in all formalisms. The first one
is calledconjunctive fusion, since it performs the intersection of the sets of values
that are possible forx according to each source. This is the usual fusion mode in
classical logic. If several propositions of the formx ∈ Ai are asserted as true, the
values resulting from the combination are those for which all the propositions are
true.

The second is calleddisjunctive fusion. It corresponds to a classical mode for deal-
ing with inconsistency in logic [RES 70]. If the propositions of the formx ∈ Ai are
contradictory, then one looks for maximal consistent subsets of propositions, assum-
ing that reality corresponds to one of these subsets (here reduced to{A1} and{A2}).

The third mode is of another nature: the hypothesis of independence of the sources
allows for a counting process. For each value ofx, one counts the number of sources
that do not exclude it. This number reflects the plausibilityof each of these values.
This is typically what is done in statistics, but in the latter case each observation is
supposed to be precise (x = ai) and comes from the same unique aleatory source in an
independent way. Moreover, it is also supposed that many more than two observations
are reported. Collecting statistical data agrees with the third fusion mode, which may
be termedcumulative fusion. In the above elementary case, it can be expressed by the
arithmetic mean of the characteristic functions ofA1 andA2, or in the form of a mass
distribution such thatm(A1) = m(A2) = 1

2 .
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In the following, we explain how these three modes of fusion can be expressed
in the different uncertainty formalisms studied in this chapter: probabilities, possibili-
ties, belief functions and imprecise probabilities. The closure condition supposes that
when one fuses pieces of information that are expressed in a given formalism then
the combination result should be also expressible in this formalism. We shall see that
this assumption may be problematic. Requiring this condition may forbid some fusion
modes. For instance, it is clear that cumulative fusion doesnot preserve the all-or-
nothing nature of the pieces of information in the above elementary case, contrary to
the situations for conjunctive or disjunctive fusions. In order to define all fusion modes
in all formalisms, we shall see that the result of the fusion brings us from a particular
setting to a more general one (for example from possibilities or probabilities to belief
functions).

3.7.1. Non-Bayesian probabilistic fusion

It is supposed that sourcei provides a probability measurePi onS. One looks for
a functionf which is non-decreasing, monotonic, from[0, 1]n to [0, 1] such that the
set-functionP = f(P1, . . . , Pn) is still a probability measure under mild conditions
such thatf(0, . . . , 0) = 0 andf(1, . . . , 1) = 1. Existing results show that, especially
under mild conditions,f(0, . . . , 0) = 0 andf(1, . . . , 1) = 1. The only possible fusion
function is the weighted average [LEH 81], i.e.

∀A ⊆ S, f(P1(A), . . . , Pn(A)) =

n∑

i=1

αi · Pi(A),

where
∑n

i=1 αi = 1 with αi ≥ 0, ∀i. This amounts to requiring that aggregation
commutes with marginalization.

This is a cumulative fusion mode. It considers the sources asindependent aleatory
generators of precise values and the weightαi reflects the number of observations
produced by sourcei. In the framework of expert opinion fusion, it is supposed that
each expert produces a probability measure expressing whatthey know about the value
of a parameterx. The weightαi reflects the reliability of experti, understood as the
probability that experti is correct. These weights are estimated by testing the expert
on questions, the answer to which is supposedly known [COO 91].

This is the only fusion mode allowed by this approach. One mayalso fuse prob-
ability densities by means of other operations such as the geometric mean, provided
that the result is renormalized, which broadens the spectrum of possible fusion op-
erations [FRE 85]. However, the commutation with marginalization operation is then
lost.
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3.7.2. Bayesian probabilistic fusion

Another approach to the fusion problem presupposes that sources provide precise
evaluationsx1, . . . , xn of the value ofx, but that these evaluations are inexact. The
probabilityP (x1, . . . , xn | x = sj) that sources jointly provide then-tuple of values
x1, . . . , xn when the real value ofx is equal tosj is supposed to be known. This
information models the joint behavior of the sources. Moreover, prior probabilitiespj
thatx = sj , ∀j are also supposed to be available. Under these hypotheses one can
compute, by means of Bayes’ theorem, the probabilityP (x = sj | x1, . . . , xn) that
the real value ofx is equal tosj when each sourcei provides a valuexi:

P (x = sj | x1, . . . , xn) =
P (x1, . . . , xn | sj) · pj∑n
k=1 P (x1, . . . , xn | sk) · pk

. (3.40)

Despite its appeal, this approach is very demanding in pieces of information. The
probabilityP (x1, . . . , xn | x = sj) reflects the dependency between sources. It is
seldom available, since it requires a great number of valuesto be specified. In practice,
it is easier to obtain the marginal probabilitiesP (xi | x = sj) that each sourcei
provides the valuexi when the real value ofx is equal tosj . By default, sources are
assumed to be conditionally independent of the true value ofx, which gives:

P (x = sj | x1, . . . , xn) =
P (x1 | sj) · . . . · P (xn | sj) · pj∑n

k=1 P (x1, . . . , xn | sk) · pk
. (3.41)

We need a prior probability about the value sources are supposed to provide in-
formation on. Such prior information is often missing since, if it were available, one
might not even need the pieces of information provided by sources. In practice, one is
obliged to provide a subjective estimate of the prior probability (taken as uniform by
default), which may influence the result. Nevertheless, letus remark that this fusion
mode is conjunctive (since the product of the likelihood functions is performed). One
might think of defining a disjunctive fusion mode by computingP (x = sj | x1 or . . .
or xn), the probability that the real value forx is equal tos given at least one of the
values provided by the sources.

3.7.3. Fusion in possibility theory

In this framework, each sourcei is supposed to provide a possibility distributionπi
defined onS. For fusing such pieces of information, the whole panoply offuzzy set ag-
gregation operations is available [DUB 87b, chapter 2], [CAL 02, FOD 00]. In particu-
lar, the three basic information fusion modes can be expressed and a resulting possibil-
ity distributionπ onS obtained under the formπ(s) = f(π1(s), . . . , πn(s)), ∀s ∈ S
for an appropriate operationf .
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For conjunctive fusion, one can use triangular norms [KLE 00] which are semi-
group operations of the unit interval (hence associative),monotonically increasing and
with neutral element 1. The main operations of this kind are the minimum operation,
the product and the linear conjunctionmax(0, a+ b− 1). The advantage of choosing

π(s) = min(π1(s), . . . , πn(s)), ∀s ∈ S

is the idempotency of this operation. If all sources providethe same distributionπ, it
is this distribution that is taken as the result. This property enables us to cope with the
case where the sources are redundant (e.g. when experts havethe same background
knowledge), without requiring any assumption about the independence of the sources.
However, if one is sure that the information sources are independent, it may be de-
sirable to have a reinforcement effect (if all the sources are considered to have a low
plausibility, there will be a very low global plausibility). This effect is captured by the
product:π(s) = π1(s) · π2(s) · . . . · πn(s), ∀s ∈ S.

The reinforcement effect obtained with the linear conjunction max(0, a + b − 1)
is much stronger, since values that are not considered as being plausible but are not
impossible are eliminated after the fusion. In fact, this operation applies when it is
known that a certain numberk of sources lie [MUN 92]. Then an information item
of the formx ∈ A proposed by a source is modeled asπi(s) = 1 if s ∈ A and
1− 1

k+1 otherwise, which is greater ask is large. The linear conjunction enables us to
confidently eliminate values which at leastk + 1 sources declare impossible.

All these operations clearly generalize the conjunctive fusion of two all-or-nothing
pieces of information and presuppose that the possibility distributions provided by the
sources are not contradictory. Nevertheless, the resulting possibility distribution will
often be sub-normalized (π(s) < 1, ∀s ∈ S). The quantityCons = maxs∈S π(s)
measures the degree of consistency between the sources. Thefusion result may be
renormalized if it is certain that the sources are reliable (since the true value ofx is
among the values that are not eliminated by any source, even if its possibility is very
low). When sources are independent, we get

π(s) =
π1(s) · . . . · πn(s)

maxs∈S π1(s) · . . . · πn(s)
, ∀s ∈ S. (3.42)

Renormalization preserves associativity if the combination operation is the prod-
uct. However, when renormalization is applied to a minimum operation, associativity
is lost [DUB 88]. Let us note the striking similarity betweenBayesian fusion equa-
tion (3.41) and possibilistic fusion equation (3.42), especially when lettingπi(s) =
P (xi | x = s), justified above. The difference between the two fusion operations lies
in the presence of the prior probability in equation (3.41) and in the type of renormal-
ization (probabilistic or possibilistic). The two resulting distributions are even pro-
portional if a uniform prior probability is chosen in equation (3.41). This coincidence
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between Bayesian and possibilistic approaches indicates their mutual coherence, and
confirms the conjunctive nature of Bayesian fusion. However, the similarity of nu-
merical results should not hide a serious difference at the interpretation level. In the
probabilistic framework, it is supposed that the posteriorprobability of each possible
value ofx can be computed in a precise way. In the possibilistic framework, and in
agreement with the non-Bayesian probabilistic tradition,fusion only provides a likeli-
hood degree for the possible values ofx. This information is poorer than a probability
degree; probabilistic information is too rich in the case ofpartial ignorance.

When the value of the consistency index is too low, renormalization makes the con-
junctive fusion numerically unstable [DUB 88]. Inconsistency is all the more likely as
the number of sources is high. In this case, disjunctive fusion becomes more appro-
priate and relevant. For the latter fusion mode, triangularco-norms [KLE 00] can be
used. They are semi-groups of the unit interval, monotonically increasing and with
neutral element 0. Co-normsu are obtained by the De Morgan duality from triangular
normst under the formu(a, b) = 1− t(1−a, 1− b). The main operations of this kind
for disjunctive fusion are the maximum operation, the probabilistic suma + b − ab
and the bounded summin(1, a+ b).

This type of fusion operation does not require any renormalization step. However,
since it supposes only that one source is reliable, the obtained result may be very
imprecise (particularly if the number of sources is high) due to the higher risk of
scattered pieces of information. It is then possible to use milder fusion modes.

For example, a quantified fusion may be used. It is assumed that there arek reli-
able sources amongn. A conjunctive fusion is first performed inside each group ofk
sources, and these partial results are then combined disjunctively. One may optimize
the value ofk by trying to maximize the informativeness of the result (in order to
choosek not too small), while minimizing inconsistencies (choosing k not too large)
[DUB 94b]. One may also look for maximal sub-groups of sources that are together
consistent, then perform conjunctive fusion inside these groups and finally combine
these partial results disjunctively [DUB 01a]. This can be done for cuts of each possi-
bility distribution, which no longer leads to a possibilitydistribution for the result but
a belief function [DES 07b].

Finally, one may also apply a cumulative fusion mode to possibilistic pieces of
information, under the form of a weighted arithmetic mean

∑n
i=1 αi · πi when the

sources are numerous and independent. Nevertheless, the convex combination of pos-
sibility measures is not a possibility measure but again a belief function, since the
consonance of focal sets is not preserved by convex sum. Onlythe disjunctive fu-
sion of possibility measures based on the maximum operationprovides a possibility
measure [DUB 90a].
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3.7.4. Fusion of belief functions

It is now supposed that the two sources provide two mass functionsm1 andm2

defined on frameS. Shafer [SHA 76] has proposed a conjunctive combination rule
that may be related to the Bayesian fusion method and generalizes set intersection.
It amounts to performing the intersection of each focal setA1 of m1 with each focal
subsetA2 ofm2 and to allocate massm1(A1) ·m2(A2) to the subsetA1 ∩A2 (which
may be empty). In order to obtain a normal mass function, the result is renormalized
by dividing by the sum of masses allocated to non-empty subsets. It therefore leads to
an associative combination rule:

∀A ⊆ S,m(A) =

∑
A1,A2:A=A1∩A2

m1(A1) ·m2(A2)∑
A1,A2:A1∩A2 6=∅

m1(A1) ·m2(A2)
. (3.43)

It is easy to check that this fusion rule is also commutative,but non-idempotent.
This rule supposes that the informationsources(not the underlying variables) are
independent. The normalization factor is an evaluation of the consistency between
the sources. One may also notice that the plausibility function Pl induced bym,
restricted to the singletons inS, satisfies the property:∀s, P l({s}) is proportional
to the productPl1({s}) · Pl2({s}) (equality holds if the sources are consistent, i.e.
∀A1, A2 : A1 ∩A2 6= ∅).

Applying this combination rule to two possibility measuresΠ1 andΠ2, it can be
seen that the resulting mass function is not necessarily consonant (if the focal setsA1

of m1 andA2 of m2 are nested, it may not be the case for the subsets of the form
A1 ∩A2). Nevertheless, the possibilistic fusion rule equation (3.42) is an approxima-
tion of Dempster rule in this case, since it provides a possibility distribution that is
proportional toPl({s}).

This fusion rule may also be applied to probability distributions p1 and p2. It
amounts to performing productsp1(s) · p2(s), ∀s ∈ S and renormalizing the distribu-
tion thus obtained. If one combines a mass functionm1 with a probability functionp,
what is obtained is a probability distribution proportional to p(s) · Pl1(s). Combin-
ing three mass functionsm1,m2 andm3 by Dempster rule, where the last one is a
probability (m3 = p), is equivalent to applying the Bayesian fusion rule to sources 1
and 2 while viewingPl1({s}) andPl2({s}) as likelihood functions andm3 as a prior
probability.

Dempster rule is also numerically unstable when the sourcesare not very consis-
tent, i.e. when the renormalization factor in equation (3.43) is small [DUB 88]. In this
case, one may use the disjunctive counterpart to the Dempster rule, which amounts to
replacing intersection by union in equation (3.43), i.e. [DUB 86b]:

m(A) =
∑

A1,A2:A=A1∪A2

m1(A1) ·m2(A2).
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Renormalization is then of no use, since this disjunctive fusion is a union of ran-
dom sets, but the result is more imprecise. The resulting belief functionBel is the
product ofBel1 andBel2: Bel(A) = Bel1(A) · Bel2(A), ∀A ⊆ S. Applied to
probability distributionsp1 andp2, the result of the disjunctive fusion is no longer a
probability measure but a belief function whose focal sets are singletons or 2-element
subsets (the closure property is violated).

Rather than adopting a disjunctive combination uniformly,alternative op-
tions have been proposed for handling the mass of conflictCONF =∑

A1,A2:A1∩A2=∅
m1(A1) ·m2(A2) when it is too large.

– Smets [SME 98] suggested abstaining from renormalizing, thus laying bare the
conflict. Then the un-normalized Dempster rule is equivalent to multiplying common-
ality functionsQi(A) =

∑
A⊆Emi(E).

– Yager [YAG 87] proposed to assign the mass of conflict to the whole frameS,
turning inconsistency into ignorance.

– Dubois and Prade [DUB 88] allocate the massm1(A1) ·m2(A2) to the setA1 ∩
A2 if it is not empty, and to the disjunctionA1 ∪A2 otherwise.

– Other authors share the massm1(A1) ·m2(A2) betweenA1 andA2 when they
are disjoint [SMA 06], and more generally betweenA1 ∩ A2, A2 \ A1, andA1 \ A2

regardless of whetherA1 andA2 are disjoint or not [YAM 08].

Under such schemes, associativity is generally lost. An extensive comparative dis-
cussion of fusion rules in the theory of evidence is providedby Smets [SME 07].

Belief functions are also compatible with a combination mode based on weighted
average. Indeed, the weighted arithmetic mean of mass functions is a mass function.
The belief functionBel =

∑n
i=1 αi · Beli has a mass function

∑n
i=1 αi ·mi. This is

a generalization of non-Bayesian probabilistic fusion, which also applies to the fusion
of possibility measures without preserving the nestednessof focal sets. The weighted
arithmetic mean of products of belief functions is therefore a belief function.

The arithmetic mean is instrumental for the discounting of abelief function pro-
vided by a source with low reliability as pointed out by Shafer [SHA 76]. Letα be the
probability that the source providing the belief functionBel1 is reliable. It means that
with a probability1−α nothing is known, which corresponds to a second source pro-
viding the non-informative mass functionm2(S) = 1. The weighted arithmetic mean
of these mass functions ism = α ·m1 + (1 − α) ·m2. The mass allocated to the in-
formative subsetA ⊂ S decreases sincem(A) = α ·m1(A), while the mass allocated
to the whole frame, i.e. the tautology (m(S) = α ·m1(S) + (1− α)) increases.

It is not very easy to find natural idempotentconjunctivefusion rules for belief
functions using mass functions. Dubois and Yager [DUB 92b] propose a methodology
for building such fusion rules by duplicating focal sets andsharing masses in order to
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make the two mass functions commensurate. However, there isno unique combination
scheme resulting from this process, even if this approach enables the minimum rule to
be retrieved if the two belief functions are consonant [DES 07a].

Duboiset al. [DUB 01b] show that the minimum rule of possibility theory can
be interpreted as a minimal commitment fusion of consonant belief functions, in the
sense of the commonality-based information ordering. Recently, Denoeux [DEN 08]
proposed using the decomposition of a non-dogmatic belief function (m(S) > 0) as a
Dempster combination of simple support functions:

m = ⊕A⊂SA
w(A)

whereAw(A) denotes the simple support belief function with mass functionmA such
thatmA(A) = 1 − w(A) andm(S) = w(A). In fact, not all belief functions can
be expressed this way, unless we admit that some terms in the above equation are
fictitious simple support belief functions for whichw(A) > 1. The decomposition
then exists and is unique for non-dogmatic belief functions[SME 98].

The idea of the idempotent rule is then to combine weight functionsw event-wise
using the minimum. However, when applied to consonant belief functions, it does not
retrieve the minimum rule of possibility theory. The question of finding a canonical
idempotent fusion rule in the theory of evidence consistentwith that of possibility
theory is still an unresolved problem.

3.7.5. Merging imprecise probability families

The fusion of imprecise probabilities is not really in agreement with the fusion
of belief functions. Given two famillesP1 andP2 of probabilities provided by two
reliable sources, it is natural to consider that the result of a fusion is the intersection
P = P1 ∩ P2, when non-empty. In contrast with Dempster rule, this fusion mode
is idempotent. But, while it sounds hard to justify Dempsterfusion rule in terms of
imprecise probabilities, in the same way it is not easy to express the mass function in-
duced byP1∩P2 in terms of the mass functions induced byP1 andP2. One may apply
the idempotent fusion of imprecise probabilities to belieffunctions, by performing the
intersection of setsPi = {P : P (A) ≥ Beli(A), ∀A ⊆ S} for i = 1, 2. How-
ever, the lower bounds of the induced probabilities are not generally belief functions.
Chateauneuf [CHA 94] explores these issues in some detail, although many questions
remain unanswered.

3.8. Conclusion

This chapter offers an overview of uncertainty representation frameworks where
the problems of collecting observations tainted with variability and of representing
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incomplete information are carefully distinguished. The former naturally leads to a
probabilistic approach. The latter situation is more naturally described in terms of
sets of mutually exclusive elements and belongs to the realmof logic (if the variables
describing a problem are Boolean), or of interval analysis (for numerical variables).
The existing new uncertainty theories are hybrids of these basic approaches, some
variants being purely ordinal. It includes the case of linguistic information dealing
with numerical variables (fuzzy set theory).

This synergy between uncertainty representation frameworks is fruitful since it
provides very expressive formal tools for the faithful representation of pieces of in-
formation along with their imperfections. It contrasts with the Bayesian theory of
subjective probabilities, which appears to be incapable ofensuring a clear distinction
between uncertainty due to variability and uncertainty dueto ignorance.

The unified view offered here also enables formal notions from set theory or prob-
ability theory to be generalized to other settings. For example, one can introduce con-
ditioning independent of the notion of probability even in symbolic representations
of the logical type, or use logical connectives for combining probabilities, fuzzy sets
or random sets. Finally, injecting interval analysis into the notion of mathematical
expectation leads to non-additive Choquet integrals studied in Chapters 10 and 17.
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Chapter 4

Human Decision: Recognition plus Reasoning

4.1. Introduction: the neurobiology of decision, reasoning and/or recognition

Language is a human activity – “Decision making is, in fact, as defining a human
trait as language” [DAM 96] – and its neurobiological aspecthas been the subject of
many investigations. Also, decision making is no less a human activity than language,
yet it was not until the later years of the 20th century that any investigations into its
neurobiological component were made [DAM 94, DAM 96].

Broadly summarized, the work of these researchers led to twoimportant results.
The first, due to Damasio and some others, was the finding that there is an integrating
center for rational decision making situated in the ventro-medial part of the pre-frontal
cortex of the brain [BER 03, DAM 94, FUR 96]. Deterioration ofthis zone causes
irrational behavior in hitherto rational subjects (see forexample the case of Phineas
Gage, [DAM 94]). One of the ways in which subjects with damagein this part of
the brain are affected is an indifference to, or inaccurate estimation of, risk [ADO 96,
DAM 94]. According to Adolphset al. [ADO 96, p. 162],

“Subjects with VM (ventromedial) frontal lesions, however, do not show this
switch in strategy. They invariably lose money on the task asa result of contin-
uously choosing cards from the risky decks, even after they have had substantial
experience with the decks, and have lost money on them. Interestingly, the VM
frontal patients are quite aware that they are losing money,and some even fig-
ure out the fact that the decks from which they are choosing are likely to be
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more risky. None of this knowledge, however, appears to influence their abnor-
mal behavior, and they continue to choose from risky decks despite continued
losses.”

Another interpretation, by the author of this chapter [POM 97b], has not been the
subject of experiment before now. It appears as though the subjects become unable to
arbitrate between the short and the long term, preferring more or less immediate sat-
isfaction to future gains (or losses), giving the impression that risk has not been taken
into account. This lack of ability to anticipate is clearly the case in fronto-temporal
dementia [BER 03, SCH 98].

The second result, on which Damasio has placed much emphasis, is the role of the
emotions in decision making [DAM 03, KOE 07]. It is this that has led him to play
down the part of reasoning in decision. We shall return to this role of the affective side
in section 4.5, which is devoted to biases and in particular to the ‘frame effect’. It is
difficult to deny that the emotions play a role in decision making, and emotions can
actually be modeled as shown by [SIM 95]. Various models can be proposed at the
cognitive level, including reinforcement and short-circuiting effects. In the literature,
the process of ‘intuitive’ decision making is always that ofimmediate decision making
triggered by an affective, visual or other stimulus. This opposition or complementarity
between recognition of a pattern and reasoning has already been recognized as intu-
ition versus analysis [e.g. ARK 86, HAM 87, ROU 83]. Klein [KLE 93] used the ex-
pression ‘recognition-primeddecision making’, the recognition being that of matching
to some pattern in making the decision. According to Berthoz[BER 96, p. 89], “The
brain is a matching machine and a simulator of alternative, not a ‘representational’
machine”.

The two drivers of decision making, reasoning and/or recognition, are both inti-
mately involved in human decision making. But is it in fact specifically human? Or
does the reasoning component grow during the course of evolution, thus indirectly
confirming its place in the frontal lobe, the most recent partof the brain? Between an
earthworm taking the decision to retreat from a drop of acid and a sheep fleeing from
the shadow of a glider that it has mistaken for a predator, nature offers a wide range
of decisions based on the recognition of more or less complexstimuli. First of all, be-
tween earthworm and sheep, it is the complexity of the stimulus that grows. According
to Berthoz [BER 96, p. 84],

“But we have also proposed the idea that,. . ., higher central loops that have in-
creasingly gained complexity during evolution operate on another mode that we
have called a projective process. In this mode, signals are processed in internal
loops having no direct link with sensors.”

Afterwards comes a capacity for Pavlovian learning in birdsand mammals. Is it
therefore not the beginnings of reasoning when the dog fetches its leash when its
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master puts on his coat? These capacities culminate in man where, at a much higher
level, they enable learning and reasoning.

A final to mention is that one must have a memory in order to reason. As Newell
and Simon pointed out [NEW 72], ‘intelligent’ information processing systems all
have the form of a stimulus detector/interpreter, one or more memories and the ca-
pacity for symbolic reasoning. The brain is no exception to this. Therefore, in human
development, memory, reasoning and decision making have grown in concert. We
may include language in this list since language has features in common with decision
making. In both cases, there is an ability to form a chain involved, placing end-to-end
sounds, words (for language), images and memories of eventsand alternatives (for de-
cision making) [CAL 91, CAL 94]. Reasoning through scenarios strongly resembles
a language adapted to decision making.

In this chapter we shall review the two aspects of decision making. First of all
we shall state the standard and indispensable framework of decision models, then we
shall examine the point of view of its detractors. Next we shall consider decision by
recognition, then decision by reasoning and finally decision biases, which will take us
back to the brain.

4.2. Procedural rationality and limited rationality

4.2.1. Savage’s expected utility model

Savage’s model (see Chapter 9 and [DUB 03]) is well known and has been much
discussed; however, it will be useful here to recall the model and to see what it really
means in terms of alternative.

The first purpose of Savage’s model [SAV 54] is to provide a formalized, coherent
framework in which to consider decision making. First of all, Savage rightly empha-
sizes the difference between what the decision maker does not control (the eventsE)
and what he controls (the alternativesA). Taking the simple example of whether or
not to take one’s umbrella the following day, we have two possible alternatives (TU)
and (NTU). We may assume that there are only two events the following day: either
it rains (R) or stays fine (NR). We define the function of the setA × E in the set of
outcomes or consequencesC (in generalC = R) by the matrix shown in Table 4.1.

R NR
TU 1 0

NTU –2 2

Table 4.1.A decision matrix
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Here the set of outcomes is{−2, 1, 0, 2}. Savage states that if the decision maker
satisfies a certain number of coherence axioms on the choice of alternatives (in the case
where the alternativesA are isomorphous withR) then there exist probabilities onE
and a utility functionU (i.e. a mapping ofC ∈ R) such that the alternative chosen
by the decision maker gives the maximum utility expectationfor the probabilities
in question. Savage’s theorem is often used inversely in supposing that if we have a
coherent set of probabilities onE (future events), then the decision maker will be wise
(rational?) to choose the alternative that maximizes the utility expectation.

Savage’s model formalizes extremely important notions before it is even necessary
to consider the theorem itself. The first notion is that of thestrict separation between
the alternatives, the outcomes and the events. This is a fundamental point since most
people unschooled in decision making are incapable of seeing the difference. They
consequently attribute to their alternatives – in general to their intelligence – what is
merely luck. A large dose of modesty is needed to admit that you were just lucky
rather than intelligent when the outcome of a decision is good. Thus, if the probability
of rain is 75% and you don’t take your umbrella, you can have the same outcome, 2,
if it doesn’t rain. It is luck, because you have been a poor decision maker. The inverse
is also true: you can take an excellent decision, and if a low-probability event occurs,
the outcome is catastrophic (in this case we don’t hesitate to blame bad luck). This
separation between event and alternative, leading to the distinction between alternative
and outcome, is, as Howard [HOW 88] humorously puts it, perhaps the most important
contribution of decision theory. To be convinced, just watch how people play the stock
exchanges.

We may nevertheless wonder if it is realistic to separate theworld into alternatives
and events. There are alternatives that can modify events. For example, if the alterna-
tive of a company director is to fix a price, and if the events are the re-alternatives of
his competitors, it is clear that the two cannot be separated(especially in an oligopoly).
To deal with this we need other models, in this case from game theory. The separation
between the decision maker and the environment, including the social environment,
is in general merely a simplifying assumption (see [BOL 79] for a reasoned criticism
of this type of modeling), but is a necessary assumption if any analytical light is to be
shed on decision and rationality.

In a more limited context, Gilboa and Schmeidler [GIL 95] give two examples of
decision where the separation between alternative and event does not lead to the kind
of thinking that will actually solve the problem. The first case is of a company director
wishing to recruit a salesman. The possible alternatives are the candidates. In this par-
ticular case, the events do not arise naturally. The states of the environment represent
the qualities of the candidates, e.g. honesty, performanceand mobility. Describing the
states of the environment is equivalent to knowing all the qualities of all the candi-
dates according to each criterion. The uncertainty is of notknowing whether or not
the candidates have the qualities they are supposed to have,and it is this uncertainty
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that decision makers try to reduce to a minimum by getting information. In this type
of situation, multicriterion decision [e.g. POM 00] is a much more realistic way of
handling the problem.

A second example of Gilboa and Schmeidler is strategic decisions. Here the rea-
soning horizon is quite long, so that each event is actually aseries of events occurring
successively over a long period. As each sub-event can take on numerous guises, there
ensues a combinatory explosion in the number of events. To illustrate the difficulty,
put yourself in the place of George W. Bush before the Iraq war. Once again the alter-
natives are clear: ‘to go or not to go’. The events are more obvious than in the previous
example: the strength of the adversary, the attitude of his allies and public opinion are
all events that could affect the outcome. But the long-term events are just as important,
if not more so, as the short-term ones: what will be the impacton Arab countries? It
is absolutely impossible to cover all possible events. In fact, only a few more or less
likely scenarios can be assessed. In the latter case, Savage’s model provides a reason-
ably well-adapted framework, but the complexity of the events, and above all their
dispersion in time, reduces any hope of utility expectationthat would involve a prior
assessment of these events. In fact, we are merely able to evaluate a few scenarios
that form a tiny sub-set of the set of possible scenarios (andthis itself is no mean
achievement).

The most suitable model is therefore the decision tree whichexplicitly takes into
account the succession of events [RAI 68] but which does not solve the intrinsic
difficulty of giving credible conditional probabilities tothe various non-independent
chained events. Utility expectation cannot be of any help inany of these cases, which
is why Gilboa and Schmeidler [GIL 95, GIL 00] plead for case-by-case reasoning in
this type of situation.

It is perhaps important at this point to give an idea of the paradoxes that arise if
the model is not correctly posed. Consider the following example where the decision
consists of choosing between two horses, ‘Stagger Home’ and‘Knacker’s Delight’.
Which of the following two models described in Tables 4.2 and4.3 is the correct one?
[cf. POU 90].

Bet on My horse wins My horse loses
Stagger Home 50 –5
Knacker’s Delight 45 –6

Table 4.2.Model 1

In the first model you must always bet on Stagger Home because he dominates the
game (even with a leg in plaster?). In the second model, it depends on the probability:
you must bet on Knacker’s Delight once the probability of Stagger Home winning is
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Bet on p Stagger Home wins(p− 1) Knacker’s Delight wins
Stagger Home 50 –5
Knacker’s Delight –6 45

Table 4.3.Model 2

lower than 50/106. As can be seen, the model works well provided you choose the
correct one. In the first model, the alternatives and events are interlinked; the second
correct model excludes this.

In the light of this misleading model it is easier to understand why the formalized
framework of Savage represents an important step forward inthinking about decision
making, before even considering utility expectation.

4.2.2. Challenging utility expectation

The other important discussion stemming from Savage’s framework actually goes
back further than the publication of the book in 1954; it concerns the question of the
existence of accuracy probabilities, or any other measurement that can be applied to
events.

The same question arises, for example, with possibility measures or fuzzy mea-
sures [BOU 96, BOU 03, DUB 85]. In any case, we need to be able todistinguish
between events on the basis of the greater or smaller chance they have of occurring.
This is an extremely difficult problem. For repeated events,it is possible to record the
frequency and from this deduce the probability. For example, if you take the same train
every day, after a few months you can predict that your chanceof arriving at work on
time is, say, 80%. This is an example of frequentist probability.

In certain fields such as medicine, such frequency-based data is available. By con-
trast, if we want to know what the price of a barrel of oil will be in six months (higher
than today’s price or not?) we have changed context and it is now extremely risky and
presumptuous to give probabilities. Frequentist probability is of no help here. What
Savage’s model says is that even if there is no probability, if you respect the coher-
ence of your decisions, it is as if you were measuring the importance of events with a
probability. In other words, a coherent choice of alternatives reveals what you believe
to be the probability of the events.

Two criticisms of the model are possible. The first criticismis of the axioms and in
particular the axiom of independence (Savage’s sure-thingprinciple [SAV 54]), which
requires the utility function to be linear with respect to the probabilities [ALL 53].
This independence condition is of the same type as the independence in probability
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or in coordinates in multicriterion decision that entails the existence of a function of
additive choice [KEEN 76, WAK 89]. This correspondence is not surprising given that
if each event is assimilated to a criterion, Table 4.1 is noneother than a multicriterion
decision matrix and the choice of a valid alternative for allthe events comes down
to aggregating the set of criteria. In Cohen and Tallon [COH 00] there is a complete
review of those decision models in risk and uncertainty thatweaken the axiom of
independence.

The second criticism of the axioms concerns overall coherence in the choice of
alternatives by the decision maker. Some of these are highlytheoretical and do not
correspond to experience, especially constant alternatives whose outcome does not
depend on events.

If we set aside the criticisms of the axioms, we may state thatSavage probabilities
doubtless exist in theory but do not actually correspond to anything for real-life de-
cision makers. This criticism is especially important if weintend to apply the Savage
model inversely. That is, we now assume that the decision maker is capable of express-
ing probabilities about future events and we then deduce that if they want to remain
perfectly rational, they must maximize their utility expectation. Those probabilities
that the decision maker gives are calleda priori probabilities because they are given
before any observations are made in order to be updated in a Bayesian manner after-
wards. They are also called ‘subjective’ because they obviously depend on the subject
(i.e. they are based on nothing in particular). Here, the most radical criticism is to say
that such probabilities are also ‘subjective’ in the other meaning of the term, i.e. they
have no objective basis [DEF37, NAU 01]. This leads to modelsof non-probabilized
uncertainty, e.g. taking maximin as a decision criterion (i.e. the decision that is the
argument of MaxA MinE U(a, e)). More sophisticated risk models blend expectancy
with the influence of the worst existing outcomes [ESS 97, JAF88].

Even if it is reasonable to think that subjective probabilities do not actually exist,
we do have to concede from a purely pragmatic point of view that this does not prevent
people from making decisions. We must therefore come back toobserving the decision
makers. Two types of behavior emerge: on the one hand, we can put our faith in experts
who are assumed to be capable of giving probabilities that are not too absurd, and on
the other hand we can settle for sub-rational behavior. Thisbrings us to the framework
defined by Simon and to bounded rationality.

The criticisms leveled at probabilities can also be appliedto the utility function
since we know that it is not unique in representing the preorder. As soon as we use
cardinality, either in multicriterion decisions [POM 00] or when we use the utility
expectancy criterion, the final decision is dependent on thechosen utility. This throws
serious doubts on the validity of the model. This issue of cardinality is linked to the
commensurability of uncertainty and utility [DUB 03].
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4.2.3. Bounded rationality

From observing the way municipal decision makers in his hometown of Milwau-
kee made their decisions, Simon quickly became aware of the gap between actual
practise and the expected utility model. From then on he spent a large part of his life
trying to understand the mechanisms of human decision [SIM 91]. Many issues in
Simon’s work in the field of decision can be found in [POM 02].

While utility expectation does not offer good guidance, the‘Taylorian’ vision of
Dewey [SIM 77] is no more relevant:

– what is the problem?

– what are the possible alternatives?

– which one is best?

This simplistic vision, still in vogue with many engineers,is hardly operational.

– “Unfortunately, problems do not come to the administrators carefully wrapped
in bundles with the value elements and the factual elements neatly sorted” [SIM 97].
The decision environment is essentially ambiguous and depends on the individual
interpretation of the decision maker [BOL 79, MAR 76].

– “The alternatives are not given, they have to be constructed” [KEEN 92,
ROY 00].

– The best for which criterion? Which brings us back to Savageor multicriteria
analysis.

It was in view of these observations that Simon was to emphasize the diachronic
aspect of the decision process and introduce his well-knownthree stages that were to
become four [SIM 77]. According to Simon, the process beginswith three stages.

1) gathering all the possible alternatives;

2) determining the set of consequences of the possible alternatives;

3) evaluating all the possible consequences.

The novelty when compared with Dewey is clear: Simon is interested in the pro-
cess, he does not say ‘what are the possible alternatives?’ but ‘we have to gather them’.
Note also that the vain question of the best alternative is avoided in this approach.

Simon next adds several other aspects to the various phases of decision, in partic-
ular concerning the way the problem is posed and the quest forinformation. This was
to culminate in the famous four phases:

1) intelligence;

2) design;
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3) choice; and

4) review.

The role of the information is fundamental in the first two phases; we only choose
between those alternatives that we know and that we are able to document. As Simon
puts it: “the information drives the decision”.

In contradiction to the reproaches that are sometimes leveled at this approach, Si-
mon himself is perfectly well aware of the way the various phases are entangled and
he gives examples of about-turns. He even suggests that eachphase can be considered
recursively as a decision [SIM 77, p. 43]. However, what is undoubtedly most impor-
tant in this phase scheme is that, according to Simon, it would be difficult to pin the
decision to the moment of choice: “All the images falsify decision by focusing on the
final moment” [SIM 77, p. 40]. This change of attitude was to bring decision out of
the realms of mythology or epic (such as Caesar crossing the Rubicon or de Gaulle
launching Concorde) and to tie it to management and to information processing. Fi-
nally, note that Simon knew perfectly well that, the decision having been made, it still
has to be applied:

“In the foregoing discussion I have ignored the fourth phaseof decision making:
the task of carrying out decisions. I shall merely observe bythe way that seeing
that decision are executed is again decision-making activity.”

(Note that “fourth” should read “fifth”; the review phase wasnot mentioned in the
first edition of [SIM 77, p. 43] which was published in 1960.)

Simon then adds [SIM 77, p. 44]: “Executing policy, then, is indistinguishable
from making more detailed policy.” Basically, for Simon alternative and decision
are inseparable, and execution merely means focusing on thedetails of smaller and
smaller decisions that are closer and closer to the ground. This idea, which to the
author of this chapter is fundamental, has not yet been sufficiently exploited in man-
agement.

In the framework defined by Simon decision and information can be related, but
it contains little about choice and the role of the future. This is where we come up
against the cognitive limits of humans and their inability to know events in the indef-
inite future, yet which is necessary if one is to apply Savage’s model. In other words,
the combinatory explosion in the number of scenarios is too much for the brain to
cope with [POM 01]. This leads to some awkward questions suchas: how can a deci-
sion maker evaluate all the consequences of an alternative and compare them? Simon
actually gives an interesting definition of the knowledge ofa decision maker as his
ability to evaluate the consequences [SIM 97, p. 85]. This problem of evaluating the
consequences is central to any decision process. In the context of Savage, evaluating
the consequences assumes a knowledge of all future events and their probabilities. The
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evaluation of the consequences, the constraints and the aims all form a complex whole
in which it is not always easy to identify where reasoning hasits place. In theory, we
know what to do: we just have to maximize a utility function ona set of choices. The
difficulty comes in determining what actually is the role of reason when there is nei-
ther a clear set of choices nor a utility function, and we havebut a sketchy knowledge
of the future. This is the framework for Simon’s thoughts on rationality.

In fact, when it comes to ‘Administrative Behavior’, Simon knows that the ques-
tions listed at the beginning of this paragraph and, in particular, the one about the
evaluation of the consequences in uncertainty, cannot be solved by a human brain
within a utility expectancy model. Absolute rationality, where according to Dewey we
are meant to choose the best possible alternative after evaluating all the possible con-
sequences into the indefinite future, was afterwards named by Simon as substantive
rationality. Thus, according to Simon [SIM 97, p. 93–94], substantive rationality is a
failure because of the following.

– Rationality requires complete knowledge and total anticipation of the conse-
quences of choices. In practice, knowledge about consequences is always fragmentary
especially in risk or uncertainty. In the American tradition, one speaks of risk when the
decision maker possesses a degree of probability measure onthe events and of uncer-
tainty in the other cases. Here, the term ‘uncertainty’ is used to cover both cases. This
exhaustiveness issue is also central in Janis and Mann [JAN 77], see also [KLE 02,
p. 109].

– Consequences belong in the future and the imagination has to make up for the
lack of any experience to attribute values to them, but thesevalues can only be imper-
fectly predicted.

– Rationality requires the choice among all possible known alternatives (intangible
data) [MAR 93, p. 159]. In actual practice, only a small number of alternatives come
to mind.

– The decision maker does not have a total preorder on the consequences, i.e. they
have no utility function [MAR 93, p. 159], no total preorder that presupposes that the
alternatives are comparable [JAN 77]. Moreover, the preferences are not exogenous
and independent of the choice and alternatives [MAR 78, MAR 93, MAR 94].

As we can see, Simon’s criticism is based on the difficulty (except in very simple
cases) to correctly use the model of maximum expected utility (subjective expected
utility (SEU)). Each of the criticisms stated above corresponds to an implicit assump-
tion in the model of expected utility. To quote Simon [SIM 83,p. 14]:

“When these assumptions are stated explicitly, it becomes obvious that SEU
theory has never been applied and never can be applied – with or without the
largest computers – in the real world.”
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The amount of knowledge necessary to apply the model certainly justifies Simon’s
use of the adjective ‘Olympian’ [SIM 83, p. 19]. Simon therefore strives to replace
these Olympian assumptions by realistic assumptions. These assumptions were to be-
come the foundation of what in 1955 (reprinted in [SIM 79, chapter 11]) would be-
come limited rationality. They can be summarized as follows.

– The impossibility of ascribing probabilities to all events and even of merely enu-
merating all the possible events with their combinations.

– The fact that the decision maker’s preferences are not rational in the sense that
they maximize a utuility function; they are actually multicriterion and also changeable,
which leads to the impossibility of having an overall utility function for the choice.

– The decisions are spread out over time and, in organizations, form a time process
within which the sub-decisions are not mutually independent, but may be taken at
different moments and levels with non-identical criteria.Furthermore, preferences,
alternatives and aims cannot be separated (“Closely related to the idea that alternatives
generate their goals is the fact that alternative is itself an important goal in the lives
of many people” [MAR 93, p. 15].) The fact that the sub-decisions are taken locally
on partial criteria is clearly, and mathematically, opposed to any overall optimization
[SIM 83, p. 18].

– Information is fundamental and very strongly conditions decision making. This
becomes particularly clear when one sees the (small) numberof alternatives that an
individual is actually capable of studying. Attention alsoplays a considerable role in
framing the problem and conditioning the subsequent decision making. Attention is a
rare resource; a person can only fix their attention on a smallnumber of problems at
once, or even just one if they are very preoccupied.

In other words, since we do not have the wisdom of the gods, we must be satis-
fied with sub-optimal or ‘satisficing’ decisions. In practice, given the limitations just
pointed out, the decision process stops once the decision maker has found a solution
that gives them satisfaction within the assumptions that appear as the most likely or
that seem to dominate the other decisions while never being catastrophic.

Simon [SIM 84, p. 594] specifically refers to the maximin aspect of ‘satisficing’;
he also states that an alternative is satisfactory once it reaches or exceeds a certain
level of expectancy for the set of criteria considered by thedecision maker [MAR 93,
p. 161]. The notion of level of expectancy is linked to the form of the utility. Note also
that the level of expectancy varies during the search and is adapted locally according
to the difficulty of reaching it [SEL 02]. This notion of ‘satisficing’ tends to become
more and more preponderant in the work of Simon after 1960 [e.g. SIM 83].

The limited rationality of 1955 gives way progressively to ‘bounded rationality’
[SIM 72]. More often, this bounded rationality takes the form of an algorithm already
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underlying in 1955 in the form of a ‘satisficing rule’. The algorithmic aspect under-
lines the sequential and heuristic aspect of decision processes. According to Gigeren-
zer and Selten [GIG 02a], limited rationality can be summed up as the use of fast,
rough-cut and robust rules (1) for searching, (2) for stopping the search and (3) for
choosing [GIG 02].

This vision justified the use of the term procedural rationality [SIM 76] which Si-
mon from then on opposes to substantive rationality. The above evolution was accom-
panied by a growing interest by Simon in artificial intelligence (“Alternatives of ac-
tion and consequences of action are discovered sequentially through search processes”
[MAR 93, p. 191]). The heuristic process is characteristic of procedural rationality, for
the rationality is in the searching, whereas at the next higher level (meta [PIT 02]) re-
flection on ‘problem solving’ becomes substantive [MAR 93, p. 200]. The searching
is rational, and we therefore have a form of procedural rationality obeying a program
just like heuristic searching. The criterion for stopping the search is the satisfaction of
the decision maker when they have reached a ‘satisficing’ level in terms of expectancy.

Emphasis should be placed on the fourth level of rationalityfor it has a double
aspect. There is firstly the information aspect, i.e. the quantity of information that
an individual can process is limited. In the ‘information society’ in which we are im-
mersed, we can see that the gap is widening dramatically between potentially available
information and what a person can grasp (this is still truer with the Internet). Simon
[SIM 55] is explicit:

“Broadly stated, the task is to replace the global rationality of Economic Man
with a kind of rational behavior that is compatible with the access to informa-
tion and the computational capacities that are actually possessed by organisms,
including man, in the kinds of environments in which such organisms exist.”

This first aspect leads to the second idea that cognitive resources are limited, which
gives rise to some interesting developments [BEL 88]. In fact, with ‘Administrative
Behavior’, we find in the chapters devoted to psychology the first reflections on the
role in decision of attention, information and stress, reflections that were to lead on to
the problem of cognitive load related to decision. Given thelimited cognitive capacity
of humans, attention is a rare resource. It also plays an important role in decision
and this theme is expanded (“. . . the ways in which attention is allocated is critical
to understanding decision”) [MAR 93, p. 4] and is finally one of the key factors for
understanding the garbage can model [COH 72].

During the development of Simon’s thinking, with the brain treated as a symbol
processing system, cognitive limitation became a central element in limited rationality.

“In its simplest form, the theory of limited rationality is atheory of ‘how to
live’ in an infinite world while only disposing of very modestcomputing means;
means that are not dependent on the size of the real world, butonly on the local
environment and what you can do there” [SIM 84, p. 595].
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Simon often emphasized that man has to get by with what he has,and that does not
include an exhaustive study of the whole of the alternativesand their consequences.
Simon was subsequently often to set procedural rationality, which is the rationality
of examining the consequences in view of information limitations, cognitive capacity
and the attention of the decision maker against substantiverationality. The latter is the
rationality of the gods and is optimizing, while the former simply aims for satisfactory
(satisficing) solutions.

“The idea of limited, consequential rationality found in the book has become
more or less standard in modern theories of decision-making, at least outside
the hard core of orthodox neoclassical economic theory” [MAR 93, p. 9].

The model of bounded rationality is, for Simon, a centrist model [SIM 97, p. 331].
It stands between the point of view of those economists who only accept non-limited
rationality, in the Olympian sense, and who are only beginning to examine models
other than those of expected utility maximization and the point of view of those who
flee from the word rationality and who defend intuition and purely reactive behavior in
management (i.e. of the ‘case-based reasoning’ type). Thisis not sufficient to explain
why the notion of limited rationality had such an immense following for over half a
century. A more convincing explanation is that it was the first time that anybody had
tried to set up a scientific framework based on the fact that the real decisions of real
decision makers in real organizations could be a subject forinvestigation, with real
measurements of efficiency (efficiency criterion). This framework also took into ac-
count cognitive limitations and limitations of information and individuals’ reasoning.

4.2.4. Multicriterion decision

We have seen that Simon was one of the first to state with some scientific authority
the existence of more or less contradictory criteria in decision since it is one of the
components of limited rationality. The phenomenon has of course been known for
much longer by flesh and blood decision makers, and we even know of Benjamin
Franklin’s procedure for tackling the question. This consists of listing the arguments
‘pro’ and ‘con’ and then simplifying the table, the ‘pros’ and ‘cons’ of similar weights
cancelling, until one of the columns is empty (letter to Joseph Priestley, see [ZIO 92]).
It is not the purpose of this section to deliver a lesson on multicriterion decision;
diverse and varied monographs exist on the subject and its applications [BOUY 00,
POM 00, ROY 85, ROY 93].

Multicriterion decision is part and parcel of the human condition. Everyone wants
to have their cake and eat it, and a similar proverb surely exists in many languages.
This problem has no solution yet people always end up making decisions [KEE 77] un-
less they are disciples of French politician Henri Queuille(petit père Queuille(1901–
1993) was a president of the radical council of theQuatrième Républiquewho claimed
that there existed no problem to which a non-decision did noteventually provide
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a solution). As already mentioned, arbitrating between theshort and the long term
is the first inevitable and painful multicriterion choice. How to reach a compromise
[SIM 97]? From a neurobiological point of view we know now that the integrating
center for the various impulsions is the ventro-medial partof the pre-frontal cortex
and that certain abnormal behaviors are caused by an integration failure, the irrational
side being interpreted either as short-term dictatorship or as an uncontrolled emotional
receptivity.

As in the first example of Gilboa and Schmeilder, multicriterion decision is more
focused on the description of the characteristics of the possible alternatives than on
the events to come. In this regard, it is more worthwhile to beable to evaluate such
and such a characteristic than to look at the uncertainty of this characteristic across
all possible events. This is why most followers of multicriteria analysis appear to ig-
nore uncertainty: “Information versus uncertainty” always gives the same alternative.
Similarly, rapid decision making is worth more than long investigations on events in
the future, provided of course that the decision is not irreversible [POM 97a]. This is
evident in games such as the ‘beer game [STE 89] and studies inthe field of decision
with delayed feedback [KLEI 85, KLEI 93]. “The ability to select relevant variables
seems to be more important than procedural sophistication in the processing of that
information”, according to Kleinmuntz [KLEI 85, p. 696]. Inaddition, “When viewed
from this continuous perspective, decision making successcritically depends upon two
major factors: (1) the availability of the feedback and (2) the opportunity for taking
corrective alternatives based upon that feedback”, [KLEI 85, p. 682].

However, people do not like the tension generated by multicriterion choice [see
BER 03, KOT 91]. They often seek to rationalize their choice either by searching
for dominance [MONT 83, MONT 87] (this choice of dominance actually being con-
firmed by neurobiologists [BER 03, p. 306]), or by using analogy-based reasoning and
not aggregation, which is seen as a scientist’s attempt at rationalization. Often the de-
cision maker will, following the paths of heuristic search and of limited rationality,
prefer to proceed by trial and error via interactive methods[POM 00] and local adap-
tations according to levels of expectancy [LÉV 86, SEL 02].

4.2.5. Other models

We have seen the problems posed by the use of probabilities and utility expectation
within the model of Savage. We have also mentioned that it is possible to get rid
of probabilities by considering other models such as MaxMin. In decision practice,
sensitivity to the worst outcome is a well-attested phenomenon [MAR 87, TVE 95].
We even find the expression “extremeness aversion” in [TVE 93].

We can try to construct models that take into account the probabilities and the aver-
sion to large losses (ruin) [e.g. COH 88, JAF 88, LEL 94, RUB 88]. A more complete
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approach consists of taking into account the difference in value between the outcomes
versus the difference between the probability of their occurring [SHA 93]. These mod-
els try to ‘flavor’ the choice criteria by introducing aversion to large losses or large dif-
ferences in gains. We shall turn to the problem of low-probability events in section 4.5,
which are one of the main sources of error in human decision [MAR 87, MORE 02].
The use of belief functions by Dempster [DEM 67] and Shafer [SCH 76] enable mix-
ing of beliefs about the probability of future events with partial ignorance. In the model
of Smets [SME 90], a so-called pignistic transformation is used to transform belief
functions into probabilities at the moment of decision making [DUB 96].

In quite another way, it is perfectly legitimate to considerthat probabilities pro-
vide illusory information and to replace them by possibilities [DUB 85] which are
sub-additive measures (i.e. the measure of two disjoint events can be less than the sum
of the measures of each event). A distribution of event possibilities merely lists them
from the most to the least probable, and only the order counts. It is then possible, us-
ing a Choquet integral, to integrate over the whole set of outcomes in order to obtain
a possibilistic expected utility together with other decision criteria within a possibilis-
tic framework of axioms [DUB 95, DUB 01]. We then speak of qualitative decisions
since only the relative plausibility of events is taken intoaccount; no absolute mea-
sure of their probability of occurring is involved. In Dubois et al. [DUB 03], there is
a review of the various models and criteria that are based on weaker measures than
probabilities.

Recent and abundant investigations have shown that a model can be constructed
within this framework as coherent as that of Savage [DUB 02].A Savage-type model
can also be obtained by weakening the assumption of a total order on the alterna-
tives. In this case, instead of probabilities we obtain a preorder on events refered to as
qualitative probabilities [GIL 03, LEH 96].

Finally, we can simply have a preorder on the events and a preorder on the out-
comes to obtain an entirely qualitative decision model [DUB03]. Decision a is then
preferred to decision b if the set of events in which the outcome of a is better than
that of b is ‘greater’ than the set of events in which b outclasses a. It is remarkable
that a Savage-type axiomatic model can be reconstructed within such a framework
[DUB 03]. However, the decision rule so obtained is not very satisfactory because
we get outcomes of the Arrow theorem type, which amounts to only considering
the most plausible event to dictate the decision (the dictator phenomenon of Arrow
[DUB 02, DUB 03]). Note too that this model is free of a strong but hidden constraint
in the Savage model, namely the commensurability of utilities and probabilities. In
Savage’s model, there is a relation between the degree of uncertainty and the scale
used to measure the outcomes. Since we know the value of a certain equivalent of a
lottery, we can establish a direct relation between outcomes (the value of the certain
equivalent) and probability in the lottery.
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4.3. Decision based on recognition

4.3.1. Diagnosis and decision

As we have seen, it is not possible to deal with human decisionwithout at least
having thought of the future. On the other hand, as we have already mentioned, a
peacefully grazing herbivore’s decision to flee obeys a simple reaction triggered by
a stimulus. This reaction is encoded in the genes of the animal who probably has no
representation of the future, and is the result of evolutionary learning.

Such behavior exists in humans too in the form of reflexes, so that you do not need
to think before ducking to avoid a snowball in your face. Whenwe enter the domain
of reasoning where, at the very least, the decision maker hasthe time to envisage
representations of the future, it is useful to distinguish the two phases of diagnosis and
look-ahead. In this way we arrive at the following simplifieddecision process scheme
(Figure 4.1).
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Figure 4.1. The decision process (after [POM 97a])

The diagnosis phase consists of recognizing what is the current state of the world,
i.e. the past and the present. Next, we try to anticipate the consequences of the decision
in question in the light of our vision of the future; this is the projection phase. This is
the step which establishes the essential distinction between human decision and animal
decision. The incorporation of a larger and larger projection component happened
progressively in the course of evolution, but only became a species characteristic in
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man (homo sapiens or his ancestors?). This also explains whythere remains in human
behavior a large area of decision that is either reflex or based on decision patterns.
Rouse [ROU 83, p. 620] states that “humans, if given a choice,would prefer to act as
context-specific pattern recognizers rather than attempting to calculate or optimize”.

We have argued that the decision directly triggered by a recognition of the state of
the world, i.e. when the diagnosis calls a standard reaction, is an important, perhaps
frequent and even rational process within industrial processes [POM 97a]. Expert sys-
tems worked on this basis: a good diagnosis brings with it thedecision whether we
represent the states of the world in the form of rules as in expert systems or in the
form of cases [KOL 93, RIE 89]. The diagnosis phase consists of recognizing a state
of the world. If we have an exhaustive list of ‘diagnosable states’ associated with a
list of decisions and a one-to-one mapping between the two, we obtain the principle
of decision tables [POM 97a].

The situation is often more complicated, especially when the diagnosis does not
allow us to identify a case already recorded in the memory. Weshall examine the
model of Gilboa and Schmeidler which tackles this question of recognition when the
‘recognizable’ states are not recorded in the memory.

4.3.2. Case-based decision

The principle of case-based decision is simple. We assume there exists a decisional
case base in the memory, these cases representing the whole experience of the system.
Confronted with a new situation, the decision maker recognizes a case already met and
triggers the decision that best fits this case (a decision that has also been recorded in
the memory). If we stay within the simple case of the decisiontable, the problems that
arise are purely representational, i.e. we need to have a quite highly evolved language
or representation to capture the richness of each case and enable easy pattern match-
ing. These are questions of artificial intelligence which weshall not explore further
here; see the literature [e.g. KOL 93].

In reality, case-based reasoning cannot be reduced to matching since these systems
also (and above all) require learning ability. The case basemust be able to expand
with new, unrecorded cases and must also facilitate the decision if the system meets
hitherto unrecorded cases. The question that then arises ishow close the cases are to
one another. When can we say, to a given degree, that one case is close to another and
that the latter is a reasonable model for the decision being made? What we have to do
is to define distance between cases.

Gilboa and Schmeidler [GIL 95, GIL 00] proposed a framework to formally bring
together case-based decision and reasoning. Their idea is that each case is a triplet
(p, a, r) wherep ∈ P (the set of problems),a ∈ A (the set of possible alternatives)
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andr ∈ R (the set of outcomes). Case-based reasoning applies to problems. Gilboa
and Schmedler therefore define a function for similarity between problems:

S : P 2 → [0, 1]. (4.1)

This function gives the ‘distance’ between the two problems. The decision maker
also has a utility function on the results:

U = R→ R. (4.2)

The set of cases in the memory is denotedM . With this notation, it is possible to
measure the relevance or utility of the alternativea to a problemp given by:

Up(a) =
∑

(q,a,r∈M)

s(p, q)u(r). (4.3)

In other words, for fixeda andp we take all the problemsq in memory such that
(q, a, r) ∈ M are weighted by their similarity distance top (i.e. s(p, q)), which is
higher the closerq is top. It is then natural to choose the alternativea that maximizes
Up(a).

Gilboa and Schmeidler [GIL 95] provide axioms that ensure consistency in their
model. In the manner of Savage, if the choice of alternativesobeys the axioms of
consistency whatever the memories, a theorem guarantees the existence of a similarity
function such that the choice is that of maximizingUp(a). The reasoning is the same
as in Savage’s model, a coherent choice of the alternatives involving the existence of
a similarity distance between the problems (instead of the probabilities about events
in Savage). This similarity shows – and this is a major weakness of this type of model
– that the reasoning about the future (i.e. uncertainty) is contained in the similarity
function.

In Gilboa and Schmeidler [GIL 00], the model is extended to the similarity be-
tween pairs (problem, alternative) and triplets (problem,alternative, outcome). When
comparing Savage’s model with case-based reasoning as we have just set out, the main
advantage is that instead of knowing all states of the world and their outcomes in front
of various alternatives, it is sufficient to have a memory of past cases. Note also that
one of the useful points of the model is that it is enriched little by little by the intro-
duction of new cases, as well as by the refinement of the similarity function, as the
model is used (learning).

In recent work, Gilboa and Schmeidler [GIL 03] propose an axiomatic model to
derive probabilities from a memory of a case. The main factoris the number of oc-
currences of the case, and the higher the number the higher the associated subjective
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probability. This is basically another way of modeling the phenomenon of availability
(see section 4.5) or reinforcement already seen in [AND 83, AND 95], or of represen-
tation [TVE 82b, TVE 82c].

4.4. Recognition, reasoning and decision support

The processes at work in human decisions are complex, as evidenced by the work
of neurobiologists [BER 03, DAM 94, DAM 96, DAM 03]. Conscious, deliberate rea-
soning is not all that is involved. We have seen that the othermain direction in decision
is recognition. Even in animals such as the toad, recognition is tempered by context
and learning [BER 03]. Researchers wondered whether the best way of taking account
of this complexity was actually to ‘leave man in the loop’ andto design interactive de-
cision support systems (DSS).

4.4.1. Interactive decision support systems

DSSs tend to complement man in his reasoning by providing rational models and,
for recognition, extracting the relevant information features (stimuli) that are too nu-
merous for human processing. There exists a vast literatureon these systems [e.g.
ADA 02, ADA 03, BON 81, BUR 01, HUM 01, KEE 78, LÉV 89, MOR 02, SPR82].

In fact, when there is enough time to deliberatein decision making, the process
always comes back to the ability to construct representations of the future world and
to project oneself there. Consequently, decision support is first of all an aid to the
construction of scenarios and seeks to amplify this specifically human aptitude to con-
sciously project into the future.

As emphasized by Berthoz [BER 03] and as confirmed by the analysis of accidents
concerning bad decisions [BOY 91, MORE 02, PER 84], decisionbegins with the per-
ception and above all interpretation of stimuli in situation (or in context). Thus a DSS,
like any information processing system, is made up of a perception-interpretation
module, of a model base with which to make computations and projection (for exam-
ple through statistical regression) and a data base to serveas a memory (Figure 4.2).

Database

Dialog

User

Model base

Figure 4.2. Structure of DSS (after [SPR 87])
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Without entering into details [see BON 81, LÉV 89, MOR 02, TUR88], suffice it
to say that DSS designers have a tendency to attach more importance to the projection
part of the model than perception and diagnosis [POM 93, section 2]. This is how
DSS acquired the image of ‘what if’ analyzers or ‘look ahead machines’ [POM 97a].
This is not a false image, but it is simplistic in that it entirely neglects decision pattern
recognition with no projection taking place, either through lack of time or because
it is unnecessary, evolutionary learning or simply learning having provided suitable
responses.

To conclude, we can say that the field of interactive DSS is a very active one
and that these systems perform a frequent and invaluable service in many companies.
However, it remains very difficult to treat them with a general theory, each system
having a very precise purpose tending to lend it an ad hoc nature. The only rea-
sonably fertile general idea consists of analyzing them as heuristic search systems
[BON 81, LÉV 89, LÉV 95]. What happens is that the decision maker remains in
the loop and engages in a heuristic search guided and facilitated by the system. This
heuristic search essentially allows them to explore the future (‘what if’ analysis) and
to explore it at two levels: the level of data and the level of models [POM 03a]. It
is this twofold degree of freedom that makes systems such as spreadsheets so popu-
lar and effective [POM 02a, POM 03a]. Obviously, the heuristic search ceases once a
‘satisficing’ solution has been found. This takes us directly into bounded rationality.

4.4.2. Scenarios

Since the world of possibilities is very large if not infinite, human decision aided
by machine was to be endowed with scenarios (a small number compared with all pos-
sible ones). These scenarios were projected up to a time horizon that was dependent
on the context but that could be very distant, especially with strategic decisions, hence
the need for DSS. Even for a small number of scenarios, the combinatorics rapidly
become impossible for a human brain to handle.

The use of scenarios turned out to be the most common and reliable way of ex-
ploring the future. In its most formalized version, it takesthe form of a decision tree
[RAI 68, SCH 96, VON 86] or other graphic forms. When conditional probabilities
can be attached to various successive events, a backward folding type of reasoning
is obtained that rigorously allows the scenario with the best utility expectation to be
found. May we remind the non-specialist that the best eventual scenario is not, except
in restricted cases, simply the continuation of the best intermediate scenarios; there is
always opposition between the short and the long term!

Numerous other graphic methods have been derived from decision trees, in partic-
ular by reducing the requirement for probability independence between all the events
e.g. influence networks, Bayesian networks [OLI 90, SHE 94],various qualitative
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methods [OLI 90], and even methods without probabilities for representing the de-
cision context [BRÉ 02, POM 02b].

One of the important aspects of decision practice that is corroborated by our obser-
vations [BRÉ 02, POM 95] is linked to the simplification of scenarios in human rea-
soning. This is the use of alternatives considered as robustvis-à-visthe set of events
belonging to an ‘event’ node, which allows the node in question to be eliminated
[POM 01] and to obtain sequences of ‘relatively good alternatives’ that are often used
in practice.

Another way of mitigating the combinatory explosion consists of pushing as many
alternatives as possible to the end of the scenario (‘alternative postponement’; [see
POM 01]). This can be interpreted as a search for information(when this is possible)
before the action or as an illustration of the old decision method consisting of always
having two irons in the fire, i.e. we push back the choices whenthe real states of the
world are revealed. In dynamic programming this ability to keep as many possibilities
open for as long as possible is studied under the name of flexibility [ROS 01]. These
pragmatic ways of reasoning, although not issuing from substantive rationality, are
perfectly rational and fit well into reasoning by scenarios.

The DSS is then confronted with the question of the choice of scenarios: multicri-
terion choice, naturally, and conscious multicriterion choice, in that experience rapidly
shows people that you cannot win on every front. The way humans make choices has
not been well elucidated. According to neurobiologists, the brain works more through
inhibition of potential solutions than by choice. In other words, after a complicated
physiological process involving numerous parts of the brain, a dominant solution even-
tually inhibits all the other possible solutions. (Note here that we meet the ‘search for
dominance’ phenomenon described by Montgomery [MONT 83, MONT 87]. We can
all see this behavior when, after his purchase, an individual persuades themself that
they have chosen the best car or washing machine within theirconstraints.)

In the discharging of neurons there would appear to be threshold effects that result
in ‘winner takes all’. This type of phenomenon can certainlybe modeled in multicri-
terion decision by giving at one point a weight or a relative importance to the criteria,
a phenomenon that cannot be identified in the brain and that remains hidden in the
neurons. As pointed out by Keen [KEE 77], what is astonishingin decision is that
theoretically there is no solution but in practice one is nevertheless chosen (except in
the case of Buridan’s ass, which of course is academic!)

In the choice of scenarios, robustness is an important factor. Here we mean robust-
ness relative to events; we will not enter into the questionsof robustness relative to
data and to the parameters of the models [ROY 98, ROY 02, VIN 99]. In the case of
robustness related to events and the probability of their happening (or any other mea-
sure), we find ourselves in the Savage framework. It is an extremely complex problem
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to escape from the maximin criterion which is obviously robust against all events, and
to know what constitutes a negligible event or not [LEH 96, MON 98]. It is also all
the more difficult when we realize that a bad appraisal of small probabilities is a great
weakness of the human brain.

We find this negligence in many accidents. For example, the one or two days of
cold weather per century in Florida, assumed by the designers of the space shuttle
booster rocket joints, was wrong by a factor of ten. Very coldspells actually occur
at least once every ten years. This unfortunately led to the explosion of the shuttle
[MORE 02]. Note that in analyzing the accident befalling theshuttle Challenger, al-
though the engineers correctly considered that the failurerate for launching such shut-
tles is around 1%, the management put the figure at 1 in 100 000.This difference by
a factor of a thousand brings with it different behavior patterns: at 1% the matters are
taken seriously but at 1 in 100 000 one is negligent. According to Schelling [SCH 62,
p. vii]:

“There is a tendency in our planning to confuse the unfamiliar with the improb-
able. The contingency we have not considered looks strange;what looks strange
is thought improbable; what is improbable need not to be considered seriously.”

This relative inability of the brain to process and appreciate probabilities, even
when they exist in a realistic way, will be discussed in the next section together with
other examples of cognitive bias.

4.5. Cognitive biases

There are some unavoidable obstacles in the way of attempts at rationality in deci-
sion. The first is that of low probabilities: should we choosean alternative that can lead
to catastrophic outcomes such as the death of the decision maker in the event of very
low probability occurrences? For example, should we drive,or go out, in extremely
windy weather? Either we take an extremely pessimistic decision criterion such as
maximin and stay in bed all the time, or we treat exceptions asexceptions, coming up
against logical incoherence [DUB 03].

The principle of independence, or sure-thing principle, isanother obstacle because
it imposes a rationality that no one accepts: if you are in thehigher price range, there
are good reasons for choosing the fastest car but which has the highest fuel consump-
tion. In the lower price range, however, you will attach moreimportance to consump-
tion and will choose the model with the lowest even if it is less fast. This assumption
of linearity of preferences in relation to probabilities (or to multicriterion weightings)
is very strong. (See section 4.2.2; it is purely mathematical and is in no way rational
since it is not stupid to change one’s choice according to level of satisfaction.) The
non-respecting of other axioms that we have not discussed here also brings about se-
vere incoherence. Such is the case with the axiom of ‘irrelevant alternatives’ [POM 00]
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since, when one is not satisfied, one obtains paradoxes such as the so-called Talleyrand
method to force the choice [WOL 91]. To push decision makers towards the median
choice, all that is needed is the introduction of very bad or very expensive choices.

These facts are evident from experience, just as the violation of the principle of
independence. Since the founding criticism of Allais [ALL 53], numerous decision
experiments have been carried out in particular by Kahnemanand Tversky [TVE 67,
TVE 69, TVE 82a, TVE 83]. It is these results that we would liketo outline briefly
[KAH 82, KAH 00], relating them particularly to the problemsdiscussed in this chap-
ter.

We shall not dwell much on aspects relating to the emotions and the affective na-
ture of certain decisions, as in the ‘frame effect’ or the waythe context of a decision
is presented [SLO 88, TVE 88]. Numerous experiments have demonstrated the real-
ity of this effect, identified a long time ago by Tversky and Kahmeman. Zickar and
Highhouse [ZIC 98], however, showed that the size of this effect depends on indi-
vidual character traits. In Slovicet al. [SLO 02] there is argument for, and numerous
examples of, the involvement of feelings and emotion in decisions: an effect that is
obviously sensitive to the way the facts are presented. If wepresent the same risk sit-
uation in terms of possible deaths or in terms of possible survivors, the judgement of
most people is reversed. This is clearly pure irrationality, and it is the same whether the
public is being manipulated on small probabilities with theso-called principle of pre-
caution. We are not a long way from techniques of manipulation which naturally take
advantage of these biases, especially those of a sympathetic nature [CIA 01, JOU 87].

Among the effects that are directly linked to the theory, twocategories are quoted
here: questions relating to probabilities and those connected with the anchor effect
and expectancy level. A complete review of these biases can be found in Bellet al.
[BEL 88], Kahnemanet al. [KAH 82], Kahneman and Tversky [KAH 00], von Win-
terfeldt and Edwards [VON 86] and Chapter 12 of this book.

4.5.1. Biases linked to probabilities

We have already noted that low probabilities are not correctly perceived by hu-
mans, being either ignored [MAR 87] or overestimated [TVE 95]. Actually, with prob-
ability in the range10−3 − 10−6, it is difficult to realize the difference accurately and
dispassionately as the brain has no appropriate yardstick.However, catastrophic flood-
ing that happens every three years or every three thousand years makes a big difference
to the inhabitants. It is in fact around the level of probability of 10−3 that there ap-
pears to occur this modification in the perception of risk. People tend to dismiss the
risk under10−4, which corresponds to the probability of twelve or thirteenheads in a
row in a session of heads or tails. Under10−3, risk is accepted within certain limits
provided it is accompanied by the idea (or the illusion) of control. That is, the person
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thinks that they must be careful and is persuaded that they are capable of doing so
[MCK 93, PER 84].

For a driver in France covering 20 000 km in a year, the risk of injury in an accident
was 1/300 and the risk of death 1/4300 (1997 figures). The riskof death accepted by
climbers making at least one ascent per year in France is between 1/500 and 1/1000.
For an air passenger doing 20 000 km a year, the risk of dying is10−5, which is neg-
ligible. The automobile risk gives an idea of the maximum limit acceptable to an in-
dividual who is in control and free from any drug or alcohol influence or constraints,
of the order10−2 − 10−3. Another example of this psychological limit is in the 18th
century, 3% of the ships that were built eventually sunk in the sea. The activities of
ship owners and of sailors were considered risky and generated substantial income (at
least for the ship owner) if successful. Today the risk of shipwreck is around 3/1000
for all ships, and maritime transport has become just another activity (according to
naval historian Christian Buchet on TV Europe No.1, 2005).

At the other end of the probability scale, the effect of certainty is well authenti-
cated. The choice leading to a certain gain is always preferred to the hope of a lottery
win, which brings more money with a probability1 − ε and nothing with a proba-
bility ε. In this case however, the rationality is obvious and proverbial: a bird in the
hand is worth two in the bush. However, we come back to the previous discussion, for
while the behavior appears rational forε = 10−3, it is more difficult to justify it for
ε = 10−6. However, human nature is such that it is averse to risk for gain [KAH 00,
part 3].

Man doesn’t like to lose! From the work of Kahmeman and Tversky [KAH 79],
it is abundantly clear and has been confirmed many times by experiment that human
attitude to risk is not the same if it is a question of winning or losing. We have al-
ready noted the role played by large losses (the probabilityof ruin) and the aversion
engendered in the choices [COH 87, MAR 87, TVE 93, TVE 95] but,more generally,
all losses are the subject of risk taking (man is a risk taker with losses) whereas man
is prudent with gains (i.e. he is risk-averse for gain).

In other words, to avoid a certain loss of –10 man chooses lotteries of the style
depicted in Figure 4.3.

10%

90% 100

-2000

Figure 4.3. A losing lottery
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That is, he prefers a lottery with a utility expectancy of –110 to a certain loss of
–10, man in general being a bad loser! This touches on game addiction and the idea
that you can make up for your losses by making riskier choices. On the other hand, for
gains, a certain gain of 10 will be preferred to the lottery depicted in Figure 4.4 with
an expectancy of 18.

10%

90% 20

0

Figure 4.4. A winning lottery

It occurs as if e.g. the ‘real utilities’ measured in monetary terms were modified
by the subject (see Chapters 8 and 9), and we obtain the well-known concave/convex
utility curve depicted in Figure 4.5.

gainloss

0

1

1

1

real
values

perceived
utilities

Figure 4.5. Subjective utilities

This gain/loss dissymmetry discovered by Kahneman and Tversky [KAH 79] is a
fundamental notion for the understanding of human behavior.

We will not dwell on the effects relating to Bayes’ rule or theinability to take into
account conditional probabilities. It is patently obviousthat the brain is not a sponta-
neous calculator, so when it becomes a question of handling probabilities or making
calculations on conditional probabilities, the brain is a non-starter. The cognitive load
is very large by the time there are four or five events and all possible processings.
It is here that science and decision support tools are unbeatable. Medical decision
[GRE 90] which cannot be seriously treated without Bayes andprocessing has made
spectacular progress in the last 50 years. This question of conditional probabilities and



182 Decision Making

coupling with events also plays a big role in reliability. Accident risk can be greatly
minimized if we wrongly consider that events are independent when they are not.
Perrow [PER 84] emphasizes these problems of coupling and sequencing in serious
accidents.

One last effect related to probabilities that deserves attention is the illusion of
control of risk [BAR 94, KAH 82, KAH 93, MAR 87, MCK 93, SLO 82].This so-
called risk control is purely irrational and is a pre-Savageregression that mixes what
the decision maker controls and what they do not. If we do not accept the separation
between alternatives and events, we can only arrive at paradoxes of the type described
in section 4.2.1 with horse betting. In risk control, the only reasonable idea is the
search for information, hence the role of forecasts such as in weather which, in certain
countries, is given in terms of probabilities. The search for information also leads to
the idea of the postponed alternative (section 4.4.2), i.e.we let nature take its course
while seeking to know more about the true state of the world before deciding.

With the illusion that we are controlling uncertainty, we open the door to irra-
tionality which returns in force with the principle of precaution and the manipulation
of public opinion that follows. During the winter of 2003, several local authorities
started preparing for the Seine to burst its banks on the centennial of the last occur-
rence (1906). This is a well-known effect of bad use of the lawof large numbers
[KAH 72]. We can make many complaints regarding the notion ofprobability and
decision theory, but certainly not about being over-taughtto future decision makers!

4.5.2. Representations, levels of satisfaction and the anchor effect

We have seen that the attitude to risk is inverted around a point that we arbitrarily
set to zero in Figure 4.5. In fact, everything happens as if each of us has a neutral
point or level of expectancy and that we measure our preferences from there: desire
above, dislike below. This notion of expectancy level has been known for a long time
[LEW 44, SIE 57] and was taken up again by Tversky and Kahneman[TVE 74]. It
is clearly an important notion in practice when lose or gain one dollar does not have
the same significance for a Rockefeller as for a tramp. We havepreviously seen that
there exist gain difference models in decision [SHA 93] and in multicritia [BOUY 86,
FIS 91, FIS 92].

The notion of level of expectancy is semantically close to that of reference level,
which leads us to the concept of the anchor effect. The anchorpoint is the point where,
led by emotions and experience, the individual evaluates their choices. For example,
a happy holiday spent on a sunny island will serve as a reference point for choosing
future holidays. This phenomenon of the anchor effect can have an interesting range of
dimensions: cognitive and memory-based, representational and eventually narrative.
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With cognitive and memory-based anchor effect, certain events are marked in the
memory and will orientate the choices through the emotions as soon as they are rec-
ognized. We are not a long way from the ‘frame effect’ as this point. An individual
who has had a disagreeable experience, even after a good decision, (section 4.2) will
hesitate to make the same decision. The reference level can be manipulated through
the emotions exactly as in the ‘frame effect’. It even appears that this manipulation is
more effective than context [KÜH 98].

Less obvious, although well documented in cognitive science and artificial intel-
ligence, is the recuperation effect. Recent or memorized events have a greater weight
than older events. These recent events will tend to govern choice in problem solving;
Anderson [AND 83] and Newell [NEW 90] actually modeled the effect to make their
systems humanly plausible. Even worse, the brain creates false correlations between
completely independent events [CHA 69]. If certain numbersare imposed on the brain
and subjects are then asked how many nations are in the UNO, the result is therefore
influenced by those previously given numbers [PIA 95]. This can also be interpreted
as an anchor effect [TVE 74].

One should be extremely wary of this effect of recuperation.The phenomenon is
particularly sensitive when estimating probabilities, especially when they are exper-
imentally not very sensitive to the decision maker (less than a few tenths). Between
a probability of10−2 and10−4, there is every reason to fear that an unenlightened
decision maker may be extremely sensitive to anchor effects, recuperation or repre-
sentation (see following section) that stem from previous experience having nothing
at all to do with the current phenomenon. However, we have seen that between these
two levels is found a psychological limit and a difference inbehavior that is completely
rational on a human scale.

The second component of the anchor effect is the ‘representativeness effect’. This
means events that are easy to depict will be given a higher probability than those
that are less easy to imagine [MAR 94, SLO 82, SLO 88, TVE 82c].Thus an airplane
pilot may well anchor on the non-deployment of his undercarriage if the indicator
light does not come on (a common situation well known to pilots in training), and
meanwhile forget that he is about to run out of fuel (accidentat Portland [MORE 02]).
This representativeness effect is also a threat in diagnosis, the current state in that
field being that it is highly dependent on our representations. This can lead to many
accidents due to errors in diagnosis, such as Three Mile Island and many others in
aviation [BOY 91, MORE 02, PER 84].

The third component of the anchor effect, and doubtless the least well known, is
the narrative aspect. Here we come back to scenarios: a scenario is a sort of story. As
we have seen, making a decision consists of inhibiting all possible scenarios except
one which will dominate, and that this domination will occurbefore the action (“ra-
tionale construction for alternative” [POM 03]) or after the alternative (post-decision
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rationalization). In any case, this rationalization effect always exists and is preferen-
tially related to the context [BRÉ 02]. The more credible (attractive?) the story, the
greater the chance that the decision will be made. The narrative mode is in general a
fundamental cognitive mode [BOL 95, BRU 86, BRU 90].

It has been said that making a decision in an organization that people will stick
to is like telling them a story that they believe [WEI 01]. This idea of telling a story
– to oneself or to others – is leading us rather a long way from rationality. It brings
us closer to language however, with which decision has many points in common at
least from a phylogenetic point of view. Even without invoking Vico [VIC 44], we
would be wrong to ignore this aspect because historically before reasoning there were
mythology and lyrical poetry which, in the form of stories, were the first ways in which
man structured his world and accumulated knowledge. More scientifically, Tversky
and Kahneman [TVE 82b] showed that the easier a story is to construct, the greater
the chance the decision will be made. See also Kahneman and Lovallo [KAH 93] and
Boland [BOL 79], who stated

“. . . the decision maker will build convincing explanationsof what happened
using the data made focally available and will tend to discount the importance
of factors on which data is not presented.”

All these aspects that bring together decision and artificial intelligence belong to
the domain of representation by case, or more generally of AI-type modeling [AND 83,
NEW 90, SIM 95]. The latter references demonstrate that the subject attracted the att-
ention of the pioneers of artificial intelligence. The questions of whether we should
lean toward ‘human reasoning’ at the expense of rationalityand the role of evolution
in these biases remain open. It is not easy to give an straightforward answer to the
question of whether these biases and/or these decisional heuristics are advantages or
disadvantages for the species.

Evaluation can only be multicriterion. There are, first of all, heuristic decisions
which have the advantage of rapidity and robustness, even although they may not have
Olympian qualities [GIG 02, section 2.3]. There is no need topoint out that speed is of
the essence for the survival of the individual. A famous general, when asked what was
the main factor in his victories, replied: “I don’t know, butI know the reason for the
defeats: too late!” The same can obviously be said for ‘recognition-primed decision’.

Cognitive psychology (Chapter 12) is tending to reassess the usefulness of other
biases in a positive light, but we must be guarded. Note too, as pointed out by one
author to whom I am grateful, that the rationality of the species is not necessarily that
of a given individual (think of the elimination of the least adapted reproducers, for
example).

Taking a few examples of biases, it appears difficult to justify the frame effect or
the anchor effects that allow minds to be manipulated. On theother hand, aversion to
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risk in gain is certainly a useful behavior trait (look before you leap), but what is the
point of risk taking in loss? You do not recover by gambling oron the stock exchange;
instead you are occasionally lucky. Perhaps this bias facilitates progress in the cultural
and technical domains, since it can be argued that we need bigrisk takers to make
big discoveries. It is surely wiser for the species to neglect small probabilities (of the
order10−4 and less) and to accept the certainty effect.

The most ambivalent bias is that of risk control, for it leadsto extremely dangerous
behavior in many human activities (e.g. finance, gambling and controlling machines).
On the other hand however, without this bias, no one would feel tempted to leave their
territory to explore the big wide world.

4.6. Conclusion

In this chapter we have made the link between decision theoryand human decision.
In contrast to what some researchers in biology and psychology believe, these links
are deep and useful.

They are deep, for if we fail to bear in mind Savage’s model, its limits and now
the results on qualitative decision, it is quite simply impossible to think rationally
about decision in risk. It is Savage’s model that enables us to understand the differ-
ence between good and bad luck and rational decisions. We candiscuss whether the
assumptions in the model are realistic or rational, but we cannot deny that outside the
games of chance studied since the 18th century, the quantitative or qualitative Savage
framework is the only one that allows a distinction to be madebetween a lucky bad
decision maker and an unlucky good decision maker. It is, forexample, by referring to
this model and also thanks to the psychologists Tversky and Kahneman that we have
understood the inversion of attitude to risk, according to whether the individual thinks
in terms of losses or gains.

If we are interested in the biological aspect of decision, wemust take an evolution-
ary point of view and conclude that even if common mortals consider that language
and decision are specifically human traits, and even knowingthat evolution proceeds
by mutations, there exists a continuum between the neurons of the cockroach that
make it ‘decide’ to flee or to feign death, and human neurons. This evolution over
four hundred million years explains the great complexity ofthe circuits involved in
decision in the brain and the different areas concerned, from the primitive part of the
brain to the most recent part, the pre-frontal cortex [BER 03].

What we can say is that the part that is most closely involved in the body and
the emotions, relying on the oldest parts of the brain, interfere with the ‘reasoning’
part and that the integration of the information happens in the pre-frontal cortex. The
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reasoning part is above all our ability to project ourselvesinto the future and, by com-
plex and poorly identified phenomena, to make one alternative dominate the others
in the Pareto sense (for this is indeed multicriterion decision). This domination can,
moreover, very well result from a ‘search for dominance’ subsequent to the decision.
The part played by emotion and intuition (Sacha Guitry, lampooning popular wisdom,
said “beware of your first impression, it’s always the right one”) has never been de-
nied by decision specialists, and the phenomena of diagnosis by quasi-instantaneous
recognition of stimuli or more complex decisional patternsfollowed by the decision
are (fortunately) well known. We even know how to model them by using case-based
reasoning.

It is therefore rather saddening to see neurobiologists such as Berthoz caricaturing
utility expectation, which remains the most rational meansto make a decision pro-
vided that we have probabilities and a utility that aggregates. These are assumptions
that are obviously not confirmed in daily life, just as there is no such thing as a per-
fect market. It is moreover amusing to note that it is often the same people who, for
ideological reasons, are the detractors of Savage and Debreu.

The limits of utility expectancy have been denounced since Simon introduced his
counter-model of bounded rationality which offers a frame for reasoning – if not a
model in the classical sense of the term – allowing the experimentation and design
of numerous reasoning and problem-solving systems, starting from decision models
[e.g. AND 83, AND 95, NEW 72, NEW 90]. This also gave people theright to speak
of heuristic exploration and ‘what if’ bounded rationality. Although obviously as old
as homo sapiens, this provides a frame for and a rational way of treating the subject
which explains its popularity.

In this conclusion we shall not return to bias in human decision which, for the
most part linked to poor processing of probabilities by the untrained brain (such as
mental arithmetic, a skill that new generations are completely lacking), are now well
known and should systematically be brought in for all high-stake decisions. As for
the other more psychological biases, we urge the reader to take care when making a
decision and to remember that in the normative model, it would not be possible to
see this bias. Then, even when Savage is no great help, if there are no probabilities or
clear utility functions, one can at least try to see through decision pitfalls such as the
representation effect, irrelevant alternatives (see Talleyrand method in [WOL 91]) and
other traps [JOU 87].

We end by reminding those who must make decisions that once they have striven
to control all their biases, “a decision is only good if it is rooted in friendly words and
convincingly argued” [SFE 80]. This citation from an authorhighly critical of decision
(but without good arguments) reminds us of the narrative andsocial sides of decision,
uniting decision and language and making homo sapiens unique.
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Chapter 5

Multiple Objective Linear Programming

5.1. Introduction

Decision problems are often modeled using constrained optimization models; for
this reason, mathematical programming is a basic and unavoidable tool of Opera-
tions Research. Since the beginning in the 1940s with Dantzig’s simplex algorithm for
linear programming, many developments of mathematical programming have been
proposed, either to extend the models (nonlinear or integerprogramming, combinato-
rial optimization, etc.) or to improve the efficiency of algorithms (gradient or penalty
methods, Lagrangian relaxation, cutting methods, Branch and Bound, polyhedral the-
ory, interior point methods, etc.).

The main stream of research in this field concerns mainly exclusively single ob-
jective optimization models i.e. well-defined mathematical models governed by the
classical paradigm of existence, characterization of optimal solutions and then con-
vergent algorithms.

Even if these single-objective models are justified and really efficient in many
situations, in many applications it appears that a single objective can in no way at all
represent the reality of the application.

At the end of the 1970s, the necessity of amulticriteria decision aidtherefore
appeared. It was due to highly renowned scientists – Roy and Geoffrion for the so-
called French and American schools, respectively – that theway to this field was
opened, despite the scepticism of a large majority of operational researchers at that
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time. An extraordinary lucidity was required to dare to turnoff the beaten track. Now,
multicriteria decision is a full part of operations research and decision theory.

Effectively, the consideration of the newmulticriteria paradigm, i.e. accepting sev-
eral conflicting criteria in a same model, gave rise to a collapse of all basic notions of
single-objective algorithms.

– There are no more optimal solutions because there generally does not exist any
feasible solution simultaneously optimizing all the criteria of the model: the improve-
ment of one criterion is made to the detritment of another.

– Consequently, there are no more convergent methods which can only be a tool
to first analyze and obtain knowledge of a problem, then to help thedecision makerto
find satisfying solutions which are good compromises between the conflicting criteria.

– Consequently, the methods do not appear as black boxes providing THE ideal
(optimal) solution to the decision maker any longer. Multicriteria methods support the
decision – proposed by theanalyst– and interact with the decision maker. They are
required to progressively express their preferences, based on their knowledge of the
problem, to derive the proposed solutions.

Many multicriteria methods, in particular for multiple-objective programming, are
interactive methods. They require the decision maker to generate a good compromise
according to their preferences during the procedure. The final solution will therefore
depend not only on the chosen method but also on the personality of the decision
maker.

We can easily understand the reticence of many scientists atthis time regarding
such an innovation. Despite the development and increasingsuccess of multicriteria
methods, there is still a lack of understanding. Many reputable scientists are still op-
posed to any multicriteria approaches that they do not perceive to be appropriately
rigourous.

It is true that, as for any new discipline, axiomatic progress of multicriteria method-
ology must still be carried out. Many researchers in this field are themselves convinced
of this, and are working in this direction.

In any case, it is important to strongly underline that the multicriteria paradigm
does not eliminate the single-criterion paradigm, which continues to be essential and
allows the development of exceptionally powerful tools foroptimization and decision.
The paradigms must coexist; it is the details of the considered application which dic-
tates the choice of paradigm.

In this chapter we will only consider multiple-objective programming: the set of
all feasible solutions is defineda priori (the set is stable) in an implicit way by the
satisfaction of the constraints (the set is implicitly defined) and each feasible solution
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is exclusive of any other (the set is globalized) [VIN 92]. The criteria are defined by
objectives, i.e. by real functions of the variables (they are real criteria) [VIN 92]. An-
other class of problems – often called multicriteria analysis – is not considered in this
chapter [ROY 85, ROY 93, VIN 92]. See Chapters 4 and 12 for details of multicriteria
analysis.

The chapter is structured as follows. In section 5.2 we present basic concepts and
principles of the main resolution approaches. Section 5.3 is devoted to the descrip-
tion of some typical methods of multiple-objective mathematical programming with
continuous variables, essentially of linear programming.Multiple-objective linear pro-
gramming with integer programming will be studied in section 5.4. The particular case
of multiple-objective combinatorial optimization will bepresented in section 5.5, in
which we will emphasize the adaption of metaheuristics to multiple objective prob-
lems. Sections 5.6 and 5.7 will treat multiple-objective linear programming in a frame-
work of uncertainty (the data are random) and in a framework of imprecision (the data
are fuzzy), respectively.

5.2. Basic concepts and main resolution approaches

5.2.1. The problem

We consider a multiple-objective optimization problem (MOP):

‘min’ zk(x) k = 1, . . . ,K
x ∈ D

}
(5.1)

whereD ⊂ Rn is the set of feasible solutions and thekth objective functionzk(x)
represents thekth partial preference function of the decision maker. The notation ‘’
implies that the problem is not well-defined mathematically, except in very particular
cases which free the problem of its multiple-objective substance. A feasible solution
minimizing theK objective functions i.e. the notion of optimal solution does not exist.
The notation ‘min’ only means that the direction of preference for each objective is of
a decreasingzk(x).

The resolution of such a problem consists of determining oneof several good com-
promises i.e. solutionsx ∈ D corresponding to the global preference of the decision
maker. In addition to the decision spaceRn, it is useful to also consider the objec-
tive spaceRK which allows us to represent the evaluation of a solutionx by a point
z(x) = (z1(x), . . . , zK(x)).

We will denote the set of points ofRK corresponding to the image of feasible
solutions ofD (Figure 5.1) byZD:

ZD = {z(x) ∈ RK |x ∈ D}. (5.2)
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Objective space

x ∈ D

Figure 5.1. Decision and objective spaces

Equivalently, the problem of MOP can be written

‘min’ zk k = 1, . . . ,K
z = (z1, . . . , zK) ∈ ZD

}
(5.3)

The particular case of multiple-objective linear programming problem (MOLP) is
written

‘min’ zk(x) = ck · x k = 1, . . . ,K
x ∈ D = {x ∈ Rn | Tx ≤ d, x ≥ 0}

}
(5.4)

whereck : (1× n) ∀ k, T : (m× n), x : (n× 1) andd : (m× 1).

The setD is then a convex polyhedron ofRn and the linear form of the objectives
allows us to establish thatZD is also a convex polyhedron ofRK , of which the vertices
are the image of the vertices ofD (Figure 5.2).
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Figure 5.2. The case of a linear problem
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5.2.2. Dominance relation and efficient solutions

In order for a solutionx ∈ D to be a satisfying compromise, it appears logical to
request that no other feasible solutiony ∈ D gives values of each objective at least
as good as those corresponding tox and even better for at least one objective. Such a
minimal condition justifies the following definitions.

Definition 5.1. Dominance relation: A pointz ∈ ZD dominatesa pointz′ ∈ ZD if
and only if (iff)

zk ≤ z′k k = 1, . . . ,K (5.5)

andat least one of theseK inequalities is strict (i.e.z 6= z′). A point z ∈ ZD is not
dominatedif there does not exist any pointz′ ∈ ZD which dominates it.

Definition 5.2. Efficient solution: A solutionx ∈ D is efficient– or Pareto optimal –
if the pointz(x) is not dominated. A pointz ∈ ZD is not dominatedin the objective
space if the cone, having this point as vertex and formed by the axeszk, does not
contain any other point ofZD. In other words, ifC≤ is the cone{z ∈ RK |z ≤ 0}, z
is not dominated if

{C≤ + z} ∩ ZD = {z}. (5.6)

The set of efficient solutionsis the set of interesting solutions from the point of
view of multiple objectives. Generally, this set has a largecardinality and even for a
problem in continuous variables, a non-countable infinite cardinality. This definition is
illustrated by Figures 5.3–5.5 for the three situations of aMOP, MOLP and multiple-
objective integer linear programming (MOILP, i.e. a MOLP with integer variables)
problem, respectively.

Remark5.1. 1) The set of efficient solutions of a MOLP problem never contains
any isolated point. In particular, two efficient vertices ofD are always linked by a
set of edges whose points are all efficient solutions. On the other hand, a facet of
polyhedronD may contain an edge of efficient solutions without every point being
efficient solutions (see [STE 86] for a detailed analysis of the structure of the set of
efficient solutions).

2) The dominance relation can be defined differently by

z ∈ ZD dominatesz′ ∈ ZD iff zk < z′k ∀k. (5.7)

A point is said to beweakly non-dominatedif there does not exist anyz′ ∈ ZD

verifying z′k < zk ∀k.

A solutionx ∈ D is said to beweakly efficientif the pointz(x) is weakly dom-
inated. An efficient solution is always weakly efficient but the inverse is not true. In
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Figure 5.3. Objective space of a MOP problem
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Figure 5.4. Objective space of a MOLP problem

Figure 5.4, all the points of the edge (AB) give the optimal value of objectivez1 and
are therefore weakly non-dominated. Nevertheless, among them, only the point B cor-
responds to an efficient solution.

The notion of weakly efficient solution is not very useful from a practical point of
view, but sometimes necessary from a technical point of view.
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Figure 5.5. Objective space of a MOILP problem

5.2.3. Ideal point, payoff matrix and nadir point

The ideal pointis the point ofRK with coordinates

Mk = min
x∈D

zk(x) k = 1, . . . ,K. (5.8)

Let x̃(l) be an optimal solution – not necessarily unique – of objectivezl. We note

zkl = zk(x̃
(l)). (5.9)

The matrix(K ×K) defined by the elementszkl is called thepayoff matrix:




x̃(1) . . . x̃(l) . . . x̃(K)

z1 M1 . . . z1l . . . z1K
...

...
...

...
zk zk1 . . . zkl . . . zkK
...

...
...

...
zK zK1 . . . zKl . . . MK



.

The coordinates of the ideal pointMk = zkk appear on the diagonal of this matrix.
The payoff matrix is unequivocally determined only if, for each objectivel, the solu-
tion x̃(l) is unique. On the other hand, if an objectivel has several optimal solutions
(and therefore, in case of equation (5.4) (MOLP), an infinity) the columnl of the pay-
off matrix will depend on the chosen solutioñx(l). To remove this indetermination,
we can define for example:

zkl = min zk(x)
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{
x ∈ D
zl(x) = Ml

i.e. to evaluate each objectivek on the solutioñxl giving the best value. We note

mk = max
l=1,...,K

zkl k = 1, . . . ,K. (5.10)

The pointm with coordinates(m1, . . . ,mk) is called thenadir point (if the payoff
matrix is not univocally determined, it depends on the matrix chosen). It must not
be confused with theanti-ideal point, defined by the coordinatesmaxx∈D zk(x). See
Figure 5.4 for illustrations of ideal, nadir and anti-idealpoints.

Remark5.2. In multiple objective methods (section 5.3), the interval[Mk,mk] is
often used to measure the variation of the values of objectivezk on the set of efficient
solutions. Nevertheless, it is only an estimation of the interval of variation because
it is possible thatmk is inferior or superior to the maximal value ofzk on the set of
efficient solutions [STE 86].

5.2.4. Scalarizing functions

It appears logical to take only the efficient solutions into consideration as potential
satisfying compromises. However, this does not resolve thedecision problem which
requires the selection of a unique ‘good compromise’. For this selection, it is necessary
to have additional information about the structure of the decision maker preferences.
Such information is generally obtained through a dialogue with the decision maker
and can be defined in terms ofpreference parameters. The most common are:

– the weightsλk (k = 1, . . . ,K) which measure the relative importance of each

objective (they are often normalized:
K∑
k=1

λk = 1, λk ≥ 0);

– the substitution rates or tradeoffswhich reflect the idea of compensation between
a loss on one objective and a gain on another;

– the reference pointswhich represent points ofRK whose coordinates are de-
sirable values (to try to reach) or non-desirable values (totry to move away) of the
different objectives; and

– reservation levelswhich correspond to the minimal requirement imposed for the
values of certain objectives.

The multiple objective methods often use one of these preference parameters.
Reservation levels allow us to limit an interesting area inside ZD. The weights, the
substitution rates or the reference points are generally used to aggregate the different
objectives into a single function. These aggregation functions are calledscalarizing
functions.
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Very often, these functions have a technical role internal to the method; their op-
timization allows us to generate a feasible solution. They must not be confused with
utility functions (see section 5.2.6.1.1).

Ideally, a scalarizing function must be defined so that

– its optimization always gives rise to an efficient solution; and

– each efficient solution corresponds to its optimization for some value of the pref-
erence parameters.

From a practical point of view, its optimization must be relatively easy.

The three most common scalarizing functions,s1, s2 ands3, are as follows. All
three use weightsλk as preference parameters ands2, s3 also use a reference point
z̄ defined by the coordinates̄zk = Mk − εk, k = 1, . . . ,K whereεk is an arbitrary
small positive value.

– The weighted sum:

s1(z, λ) =

K∑

k=1

λkzk. (5.11)

– The weighted Tchebytchev distance:

s2(z, λ, z) = max
k=1,...,K

(λk | zk − zk |). (5.12)

– The augmented weighted Tchebytchev distance:

s3(z, λ, z) = max
k=1,...,K

(λk | zk − zk |) + ρ(

K∑

k=1

| zk − zk |) ρ > 0. (5.13)

We note that the minimization of a Tchebytchev distance generates a ‘min max’
problem:

min
x∈D

max
k=1,...,K

(
λk | zk − zk | +ρ

(
K∑

k=1

| zk − zk |
))

. (5.14)

Nevertheless, if an additional variableδ is introduced, such a problem is equivalent to

min δ−ρ
K∑

k=1

| zk(x)−zk | λk(zk(x)−zk) ≤ δ k = 1, . . . ,K andx ∈ D (5.15)

i.e. linear programming if the multiple-objective problemis of this type.
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5.2.5. Theorems to characterize efficient solutions

The above scalarizing functions allow us to characterize, completely or partially,
the set of efficient solutions. The interest of these theorems is essentially theoretical
because their implementation corresponds to the resolution of multiparametric prob-
lems. This is not easy to tackle if the number of parameters (equal to the number of
objectives) is large.

We note

Λ = {λk |
K∑

k=1

λk = 1 andλk > 0, k = 1, . . . ,K.} (5.16)

Theorem 5.1. (Often called the Geoffrion Theorem.) Consider the parametric prob-
lem

min
x∈D

s1(z(x), λ) (5.17)

with λ ∈ Λ.

1) If x is an optimal solution of problem (5.17),x is an efficient solution.

2) If x is an efficient solution andZD is a convex set, then there existsλ ∈ Λ such
thatx is an optimal solution of problem (5.17).

Remark5.3. 1) If the weightsλk are not all strictly positive, the condition (1) will
only provide the weak efficiency ofx in the case wherex is not the unique optimal
situation.

2) For equation (5.4), the setZD is convex. The resolution of the parametric prob-
lem (5.17) allows us to determine the set of all efficient solutions.

We note thatZD is no longer convex if there are discrete variables in the problem.
In such a case, the resolution of the parametric problem (5.17) only allows us to gen-
erate a subset of efficient solutions which are called supported efficient solutions (see
section 5.4).

In Figure 5.5, the points A, C, F and G correspond to the supported efficient solu-
tions and points B, D and E tonon-supported efficient solutions.

Let z̄ be a reference point verifyinḡzk ≤Mk ∀ k andz̄ 6= M .

Theorem 5.2. (Often called the Bowman Theorem.) Consider the parametricproblem

min
x∈D

s2(z(x), λ, z) (5.18)
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A solutionx is an efficient solution iffx is an unique optimal solution of problem (5.18).

If we consider the augmented weighted Tchebytchev distance, we can cancel the
unicity character of the optimal solution.

Theorem 5.3.

min
x∈D

s3(z(x), λ, z) (5.19)

1) If x is an optimal solution of problem (5.19),x is an efficient solution.

2) If x is an efficient solution, there existλ ∈ Λ andρ, a small enough positive
value, such thatx is an optimal solution of problem (5.19).

Let us note that Theorems 5.2 and 5.3 are valid even ifD is not a convex set.

Theorem 5.4. (Often called the Soland theorem.) Consider the parametricproblem

min zl(x) zk(x) ≤ αkk 6= lx ∈ D (5.20)

with αk ∈ R. A solutionx is efficient iffx is an optimal solution of problem (5.20).

5.2.6. The main resolution approaches

Faced with a multiple objective problem, the aim of the decision maker is to de-
termine an efficient solution that they estimate to be satisfactory. We can distinguish
three classes of approaches, depending on the moment at which the decision maker is
involved in the process of selection of best compromise.

– If the decision maker’s preferences are known (or built ) previously to the model,
we speak of ana priori articulation of preferences.

– On the other hand, if the decision maker express their preference after the de-
termination of the set of efficient solutions by the model, wetalk of ana posteriori
articulationof preferences.

– For the case where the preferences are expressed progressivelyaccording to the
progress of the method and the better knowledge of the interactions between the ob-
jectives, we use the term progressivearticulation of preferences.

We briefly present these three approaches and the general principle of the different
corresponding techniques.
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5.2.6.1.A priori preferences

The main advantage of this approach is its computational simplicity because the
initial knowledge of the preferences of the decision maker (however expressed) allows
us to transform the multiple-objective problem into a single-objective optimization
problem. An optimal solution of the latter will then be considered as a best compro-
mise.

There exist many methods by which scalarizing functions areintroduced, aggre-
gating the different objectives into a single objective andthen optimizing it. Obvi-
ously, this is a naive and indirected way of tackling a multiple-objective problem. The
reader will find a description of these methods in different books, in particular those
of [STE 86] for the MOLP problem and of [COL 02] for the generalMOP.

We will only present here three often-used different techniques related to this ap-
proach, corresponding to some theoretical or practical justification.

5.2.6.1.1. Multiattribute utility

This approach, often termed multiattribute utility approach (MAUT), was devel-
oped by US researchers. Researchers based in France have often been critical of its
applicability [ROY 85, ROY 93, VIN 92]. The aim is to determine, to estimate or to
build autility function:

U(x) = U(z1(x), . . . , zK(x)) (5.21)

aggregating the objectives in an unique function which represents the mecanism of
global preference of the decision maker. The assumption is made that they always
react, consciously or not, by comparing various solutions according to the function
U(x) i.e.

xPx′ if U(x) > U(x′) (5.22)

whereP represents the global preference relation of the decision maker.

If such a function is available, the multiple objective problem

‘ min
x∈D

’zk(x) k = 1, . . . ,K (5.23)

is reduced to the single objective problem

max
x∈D

U(x). (5.24)

The most-used utility model is theadditive modelin whichU is a separable func-
tion for theK objectives:

U(x) =

K∑

k=1

Uk(zk(x)), (5.25)
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where the functionsUk are (strictly) decreasing and generally concave.

The main criticism of the utility theory is precisely that the assumption of the
existence of such a function allowing us to compare, in the absolute two solutions, is
not realistic in many (almost all) multiple-objective problems. Moreover, even with
the assumption of the existence of such a utility function, there exist theoretical and
practical difficulties concerning the MAUT approach. The criticisms of the French
school are also related to the fact that these difficulties are often quite insurmountable.
We will not present this important technique in this chapter; see Chapter 15.

5.2.6.1.2. Hierarchical optimization

It is assumed here that the decision maker gives the different objectives an order
of importance. First of all, they want to optimize one of the objectives (e.g.z1). Then,
according to results, they would like to discriminate the optimal solutions ofz1, opti-
mizingz2 first (second objective in the order of importance), thenz3, etc.

This technique induces a sequence of single-objective optimization. First

z̃1 = min
x∈D

z1(x), (5.26)

then

z̃2 = min
x∈D∩{x|z1(x)=z̃1}

z2(x) (5.27)

and, successively fork = 3, . . . ,K

z̃k = min
x∈D∩{x|zl(x)=z̃l, l=1,...,k−1}

zk(x). (5.28)

Clearly, such treatment of a multiple objective problem is only realistic in very par-
ticular situations and only makes sense if the set of optimalsolutions is not quickly
reduced to an unique solution.

5.2.6.1.3. Goal programming

We present here the technique of goal programming in its simplest form. The ap-
plication of goal programming first requires from the decision maker the definition of
the following.

– Reference levelsαk for each objectivek = 1, . . . ,K. Depending the situation
and the concerned objective, these goalsαk can be

1) an aspiration levelαk that the value of objectivek is expected to satisfy;
2) a levelαk that the value of objectivek must be as close to as possible.

(For other situations related to levelsαk, see [STE 86, p. 282]). LetK(i) andK(ii),
with K(i) ∪ K(ii) = {1, . . . ,K}, be the sets of indexes of objectives for which the
goals are respectively of type (1) and (2).
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– Importance weightsλk associated to objectivesk = 1, . . . ,K.

Each objective is then formulated by a constraint defined with new variables rep-
resenting the deviations in terms of the reference levelsαk:

– for type (1):

zk(x)− yk = αk, yk ≥ 0 k ∈ K(i) (5.29)

– for type (2):

zk(x)− y+
k + y−k = αk, y

+
k ≥ 0, y−k ≥ 0 k ∈ K(ii) (5.30)

(y+
k andy−k not simultaneously strictly positive).

These deviation variables are nothing else but slack variables, by excess or by
default, relative to the levelsαk. A compromise is then determined by minimization
of the weighted sum of these deviations:

min
∑

k∈K(1)

λkyk +
∑

k∈K(2)

λk(y
+
k + y−k )

zk(x)− yk = αk k ∈ K(1)

zk(x)− y+
k + y−k = αk k ∈ K(2)

x ∈ D
yk ≥ 0, k ∈ K(1); y+

k ≥ 0, y−k ≥ 0; k ∈ K(2).

In such a manner, the obtained compromise will closely depend on the reference
levelsαk and on the weightsλk, defineda priori. It is therefore necessary to at least
realize a sensibility analysis of the compromise regardingthese parameters. It would
be better, however, to allow the decision maker to modify andfit the values of the
parametersαk and/orλk in an interactive form (see section 5.2.6.3 below) of goal
programming. A sequence of compromises is therefore determined that the decision
maker may converge to a satisfying solution. The goal programming is often used in
the form of a hierarchical optimization, by the definition ofvery different weights of
values.

For instance if
λ1 >> λ2 >> · · · >> λK ,

the optimization consists of

– first giving thepriority to the only constraint related to objectivez1;

– deciding between obtained solutions taking into account the constraint related to
objectivez2, and so on.

See the chapter devoted to the recent developments of goal programming by Jones
and Tamiz in [EHR 02].
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5.2.6.2.A posteriori preferences

This approach consists of determining the setE of efficient solutions of the prob-
lem described by equation (5.1), to furnish this set to the decision maker who will
choose from itsbest compromise.

The major drawback of this approach is of course the difficulty of implementation
because it requires the resolution of a multiparametric problem of type (5.17–5.19)
or (5.20); this is generally a difficult task and costly in computational time. It is spe-
cially true when the variables are continuous and/orZD is not convex. However, in
the case of problem (5.4), we can use the simplex algorithm tosolve the parametric
problem (5.17) [STE 86].

Nevertheless, the interest of this approach is not only theoretical. We will see in
sections 5.4 and 5.5, devoted to discrete variables, that this approach can be useful
if the setE does not have too large a cardinality. On the other hand, withthe use
of metaheuristics, it is possible to determine an approximation Ê of E formed by a
sample of representative (potential) efficient solutions.

Thea posterioriapproach can also be adapted in an interactive version (see sec-
tion 5.2.6.3 below). At iterationk, a sampleÊk is provided to the decision maker. On
base of their preferences, a new sampleÊk+1 more in accordance to these preferences
is then determined.

5.2.6.3.Progressive preferences or interactive approach

The idea on which the interactive approach is based is that the structure of global
preference of the decision maker is not establisheda priori, or even that such a struc-
ture exists permanently in a constant manner. The global preference can move as the
information is obtained about the interactions between theobjectives for the different
possible solutions.

It can only be generated progressively duringa learning process. Through the anal-
ysis of the problem and the information obtained by the decision maker regarding the
proposed solutions, it will allow little by little the interactions between the objectives
to be discovered and simultaneously the global preference of the decision maker to be
determined. Clearly, such an approach is quite different from thea priori approach.
The aim of an interactive approach is therefore to give the decision maker a tool to
help them progressively delimit abest compromise.

The use of this tool requires the participation of the decision maker: the link be-
tween them and the analyst (or the model) will take place inside adialog formed of a
sequence of interactions, each one containing acomputational phase(managed by the
analyst) and aninformation phase(managed by the decision maker) (Figure 5.6).
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Figure 5.6. General scheme of an interactive method

5.2.6.3.1. Computational phase

The computational phase integrates all the information given by the decision maker
to provide them with a new (or several) solution(s). The computational modul must be
such that

– the proposed solution(s) is (are) always efficient; and

– any efficient solution can be proposed during the process.

5.2.6.3.2. Information phase

The information phase allows, through an exchange of questions and answers
about the proposed solution, its qualities and its drawbacks regarding the preceding
proposed solutions, the generation of useful information to help determine a more
satisfying solution for the decision maker. The quality of an interactive method essen-
tially depends on the simplicity and the flexibility of this information phase as follows.

– It is important to have few and identical questions at each phase which are easy
to understand. These questions must not require any technical knowledge of the com-
putational module. The decision maker must accept the notion of what an efficient
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solution is, such that the decision maker understands that it is impossible to simulta-
neously improve all the objectives. The answers must be easyto formulate and quick
to obtain. For this reason, it is preferable to collect qualitative instead of quantita-
tive information because the latter are always more difficult to collect and also often
needlessly precise.

– It is important to allow the decision maker, as they work through the problem, to
return to previous judgements they have made during some preceding phases. Effec-
tively, their preferences may have been modified, taking into account the additional
information obtained. There is therefore a process of trials and error.

Ideally, we must not speak of convergence (in the mathematical sense) of an in-
teractive method. The only possible convergence which willstop the method is of a
‘psychological’ nature, which will see the decision maker satisfied by the final com-
promise because they are positive there does not exist a way of obtaining a more
satisfying one. Due to the importance of this interactive approach, we will devote the
next section (section 5.3) to it, describing some typical methods in detail.

5.3. Interactive methods

There are many interactive methods, sometimes only differing by a small amount.
We will only present four here (the most typical) and we referthe reader interested in
a more exhaustive presentation to specialized publications such as [ROY 93, VIN 92].

We present these methods only in the framework of a multiple objective linear
programming problem of type (5.4), even if some of them are able to be applied either
to nonlinear problems or even to some multicriteria analysis problems.

For some interactive methods designed for nonlinear problems, see [COL 02] and
the chapter written by Miettinen in [EHR 02].

5.3.1. The step method [BENA 71]

The step method (STEM) was one of the first multiple objectivemathematical pro-
gramming methods proposed in 1971 for equation (5.4). We present it not in its initial
version [BENA 71], but with some improvements which were proposed afterwards.

5.3.1.1. Initialization (m = 0)

The objectives are optimized individually to obtain (section 5.2.3):

– the ideal point(M1, . . . ,MK);

– the payoff tablezkl k, l = 1, . . . ,K;

– the nadir point(m1, . . . ,mk); and
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– the estimation of the variation interval ofzk on the set of efficient solutions
[Mk,mk].

Normalized variation coefficients (or technical weights) are calculated as

πk =
αk
K∑
k=1

αk

(5.31)

with

αk =
mk −Mk

| mk |
1

|| ck ||
(5.32)

where|| ck || is the euclidean norm of vectorck.

Remark5.4. It is important not to mistake coefficientsπk for the weightsλk which
express (e.g. in an utility function) the importance given to the objectivezk by the
decision maker. The coefficientsπk have only a secondary technical role in the scalar-
izing function which takes place temporarily at each iteration in the computational
module. In this function, these coefficients are used to attract more attention to an
objective with a larger relative variation interval.

There exists a great amount of literature on these technicalweights and many au-
thors proposed simply defining

αk =
mk −Mk

| mk |

and not taking into account the norm of the coefficientsck which depend on the unit
scale used to define it. Sometimes neglecting such weights issuggested.

Thefirst compromisêx(1) is obtained by minimization of the augmented weighted
Tchebytchev norm to the ideal point, so that the efficient character ofx̂(1) is assured
(see Theorem 5.3):

min
x∈D

( max
k=1,...,K

(πk(ckx− zk) + ρ

K∑

k=1

πk(ckx− zk)))

wherez̄k = Mk − εk, εk an arbitrary small positive value.

The augmented character of the weighted Tchebytchev distance is only required in
the case of non-unicity of the optimal solution minimizing this distance (Theorem 5.2).
The technique ofM is therefore useful to transform the problem into the following
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equivalent linear problem

(P0)





min Mδ −
K∑
k=1

ξk

πk(ckx− zk) ≤ δ − ξk, k ∈ K(0) = {1, . . . ,K}
x ∈ D(0) ≡ D

δ ≥ 0, ξk ≥ 0 k = 1, . . . ,K

The optimal solution of this problem is the first compromisex̂(1) provided to the
decision maker, who does not bring in this initial phase.

Remark5.5. In practicez̄k = Mk. In problem (5.17), the (classic) notation (Mk, k =
1, . . . ,K) represents a number arbitrarily large; this has nothing todo with the other
(classic) notationM representing the ideal point.

5.3.1.2.General iteration(m ≥ 1)

Let x̂(m) the compromise obtained at the end of iterationm− 1.

5.3.1.2.1. Information phase

This compromise is provided to the decision maker through:

z
(m)
k = zk(x̂

(m)); [Mk, mk] k = 1, . . . ,K

i.e. the values taken by the objectives regarding the variation intervals given by the
payoff table.

– If the decision maker is satisfied with these values, takinginto account the pre-
ceding iterations, the procedure stops andx̂(m) is the accepted compromise.

– On the other hand, two questions are asked of the decision maker.
1) Knowing that to determine another compromise, at least one objective must

be deteriorated, which objective do you accept to relax (to deteriorate)?
2) For this objective, what is the maximal level of deterioration you can accept?

Let us say that the first question is elementary, of qualitative nature and that it is easy
to answer. It is more delicate to answer the second question,due to its quantitative
nature and the difficulty of fixing this acceptable loss without knowledge of the corre-
sponding gain (or variation) of the other objectives in compensation.

Remark5.6. If the decision maker hesitates to fix this deterioration level, it is still
possible to examine several increasing values of this loss and after the resolution of
the corresponding problemsPm (see below), by selectinĝx(m+1) among the pro-
posed solutions. Another way is analyze parametrically thedeteriorated value of the
indicated objective; this is done using the method STRANGE (STRAtegy for Nuclear
Generation of Electricity) (see section 5.6).
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Let km be the objective indicated by the decision maker to be relaxed (see below
km ∈ K(m−1)) in the answer to question (1) and let∆km

be the maximal level of
relaxation of objectivezkm

, obtained in the answer to question (2).

5.3.1.2.2. Computational phase

We present two options for this computational phase. The first is that presented in
the initial version of the method. It was the subject of criticism given the fact that the
decision maker has no flexibility to modify any advice given previously and which
therefore always has an irrevocable character. The second is an adaptation we have
proposed in the framework of the method STRANGE (see section5.6) to overcome
this drawback.

Answer to question (1) with restrictive constraints. The next compromisêx(m+1)

is determined by the optimal solution of problem

(Pm)





min Mδ −
K∑
k=1

ξk

πk(ckx− zk) ≤ δ − ξk k ∈ K(m)

ckm
x ≤ z

(m)
km

+ ∆km

x ∈ D(m)

δ ≥ 0

ξk ≥ 0 k ∈ K(m)

whereK(m) andD(m) are defined

K(m) = K(m−1)\{km}

and
D(m) = D(m−1) ∩ {x | ckm−1x ≤ z(m)

km−1
}.

The meaning of this modelization is therefore that each objective can be relaxed
only once. When it is chosen, it no longer takes place in the following iterations. It is
not taken into account in the calculation of the Tchebytchevdistance (or equivalently,
its coefficientπk is set to zero). In addition, when an objective is relaxed, its value
will no longer be deteriorated in the next iterations. The value corresponding to the
accepted compromise

z
(m)
km−1

= zkm−1(x̂
(m))

is considered by the decision maker as the worst acceptable value, whatever the vari-
ations of the other objectives.

The consequences of such a procedure are that a convergence of the method is
imposed (artificially) with at mostK iterations and that the decision maker is prevent
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from change their advice. This is all the more embarrasing asthe compromisêx(m+1)

is strongly related to the deterioration level∆km
provided by the decision maker,

which is really difficult to fix.

Answer to question (2) without restrictive constraints. The next compromisêx(m+1)

is determined by the optimal solution of problemPm in which the setsK(m) andD(m)

are defined
K(m) = K\{km}

and
D(m) = D.

With this version of the computational phase, an objective is withdrawn from the
computation of the distance to the ideal point during the iteration of its relaxation. It is
then considered again during the next iterations. The number of iterations is therefore
no longer bounded and the convergence can then be fixed only bythe decision maker.
At no iterations, the set of feasible (and therefore efficient) solutions is limited. An
accepted value for the relaxed objective can possibly stillbe deteriorated at a next
iteration. This allows a large flexibility of assessment forthe decision maker.

Remark5.7. 1) We present and comment on this method with more details that the
others described in this section because it is the one for which we find the principle
more satisfying, and has been adapted in the method STRANGE (section 5.6). Its
main drawback is to propose at each iteration to the decisionmaker only one new
compromise. Moreover, this compromise is strongly relatedto the maximal level of
relaxation∆km

which is often reached:

z
(m+1)
km

= z
(m)
km

+ ∆km
.

A way to remedy this is to take into account the suggestions made in Remark 5.6
above.

2) Many variants of the STEM method have been proposed, each introducing one
or another improvement. Among the more important are the methods of Roy [ROY 76]
(referred to as the ‘target point’ method) and of Vincke and Vanderpooten [VAN 89].
There are also the methods of reference point of Wierzbicki [WIE 82] and that of Ko-
rhonen and Laakso [KOR 86] (a little different from the STEM method but neverthe-
less in the same spirit). The latter has the advantage of proposing, at each iteration, a
large number of possible compromises in a direction proposed by the decision maker.
For more details on these methods, see [ROY 93, STE 86, VIN 92].

5.3.2. The method of Steuer and Choo [STE 86]

This method [STE 86] has the great advantage of being very general (its principle
can be applied to nonlinear problems). In addition, it proposes to the decision maker
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(at each iteration) choosing the new compromise from a set ofefficient solutions ob-
tained in the direction they proposed.

5.3.2.1. Initialization (m = 0)

We consider equation (5.4) as described before. The objectives are optimized in-
dividually to obtain the ideal point(M1, . . . ,MK). As before, we note

z̄k = Mk − εk k = 1, . . . ,K

whereεk is an arbitrary small positive value.

Let

Π = {πk (k = 1, . . . ,K) | πk ≥ 0,

K∑

k=1

πk = 1}

be the initial set of possible weight vectors. Two parameters must be initially fixed
with the agreement of the decision maker (and in function of their available time):

– p the number of compromises calculated at each iteration; and

– r (0 < r < 1) a reduction factor which will speed up the convergence process
(accordingly it will be small).

5.3.2.2.General iteration(m ≥ 1)

5.3.2.2.1. Computational phase

Let Π(m) be the set of weight vectors at iterationm.

If m = 1, Π(m) = Π. If m > 1, let (π(m−1)
k , k = 1, . . . ,K) be the weight vector

which has allowed us to determine the compromisex̂(m−1) chosen by the decision
maker at the preceding iteration. The setΠ(m) is then reduced regardingΠ(m−1) and
defined by

Π(m) = {πk, k = 1, . . . ,K | l(m)
k ≤ πk ≤ u(m)

k ,

K∑

k=1

πk = 1}.

The interval[l(m)
k , u

(m)
k ] is defined by

[l
(m)
k , u

(m)
k ] = [0, rm−1] if π(m−1)

k ≤ rm−1

2

= [1− rm−1, 1] if π(m−1)
k ≥ 1− rm−1

2

= [π
(m−1)
k − rm−1

2 , π
(m−1)
k + rm−1

2 ] else.

The range of the interval of possible values forπk at thismth iteration is therefore
equal torm−1; it converges to zero as one progresses through the method.
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The aim is to choosep weight vectors{πk, k = 1, . . . ,K} ∈ Π(m) as representa-
tive as possible (see remark below). For each of them, solve the linear problem

min Mδ −
K∑

k=1

ξk

πk(ckx − zk) ≤ δ − ξk k = 1, . . . ,K
x ∈ D
δ ≥ 0
ξk ≥ 0 k = 1, . . . ,K.

There are thereforep resolutions. At each one, the problem differs only by the
coefficientsπk. We obtainp efficient solutions.

5.3.2.2.2. Information phase

The values of theK objectives corresponding to thesep solutions are presented
to the decision maker so that they can compare them. The decision maker is asked
to select from thesep solutions the one they prefer; this corresponds to compromise
x̂(m). The corresponding weight vector is notedπ(m)

k (see section 5.3.2.2.1).

If the decision maker is satisfied by the compromise, the procedure stops; oth-
erwise a new iteration begins. This method has the advantageof submitting to the
decision maker at each iteration a representative sample ofpossible compromises. At
the beginning, the sample covers the set of efficient solutions. Then, as long as the
decision maker specifies their preferences, the search for best compromise focuses
progressively on the more interesting region, building a finer sample of possible com-
promises there. Despite a mathematical convergence of the method (induced by the
factor rm converging to zero) the decision maker can however modify their advice
to orientate the search to a different region of the efficientfrontier, according to the
learning accumulated during the preceding iterations.

The main drawbacks include

– thea priori definition of the parameterr; nevertheless we can reduce the intervals
[l

(m)
k , u

(m)
k ] in a more systematic manner (but no as fine) without the definition of this

parameter;

– the large numberp of solutions required to provide a representative sample in
case of large-scale problems, which increases the computational time.

Remark5.8. The representative character of thep weight vectors insideΠ(m) does not
necessarily induce the representative character of thep corresponding solutions among
the set of efficient solutions. For this reason, Steuer and Choo propose to compute (in
a particular manner)2p weight vectors and after to ‘filter’ the2p obtained solutions
with the aim of extracting thep most representative ones.
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Steuer also suggests specific formulae to fix the parametersp andr. (See [STE 86]
for more details).

5.3.3. Interactive methods based on a utility function

The American school proposed various interactive methods which assume the ex-
istence of an utility function not known explicitly. The aimof the interactions with the
decision maker consist of progressively estimating this utility function. In particular,
we can quote two of the more well-known methods of this type.

– Zionts and Wallenius [ZIO 83] use an utility function (veryrestrictive) of type
s1(z, λ) and the iterations lead to the determination of the weightsλ.

– Geoffrionet al. [GEO 72] consider a general utility function; the interactive as-
pect essentially concerns the substitution rates.

We will only examine the principle of these two exemplary methods here; we refer the
interested reader to [ROY 93, STE 86, VIN 92] for more detailsand applications of
those principles.

5.3.3.1.Principle of the Zionts and Wallenius method [ZIO 83]

At each iterationm, an efficient vertex̂x(m) of the polyhedronD is determined by
optimization of the functions1(z, λ(m)), whereλ(m) is chosen in a set

Λm ⊂ Λ1 = {λk > 0,

K∑

k=1

λk = 1}.

Each of the non-basic variablesj ∈ J is examined to test if their introduction in
the basis will produce an efficient vertex. Those for which this is the case are called
efficient non-basic variables; letJe ⊂ J be the set of these variables.

The analysis of the simplex tableau corresponding tox̂(m) indicates that increasing
one unit ofxj , j ∈ Je produces a variationa(k)

0j of the objectivezk, where−a(k)
0j is

the coefficient ofxj in the expression ofzk. Let us note that the information produced
by these marginal costs is only local.

The decision maker is asked if such a variation{a(k)
0j , k = 1, . . . ,K} is accept-

able. If the answer is positive, it means that the weightsλk must satisfy the relation:

K∑

k=1

λk(zk(x̂
(m))− a(k)

0j ) <

K∑

k=1

λkzk(x̂
(m))

i.e.
K∑

k=1

λka
(k)
0j > 0.
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In case of a negative answer, the weightsλk must satisfy the relation:

K∑

k=1

λka
(k)
0j < 0.

These relations are then imposed to reduce the setΛm to Λm+1 in accordance with
the answer with the decision maker for eachj ∈ Je. A new weight vectorλ(m+1) is
chosen inΛm+1 to build the vertex̂x(m+1).

The main drawbacks of this method are

– only (efficient) vertices are generated;

– the decision maker is asked many questions which are difficult to answer due
to the local character of the given information (even if the decision maker has the
opportunity not to answer the question corresponding to some variablesxj , j ∈ Je).

5.3.3.2.Principle of the Geoffrion et al. method [GEO 72]

At each iterationm, the method questions the decision maker on the marginal
substitution rates of the objectivezk regarding a reference objective (letz1) for the
compromisêx(m); we obtain

∆zk1(x̂
(m)).

Thejth coordinate of the gradient of the utility functionU(·)

∂U(·)
∂xj

(x̂(m)) =

K∑

k=1

∂U(·)
∂zk

(x̂(m)) · ∂zk
∂xj

(x̂(m))

is equal to (within a multiplicative coefficient∂U(·)
∂z1

(x̂(m)))

K∑

k=1

∆zk1(x̂
(m))ckj .

The direction searchd(m) of a new compromise is chosen as the best direction, i.e.
optimizing a linear combination of the coordinates of the gradient vector ofU(·). If
y(m) is the optimal solution of the problem

min
y∈D

K∑

k=1

∆zk1(x̂
(m))

n∑

j=1

ckjyj ,

this direction corresponds to the vectord(m) = y(m) − x̂(m).
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Several solutions are then proposed to the decision maker inthis direction

x(m+1;t) = x̂(m) + αt · d(m) t = 1, . . . , T

for different values of the stepαt. The decision maker chooses the new compromise
x̂(m+1) as the preferred solutionx(m+1;t).

The principle of this method is very general and can be applied to nonlinear pro-
gramming. It can appear seductive if we accept

– that the decision maker always reacts in accordance with the same utility func-
tion from a theoretical point of view; and

– that the decision maker can answer the required questions to determine the
marginal substitution rates.

5.4. The multiple objective integer programming

Due to the importance of integer variables in the modelization of many real appli-
cations, some works have been naturally devoted to multipleobjective integer linear
programming (MOILP), i.e.

‘ min ’zk = ckx k = 1, . . . ,K

x ∈ D = {X ∈ Zn|TX ≤ d, X ≥ 0} (5.33)

In the particular case of binary variables, i.e. whenZn is replaced by{0, 1}n, we
will speak of multiple objective binary linear programming(MOBLP).

Nevertheless, the introduction of discrete variables intothe multiple objective paradigm
generates particular difficulties, essentially due to the non-convexity of the setD of
feasible solutions.

On the one hand, the simple combination of an ILP method with aMOLP method
does not generally give efficient algorithms to generate thesetE(P ) of efficient so-
lutions. It is therefore necessary to build specific methodsto tackle MOILP problems.
On the other hand, as noted previously, the optimization of aweighted sum of the
objectives

min
x∈D

K∑

k=1

λkckx,

in addition to the technical difficulty in solving this parametric problem, generates
only a subset of efficient solutions referred to assupported; we denote this subset
SE(P ).
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As an illustration, we consider the elementary problem (seeFigure 5.7):

‘ max ’ z1 = x1

z2 = x2

3x1 + 4x2 ≤ 12

x1, x2 ∈ Z+.

B

x1

x2

A

C

D

Figure 5.7. Illustration: SE(P ) andNSE(P )

The only optimal solutions generated by the optimization ofthe function

λx1 + (1 − λ)x2 λ ∈ [0, 1]

are the solutions
A(0, 3) for λ ∈ [0, 3

7 ] and
D(4, 0) for λ ∈ [ 37 , 1]

which are the two supported efficient solutions.

Nevertheless, the solutionsB(1, 2) andC(2, 1) are also efficient, but not sup-
ported. We will refer toNSE(P ) = E(P ) \ SE(P ) as the set of non-supported
efficient solutions. A difficulty of another nature is the cardinality of the discrete set
E(P ) which can be, in some cases, very large.

In this section, we will analyze a selection of exemplary methods for a problem
MOILP (or MOBLP) [CLI 97, TEG 86a, TEG 86b]. We distinguish methods generat-
ingE(P ) (section 5.4.1) from those interactive methods (section 5.4.2). In section 5.5,
we will consider the methods devoted to multiple objective combinatorial optimization
(MOCO) problems i.e. problems of type MOBLP but with a particular structure.
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5.4.1. Methods of generatingE(P )

5.4.1.1.The Klein and Hannan method [KLE 82]

At each iteration, the method solves a single objective ILP problem, becoming
more and more constrained.

An objective is arbitrarily chosen (e.g.z1(x)) and the problem

min
x∈D

z1(x) (5.34)

is solved at the initial step.̂E(P ) is initialized with the optimal solution if it is unique
or with the only non-dominated optimal solutions otherwise.

At the stepm, let {xr : r = 1, . . . , R} be the efficient solutions generated at the
preceding iterations. The problem




min z1x
x ∈ D
R⋂

r=1

(
K⋃

k=2

zk(x) ≤ zk(xr)− εk
)

with εk ≥ 1
(5.35)

is then solved. The constraints require that the feasible solutions of problem (5.35)
improve at least one objectivek 6= 1 for the efficient solutionsxr.

The optimal solution of problem (5.35) is added tôE(P ) if it is unique or to
the non-dominated optimal solutions otherwise. The procedure stops when the prob-
lem (5.35) is impossible to solve. Ifεk = 1 ∀ k at each iteration, then the final set

Ê(P ) is E(P ) (supposing the datack are integers). On the other hand,̂E(P ) is a
representative sample ofE(P ). Obviously, problem (5.35) can be difficult to solve.

5.4.1.2.The Sylva and Crema method [SYL 04]

The implementation of the previous method was improved recently [SYL 04]. In
the problems described by equations (5.34) and (5.35), the objectivez1(x) is replaced

by the objective
K∑
k=1

λkzk(x) whereλ is an arbitrary vector (e.g.λk = 1
k , ∀ k) with

the aim that any optimal solution will be efficient. Morover,in the caseεk > 1, the

samplêE(P ) is not build from an extreme solution ofE(P ).

However, problem (5.35) is expressed by adding the additional constraints

ckx ≤ (ckx
r − εk) yrk +Mk (1− yrk) k = 1, . . . ,K; r = 1, . . . , R

K∑
k=1

yrk ≥ 1 r = 1, . . . , R

yrk ∈ {0, 1} k = 1, . . . ,K; r = 1, . . . , R

toD, whereMk is an upper bound of the optimal value of objectivezk.
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5.4.1.3.The Kiziltan and Yucaoglu method [KIZ 83]

This method is a direct adaptation of the multiple objectiveframework of the well-
known Balas algorithm for a problem with binary variables; it therefore solves an
MOBLP problem. The algorithm examines the nodes of a tree to determine if an effi-
cient solution can be found by moving down in the tree. The procedure stops when all
the nodes are fathomed.

The rules of the method are to never treat a single objective optimization and to al-
ways work with a vector optimization. The main phase of the algorithm is the solution
of the problem:

‘ min ’
∑

j∈Fl

cjxj +
∑

j∈Bl

cj

∑

j∈Fl

tjxj ≤ dl

xj ∈ {0, 1} j ∈ Fl
at nodeN l, whereFl represents the set of free variables at nodeN l; Bl represents the
set of variables fixed to nodeN l; cj is the vector of coordinates(ck)j , k = 1, . . . ,K;
tj is thejth column ofT ; anddl = d− ∑

j∈Bl

tj .

For the different objectives, the vectors

Z
l
=
∑

j∈Bl

cj

Z l =
∑

j∈Bl

cj + Yl with ylk =
∑

j∈Fl

min (0, (ck)j)

represent the upper and lower bounds ofZ at nodeNl, respectively.

Two exclusive cases can appear:

1) dl ≥ 0: the nodeN l is feasible. In this case,Z
l

is compared to the list of L of
upper bound vectors, already obtained and non-dominated:

- Z
l
is added to the list if it is not dominated by any element of L; and

- the elements of L dominated byZ
l
are removed from the list L.

2) dl 6≥ 0: the nodeN l is unfeasible (let us underline that, contrary to the single
objective case, such a node is not always fathomed).

Fathom rules are applied:

– if the nodeN l is unfeasible and there existsi such that
∑

j∈Fi

min(0, tij) > dli;
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– if Zl is dominated by one of the list L; or

– if Z
l
= Z l.

The backtracking rule is the usual rule applied in the singleobjective case. A non-
fathomed node is separated in the following manner:

– if N l is unfeasible, we select a variablexj , j ∈ Fl, on basis of a minimal unfea-

sibility criterionmin
j∈Fl

∑

i

max(0, tij − dli); or

– if N l is feasible, the variablexj is arbitrarily selected in the set{j ∈ Fl|cj 6≥ 0}.

At the end of the implicit enumeration, the listL corresponds toE(P ). Note.

however, that as in the previous methods, it is only possibleto generate a subset̂E(P )
of E(P ).

5.4.2. Interactive methods

5.4.2.1.Gonzales et al. method [GON 85]

This method is the interactive concretization of a principle referred to astwo
phases(see section 5.5): the first phase consists of determiningSE(P ) and the sec-
ond phase consists of determiningNSE(P ). However, this principle is integrated in
an interactive approach. During the first phase, a setS̃ ⊆ SE(P ) of cardinalityK is
selected and formed by the decision maker. During the secondphase, possible solu-
tions ofNSE(P ) preferred by the decision maker are integrated inS̃ to replace other
solutions.

5.4.2.1.1. First phase

At the initial step, theK single objective problems are solved according to:

min
x∈D

zk(x) k = 1, . . . ,K

and we notẽxk is a non-dominated optimal solution of objectivek. The setS̃ is ini-
tialized

S̃ = {x̃k, k = 1, . . . ,K}

and we note

Z̃ = {z(x̃k), k = 1, . . . ,K.}

At the general iteration, a linear search directiong(x) is determined: it is the in-
verse image, in the decision spaceRn, of the hyperplane determined by theK points
of Z̃ in the objective spaceRK .
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A new solution is generated by solving the problemminx∈D g(x). Let x∗ be this
solution andz∗ = z(x∗) be the corresponding point in the objective space.

Three cases can arise:

1) z∗ 6∈ Z̃ and the decision maker prefersx∗ to at least one solution of̃S. In this
case,x∗ replaces the least preferred solution inS̃.

2) z∗ 6∈ Z̃ but the decision maker prefers all the solutions ofS̃ to x∗; in this case
point 2 of the second phase (section 5.4.2.1.2) is started.

3) z∗ ∈ Z̃; in this case, point 1 of the second phase is started.

5.4.2.1.2. Second phase

1) At themth iteration, a non-supported solutionx̃m is determined by solving the
problem

min g(x)
x ∈ D
g(x) ≥ g̃ − ε

with g̃ = g(x̃m−1). If m = 1, g̃ is the value ofg(x) at point (3) of the first phase
(section 5.4.2.1.1).

(a) If x̃m is preferred to one of the solutions ofS̃, x̃m replaces the least preferred
solution inS̃. g(x) is updated and iterationm+ 1 is started.

(b) Otherwise, the procedure stops and the decision maker chooses the most pre-
ferred solution from̃S.

2) In this case, the decision maker is not interested by solutions different to those
of S̃. However, before stopping the procedure, it is possible to begin a search of non-
supported solutions in the neighborhood of the preferred solution of S̃, by solving
the above problem whereg(x) is the objective function which generated this point. A
similar search can also be made at point 1(b).

Remark5.9. This method appears general and easy to implement. Nevertheless, the
division of the algorithm in two phases makes it relatively heavy for an interactive
approach

5.4.2.2.The MOMIX method [LHO 95]

This method uses the concept of interactivebranch and bound, introduced by Mar-
cotte and Soland [MAR 86]. It consists of analyzing a MOILP problem with the help
of a branch and bound tree in which we circulate according to the preferences of the
decision maker: at each node, they will choose which sub-node to examine. If the
basic idea appears interesting, its implementation seems complicated in the Marcotte
and Soland method. The main reasons are that:

– the sets of feasible solutions corresponding to each sub-nodes are not disjoined;
and
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– the order to improve the objectives is fixed once and for all independently of the
proposed compromise at each iteration.

For these reasons, the management of the circulation into the tree is very difficult
and requires the storage of a large amount of information. The MOMIX method takes
up this interesting idea but with a completely different arrangement of the branching
and separation processes, allowing an easier management ofthebranch and bound.

We can distinguish two main phases as follows.

5.4.2.2.1. Initial phase

The initial phase consists, as in the STEM method (see section 5.3.1), of determin-
ing a first compromisex(0) by minimization of the weighted Tchebytcheff distance
(possibly augmented). We therefore solve the problemP (m) (with m = 0):




min δ

Π
(m)
k (ckx−M (m)

k ) ≤ δ k = 1, . . . ,K.

x ∈ D(m)

(5.36)

whereD(0) = D,M (m)
k is the optimal value of objectivek onD(m) and

Π
(m)
k =

α
(m)
k

K∑

i=1

α
(m)
i

is the weight of objectivek with e.g.

α
(m)
k =

m
(m)
k −M (m)

k

max(| m(m)
k |, |M (m)

k |)
.

1

‖ ck ‖

wherem(m)
k is thekth coordinate of the nadir point onD(m) and‖ ck ‖ is the eu-

clidean norm ofck.

5.4.2.2.2. Interactive phases

The interactive phases use an interactive branch and bound with two steps:

1) A ‘depth first’ process allows us to quickly obtain a good compromise by it-
erative improvement of an objective chosen at each iteration by the decision maker.
Then, at themth iteration:

- let x(m−1) be the(m− 1)th compromise andz(m−1)
k = ckx

(m−1) the corre-
sponding value for objectivek;

- the decision maker indicates the objectivelm(1) ∈ {1, . . . ,K} to improve in
priority; and
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- a new compromise is obtained by solving problem (5.36) with

D(m) = D(m−1) ∩ {x : zlm(1)(x) < z
(m−1)
lm(1) }

so that objectivelm(1) is improved.
Some fathoming and stopping tests are defined. In particular:

- D(m) = ∅;
- m(m)

k −M (m)
k ≤ εk ∀k (εk > 0, fixed);

- ẑ, the vector of best values found previously, is preferred to the ideal point
M (m) related toD(m);

- duringq iterations (q fixed by the decision maker), no improvement ofẑ has
been fixed; and

- a number ofQ iterations have been made.

2) Thebacktracking processthen checks if there exists a better compromise forẑ
in D(m−1) \D(m) of the feasible region neglected at each iteration during the depth
first process. It proceeds in the following way:

- the node corresponding to the compromisex(m−1) is separated inK
branches;

- let lm(k), k = 1, . . . ,K be the priority order in which the decision maker
wants to improve theK objectives regarding the compromise; and

- theK sub-nodes are defined by the addition of the constraints:




zlm(1)(x) < z
(m−1)
lm(1) (examined during the depth first phase)(?)

zlm(2)(x) < z
(m−1)
lm(2) and zlm(1)(x) ≥ z(m−1)

lm(1) (??)
...

...

zlm(k̄)(x) < z
(m−1)

lm(k̄)
and zlm(k)(x) ≥ z(m−1)

lm(k) k = 1, . . . , k̄

...
...

zlm(K)(x) < z
(m−1)
lm(K) and zlm(k)(x) ≥ z(m−1)

lm(k) k = 1, . . . ,K (? ? ?)




.

We therefore obtain a partition of the set of feasible solutions of the preceding
node. For each sub-node, we can amend equation (5.36) to search for a possible better
compromise. Figure 5.8 illustrates the procedure.

The same fathoming and stopping tests can be introduced. More importantly, it
appears unusual (at least for a consistent decision maker) to examine thekth sub-
nodes fork > 2 or 3. Effectively, they correspond to a simultaneous deterioration of
the objectives that the decision maker wants to improve.
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Figure 5.8. Procedure of ‘branching’

5.5. The multiple objective combinatorial optimization

Combinatorial optimization concerns the study of optimization problems with bi-
nary variables which present a particular structure, more often at the level of the con-
straints. There are many problems of this type: assignment,knapsack, traveling sales-
man, vehicle routing, location, covering or partitioning,and production scheduling.
Combinatorial optimization is certainly one of the more powerful and frequently used
tool of operations research, allowing us to treat a large class of applications [WOL 98].

A stream of recent research publications appear to analyze combinatorial opti-
mization in a multiple objective framework i.e. multiple objective combinatorial op-
timization (MOCO). This stream was strengthened by the success of metaheuristics
[PIR 03, TEG 02], which have been adapted by several researchers to multiple objec-
tive problems i.e. multiple objective metaheuristics (MOMH).

We can only present the main areas of this research field here,which is undergo-
ing huge development. We will essentially focus on the methodological aspect. Sec-
tion 5.5.1 is devoted to exact methods which determine the set E(P ) of efficient solu-
tions of a problem(P ). The adaptation of metaheuristics, with the aim of determining

a good approximation̂E(P ) of E(P ), will be analyzed in section 5.5.2.

For the reader interested in the literature, see:
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– two papers related to MOCO: [ULU 94a] opens the road to this field and
[EHR 02, chapter 8] is more recent;

– three surveys devoted to MOMH: [PIR 03, chapter 7], [JAS 02]and [EHR 02,
chapter 6] (the latter exclusively analyzes evolutionary algorithms);

– several studies related to particular problems: shortestpaths [SKI 00, ULU 91],
transportation [CUR 93], location [CUR 90] and production scheduling[LOU 03,
TKI 02].

5.5.1. Exact methods

A MOCO problem,

‘ min ’zk = ckx k = 1, . . . ,K
x ∈ D = {x ∈ {0, 1}n|Tx ≤ d} (5.37)

of type MOBLP, is characterized by a particular structure ofthe constraintsTx ≤ d
(and more rarely of the objectiveszk). In addition to those described in section 5.4,
we can note the following additional difficulties.

Difficulty 1. The previously established fact of existence of non-supported efficient
solutions remains valid even if the setD verifies thetotal unimodularity property.
If the matrixT is totally unimodular (matrix for which every square sub-matrix has
a determinant equal to –1, 0 or +1) and if the vectord has integer coordinates, the
vertices of the polyhedronD have integer coordinates so that the resolution of the
single objective problem with binary variables, defined

[
min
x∈D

cx

]
,

is equivalent to the resolution of the relaxed problem in continuous variables
[

min
x∈{x∈Rn|Tx≤d}

cx

]
.

A classical problem verifying this property is the single objective assignment prob-
lem (AP), i.e. the following problem withK = 1




” min ”

n∑

i=1

n∑

j=1

c
(k)
ij xij k = 1, . . . ,K

n∑

i=1

xij = 1 j = 1, . . . , n

n∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1}




.
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Figure 5.9. The feasible values of the illustration in the objective space

Nevertheless, despite this property, the multiple objective assignment problem
(MOAP) has non-supported efficient solutions, as illustrated by the following didactic
example with two objectives:

C(1) =




5 1 4 7
6 2 2 6
2 8 4 4
3 5 7 1


 and C(2) =




3 6 4 2
1 3 8 3
5 2 2 3
4 2 3 5




which define the two matrices of costsc(k)ij i, j = 1, . . . , 4; k = 1, 2. Figure 5.9
represents the corresponding values of the 24 feasible solutions in the bi-objective
space.

It appears there exist four supported efficient solutions (corresponding to points 1,
2, 3 and 4) and two non-supported efficient solutions (corresponding to points 5 and
6); the 18 other solutions are not efficient. Note that in the space(z1, z2), the points
corresponding to the non-supported efficient solutions must necessarily be located in
the rectangular triangles defined by the points corresponding to two adjacent supported
solutions (in the space(z1, z2)).

Difficulty 2. This is of a different type to that described above. On the onehand, the
different types of combinatorial optimization problems are each characterized by a
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specific structure of the polyhedronD. These specificities are used to build efficient
algorithms to determine an optimal solution of the single objective problems.

On the other hand, the more classic approach to generating a set of efficient solu-
tions for a MOILP problem consists of adding an additional constraint at each iteration
(see section 5.4). Such an approach is difficult to apply to a MOCO problem because
it implies the loss of the specific form ofD and therefore the impossibility of using
existing single-objective methods for this type of problem.

The difficulty is therefore to try to elaborate methods to build E(P ) without the
introduction of additional constraints. It is a major reason why there exists relatively
few exact methods of generatingE(P ).

Difficulty 3. Finally, for some structures of problems, the number of efficient solu-
tions can be very large. For instance, for a bi-objective knapsack problem (MOKP, see
below), Viséeet al. [VIS 98] counts 1708 efficient solutions (among them only 101
supported) for a problem of 500 objects. However, let us notethat for other problems,
e.g. a production scheduling problem, this number can be small [LOU 03]; the MOAP
problem corresponds to an intermediate situation [TUY 00].

5.5.1.1.Direct methods

We refer to an extension of an existing method for the corresponding single-
objective problem as a direct method. Each time a new feasible solution is obtained,
the vector of objective function values is calculated and compared with those of the

solutions of the list̂E(P ), containing the feasible solutions already obtained and non-

dominated by any other already generated solution. We call̂E(P ) the set of potential

efficient solutions;̂E(P ) plays the role ofincumbent solutionin a method for a single
objective.

At each iteration, the list̂E(P ) is actualized. In an exact method,E(P ) = Ê(P )
at the end of the procedure.

Such a principle can be applied, for instance, to the methodology of dynamic pro-
gramming [CAR 90]. It can also be applied in an effective manner for branch and
bound methods, as for the Kiziltan and Yucaoglu method described in section 5.4.

However, the amount of calculation is obviously greater than in the single objective
case. In particular, in a branch and bound method, less nodesof the tree will be fath-
omed. We will give an example of a direct method [ULU 97] for a multiple objective
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knapsack problem (MOKP) of the type



“ max ”zk(x) =
n∑
j=1

c
(k)
j xj k = 1, . . . ,K

n∑
j=1

wjxj ≤W

xj ∈ {0, 1} j = 1, . . . , n.

(5.38)

to a multiple objective method.

We suppose the variables sorted in the orderΘ which is defined in the following
manner:

– Θk is the list of variables ranked by decreasing efficiencies for objectivek

c
(k)
j

wj
(k = 1, . . . , n);

– r(k)j is the rank of the variablexj in the orderΘk; and

– Θ is the order of the variables ranked by increasing values

K∑

k=1

r
(k)
j .

At each node of the tree, we define:

–B1 (B0) is the set of indices of variables fixed to 1 (0) (initiallyB1 = B0 = ∅).

– F is the set of free variables which always follows in the orderΘ for those
already fixed. Ifi−1 is the largest index of a fixed variable,B1∪B0 = {1, . . . , i−1}
andF = {i, . . . , n}. Initially, i = 1.

We note

–W = W − ∑
j∈B1

wj is the remaining capacity.

– Z is the vector of coordinateszk =
∑
j∈B1

c
(k)
j , corresponding to the values of

the objectives for the partial solutionB1 ∪B0. Ê(P ) contains all the solutions corre-
sponding to the non-dominated vectorZ and is actualized at each iteration. Initially,

zk = 0 ∀ k andÊ(P ) = ∅.

– Z is the vector of coordinateszk corresponding to the upper bound of objective
zk at the current node. This upper bound can be calculated separately for each ob-
jective, e.g. by the manner proposed by Martello and Toth [MAR 90]. Initially,zk =
∞ ∀ k.
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The node will be fathomed if one of the two following conditions is satisfied:

1) {j ∈ F |wj < W} = ∅; or

2) Z is dominated by one vectorz(x), x ∈ Ê(P ).

When a node is fathomed, we backtrack in a classical manner: if t is the last index
of B1, the new node corresponds to

B1 ←− B1 \ {t}
B0 ←− B0 ∩ {1, . . . , t− 1} ∪ {t}
F ←− {t+ 1, . . . , n}

When a node is not fathomed, a new node is considered. It is generated in the
following manner, wheres is the index of the variable defined by

s = max{l ∈ F |
l∑
j=i

wj ≤W} if wi ≤W

s = i− 1 if wi > W

– If s ≥ i,
B1 ←− B1 ∪ {i, . . . , s}
B0 ←− B0

F ←− {s+ 1, . . . , n}
.

– If s = i− 1:

B1 ←− B1 ∪ {r} with r = min{j ∈ F |wj ≤W}
B0 ←− B0 ∪ {i, . . . , r − 1}
F ←− {r + 1, . . . , n}

.

The algorithm stops when the initial node is fathomed, thenE(P ) = Ê(P ).

5.5.1.2.The two phases method

This approach is well adapted to a bi-objective (MOCO) problem [ULU 94b].

5.5.1.2.1. The first phase to generateSE(P )

Let S ∪ S′ be the list of supported efficient solutions already generated, withS
the extreme solutions andS′ the non-extreme solutions.S is initialized with the non-
dominated optimal solutions for the two objectives. The solutions ofS are ordered in
the increasing order of the valuesz1. Let us consider two successive solutionsxr and
xs: we therefore have

z1r < z1s and z2r > z2s with zkl = zk(x
l) k = 1, 2; l = r, s.
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The single objective problem

min zλ(x) = λ1z1(x) + λ2z2(x)
x ∈ D
with λ1 = z2r − z2s andλ2 = z1s − z1r

is considered and solved by an algorithm corresponding to the single objective opti-
mization problem. The objective functionzλ(x) corresponds, in the objective space,
to the line determined by the pointsz(xr) andz(xs).

We note{xt, t = 1, . . . , T} is the optimal solutions of this problem and{Zt, t =
1, . . . , T} is the corresponding images in the objective space. Two cases can occur:

1) {z(xr), z(xs)} ∩ {Zt, t = 1, . . . , T} = ∅
In this case, the solutionsxt are supported efficient solutions and the setsS andS′ are
actualized in the following manner:

S ←− S ∪ {x1} ∪ {xT } (if T ≥ 1)
S′ ←− S′ ∪ {x2, . . . , xT−1} (if T > 2)

.

At the next iterations, the pairs(xr , x1) and(xT , xs) must be considered.

2) {z(xr), z(xs)} ⊂ {Zt, t = 1, . . . , T}
In this case, the solutionsxt are also supported efficient solutions but the pointsZt

are located on the line segment[z(xr), z(xs)], i.e.x1 ≡ xr andxT ≡ xs so that:

S′ ←− S′ ∪ {x2, . . . , xT−1}.

This first phase stops when all the pairs(xr , xs) of S are examined without any ex-
tension ofS. We then have

SE(P ) = S ∪ S′

as in Figure 5.10.

5.5.1.2.2. The second phase: generation ofNSE(P )

The image in the objective space of the non-supported efficient solutions is nec-
essarily located in the rectangular triangles4rs determined byz(xr) andz(xs) with
xr, xs being two successive solutions ofSE(P ) (see Figure 5.11). It is therefore nec-
essary to analyze|SE(P )| − 1 triangles.

This second phase is certainly more technical and more difficult to implement, and
strongly depends on the considered problem and on the singleobjective method used.
The interested reader could refer to [TUY 00] for the implementation of this second
phase in the case of a bi-objective MOAP problem, and to [VIS 98] in the case of a
bi-objective MOKP problem.



Multiple Objective Linear Programming 239

Z2

Z1

Figure 5.10.SEP = S ∪ S′: • solutions ofS; • solutions ofS′

z1

∆rs

z2

z(xr)

z(xs)

z̃λ

λ1λ2

λ1z1s + λ2z2r

Figure 5.11.Analysis of a triangle4rs

We will only emphasize here that a triangle4rs is generally analyzed with the
objective functionzλ(x), for which the optimal value determined at phase 1 is equal
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to
z̃λ = λ1z1s + λ2z2s = λ1z1r + λ2z2r

(see Figure 5.11).

To have a solutionx inside the triangle4rs, the conditionsz1(x) ≤ z1r and
z2(x) ≤ z2s apply. In addition, it is necessary that the increaseL(x) of the valuẽzλ
verifies the inequality

z̃λ + L(x) ≤ λ1z1s + λ2z2r

i.e.
L(x) ≤ λ1λ2.

This allows us to eliminate all the solutionsx which do not satisfy the upper bounds
for z1(x), z2(x) andL(x).

We also note that each time a non-supported efficient solution is determined in the
triangle4rs, the upper bound ofL(x) can be decreased, reducing the set of solutions
x to examine.

5.5.1.3.Comments

Clearly, due to a large computational time, these two exact methods can only solve
small or medium dimension problems, e.g.

– the direct method described in section 5.5.1.1 allows us tosolve bi-objective
MOKP problems with 500 objects [VIS 98];

– the two phases method described in section 5.5.1.2 allows us to solve bi-
objective MOAP problems withn = 50 [TUY 00].

These two exact methods can easily be transformed in interactive procedures:

– For the direct method, the decision maker must periodically express satisfaction

levels on the objectives required to effectively introducea solution in the set̂E(P );
these satisfaction levels can be strengthened during the procedure. At the end of the

algorithm,Ê(P ) will contain the efficient solutions corresponding to the preferences
of the decision maker.

– In the two phases method, the decision maker can choose the two solutionsxr

andxs preferred fromSE(P ) at the end of the first phase. The second phase will then
analyze only one triangle4rs.

5.5.2. Metaheuristics

Due to the difficulty of the exact methods in determining the setE(P ) for a MOCO
problem, and taking into account the performances of the metaheuristics [PIR 03,
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TEG 02] for single objective combinatorial optimization problems, it appears natural
to adapt metaheuristics to MOCO problems. The aim is to determine a good approxi-

mationÊ(P ) of E(P ).

Important research has been developed during the last 10 years on this MOMH
approach. Two recent surveys have been written on this field:[EHR 02] and [JAS 08].

In this section, we assume that the reader is familiar with the general mechanism
of these metaheuristics. We present only some principles ofMOMH and some rep-
resentative methods for the adaptation of simulated annealing, tabu search or genetic
algorithms.

5.5.2.1.Simulated annealing

Two main difficulties must be overcome for the adaptation of alocal search to a
multiple objective framework.

Difficulty 1. First of all, it is necessary to define an acceptance rule of a neighboring
solutiony randomly chosen at each iteration in the neighborhoodN(x) of the current
solutionx.

Effectively, in the single objective case, only two situations can appear for the
comparison ofy andx:

1) eithery is at least as good asx (z(y) ≤ z(x)) and in this case,y is taken as the
new current solution; or

2) eithery makes the value of the objective function(z(y) > z(x)) worse and,
nevertheless,y will be accepted as the new current solution but with a probability p
inferior to 1, classically defined by

p = e
−4z

T

where4z = z(y)− z(x) andT is the value of the temperature parameter.

In the multiple objective case, three situations may be considered for comparison
of y andx:

1) y dominatesx:4zk = zk(y)− zk(x) ≤ 0 ∀ k;

2) y is dominated byx:4zk ≥ 0 ∀ k; and

3) y andx are mutually non-dominated:∃k andk′ | 4zk < 0 and4zk′ > 0.

Obviously,y will be accepted with a probability of 1 in situation (1); butwhat should
be done in the two other situations?
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In any case, it appears difficult to avoid the use of a scalarizing functions(z, λ)
(see section 5.2.4) to aggregate the different objectives and so to be able to define the
acceptance probabilityp. This probability is generally defined by

p =

{
1 if 4s ≤ 0

e
−4s

T if 4s > 0

with4s = s(z(y), λ)− s(z(x), λ).

The way to project the spaceRK on the straight line4s and the acceptance rule
depend on the scalarizing function used (generallys1 or s3).

Difficulty 2. Another difficulty is to completely coverE(P ). Effectively, the use of a
weight vectorλ inside the scalarizing function induces a preferential search direction
in the objective spaceRK . Without enough diversity in the vectorλ, good values for
z(x) will only be obtained in this direction.

In the two most typical methods, this diversity is introduced differently:

– In the multiple objective simulated annealing (MOSA) method of Ulunguet al.
[ULU 95, ULU 99], a set of diversified weight vectorsλl; l = 1, . . . , L is initially
introduced. TheseL vectors are uniformly generated so that functionss(z, λl) are
used in enough directions to cover all of the efficient frontier. The simulated annealing

is appliedL times generatingL setsÊl(P ), l = 1, . . . , L. They are then filtered by
pairwise comparisons of the solutions so that only non-dominated solutions are kept

to form the final approximation̂E(P ).

– In the Pareto simulated annealing (PSA) method [CZY 98], a population ofL so-
lutions is considered, each having an independent development initially with a differ-
ent vectorλl. During the procedure, an exchange of information is organized between
the current solutions so that a modification of the weight vectors is made to enforce a
good dispersion of the solutions. Only the neighbor solutionsy non-dominated by the
solutionx are considered, and the weights of the objectives are increased or decreased
by a valueδ to move the pointz(y) away fromz(x) in the objective space.

The parameterL is an important one in both methods, depending essentially on
the dimension of the treated problem.δ is an additional parameter of the PSA method.

The MOSA method has been applied to assignment problems [TUY00], to knap-
sack problems [ULU 99] and to production scheduling problems [LOU 02]. An inter-
active version has been proposed and applied to a case study [TEG 00, ULU 98]. The
PSA method has also been used for several applications [CZY 96, CZY 98, JAS 97,
VIA 00] and also in an interactive way [HAP 98].
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5.5.2.2.Tabu search

The same two difficulties as described in section 5.5.2.1 exist for the multiple
objective adaptation of another local search, referred to as Tabu search.

To determine the best non-Tabu solution inside a (sub)neighborhood of the current
solution, a scalarizing functions(z, λ) is used. However, a Tabu solution can be chosen
if it satisfies an aspiration criterion.

In the method of Gandibleuxet al. [GAN 97], a dynamic modification of weights
can be introduced to keep a diversification of the search direction to the Pareto front.
The weightλk of the objectivezk is decreased by a quantityδk (δk) if the new current
solution corresponds to a small (large) deterioration of the objectivezk. However, in
this case, the modification of this objectivezk becomes Tabu during a certain number
of iterations.

The Hansen method [HAN 00] uses a population of solutions, similar to the PSA
method. At each iteration, a distance between the images of these solutions in the
objective space is measured. The weight of an objective is modified proportionally to
this distance so that the solutions are more diversified.

Let us also mention the quite different method of Ben Abdelaziz et al. [BEN 99],
which avoids the use of a scalarizing function due to the random choice of the new
current solution in the neighborhood. However, the currentsolution is redefined pe-
riodically by optimization of a weighted sum of the two objectives with the worst
values.

These three methods have been applied to knapsack problems [BEN 99, GAN 00]
and to the traveling salesman [HAN 00].

5.5.2.3.Genetic algorithms

The genetic algorithms, or the more general evolutionary algorithms, are those
which have been the most adapted to multiple objective frameworks. The Internet site
[COE 08] recently cited more than 900 references. Several recent books have been
devoted to this field, in particular [COE 02, DEB 00] and [EHR 02, chapter 6].

Nevertheless, this research initially treated only multiple objectives nonlinear pro-
gramming (MONLP) problems, which we do not cover in this chapter [see COL 02].
It was only in a second phase that research with MOCO streams occured. We can
only highlight a few important aspects and recent methods among the more effec-
tive. Of course, these multiple objective algorithms incorporate the classical notions
of genetic algorithms: population of solutions, selectionand crossover and mutation
operators [TEG 02].
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There exist two difficulties to overcome for the adaption of agenetic algorithm for
a multiple objective problem.

Difficulty 1. The first concerns the fitness function of the solutions, which must take
into account the multiple objective character of the problem.

Even if some algorithms use a scalarizing function, as in sections 5.5.2.1 and
5.5.2.2, most of them introduce an evaluation mechanism based on the dominance
relation. The basic idea involves ranking the solutions of the population using the
following relation. Non-dominated solutions have rank 1, then after they are provi-
sionally withdrawn, rank 2 is given to the non-dominated solutions regarding the re-
maining population, and so on to define solutions with rank 3,4, etc.

The selection is then made on the basis of this ranking: the solutions with small
rank have a larger probability to be selected. Many variantsexist, in particular, an

elite form which allows the potential efficient solutions ofthe current list̂E(P ) to
participate at this ranking and therefore at this selection. For instance, this is the case
in the non-sorting genetic algorithm (NSGA) method of [SRI 94].

Difficulty 2. Nevertheless, as with the use of a scalarizing function, this evaluation
mecanism has a tendency to produce a convergence of the population to a particu-
lar region of the Pareto frontier (this aspect is called ‘genetic drift’). It is therefore
necessary to introduce enough diversity to cover all these frontiers.

Several mechanisms are possible:

1) The ‘fitness sharing’ consists of penalizing the evaluation of very close solu-
tions in the decision or in the objective space (NSGA method [SRI 94]).

2) The ‘crowding distance’ used by [DEB 01] first selects the solutions with a
small rank (for instance with rank 1 or 2), but then completesthe selection with the
solutions of superior rank which are the furthest ones from the preceding solutions.

3) The evaluation of a solution can also be based on the numberof solutions dom-
inated by this solution. For example in the strength pareto evolutionary algorithm
(SPEA) of Zitzler and Thiele [ZIT 98], ifP0 is the current population, the fitness

functionF (x) of a solutionx ∈ Ê(P ) ∪ P0 is calculated by:

x ∈ Ê(P ) : F (x) =
|{y ∈ P0|z(x) ≤ z(y)}|

|P0|+ 1
y ∈ P0 : F (y) = 1 +

∑

{x∈Ê(P )|z(x)≤z(y)}

F (x)
.

Many other variants exist. Clearly, we have only touched upon this very rich re-
search field: the interested reader should refer to the specialized literature cited above.
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To conclude this section, let us say that recent developmentof metaheuristics (for
single or multiple objective optimization) is oriented to hybrid methods combining ge-
netic algorithms with local searches, the latter applied after the crossover of solutions
(sometimes referred to as mutation of the solutions). Ishibuchi and Murata [ISH 98]
are the first to propose such hybridization for a multiple objective context: their multi-
ple objective genetic local algorithm (MOGLS) (extended by[MUR 00]) uses a scalar-
izing function with a randomly generated weight vector to evaluate the solutions. Each
iteration combines a crossover operator and a local search applied to the resulting

solutions. Moreover, a part of the solutions of̂E(P ) is added to the new popula-
tion. Among many hybrid methods [JAS 08], we want to cite the Jaszkiewicz method
[JAS 02] which appears as one of the more efficient. Finally, other metaheuristics have
been adapted to a multiple objective context. For instance,in [GOM 04, GOM 05] a
‘scatter search’ method is applied to knapsack problems.

Remark5.10. It is not easy to analyze the respective performances of the different

MOMH methods, i.e. to compare the setŝE(P ) generated by the different methods
and to measure their proximity toE(P ). Effectively, no quality measure allows us

to easily measure if each individual solution of̂E(P ) is close to a solution ofE(P )

(generally unknown) and if the global solutions of̂E(P ) are dispersed enough to
completely approximate the setE(P ).

Many quality measures are described in the specialized literature, each one having
advantages and drawbacks. It is therefore necessary to use several of these measures
to be able to analyze the performance of a MOMH method.

5.6. The multiple objective stochastic linear programming

Little research has been devoted to multiple objective stochastic linear program-
ming (MOSLP) problems i.e. MOLP problems in which some of thecoefficients are
random variables. The problem of stochastic linear programming is, as for a multiple
objective problem, badly defined from the mathematical point of view. It is necessary
to give a sense of the optimization of a random variable as well as of the inequalities
between two random variables. It is therefore necessary to associate it with a deter-
ministic equivalent problem.

Two main approaches have been proposed to define this equivalent problem: the
recourseand thechance constraintapproaches. See [TEG 03] for some elements of
stochastic linear programming and [BIR 97] for a more detailed presentation.
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When the coefficients are continuous random variables, the equivalent problems
are generally nonlinear programming problems which often require important math-
ematical developments. The case of discrete random variables (considering their re-
alizations as different scenarios) seems better adapted tomany applications, in par-
ticular investment planning on a time horizon. It is the casefor the two applications
[KUN 87, TEG 85] for which the method described below has beendeveloped.

The MOSLP problem can be written
[

‘ min ’ zk = ck(w)x
x ∈ D = {x|T (w)x ≤ d(w), x ≥ 0} (5.39)

whereck(w), T (w) andd(w) are random variables defined on a probability space
(Ω,a,P).

One of the first methods devoted to this problem was PROTADE (PRObabilistic
TRAde of DEvelopment) proposed by Goicoechea [GOI 82], where only the vectors
ck are random but with deterministic constraints. The method STRANGE [TEG 86c]
considers that all the coefficients are discrete random variables.

Each objectivek depends on a set of scenarios{sk | sk = 1, . . . , sK}. To each
of these scenarios a plausibility levelpksk

is assigned. We denote the realization of
vectorck under the scenariosk ascksk

, so that

P (ck = cksk
) = pksk

;

Sk∑

sk=1

pksk
= 1.

It is important to note thatpksk
is a subjective probability.

Similarly, various realizations are considered for the coefficients(T, d) of the con-
straints. We denote these realizations by(Tr, dr) r = 1, .., R and the corresponding
subjective probability byqr. We then have

P (T = Tr, d = dr) = qr;

R∑

r=1

qr = 1.

Remark5.11. 1) In many applications, the scenarios are the same for each objec-
tive so that

P (ck = cks) = pks s = 1, .., S.

The method can be applied without any difficulty in the case where they are different.

2) The reason for different scenarios, i.e. for the objectives(sk; sk = 1, . . . , Sk)
and for the constraints(r = 1, . . . , R), is due to the applications which have motivated
the model. In the objectives, it is the costs (raw materials and investments) which are
uncertain; in the constraints, it is the available resources or the demands which are
uncertain. In such cases, there is no relation between theseuncertainties related to the
objectives and the constraints.
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5.6.1. The equivalent deterministic problem

As explained before, the random character of the data requires the definition of an
associated deterministic problem accepted as equivalent.One advantage of STRANGE
is the ease with which this equivalent problem can be formulated keeping the data as
defined in the initial problem.

Each objective is considered separately with each scenarioto obtain
K∑
k=1

Sk new

objectives, i.e.

zksk
= cksk

x k = 1, . . . ,K; sk = 1, . . . , Sk.

The uncertainty existing for the constraints is globally measured with the help of a
new additional objective, denotedzK+1. The idea of the stochastic programming with
recourse is used to define this new objective. The vectors(m × 1) of slack variables
y(r)+ andy(r)−, by excess and by default, respectively, betweenTr x anddr in case
of scenarior, are introduced in the constraint

Tr x+ y(r)+ − y(r)− = dr r = 1, . . . , R.

The new objective to minimize is then

zK+1 =

R∑

r=1

qr(β
(r) y(r)−),

whereβ(r) is a vector(1 × m) of possible penalties allowing different treatment of
the non-satisfaction of the constraints in each scenarior.

This objective is therefore a global measure of the non-satisfaction of the con-
straints and, in the real case studies treated with STRANGE,it has a precise meaning
similar to supply risk. The objectivezK+1 does not depend on any scenario. To unify
the notations, we note

zK+1 = zK+1, sK+1

whereSK+1 = 1.

The (multiple objective) associated deterministic problem is therefore:

(P ′)

[
“min” zksk

(x) = cksk
x k = 1, . . . ,K + 1; sk = 1, . . . , Sk

(x, y(r)+, y(r)−) ∈ D(0)

whereD(0) is defined by

D(0) = {(x, y(r)+, y(r)−) r = 1, . . . , R | Tr x+ y(r)+ − y(r)− = dr;

x ≥ 0; y(r)+ ≥ 0; y(r)− ≥ 0}.
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5.6.2. Determination of the first compromise

The principle used is similar to the STEM method (see section5.3.1) with the
exception that it is adapted to the particular context. Thisis particularly true for the
definition of the payoff matrix and for the consideration of ‘expected’ distance of the
initial random objectives from their ideal values in the definition of the augmented
weighted Tchebytchef distance.

5.6.2.1.Payoff matrix

For each objective(k, sk) k = 1, . . . ,K+1, sk = 1, . . . , Sk and for each scenario
r, r = 1, . . . , R, the following single objective problem is solved





min zksk
(x)

Trx+ y(r)+ − y(r)− = dr
x ≥ 0, y(r)+ ≥ 0, y(r)− ≥ 0

and an optimal solutionx(r)
ksk

is obtained.

We definẽxksk
as the best solutionx(r)

ksk
for the objective(k, sk), i.e.

zksk
(x̃ksk

) = min
r∈{1,...,R}

zksk
(x

(r)
ksk

).

This determines the coordinates of the ideal point in the objective space

Mksk
= zksk

(x̃ksk
)

which is the best possible value for the objective(k, sk).
Remark5.12. If x̃ksk

is not an unique solution, the particular procedure described
in section 5.2.3 is applied to remove the indetermination ofa column of the payoff
matrix. This happens frequently for the objective(K + 1, SK+1); effectively, there
generally exists an infinity of feasible solutions for whichthe uncertain constraints are
all satisfied(y(r)− = 0 ∀r), giving the optimal value zero for the objectivezK+1.

5.6.2.2.Weights associated to the objectives

Similarly to the STEM method (section 5.3.1), and with

mksk
= max

(ltl)
z(ksk)(ltl)

a variation coefficient (or technical weight) is associatedto each objective

πksk
=

αksk

K+1∑
k=1

Sk∑
sk=1

αksk

with

αksk
=
mksk

−Mksk

mksk

1

|| cksk
|| .



Multiple Objective Linear Programming 249

5.6.2.3.First compromise

The first compromise is obtained by resolving the single objective problem

(P ′
0)




minMδ −
K+1∑
k=1

ξk

Sk∑
sk=1

pksk
(cksk

x−Mksk
)πksk

≤ δ − ξk k = 1, . . . ,K + 1

(x, y(r)+, y(r)−) ∈ D(0); ξk ≥ 0 k = 1, . . . ,K + 1.

Let x̃(1) be the optimal solution which is the first compromise.

5.6.3. Interactive phases

5.6.3.1. Information given to the decision maker

For each compromisẽx(m), two pieces of information are given to the decision
maker:

1) The most important is the value obtained with this compromise by each objec-
tive (ksk), i.e. the value of each initial objectivek if the scenariosk will be realized:

z
(m)
ksk

= zksk
(x̃(m)) k = 1, . . . ,K + 1; sk = 1, . . . , Sk.

This information is given to the decision maker regarding the variation interval
[Mksk

, mksk
] of this objective. They therefore obtain a complete view of the con-

sequences of the compromisẽx(m).

2) In addition, the ‘expected’ value of each objectivek can be provided:

z̄
(m)
k =

Sk∑

sk=1

pksk
z
(m)
ksk

.

Moreover, to facilitate the comparison of these values for the different objectives,
it is useful for the decision maker to obtain the (1) and (2) inrelative values, i.e.

z
′ (m)
ksk

=
z
(m)
ksk
−Mksk

mksk
−Mksk

,

z̄
′ (m)
k =

z
(m)
k −Mk

mk −Mk

,

where

Mk =

Sk∑

sk=1

pksk
Mksk

,
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mk =

Sk∑

sk=1

pksk
mksk

.

The relative values 0 and 1 correspond to the ideal value and the worse value (in the
payoff table), respectively.

5.6.3.2.First interaction with the decision maker

With this information, the decision maker must decide if thecompromise is satis-
fying or if they want to determine a better compromise. For the latter case, they must
indicate an objective(ksk)∗ for which a relaxation will be accepted, i.e. a rise in the

valuez(m)
(ksk)∗ . As far as possible, the decision maker is also asked to fix an upper bound

∆(ksk)∗ of the valuez(m+1)
(ksk)∗ , so that this value will be in the interval

[z
(m)
(ksk)∗ , ∆(ksk)∗ ].

5.6.3.3.Computational phase

A parametric analysis is carried out to completely explore the road indicated by
the decision maker, i.e. the consequences of each possible level of relaxation of the
objective(ksk)

∗. With the notation

M(ksk)∗ + λ(m(ksk)∗ −M(ksk)∗) = z
(m)
(ksk)∗ ,

M(ksk)∗ + λ(m(ksk)∗ −M(ksk)∗) = ∆(ksk)∗ ,

the possible values forz(m+1)
(ksk)∗ correspond to the valuesλ ∈ [λ, λ] of the parameter

λ. The single objective parametric linear programming problem

(P ′
m)




minMδ −
K+1∑
k=1

ξk

Sk∑
sk=1

pksk
(cksk

x−Mksk
)πksk

≤ δ − ξk k = 1, . . . ,K + 1

c(ksk)∗ x = M(ksk)∗ + λ(m(ksk)∗ −M(ksk)∗) λ ≤ λ ≤ λ
(x, y(r)+, y(r)−) ∈ D(m); ξk ≥ 0 k = 1, . . . ,K + 1

is considered.

For the definition ofD(m), two options are proposed to the decision maker corre-
sponding to the introduction, or not, of restrictive constraints (see section 5.3.1).
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5.6.3.3.1. Option (a): With restrictive constraints.

D(m) is defined by

D(m) = D(m−1) ∩ {x | z(ksk)∗(x) ≤ z(ksk)∗(x̃(m))}

and, simultaneously, the weightπ(ksk)∗ is set definitively to zero for all of the remain-
ing procedure. The number of interactive phases is therefore limited to a maximal
number of

K+1∑

k=1

Sk

iterations.

5.6.3.3.2. Option (b): Without restrictive constraints.

In this case,

D(m) = D(0) ∀m

and the weightπ(ksk)∗ is set to zero, but only during themth iteration corresponding
to the relaxation of the objective(ksk)∗. After this, its value is re-established, here the
number of iterations is no longer limited.

The parametric problem(P ′
m) is solved by the dual simplex algorithm: the optimal

solutionx(m+1)(λ) is determined by the sequence of stability intervals of the optimal
basis corresponding to the bounds

λ = λ0 < λ1 < · · · < λp = λ.

For each objective(ksk) k = 1, . . . ,K + 1; sk = 1, . . . , Sk, we therefore obtain the
values

z(ksk)(x
(m+1)(λ)) λ ≤ λ ≤ λ.

These values are presented numerically and graphically to the decision maker: they
are piecewise linear with constant slope on each interval:

[λi−1, λi] i = 1, . . . , p.

To make the task of the decision maker easier (see section 5.6.3.3.3), the relative
values of each objective are presented simultaneously withthe same scale on a unique
figure. The decision maker therefore obtains a complete, precise and easy view of the
possible consequences of the choice they must make (see Figure 5.12, a numerical
illustration described in [TEG 03]).
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Figure 5.12.Parametric analysis of an interactive phase for a numericalexample
(K = 2, Sk = 3, k = 1, 2; relaxation ofz13)

5.6.3.3.3. Option (c): Second interaction with the decision maker.

With such a complete information, the decision maker must fixthe level̃λ ∈ [λ, λ]
of relaxation preferred so that the new compromise is more satisfying:

x̃(m+1) = x(m+1)(λ̃).

Remark5.13. To close this section, we indicate some research concerningMOSLP:

– A monograph [SLO 90] has been devoted to these models and also to those
where the data are fuzzy numbers (see section 5.7). In particular, the reader can find
a more theoretical review of MOSLP problems [SLO 90, chapterII.1], an extension
of the STRANGE method to problems with integer variables [SLO 90, chapter II.2]
and the treatment of models in which the information on the random variables is not
complete in [SLO 90, chapter II.4]. (See also [NAD 94, URL 90].)



Multiple Objective Linear Programming 253

– In many applications, it appears difficult to estimate the realizations of the sce-
narios. In this case, the only available information is the variation intervals of the
coefficients; such a situation is analyzed in [CHA 96, TEG 94,URL 92].

– Teghem [TEG 94] also proposes an approach for the case wherethe scenarios
(corresponding to possible states of the nature) are globally defined for all the coeffi-
cients in the objectives as well as in the constraints.

5.7. The multiple objective fuzzy linear programming

The fuzzy modelization craze in many scientific fields duringthe past two decades
was remarkable; decision aiding is just one example. This approach allows us to model
uncertainty when it is more related to an imprecision of definition or understanding of
the data than to a random nature. Its success is due to a pragmatic ease of modelization
and treatment, as well as to the results obtained.

There are several books concerning fuzzy modelization (in particular those of
[DUB 80, SLO 98]). Some of the literature treat, more specifically, multiple objec-
tive fuzzy linear programming (MOFLP) problems of the type

‘ min ’ zk(x) = c̃kx k = 1, . . . ,K

x ∈ D = {x|T̃ x ≤ d̃, x ≥ 0} (5.40)

where elements of̃c, T̃ and d̃ are fuzzy numbers [SLO 90, chapters 1, 3], [LAI 92],
[EHR 02, chapter 4] and [TEG 03, chapters 10,11].

It is not possible to present a survey of these numerous references. As in the previ-
ous section, we simply discuss one recent method which appears attractive and easy to
implement. For similar reasons as explained in the previoussection, an MOFLP prob-
lem is badly defined and it is necessary to define a crisp (or deterministic) equivalent
problem. The different methods essentially differ by the following:

– in comparing two fuzzy numbers to determine the constraints of the equivalent
problem; and

– in treating the optimization of a fuzzy number to determinethe objective func-
tion(s) of the equivalent problem.

We describe the answers to these questions regarding the multi-objective fuzzy
area compensation (MOFAC) method [FOR 01] in the following section.

5.7.1. Comparison of two fuzzy numbers

It is therefore necessary to analyze the relationsã ≤ b̃, ã = b̃, ã ≥ b̃ whereã and
b̃ are two fuzzy numbers, supposed normalized and convex, which in equation (5.40)
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(MOFLP) correspond to the left hand side(
n∑
j=1

t̃ijxj) and to the right hand side(d̃i)

of a fuzzy constraint, respectively.

5.7.1.1.Area compensation

The idea proposed by Fortemps and Roubens [FOR 96] consists of analyzing the
global area defined by the membership functions ofã and b̃. If [aα, aα] and[bα, bα]

are theα-cuts ofã andb̃, this area, denotedS(ã, b̃), is defined by

S(ã, b̃) =

1∫

0

(
max(aα, bα)−min(aα, bα)

)
dα

corresponding to the sum of the areas numbered 1–6 on Figure 5.13.

x

α

b̃ ã

3 1

2

6 5

4

Figure 5.13.Partition of the areaS(ã, b̃)

This global area is separated into three parts:S(ã > b̃), S(ã = b̃), S(ã < b̃),
favorable to the relations̃a > b̃, ã = b̃, ã < b̃ respectively, such that

S(ã, b̃) = S(ã > b̃) + S(ã = b̃) + S(ã < b̃)

where

S(ã > b̃) =
1∫
0

(
aα −min(aα, bα) + aα −min(aα, bα)

)
dα

S(ã = b̃) =
1∫
0

(
min(aα, bα)−max(aα, bα)

)
dα.
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Geometrically, these three numbers correspond to the areasof Figure 5.13 as fol-
lows:

S(ã > b̃) = area(1) + area(3) + 2× area(2)

S(ã = b̃) = area(4)− area(2)

S(ã < b̃) = area(5) + area(6).

To obtain three normalized indices measuring the intensityof these three relations,
the following definitions are introduced:

I(ã > b̃) =
S(ã > b̃)

S(ã, b̃) + S(ã = b̃)

I(ã = b̃) =
2S(ã = b̃)

S(ã, b̃) + S(ã = b̃)

I(ã < b̃) =
S(ã < b̃)

S(ã, b̃) + S(ã = b̃)

so that

I(ã > b̃) + I(ã = b̃) + I(ã < b̃) = 1.

It must be noted that these three indices are not necessarilyincluded in the interval
[0, 1] and that they can either be strictly greater than 1 or negative. We also introduce

I(ã 6= b̃) = 1− I(ã = b̃) = I(ã > b̃) + I(ã < b̃).

Although these indices appear difficult to calculate (due tothe minimum and maxi-
mum operators used in their definition formula), this is not the case (see section 5.7.1.2
below) for the indices

I(ã ≥ b̃) = I(ã > b̃) +
1

2
I(ã = b̃)

where

I(ã ≥ b̃) + I(ã ≤ b̃) = 1.

These definitions give coherent values for the comparison ofa fuzzy number̃a
with itself as

I(ã > ã) = I(ã 6= ã) = 0; I(ã = ã) = 1; I(ã ≥ ã) =
1

2
.
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5.7.1.2.Determination ofI(ã ≥ b̃)
The reason to not state in the definitions above that the values of the indices belong

to the interval[0, 1] is that we can derive an easy formula to calculate these values. If
we set

E∗(ã) =
1∫
0

aα dα

E∗(ã) =
1∫
0

aα dα

and F(ã) = 1
2 (E∗(ã) + E∗(ã)) ,

taking into accountmin(x, y) + max(x, y) = x+ y, then

I(ã ≥ b̃) =
E∗(ã)− E∗(̃b)

(E∗(ã)− E∗(ã)) + (E∗(̃b)− E∗(̃b))

or

I(ã ≥ b̃) =
1

2
+

F(ã)−F (̃b)

(E∗(ã)− E∗(ã)) + (E∗ (̃b)− E∗(̃b))
.

Finally, we derive

I(ã ≥ b̃) ≥ 1

2
⇐⇒ F(ã) ≥ F (̃b).

E∗(ã) andE∗(ã) correspond to the hatched areas of Figure 5.14a and b, respectively.

ã

x

α

1

a)E?(ã) b)E?(ã)
x

ã

α

1

Figure 5.14.The areasE∗(ã) andE∗(ã)

If we interpret a fuzzy number as a feasible set of probability distributions, the
interval [E∗(ã), E

∗(ã)] can be viewed as the interval of the expected values of these
distributions [DUB 87]. The functionF , defining the middle of this interval, then
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appears as a ‘defuzzyfication’ function which gives a natural order on the set of fuzzy
numbers. Moreover [FOR 96], this function is linear, verifying

F(cã) = cF(ã)

F(ã+ b̃) = F(ã) + F (̃b)
.

5.7.1.3.Equivalent crisp constraint

The principle described above allows the transformation ofa fuzzy constraint

n∑

j=1

t̃ijxj ≤ d̃i

into a crisp constraint, if a satisfaction levelσi is fixed. It is only necessary to impose

I




n∑

j=1

t̃ijxj ≥ d̃i


 ≥ σi

and, due to the linearity of the operatorsE∗ andE∗ and the non-negativity of the
variablesxj , this corresponds to

E∗(d̃i)−
n∑
j=1

E∗(t̃ij)xj

E∗(d̃i)− E∗(d̃i) +
n∑
j=1

(
E∗(t̃ij)− E∗(t̃ij)

)
xj

≥ σi

or
n∑

j=1

(
σiE

∗(t̃ij) + (1− σi)E∗(t̃ij)
)
xj ≤ σiE∗(d̃i) + (1− σi)E∗(d̃i).

Note that the particular valueσi = 1/2 which appears quite logical, simply corre-
sponds to

n∑

j=1

F(t̃ij)xj ≤ F(d̃i)

i.e. to the application of the ‘defuzzyfication’ functionF to the initial fuzzy constraint.

5.7.2. Treatment of a fuzzy objective function

In the spirit of the area compensation described in section 5.7.1, a fuzzy objective
function

z̃k(x) =
n∑

j=1

c̃kj xj



258 Decision Making

can be transformed into a crisp objective function by application of the ‘defuzzyfica-
tion’ functionF , i.e.

zk(x) =

n∑

j=1

F (c̃kj)xj .

5.7.3. The crisp (deterministic) equivalent problem

Combining sections 5.7.1 and 5.7.2, we obtain a MOLP problemof the same di-
mension. It is especially easy to formulate if all the satisfaction levels are fixed to1/2.
This problem can then be treated by any method for a MOLP problem.

To highlight the simplicity of this approach, note that other methods proposed to
tackle MOFLP problems either require the introduction of many parameters, produce
a nonlinear crisp equivalent problem or, if the crisp problem is linear, increase its
dimension compared to the dimension of the initial problem.

Among the numerous methods discussed, we can also mention the fuzzy linear
programming (FLIP) method of Slowinski [SLO 86], [SLO 90, chapter 2.3] and the
fuzzy linear programming based on aspiration levels (FULPAL) method of Rom-
melfanger [SLO 90, chapter 3.5].

5.8. Conclusion

Unbelievably, it is quite impossible to treat all multiple objective programming
and its various extensions in a single chapter. Nevertheless, we hope to have intro-
duced the reader to this field and its many parts (except for nonlinear programming).
Each section provides a good introduction to the existing literature, but to obtain a
deeper knowledge, the specialist books and survey papers cited in each section must
be read also. Attention has been focused on the methodologies and their main prin-
ciples, without mention of the several possible applications. The reader can refer to
[WHI 90] for a sample of these applications.
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[KIZ 83] K IZILTAN G., YUCAOǦLU E. An Algorithm for Multiobjective Zero: One Linear
Programming.Management Science, 29(12), 1444–1453 (1983).

[KOR 86] Korhonen, P. Laasko, J. A visual interactive methodfor solving the multiple criteria
problems.European Journal of Operational Research, 14, 277–287 (1986).

[KLE 82] K LEIN D., HANNAN E. An Algorithm for Multiple Objective Integer Linear Pro-
gramming Problem.European Journal of Operational Research, 9, 378-385 (1982).

[KUN 87] K UNSCH P.L., TEGHEM J. Nuclear fuel cycle optimization using multiobjective
linear programming.European Journal of Operational Research, 31, 240-249 (1987).

[LAI 92] L AI Y.J., HWANG C.L. Fuzzy Mathematical Programming: methods and applica-
tions. Lecture Notes in Economics and Mathematical Systems, no. 394, Springer-Verlag,
Berlin (1992).

[LHO 95] L’ HOIR H., TEGHEM J. Portfolio selection by MOLP using an interactive Branch
and Bound.Foundations of Computing and Decision Sciences, 20(3), 175–185, (1995).

[LOU 02] LOUKIL T., TEGHEM J., TUYTTENS D. Solving multi-objective production
scheduling problems using metaheuristics.European Journal of Operational Research,
161, 42–61 (2005).

[LOU 03] LOUKIL T., TEGHEM J. Multiple criteria production scheduling problems. A liter-
ature survey and classified bibliography. Technical ReportPolytechnique Faculty of Mons
(2003).

[MAR 86] M ARCOTTE O., SOLAND R.M. An Interactive Branch-and-Bound Algorithm for
Multiple Criteria Optimization.Management Science, 32, 1, 61–75 (1986).

[MAR 90] M ARTELLO S., TOTH P. Knapsack Problems: Algorithms and Computer imple-
mentations. John Wiley and Sons, New York 1990.

[MUR 00] MURATA T., ISHIBUCHI H. Cellulary genetic local search for multi-objective op-
timization. Proceedings of the Genetic Evolutionary Computation Conference2000, 307–
314 (2000).

[NAD 94] NADEAU R., URLI B., KISS LASZLO N. Promise: a DSS for multiple objec-
tive stochastic linear programming problems.Annals of Operations Research, 51, 45–59
(1994).

[PIR 03] PIRLOT M., TEGHEM J. Résolution de problèmes de recherche opérationnelle par
les métaheuristiques.Traité IC2, Editions Hermès (2003).



262 Decision Making

[ROY 76] ROY B. From optimization to multicriteria decision aid: three main operational atti-
tudes. In Thiriez, H. and Zionts, S. (eds).Multiple Criteria Decision Making Lecture Notes
in Economics and Mathematical Systems, 130, Springer-Verlag, Berlin, 1–30 (1976).

[ROY 85] ROY B. Méthodologie multicritère d’aide à la décision. Economica, Paris, 1985.

[ROY 93] ROY B., BOUYSSOUD. Aide multicritère à la décision: méthodes et cas.Econom-
ica, Paris (1993).

[SKI 00] SKRIVER A.J.V. A classification of bicriteria shortest path (BSP) algorithms.Asia-
Pacific Journal of Operational Research, 17(2), 199–212 (2000).

[SLO 86] SLOWINSKI R. A multicriteria fuzzy linear programming method for water supply
system development planning.Fuzzy Sets and Systems, 19, 217-237 (1986).

[SLO 90] SLOWINSKI R., TEGHEM J. Stochastic versus Fuzzy Approaches to Multiobjective
Mathematical Programming under Uncertainty.Kluwer Academic Publisher, Dordrecht
(1990).

[SLO 98] SLOWINSKI R. Fuzzy sets in decision analysis, operations research andstatistics. In
Operations Research and Statistics. Kluwer Academic Publisher, Dordrecht (1998).

[SRI 94] SRINIVAS N., DEB K. Multiple objective optimization using nondominated sorting
in genetic algorithms.Evolutionary Computation, 2(2), 239–254 (1994).

[STE 86] STEUER R. Multiple criteria optimization: theory, computation and application.
Wiley (1986).

[SYL 04] SYLVA J., CREMA A. A method for finding the set of non dominated solutions for
multiple objective integer linear programs.European Journal of Operational Research,
158, 46–55 (2004).

[TEG 85] TEGHEM J., KUNSCH P.L. Multi-objective decision making under uncertainty: an
example for power systems. In Haimes Y.Y. and Chankong V. (Eds),Decision Making with
Multiple Objective, pp. 443–456, Springer-Verlag, Berlin (1985).

[TEG 86a] TEGHEM J., KUNSCH P. Interactive methods for multi-objective integer linear
programming. In G.Fandelet al., Lecture Notes in Economics and Mathematical Systems,
vol. 273, pages 75–86. Springer-Verlag, Berlin (1986).

[TEG 86b] TEGHEM J., KUNSCH P. Survey of techniques to determine the efficient solu-
tions for multi-objective integer linear programming.Asia-Pacific Journal of Operation
Research, 3, 95–108, 1986.

[TEG 86c] TEGHEM J., DUFRANE D., THAUVOYE M., KUNSCHP.L. ‘STRANGE’: an inter-
active method for multi-objective linear programming under uncertainty.European Jour-
nal of Operational Research, 26, 65–82 (1986).

[TEG 94] TEGHEM J. New developments in multiobjective stochastic linear programming. In
Skiadas C. and Jansen J. (Eds),Applied Stochastic Models and Data Analysis, pp. 938–948
(1994).



Multiple Objective Linear Programming 263

[TEG 00] TEGHEM J., ULUNGU E.L., TUYTTENS D. An interactive heuristic method for
multi-objective combinatorial optimization.Computers & Operations Research, 27, 621–
634 (2000).

[TEG 02] TEGHEM J., PIRLOT M. Optimisation Approchée en Recherche Opérationnelle.
Collection IC2. Editions Hermès (2002).

[TEG 03] TEGHEM J. Programmation linéaire (2nd edition).Collection Statistique et Mathé-
matiques Appliquées. Editions de l’Université de Bruxelles et Ellipses (2003).

[TKI 02] T’K INDT V., BILLAUT J. CH. Multicriteria Scheduling. Springer-Verlag, Berlin
(2002).

[TUY 00] TUYTTENS D., TEGHEM J., FORTEMPSPH. , VAN NIEUWENHUYZE P. Perfor-
mance of the mosa method for the bicriteria assignment problem. Journal of Heuristics, 6,
295–310, 2000.

[ULU 91] ULUNGU E.L., TEGHEM J. Multi-objective shortest path problems: a survey. In D.
Glückaufovaet al. (Eds).Proceedings of the International Workshop on MCDM, pp.176–
178, Institute of Economics, Czechoslovak Academy of Sciences, Prague, 1991.

[ULU 94a] ULUNGU E.L., TEGHEM J. Multi-objective combinatorial optimization problems:
A survey.Journal of Multi-Criteria Decision Analysis, 3, 83–104, 1994.

[ULU 94b] ULUNGU E.L., TEGHEM J. The two-phases method: an efficient procedure to
solve bi-objective combinatorial optimization problem.Foundations of Computing and
Decision Sciences, 20(2), 149–165, 1994.

[ULU 95] ULUNGU E.L., TEGHEM J., FORTEMPSPH. Heuristics for multiobjective com-
binatorial optimization problems by simulated annealing.In Wei Q. et al. (Eds)MCDM:
theory and applications, pp. 218–238, Sci-Tech. Information Services, Windsor, UK, 1995.

[ULU 97] ULUNGU E.L., TEGHEM J. Solving multi-objective knapsack problem by a branch-
and-bound procedure. In J.N. Clímaco,Multicriteria Analysis, pages 269–278. Springer-
Verlag, Berlin 1997.

[ULU 98] ULUNGU E.L., TEGHEM J., OST CH. Efficiency of interactive multi-objective sim-
ulated annealing through a case study.Journal of the Operational Research Society, 49,
1044–1050 (1998).

[ULU 99] ULUNGU E.L., TEGHEM J., FORTEMPSPH. , TUYTTENS D. Mosa method: a tool
for solving multiobjective combinatorial optimization problems.Journal of Multi-Criteria
Decision Analysis, 8, 221–236, 1999.

[URL 90] URLI B., NADEAU R. Stochastic MOLP with incomplete information: an interactive
approach with recourse.Journal of Operational Research Society, 41(12), 1143–1152
(1990).

[URL 92] URLI B. An interactive method to multiobjective linear programming problems with
interval coefficients.INFOR, 30(2), 127–137 (1992).



264 Decision Making

[VAN 89] Vanderpooten, D., Vincke, Ph. Description and analysis of some representative inter-
active multicriteria procedures.Mathematical and computer modelling, 12(10–11), 1221–
1238 (1989).

[VIA 00] V IANA A., PINHO DE SOUSA J. Using metaheuristics in multiobjective ressource
constrained project scheduling.European Journal of Operational Research, 120(2), 359–
374 (2000).

[VIN 92] V INCKE PH. Multicriteria Decision Aid. John Wiley and Sons, New York (1992).

[VIS 98] V ISÉEM., TEGHEM J., PIRLOT M., ULUNGU E.L. Two-phases method and branch
and bound to solve bi-objective knapsack problem.Journal of Global Optimization, 12,
139–155 (1998).

[WHI 90] WHITE D.J. A bibliography on the application of mathematical programming mul-
tiple objective methods.Journal of the Operational Research Society, 41(8), 669–691
(1990).

[WIE 82] Wierczbicki, A.P. A mathematical basis for satisficing decision making.Mathemati-
cal Modelling, 3, 391–405 (1982).

[WOL 98] WOLSEY L.A. Integer programming. Series in Discrete Mathematics and Opti-
mization. Wiley, Chichester (1998).

[ZIO 83] ZIONTS S., WALLENIUS J. An interactive multiple objective linear programming
method for a class of underlying nonlinear utility functions. Management Science, 29(5),
519–529 (1983).

[ZIT 98] Z ITZLER E., THIELE L. Multi objective Evolutionary Algorithms: A comparative
case study and strength Pareto approach.IEEE Transactions on Evolutionary Computa-
tion, 3(4), 257–271 (1998).



Chapter 6

Constraint Satisfaction Problems

6.1. Introduction

Around 60 years ago, American scientists working at the frontier of mathematics
and computer science had an idea. They decided that most of their logistics prob-
lems, such as the deployment of the American army raised justafter the second world
war, shared a common mathematical structure which justifiedtheir study globally to
look for common algorithmic answers. Some years later,linear programmingand the
so-calledsimplexalgorithm were born [DAN 63]. They paved the way for years of re-
search and improvement and enabled the development of software tools which are now
capable of exactly solving optimization problems, involving hundreds of thousands of
real variables linked by linear constraints and a linear criterion.

Thirty years later, other scientists working in the area of artificial intelligence (AI)
and, more specifically, in computer vision, had another idea. They concluded that
another generic framework could be designed to represent arbitrary constraint satis-
faction problems involving variables with finite domains. TheConstraint Satisfaction
Problem(CSP) was born [MAC 77a, MON 74, WAL 75]. Similarly to what happened
with linear programming, the research which has organized itself around this prob-
lem has lead to the development of efficient solving tools. These tools are now used in
various domains such as planning, scheduling, resource management, design, configu-
ration, computer vision, diagnosis, natural language processing, structure recognition,
etc.

The CSP framework actually follows from two essential observations:
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– Many real problems involve nonlinear constraints which are not always conve-
niently represented or approximated by linear constraints. This is especially true if
this transformation leads to an extreme increase in the problem size or to a unbearable
distortion of the original problem. Despite its computational power, linear programing
is inherently limited by its definition: all the constraints, as well as the optimization
criterion, must be linear.

– In most real problems, constraints do not usually involve all the variables of the
problem but only a small fraction of them. A global constraint satisfaction problem
results from the conjunction of a large number of local constraints which are intimately
interdependent in that they share one or more variables. In such a situation, local
processing (even if relatively naive and simply enumerative because of the arbitrary
form of the constraints) can exhibit good performances as long as the result of each
processing is propagated in the network comprising variables and constraints.

The CSP framework allows eitherdecisionproblems (deciding on the value of
some variables according to a set of constraints and an optimization criterion) orin-
ferenceproblems (proving, from a set of constraints, that other constraints hold on
some variables) to be both represented. In a decision problem, such as a configura-
tion problem (configuration of a car or a kitchen, for example), the variables allow the
possible choices (usable components together with their characteristics) to be repre-
sented. The constraints allow technological constraints (component incompatibilities,
characteristics limitations) as well as user requirementsto be captured. In an infer-
ence problem, such as a diagnosis problem, the variables allow observable parameters
(alarms, test results) and non-observable parameters (component states) to be repre-
sented. The constraints can capture the existing knowledgeof the system, i.e. relations
between components and, for each component, relations between observable and non-
observable parameters in normal and abnormal modes.

6.2. The CSP framework

There are four essential components in the CSP framework: the variables, their
domains, theconstraints, and theirrelations. A CSP instance can be defined by a 4-
tuple(V,D,C,R) where:

– V is a sequence ofn variables.

–D is a sequence ofn domains. For every variablevi ∈ V, 1 ≤ i ≤ n, there is
one associated domainDi ∈ D which represents all the possible values forvi. These
domains are finite but of an arbitrary nature, numerical or not (see Section 6.10.1 for
an extension to continuous domains).

– C is a sequence ofe constraints. For every constraintcj ∈ C, 1 ≤ j ≤ e,
there is one associated sub-sequenceVj of V which represents the variables that are
involved incj .
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–R is a sequence ofe relations. For every constraintcj ∈ C, 1 ≤ j ≤ e, there
is one associated relationRj ∈ R on the domains of the variables inVj . This relation
defines a subset of the Cartesian product of the domains of thevariables inVj , which
itself represents all the combinations of values for the variables inVj that are allowed
by cj . These relations are absolutely arbitrary. They can be defined inextensionby the
explicit list of all the allowed (or forbidden) combinations of values, or inintension
by an equation involving the variables inVj . More generally, they can also be defined
by a boolean function (orcharacteristic function) fj. This may have the form of a
computer code which takes as an input a combination of valuesof the variables in
Vj . It outputstrue or falseaccording to the satisfaction of constraintcj by the input
combination of values.

6.2.1. Syntactical part

V andC represent the so-calledsyntacticalpart or, more adequately, thestruc-
tural part of a CSP instance. It can be represented as an undirected(hyper)graph
whose vertices are the variables inV and (hyper)edges are the constraints inC. This
(hyper)graph is often called theconstraint graphor the instancemacrostructure. Fig-
ure 6.1 shows the macrostucture associated with a CSP instance involving 4 variables
and 4 constraints: 3 binary constraints (c1 involving variablesv1 andv2, c2 involv-
ing v2 andv4 andc3 involving v3 andv4) and one ternary constraint (c4 involving
variablesv1, v2, andv3). We define thearity aj of a constraintcj as the number of
variables it involves:aj = |Vj |. We define thedegreedi of a variablevi as the number
of constraints that involve it:di =

∑
cj∈C

(vi ∈ Vj). In the example of Figure 6.1,
constraintc4 has arity3 and variablev1 has degree2.

c4

c3

c2c1

v3

v4

v2

v1

Figure 6.1. An example of macrostructure
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6.2.2. Semantical part

D andR represent the so-calledsemanticalpart of a CSP instance. Similarly to
the syntactical part, it can be represented as an-partite undirected (hyper)graph. (An
undirected (hyper)graph is said to ben-partite if and only if there exists a partition
of its vertices such that every (hyper)edge connects only vertices from different ele-
ments of the partition.) This hypergraph has vertices whichare the possible values in
the domains ofD, the elements of the partition are the domains themselves and the
(hyper)edges are the allowed combinations of values in the relations ofR.

This (hyper)graph is often called theconsistency graphor themicrostructure. Fig-
ure 6.2 shows the microstructure associated with a CSP instance whose macrostructure
is that of Figure 6.1. For the sake of readability, the (hyper)edges that represent com-
binations of values that are allowed because of the absence of constraint are omitted.
Because there is no constraint betweenv1 andv3, all the possible combinations of
values of both variables are implicitly allowed but they arenot explicitly represented.
As an example, the domain associated with variablev4 is {1, 2, 3}. The relation as-
sociated with constraintc2 between variablesv2 andv4 is defined by the inequation
v2 < v4, which allows the pairs of values(1, 2), (1, 3) and(2, 3). The relation asso-
ciated with constraintc4 between variablesv1, v2 andv3 is defined by the inequality
v1 + v2 + v3 ≤ 3, which allows only the3-tuple(1, 1, 1).

2
1

1
2

1
2
3

1
2

c3 : v3 6= v4

c2 : v2 < v4c1 : v1 = v2

c4 :
v1 + v2 + v3 ≤ 3

v2

v4

v3

v1

Figure 6.2. An example of microstructure

We must emphasize the fact that domains must be finite, but maybe of an arbitrary
nature. A domain can be defined in extension by a list of valuesas in the example
of Figure 6.2. It can be also defined in intension by a type of values and a unary
constraint as far as type and constraint together define a finite domain. Examples of
values include the set of integers between3 and9, the set of integers between2 and5
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or between7 and12, or the set of integers that are a multiple of3 and between1 and
20. It is also possible to define domains having symbols, vectors, structures, objects
or sets as values.

Analogously, constraints may be of arbitrary nature. We have seen in the example
of Figure 6.2 linear numerical constraints (v1 +v2 +v3 ≤ 3) and nonlinear constraints
(v3 6= v4). However, many other types of not necessarily linear constraints can be
used. Examples includec1 ∨ c2 wherec1 andc2 are two linear constraints,x · y = z
or xy ≥ z. On domains of arbitrary nature, numerical or not, we can imagine many
other types of constraints. For example, theall-different constraint involves a set of
variablesV ′ and ensures that all the variables inV ′ take different values. For example,
theelementconstraint involves an ordered set of variablesV ′, an integer variablei and
another variablev, and enforces theith variable ofV ′ to be equal tov.

6.2.3. Assignments

A variable is said to be assigned if a value in its domain has been associated with
it. Let A be the assignment of a setV (A) ⊆ V of variables. AssignmentA is said to
becompleteif all the variables are assigned by it (V (A) = V ). It is said to bepartial
otherwise. Letcj ∈ C be a constraint such that all its variables are assigned byA
(Vj ⊆ V (A)). Constraintcj is said to besatisfiedby A if the restriction ofA to the
variables inVj belongs to relationRj (A[Vj ] ∈ Rj). (Note that ifA is an assignment
andV ′ a set of variables such thatV ′ ⊆ V (A), A[V ′] denotes the projection ofA on
V ′.) AssignmentA is said to beconsistentif all the constraints whose variables are
all assigned byA are also satisfied byA (∀cj ∈ C|Vj ⊆ V (A), A[Vj ] ∈ Rj). It is
said to beinconsistentotherwise. Asolutionis a complete and consistent assignment
([V (A) = V ] ∧ [∀cj ∈ C,A[Vj ] ∈ Rj ]) or, more explicitly, an assignment of all the
variables that satisfy all the constraints. A CSP instance is said to be consistent if it
has a solution. It is said to be inconsistent otherwise.

In the example of Figure 6.2, the partial assignment{(v1 = 1), (v2 = 1), (v4 =
1)} is inconsistent because it does not satisfy constraintc2 whose variables are all
assigned. The partial assignment{(v1 = 1), (v2 = 1), (v4 = 2)} is consistent because
c1 andc2, the two constraints whose variables are all assigned, are both satisfied. The
complete assignment{(v1 = 1), (v2 = 1), (v3 = 1), (v4 = 2)} is consistent and is
one of the two solutions of this CSP instance which is itself consistent.

6.2.4. Queries

Manyqueriescan be expressed on a CSP instance. We can consider for example:

1) to decide whether or not it is consistent;

2) to produce a solution when it is consistent;
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3) to produce all the solutions;

4) to compute the number of solutions;

5) to decide whether or not a given value of a given variable belongs to a solution;

6) to decide whether or not a given combination of values of a given set of variables
belongs to a solution;

7) to remove from every domain all the values that do not belong to a solution;

8) to remove from every relation all the combination of values that do not belong
to a solution.

The second query is, by far, the most frequently addressed. It directly answers
the decision problem: to find a decision (a plan in planning, asystem schema in de-
sign, etc.) that satisfies all the constraints, whether theyfollow from the the laws of
physics or from user requirements. The first query appears inmany reasoning tasks:
in diagnosis, it captures the problem of deciding whether ornot a set of assumptions
is consistent with the observations and the system behaviormodel, including normal
and abnormal modes. In the example of Figure 6.2, the answersto the different queries
considered are the following:

1) yes, this instance is consistent;

2) {(v1 = 1), (v2 = 1), (v3 = 1), (v4 = 2)} is a solution;

3) {{(v1 = 1), (v2 = 1), (v3 = 1), (v4 = 2)}, {(v1 = 1), (v2 = 1), (v3 =
1), (v4 = 3)}} is the set of solutions;

4) this instance has2 solutions;

5) yes, for example,(v1 = 1) belongs to a solution; on the contrary,no, (v1 = 2)
belongs to no solution;

6) yes, for example,{(v1 = 1), (v3 = 1)} belongs to a solution; on the contrary,
no, {(v1 = 1), (v3 = 2)} belongs to no solution;

7) removal of value2 from the domains ofv1, v2 andv3 and of value1 from the
domain ofv4;

8) removal of the combination{(v1 = 2), (v2 = 2)} from the relation associ-
ated with constraintc1, of the combination{(v2 = 2), (v4 = 3)} from the relation
associated with constraintc2 and of the combinations{(v3 = 2), (v4 = 1)} and
{(v3 = 2), (v4 = 3)} from the relation associated with constraintc3.

Figure 6.3 shows the microstructure of the CSP instance of Figure 6.2 after having
answered queries (7) and (8).

In its basic version, the CSP is not an optimization problem but a pure satisfaction
problem. However, if an optimization criterion exists and is a function of a given sub-
setVc ⊆ V of the variables, the problem of finding a solution such that the optimiza-
tion criterion takes a value above a given thresholdk becomes a constraint satisfaction
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c2 : v2 < v4c1 : v1 = v2

c4 :
v1 + v2 + v3 ≤ 3

c3 : v3 6= v4

v2

v4
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Figure 6.3. The microstructure obtained after the removal of the valuesand combination of
values that belong to no solution

problem. A variablevc is added toV , representing the value taken by the optimization
criterion together with two constraints. One constraint connectsvc to the variables of
Vc and specifies the optimization criterion. The other unary constraint onvc states
vc � k (i.e.x � y indicates that valuex of the criterion is better than valuey).

In the rest of this chapter, we will denote the number of variables in an instance by
n, the number of constraints bye and the maximum domain cardinality byd.

6.3. Complexity

From the theoretical complexity point of view [GAR 79, PAP 94], deciding the
consistency of an arbitrary CSP instance belongs to the class of thenon-deterministic
polynomial (NP) completeproblems. It belongs to the class of the NP problems be-
cause a certificate of consistency is given by a solution which has a polynomial size
(of O(n)) and can be verified in polynomial time (ofO(e), if we consider that check-
ing the satisfaction of a constraint by a given assignment isan elementary operation
achieved in constant time). A problemp is said to be complete for a classC if any
instance of any problemp′ ∈ C can be transformed in polynomial time into an equiv-
alent instance ofp. It is complete for this class because it is a generalizationof the
theboolean expression satisfiability problem(SAT) [GU 97] problem which has itself
been shown to be complete for this class [COO 71]. The SAT problem is actually a
restriction of the CSP where all variables are boolean and all constraints are clauses.
(Note that a clause is a disjunction of literals, a literal being a boolean variable or its
negation e.g.a ∨ ¬b ∨ c.)
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The main practical consequence of this property is that it isvery unreasonable
(except if we assume that NP problems are also polynomial) totry to design an al-
gorithm that solves the general CSP, which is complete and correct and whose worst
case complexity is polynomial. An algorithm that aims to answer a decision problem
is said to be complete if it always gives an answer (positive or negative). It is said to be
correct if this answer is always correct (positive for consistent instances and negative
otherwise.) Generality, at least one of completeness or polynomial complexity must
be relaxed; relaxing the requirement of a correct answer does not seem to be sensible.

If we abandon the requirement of polynomial complexity, we can consider com-
plete generic algorithms such astree searchor variable elimination(see sections 6.6.1
and 6.6.2). If instead we relax the requirement of completeness, we can use generic in-
complete algorithms such asgreedy searchor local search(see sections 6.6.3 and 6.6.4).
Finally, if we relax the requirement of generality, we can study complete polynomial
time algorithms dedicated to specificsub-problemsof the CSP itself (see section 6.8).

Given that the complexity theory only considers worst case complexity, we may
also be interested in the mean complexity or in the complexity empirically observed
on a given set of reference instances. Section 6.7 provides the main lessons that have
been learnt from the numerous experiments performed.

6.4. Related problems

Considering the SAT problem [GU 97], we have already seen that this problem is a
sub-problem of the CSP defined by the restriction to boolean variables and to clauses.
Conversely, it is easy to show that any CSP instance can be transformed into an equiv-
alent SAT instance. The essential idea of this transformation consists of associating
a SAT boolean variable with every variable-value pair in theCSP instance. It is then
possible to associate: a SAT clause with every CSP variable stating that this variable
must take at least one value in its domain; a SAT clause with every pair of values in the
domain of every CSP variable which forbids the simultaneoususe of both values; and
a SAT clause with every combination of values forbidden by a CSP constraint which
forbids the simultaneous use of the values appearing in the combination.

We can also consider the relatedinteger linear programming(ILP) [GAR 72,
NEM 88] problem which is a variant of thelinear programming(LP) [DAN 63] prob-
lem where some of the variables are required to take integer values. Without any op-
timization criterion and with bounded domains, the ILP problem is a sub-problem
of the CSP using integer variables and linear constraints. Conversely, the previous
idea used to transform a CSP instance into an equivalent SAT instance can be directly
reused for ILP. (Any clause has a linear formulation obtained by transforming boolean
values into0/1 variables and by replacing disjunction in the clause by addition, ¬x
by (1 − x) and by stating that the transformed expression must be greater than or
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equal to 1. For example, The clausea ∨ ¬b ∨ c is equivalent to the linear inequality
xa + (1− xb) + xc ≥ 1.)

It must be stressed that the CSP, SAT and ILP problems are all NP-complete.

If we look to graph theory[GON 84], we can observe that various classical prob-
lems on graphs can be naturally stated as CSP. The most famousone is probably the
graph coloring problem which consists of associating a color with every vertex of a
graph in such a way that all adjacent vertices take differentcolors. The CSP formu-
lation associates a variable with every vertex whose domainis made of all available
colors, and a difference constraint with every edge in the graph. Conversely, for binary
CSP (CSP instances where all constraints involve at most twovariables), it is easy to
show that finding a solution of the CSP is equivalent to findinga clique (a complete
sub-graph) of sizen in the consistency graph (microstructure) of the CSP, as faras
all the edges representing the absence of constraints are explicitly represented (see
section 6.2).

As for operations research, several classical OR problems can easily be expressed
as CSP. Thejob-shop schedulingproblem, which consists of ordering a set of tasks
taking into account task durations, earliest starting times, latest ending times, non-
preemption, temporal precedence constraints and temporalnon-overlappingconstaints,
is a classical example [BAP 01]. The CSP formulation associates with every task a
variable representing its starting time, with every precedence constraint a linear con-
straint and with every non-overlapping constraint a nonlinear constraint which is the
disjunction of two linear constraints.

A strong relation, often ignored, also exists between CSP and relational data bases
[MAI 83]. Each relationr of a relational database can indeed be interpreted as a con-
straint which applies to the attributes ofr. Every attribute can be interpreted as a
variable. The complete relational database can then be seenas a CSP instance. The
join of all the relations of the database is the set of all the solutions of the CSP.

Let us consider a database with 3 relationsr1, r2 andr3, r1 applying to attributes
a1 anda2, r2 applying to attributesa1, a2 anda3 andr3 applying to attributesa2 and
a3. An example of a conjunctive query is: find all combinations of values for attributes
a1 anda3 such that∃a2, r1(a1, a2)∧r2(a1, a2, a3). Answering a conjunctive queryR
to the database is equivalent to projecting the set of the solutions of the CSP defined
by the contents ofR onto the free variables ofR.

The main differences that justify the use of significantly different methods include
the fact that relations in databases are often very large tables that can be handled
and accessed only at a significant cost. However, another difference is the fact that
databases queries often require the production of all solutions and not just one. Nev-
ertheless, approaches trying to bring together methods which have been developed in
each area have been considered [e.g. KAN 94].
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6.5. Reasoning on a CSP

We have seen that a CSP instance follows from the conjunctionof a large number
of constraints which are both local and interdependent because of shared variables.
The intuition behind the reasoning mechanisms that will be considered is that rea-
soning directly on the global instance is far too complex, but that reasoning on local
sub-instances can at least produce information that will beuseful for the global level
reasoning.

More precisely, let us consider a CSP instanceP involving a set of variablesV ,
a set of constraintsC and a sub-instanceP ′ defined by a subsetC′ of C and the set
of variablesV ′ ⊂ V involved in those constraints. Let us consider a subsetV ′′ ⊆ V ′

and imagine that we can prove that a given assignmentA of the variables inV ′′ never
participates in a solution ofP ′ (see Figure 6.4).

P = (V,C)

P ′ = (V ′, C′)

A
V ′′

Figure 6.4. Reasoning on a local sub-instance

We can conclude thatA will not participate in a solution ofP and therefore add
explicitly to the definition ofP the fact thatA is forbidden. This is the basic opera-
tion used in the most frequently used reasoning mechanisms in CSP processing. These
mechanisms can be considered asdeductionmechanisms which allow constraints that
were only implicit in the CSP instance definition to be made explicit. Because they re-
move combinations of values from existing relations or values from existing domains,
they can be also considered assimplificationor filtering mechanisms. The most ex-
treme case of simplification arises when a relation or a domain becomes empty after
several removals. In this case, no solution can exist and theinconsistency ofP is
proved. These mechanisms can therefore be seen asinconsistency detectionmecha-
nisms.

Let us add that the removal of a combination of valuesA can lead to the removal of
another combination of valuesA′ that had no explicit reason to be eliminated up until
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now, but that can now be proved to never appear in any solutionof a sub-instanceP ′

following the removal ofA: a form of propagation of information inside the constraint
network. This is why these mechanisms are often denoted asconstraint propagation
mechanisms.

6.5.1. Local consistency

In order to achieve a well-defined level of deduction, we usually rely on a so-called
local consistencyproperty, denoted asπ. LetP be a CSP instance. This property ap-
plies to combinations of values of variables inP or, equivalently, on partial assign-
ments. It should be checkable locally by considering only limited sets of variables
and constraints inP . The fact that an assignmentA fails to satisfy it should imply
thatA does not participate in any solution ofP . RemovingA from P (forbiddingA
in P ) does not change the set of solutions ofP . The instance obtained is therefore
said to be equivalent toP . In these conditions, starting from an instanceP , we itera-
tively eliminate all the combinations of values that do not satisfyπ, with two possible
results:

1) a relation or a domain becomes empty and the inconsistencyof P is proved; or

2) the instance obtained satisfiesπ; this instance, denoted asπ(P ), is a simplified
instance equivalent toP .

It is important to note that, becauseπ is a local consistency property that never
considers the instance from a global point of view, nothing guarantees thatπ(P ) is
consistent in the second situation. Concisely, we can say that local inconsistency im-
plies inconsistency (situation 1), but that local consistency does not imply consistency
(situation 2). We can also say that local consistency enforcing mechanisms are incom-
plete: they cannot always detect inconsistency.

6.5.2. Arc-consistency

As an illustration, let us consider one of the most simple andmost frequently used
level of local consistency, known asarc-consistency[MAC 77a] in the case of binary
CSP instances.

A valueval of a variablev is said to be arc-consistent for a constraintc, that links
v to another variablev′, if there exists at least one valueval′ in the domain ofv′ that is
consistent withval, or such that the assignment{(v = val), (v′ = val′)} satisfies the
constraintc (see Figure 6.5). A value is said to be arc-consistent if it isarc-consistent
for all the constraints that involve its variable. Ultimately, a CSP instance is said to be
arc-consistent if all the values of all its variables are arc-consistent.
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v v′

val val′
c

Figure 6.5. Sub-instance considered by arc-consistency

The most naive algorithm which can filter an instance by arc-consistency simply
scans all the values and removes those that do not satisfy thearc-consistency property.
This process must be repeated as long as the current one has deleted at least one value.
Indeed, a valueval of a variablev that was previously arc-consistent for a constraintc
that connectsv to v′, due to the existence in the domain ofv′ of a valueval′ consistent
with val, can become arc-inconsistent ifval′ is the only value consistent withval in
the domain ofv′ and if it was deleted in the last run (propagation of removalsin the
constraint network).

Figure 6.6 shows the effect of this filtering on a CSP instanceinvolving 3 variables
v1, v2 andv3 each having two possible values1 and2. Each variable is connected by
two constraintsc1 andc2, c1 specifying thatv1 = v2 andc2 enforcing thatv2 > v3.
The eliminated values are indicated in black. Ifv1, v2 andv3 are processed in this
order, a first scan allows value1 of v2 to be removed because there is no value in the
domain ofv3 that is compatible with it. Value2 of v3 can also be removed because
there is no value in the domain ofv2 that is compatible with it. Because values have
been removed, a second scan is needed. It removes value1 of v1 because no value
compatible with it now remains in the domain ofv2. A third scan is needed, but it
produces no value removal. The instance obtained is arc-consistent and equivalent to
the original instance.

v3v1 v2

v1 = v2 v3 < v2
c1 : c2 :1

2

1 1

2 2

Figure 6.6. Arc-consistency: example of simplification

Figure 6.7 shows the result of this filtering on another instance, similar to the
previous instance, except that constraintc2 is now defined asv2 6= v3. No value is
removed here because the original instance is already arc-consistent.
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v3v1 v2

v1 = v2
c2 :

v2 6= v3

c1 : 1 1

2 2

1

2

Figure 6.7. Arc-consistency: example of lack of simplification

Figure 6.8 shows the result of this filtering on another instance, similar to the
previous two, where constraintc1 allows just the pair(1, 1) and constraintc2 just
the pair(2, 2). The first scan removes value2 of v1 and values1 and2 of v2. The
domain ofv2 is then empty. No further scan is needed because it is now proved that
this instance is inconsistent.

v3v1 v2

c1
c2

2

1 1

2 2

1

Figure 6.8. Arc-consistency: example of inconsistency detection

Figure 6.9 shows the effect of this filtering on another instance where the three
constraintsc1, c2 andc3 are all defined to be difference constraints. As in Figure 6.7,
no value is removed because the original instance is alreadyarc-consistent. However, it
is clearly inconsistent which shows that local consistencydoes not necessarily implies
consistency.

Many algorithms, more sophisticated than the algorithm described above, have
been proposed to filter an instance by arc-consistency. One of the most famous is
called AC3 [MAC 77a]. It relies on a setQ of variable-constraint pairs that must be
checked. Initially,Q is set to contain all possible pairs(v, c) such thatv is a variable
andc a constraint involving it. Every time a pair(v, c) ∈ Q is considered, it is removed
from Q and the domain ofv is reduced by eliminating all the values that are arc-
inconsistent forc. If the domain ofv is effectively reduced, then all pairs(v′, c′) such
thatv′ 6= v andc′ involvesv are added toQ (propagation). The algorithm stops when
a domain becomes empty (situation 1) or whenQ becomes empty (situation 2).

Its temporal complexity is ofO(e · d3), wheree is the number of constraints and
d is the maximum domain size. Other algorithms, with an improved optimal temporal
complexity ofO(e · d2), have been proposed (specifically AC4 [MOH 86] and AC6
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v1 6= v3

v1 v2

v3

c1 :
v1 6= v2

c3 :
v2 6= v3

c2 :

2

1

1

2

2

1

Figure 6.9. Arc-consistency: example of lack of inconsistency detection

[BES 94]). However, since its ease of implementation and itspossible adaptation to
specific conditions (numerical continuous domains or constraints relying on dedicated
filtering methods) often lead to it being chosen as the default arc-consistency enforcing
algorithm. Recent improvements of AC3 [BES 01, ZHA 01] allowmost of its good
properties in terms of ease of implementation and of adaptation capabilities to be
kept, while offering the optimal temporal complexity ofO(e · d2) of AC4 and AC6.

Arc-consistency has been generalized to non-binary constraints [MAC 77b], lead-
ing to an unavoidable increase in temporal complexity with the arity of the constraints
handled. Conversely, it has been specialized to more efficiently handle constraint
types such asfunctionalor monotonicconstraints (for example, inequality constraints)
[HEN 92].

6.5.3. Path-consistency

Filtering by arc-consistency therefore considers only sub-instances defined by one
constraint and the two variables it connects. We may consider that such sub-instances
are too local to lead to sufficient simplifications or to detect inconsistency. This is
why less local properties have been proposed. Among these, the most famous (but not
necessarily the most used) is calledpath-consistency[MAC 77a].

If we limit ourselves to binary CSP instances, let us consider three variablesv, v′

andv′′ and the constraints that connect them:c betweenv andv′, c′ betweenv andv′′

andc′′ betweenv′ andv′′. If there is no constraint between two variables, a universal
constraint allowing all pairs is considered. A pair(val, val′), comprising a valueval
of v and a valueval′ of v′ which satisfiesc, is said to be path-consistent according
to v′′ if there is at least one valueval′′ in the domain ofv′′ such that the assignment
{(v = val), (v′ = val′), (v′′ = val′′)} also satisfiesc′ andc′′ (see Figure 6.10). It
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is said to be path-consistent if it is path-consistent with respect to all other variables.
A CSP instance is said to be path-consistent if all possible allowed pairs of values are
path-consistent.

v′′

c

c′ c′′

val′′

val′

val

v′v

Figure 6.10.Sub-instance considered by path-consistency

As for arc-consistency, the most naive algorithm which can filter by path-consis-
tency consists of scanning all possible pairs of values thatare not forbidden by cons-
traints (including pairs of values from variables that are not connected by constraints)
and in removing every pair that does not satisfy the path-consistency property. This
process must be repeated until no pairs of values are removed.

Figure 6.11 shows the result of this filtering on a CSP instance involving 3 vari-
ablesv1, v2 andv3 each having two possible values1 and2 and connected by two
constraintsc1 andc2, c1 specifying thatv1 6= v3 andc2 that v2 6= v3. As no con-
straint linksv1 andv2, all the pairs of values between these two variables are implic-
itly allowed. The eliminated pairs of values are shown in bold. For example, the pair
{(v1 = 1), (v2 = 2)} is eliminated because there is no value in the domain ofv3 that
is simultaneously compatible with(v1 = 1) and(v2 = 2). The final instance obtained
is path-consistent and equivalent to the original one.

Figure 6.12 shows the result of this filtering on the instanceof Figure 6.9. Here,
the pairs of values{(v1 = 1), (v2 = 2)} and{(v1 = 2), (v2 = 1)} are eliminated,
resulting in an empty relation. Path-consistency filteringhas therefore proved the in-
consistency of the instance, which was not previously achieved by arc-consistency fil-
tering. This, however, still does not imply that path-consistency filtering is complete:
on some instances, it may also be unable to detect inconsistency.

We can observe that the elimination of pairs of values by path-consistency fil-
tering may turn a previously arc-consistent value into a non-arc-consistent one. It is
therefore possible that arc-consistency filtering activates path-consistency filtering and
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v3

v1 v2

v2 6= v3v1 6= v3
c1 : c2 :
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Figure 6.11.Path-consistency: example of simplification

v1 6= v2

v1 v2

v3

c1 :

c3 :
v2 6= v3
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Figure 6.12.Path-consistency: example of inconsistency detection

conversely. Whereas arc-consistency filtering has time complexity ofO(e · d2), with
e < n2, the time complexity of path-consistency is ofO(n3 · d3).

6.5.4. Other local consistency properties

The notion of(i, j)-consistency[FRE 78] allows arc and path-consistency notions
to be generalized. Informally, a CSP instance is said to be(i, j)-consistent if every
consistent assignment ofi variables can be extended in a consistent way on any set
of j new variables. In the case of binary CSP, arc-consistency isequivalent to(1, 1)-
consistency and path-consistency is equivalent to the combination of(1, 1) and(2, 1)-
consistency.
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We must however emphasize an important difference between,on one hand, arc-
consistency filtering (and more generally(1, j) consistency filtering) and, on the other
hand, path-consistency filtering (and more generally(i, j) consistency fori > 1).
Whereas the former only reduces variable domains by deleting values, the latter may
reduce the relations associated with constraints by eliminating combinations of values
and even by creating new constraints where none existed before. The constraint graph
may be modified and may become in the worst case complete. The memory space
needed to store in extension all the eliminated combinations of values may become
intractable. This is why most of the contributions in the area are essentially dealing
with local consistencies that may be stronger than arc-consistency, but still remove
values and not combinations of values.

The simplest of these properties in this direction, calledpath inverse consistency,
is simply (1, 2)-consistency and can easily be generalized to(1, j)-consistency. In
another direction, theneighborhood inverse consistency[FRE 96] considers for every
variablev the sub-instanceP (v) defined byv, all the variables directly linked tov by a
constraint and all the constraints that link these variables together (see Figure 6.13). A
valueval of a variablev is said to be neighborhood inverse consistent if it participates
in at least one solution ofP (v). One can find in [VER 99] a generalization of neigh-
borhood inverse consistency, taking into account arbitrary sub-instances. [DEB 01]
also provides an overview of most of the local consistenciesthat have been proposed
beyond arc-consistency.

P (v)

v

P

Figure 6.13.The sub-instance considered by neighborhood inverse consistency

6.5.5. General constraint propagation mechanisms

Even if local consistency properties allows the nature of the results obtained by
filtering on every instance to be characterized and those obtained by two different
properties to be compared, the notion of local consistency property is not necessary to
define constraint propagation mechanisms.
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The only compulsory element is a filtering mechanism that can, based on reason-
ing on a sub-instanceP ′, reduce the domain of any variable ofP ′ by removing values
that are known to participate in no solution ofP ′ and therefore in no solution ofP .
This mechanism may not necessarily remove all the values that do not participate in a
solution ofP ′, but only some of them, even if the maximum number is desirable. In
fact, the best compromise between the reduction in the instance size and the computa-
tional cost of the reasoning must be sought. This mechanism must however becorrect
in the sense that it should not eliminate values that do participate in solutions. The
precise mechanism used may depend on the very nature of the constraints inP ′.

This paves the way to the use of various existing algorithms,for example: lin-
ear programming algorithms such as thesimplexone if P ′ is only made of linear
constraints [DAN 63]; or maximum matching algorithms ifP ′ is made of a singleall-
differentconstraint [RéG 96]. The term of global constraint is used todescribe these
constraints, often of very large arity but with a specific nature that allows dedicated
efficient filtering algorithms to be exploited.

Figure 6.14 depicts a schema of a general constraint propagation mechanism where
each constraint is associated with a specific filtering mechanism of the domains of
the variables it involves. The filtering mechanism associated with a constraintc can
then be managed as adaemonwhich reacts to the modification of the domain of any
variable ofc and filters the domains of the other variables ofc accordingly.

constraint−variable link domain filtering
constraint activation

c1 c2 c3 c4

v1 v2 v3 v4 v5

1 3 322 3

Figure 6.14.Schema of a general constraint propagation mechanism

The plain bold arrows show the domain filterings that are tried and the dotted
bold arrows indicate the constraint activations that follow an effective filtering. The
numbers associated with these arrows represent the temporal sequence of the domain
filterings and constraint activations. In a first step, the domain ofv2 is filtered accord-
ing toc1 and the current domains ofv1 andv3. In a second step, this filtering activates
constraintsc2 andc3 which both involvev2. In a third step, these activations lead to
domain filterings of the domain ofv5 according toc2 and the current domain ofv2
and of the domains ofv4 andv5 according toc3 and the current domain ofv2.



Constraint Satisfaction Problems 283

The propagation is performed each time a domain filtering yields an effective do-
main reduction. For the sake of efficiency, the daemon associated with every constraint
is usually tuned to the type of the underlying constraint. For example, the daemon as-
sociated with a constraintx ≤ y will only react to domain reductions that increase
the lower bound of the domain ofx or decrease the upper bound of the domain ofy,
resulting in an increase in the lower bound of the domain ofy (or a decrease in the
upper bound of the domain ofx, respectively) [e.g. HEN 92].

6.6. Looking for a CSP solution

6.6.1. Tree search

Many approaches for finding one or more solutions of a CSP instance have been
proposed. Among them, tree search defines in some sense a reference which serves
as a source of comparison for other approaches. The essential idea of tree search is
to deal with the huge search space associated with a CSP instance by partitioning it
and exploring all the elements of the partition successively, possibly by recursively
partitioning them when needed, resulting in a partitioningtree.

Three essential parameters define a tree search procedure: the partitioning mech-
anism, the order of exploration of the sub-spaces defined by the partitioning and the
stopping criterion of the recursive partitioning.

For the partitioning mechanism itself, different approaches exist. LetP be an in-
stance to be partitioned. The most frequently used mechanism consists of choosing a
variablev of P and in associating with every valueval in its domain the sub-instance
that follows from adding constraintv = val toP . Each instance is therefore split into
as many sub-instances as there are values in the domain ofv. For very large domains
(or continuous domains, see section 6.10.1), the mechanismused consists of choosing
a variablev of P , in splitting its domain in two sub-domains (or more generally in k
sub-domains) and in associating with every sub-domainD′ the sub-instance that fol-
lows from adding constraintv ∈ D′ toP . Each instance is therefore split into as many
instances as there are sub-domains.

Another more general approach consists of considering a constraintc that is not
a constraint ofP and in generating two sub-instances: the first follows from adding
constraintc to P and the other from adding the negation¬c of c to P . Such a mech-
anism is especially convenient for problems where some of the constraints inP are
disjunctions of elementary constraints.

Considering theexploration order, different approaches also exist. Abreadth-
first strategy gives the priority to the oldest non-partitioned sub-instance (or node). A
depth-firststrategy gives the priority to the newest one. Abest-firststrategy evaluates
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every non-partitioned sub-instance and gives the priorityto the most promising one.
In most cases, a depth-first strategy is used for CSP solving,leading to the so-called
backtrackalgorithm [BIT 75]. It is named the backtrack algorithm mainly because it
can be easily implemented, does not require all the as yet unpartitioned sub-instances
to be stored and therefore requires only a polynomial space.However, the main weak-
ness of this strategy is that it is less heuristically guidedthan a best-first one and is
very dependent on the first choices performed at the top of thepartitioning tree.

When a variable-value partitioning and a depth-first strategy are used, the com-
plete definition of the exploration performed includes the order in which variables
are assigned (variable ordering heuristics) and the order in which possible values are
explored (value ordering heuristics).

Forvariable ordering, two general principles are used: (1) to reduce as far as pos-
sible the width of the tree by giving priority to variables with small domains and (2) to
reduce as far as possible its depth by giving priority to the most constrained variables
[DEC 87]. The heuristics that order variables according to increasing values of the
ratio between domain size and degree in the constraint graphis a good compromise
between these two points of view [BES 96].

For value ordering, the only general principle is to give priority to values that
most likely lead to a solution, which is usually highly problem-dependent. For both
types of heuristics (on variables and on values), we distinguishstaticheuristics (order
decided for the whole search before it starts) fromdynamicheuristics (each choice
made during the search according to the current accumulatedknowledge).

Other more complex exploration strategies have been proposed. Among the most
remarkable, we can cite thelimited discrepancy searchalgorithm [HAR 95] which
uses a sequence of searches at increasing Hamming distance from an initial assign-
ment heuristically generated. (The Hamming distance between two assignments is
the number of variables with different assigned values.) There are also algorithms
based onrandomization and restart[GOM 98], which use a sequence of truncated
tree searches using possibly heuristically biased randomized heuristics for value and
variable orderings.

For thestopping criterionof the recursive partitioning, two cases must be consid-
ered: stop on a consistency proof or on an inconsistency proof.

Usually, stopping on aconsistency proofoccurs when all the variables have been
assigned and no inconsistency has been detected, resultingin a solution. It may, how-
ever, occur earlier: for example when arc-consistency filtering is performed on every
sub-instance and reduces the domains of non-assigned variables to singletons. This
proves consistency and directly produces a solution.
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In order to stop on aninconsistency proof, an inconsistency detection mechanism
is required. The most simple one is known asbackward-checking. After every new
assignment of a variablev, it simply checks the satisfaction of all the constraints that
connectv to previously assigned variables and stops as soon as one of these constraints
is unsatisfied.

Figure 6.15 shows the search tree associated with the proof of inconsistency of the
3-queens instance. (Then-queens problem consists of positioningn queens on an×n
chessboard in such a way that no two queens attack each other if on the same line, same
column or same diagonal. The3-queens instance is inconsistent, but the4-queens one,
which will be considered later, is consistent.) Because exactly one queen will appear
on each row, a CSP variable is associated with each row and represents the column
on which the queen will be positioned on this row. The variables are assigned in the
row order from top to bottom. For every variable, the values are chosen in the column
order from left to right. The assignments are indicated by crosses in the corresponding
position on the chessboard. The inconsistency detections are indicated by a bold cross
just below the corresponding node. The numbers on the right of each node represent
the order in which these nodes are generated and explored. The third branch of the
tree is not represented because it is symmetrical with respect to the first.

1
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Figure 6.15.Backtrack and backward-checking on the 3-queens instance

A slightly more sophisticated mechanism for inconsistencydetection is calledfor-
ward-checking[HAR 80, NAD 89]. Every time a new variablev is assigned, it consid-
ers all the non-assigned variables that are connected tov by a constraint and removes
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from their domains all the values that are incompatible withthe value currently as-
signed tov. The search stops as soon as one domain becomes empty. This can be seen
as a limited form of arc-consistency filtering where the domains of non-assigned vari-
ables are filtered from assigned variables only. Figure 6.16shows the tree associated
with the proof of inconsistency of the same3-queens instance. The values removed by
forward-checking are indicated in gray.

4

3

2

1

Figure 6.16.Backtrack and forward-checking on the3-queens instance

An even more sophisticated mechanism consists of using a complete arc-consis-
tency filtering after each variable assignment, including the filtering of non-assigned
variables from assigned and non-assigned variables [HAR 80, NAD 89, SAB 94]. As
previously, the search stops as soon as one domain becomes empty.

Figure 6.17 shows the tree associated with the proof of inconsistency of the same
3-queens instance. The values filtered by arc-consistency that would not have been
removed by forward-checking are indicated in dark gray. This tree is, in this specific
case, reduced to the root node because arc-consistency filtering suffices to detect in-
consistency.

1

Figure 6.17.Backtrack, forward-checking and arc-consistency on the 3-queens instance

Figure 6.18 shows the tree associated with the proof of consistency of the 4-queens
instance. The inconsistency detections (respectively consistency) are indicated by a
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a cross (respectively a circle) in bold below the corresponding node. In this case,
arc-consistency filtering does not simplify the original instance which is already arc-
consistent. However, as soon as the first queen is placed on the first column, inconsis-
tency is detected (third queen’s domain becomes empty). As soon as it is placed on the
second column, consistency is established (the domains of the non-assigned variables
are all reduced to singletons). The two remaining branches of the tree are not shown
because they are symmetrical with respect to the first two.

1

2 3

Figure 6.18.Backtrack, forward-checking and arc-consistency on the 4-queens instance

In the general case, an arbitrary local consistency filtering mechanism (as pre-
sented in section 6.5) can be used to detect inconsistency ateach node of the search
tree. The more powerful the mechanism is, the earlier the inconsistencies can be de-
tected and the shallower is the tree (see Figures 6.15–6.17), but the computation per-
formed at each node is more expensive. A compromise must be found. The current
wisdom, built on practical experience, is that arc-consistency filtering (or in some
cases stronger local consistencies between arc and path-consistency) are reasonable
compromises [DEB 97].

We must stress the influence of the filtering mechanism used ateach node on
the dynamic variable and value-ordering heuristics. For example, variable-ordering
heuristics relying on domain sizes (see above) become really efficient only when they
can exploit the updated size of the filtered domains.

Another parameter of a depth-first search is the backtracking mechanism used
when a variable could not be assigned successfully (failureof all the possible values).
The usualchronologicalmechanism consists of reconsidering the choice made for the
previous variable in the assignment order. Other mechanisms, often calledintelligent
backtracking, have been considered. They are all inspired by the observation that the
choice made for the previous variable may not be related to the failure observed. If
it is not responsible, changing it will not avoid the failureand will lead to repeated
useless work. To avoid this useless work as much as possible,the idea consists of iso-
lating a setV ′ of assigned variables whose values may be related to the failure, and
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to directly reconsider the choice made for the most recentlyassigned variable inV ′

(backjumping). To identify a set of variables whose assignment could be related to
the failure, different mechanisms based either on the constraint graph [DEC 90] or on
information collected during search and filtering [PRO 93] have been proposed.

Another parameter is the ability to use a constraintlearning mechanism during
a search [FRO 94, SCH 94]. As for backjumping, the idea is to isolate a setV ′ of
assigned variables, whose current assignmentA′ may be responsible for the failure,
and to record the inconsistency ofA′ inside a constraint involvingV ′ and forbidding
A′ in order to increase the ability of detecting inconsistencyduring the rest of the
search.

Whatever the sophistication used, the worst casetemporal complexityof the tree
search is ofO(dn). In the worst case, the partitioning is carried out until complete
assignments are considered and neither consistency or inconsistency stop it. A plain
enumeration of all complete assignments would then have been just as efficient.

When optimization problems are considered (defined by a set of constraints and a
criterionvc to be optimized as introduced in section 6.2.4), the usual approach is to
perform the search ignoring the criterion. As soon as a solution is found, it is evalu-
ated. Letk be its value. The constraintvc � k is then added to the set of constraints
and the search either proceeds or starts again. Each time a new improved solution is
found, the same mechanism is used until inconsistency is proved. In this case, the last
solution found is proved to be optimal. The optimization problem is therefore solved
as a sequence of increasingly constrained satisfaction problems.

6.6.2. Variable elimination

The iterated elimination of the variables of a CSP instance is another way of re-
solving a large size instance by solving a sequence of smaller size instances. The
so-calledbucket elimination[DEC 99] algorithm is directly inspired by thenon-serial
dynamic programmingmethod, introduced in [BER 72, SEI 81, SHE 90].

The main idea is to eliminate each variable from the instance, one after the other,
following an arbitrary order. Let us consider a variablev, C′ ⊆ C the set of all the
constraints involvingv andV ′ ⊆ V the set of all the variables involved in at least
one of the constraints inC′ (excludingv itself). Eliminatingv consists of computing
the set of the combinations of values for the variables inV ′ that can be consistently
extended tov (by satisfying all the constraints inC′) and in recording them in a con-
straintc on the variables inV ′. Oncec is computed and added to the instance, we can
eliminate variablev and constraints inC′ from the instance, because we know that
the combinations of values that can be chosen for variables in V ′ can always be con-
sistently extended tov. This process can be repeated until all the variables have been
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eliminated or until inconsistency has been detected: no combination of values forV ′

can be consistently extended tov.

Figure 6.19 shows a graph coloring instance using two colors: red and green. The
associated CSP instance has 5 variables, each one associated with one vertex (a, b, c, d
ande) and having two possible values (r andg), and 5 difference constraints, each one
associated with one edge. This instance is inconsistent.

ba

dc

e

Figure 6.19.Example 1: a graph to color using only two colors

Let us assume that we eliminate variables in the order(e, d, c, b, a). Table 6.1
shows, for each variablev, the constraints that are taken into account and the con-
straint that is created and added when variablev is eliminated. Let us consider the
elimination of variablee. We haveC′ = {c 6= e, d 6= e} andV ′ = {c, d}. The only
combinations of values for the variables inV ′ that can be extended toe, in such a way
that all the constraints inC′ are satisfied, are(r, r) and(g, g). We therefore add the
equality constraintc = d to the instance and removee and the constraints inC′ from
it.

Variables Constraints considered Constraint added
e {c 6= e, d 6= e} c = d
d {b 6= d, c = d} b 6= c
c {a 6= c, b 6= c} a = b
b {a 6= b, a = b} ∅
a

Table 6.1.Example 1: variable elimination using the order(e, d, c, b, a)

Let us now consider the elimination of variabled. We haveC′ = {b 6= d, c =
d} andV ′ = {b, c} because of the new constraint betweenc andd created by the
elimination of variablee. The only combinations of values of the variables inV ′ that
can be extended tod while satisfying the constraints inC′ are(r, g) and(g, r). We
therefore add the difference constraintb 6= c and removed and the constraints inC′.
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Finally, when we eliminateb, we getC′ = {a 6= b, a = b} andV ′ = {a}. There is no
value fora that can be extended tob while satisfying the constraints inC′ (C′ defines
an inconsistent sub-instance), which proves the inconsistency of the original instance.

In the case of a consistent instance (see Figure 6.20 and Table 6.2), the elimination
of all the variables without encountering inconsistency proves the consistency of the
original instance. A solution can then be built without any backtrack by assigning
variables in the inverse order of their elimination and by choosing for every variable
v a value that is consistent with the previous choices and withthe constraints inC′

associated withv. The work performed during the elimination itself guarantees that
such a value exists. Table 6.3 shows one of the solutions thatcan be built in this way.

ba

dc

e

Figure 6.20.Example 2: another graph to color using only two colors

Variables Constraints considered Constraint added
e {c 6= e, d 6= e} c = d
d {b 6= d, c = d} b 6= c
c {a 6= c, b 6= c} a = b
b {a = b}
a

Table 6.2.Example 2: variable elimination using the order(e, d, c, b, a)

Variables Constraints considered Constraint added Assignment
e {c 6= e, d 6= e} c = d r
d {b 6= d, c = d} b 6= c v
c {a 6= c, b 6= c} a = b v
b {a = b} r
a r

Table 6.3.Example 2: variable assignment using the order(a, b, c, d, e)
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Thetime complexityof this algorithm is ofO(dw+1) wherew is the maximum arity
of the constraints created by the elimination process. Itsspace complexityis ofO(dw).
Maximum arityw is always strictly smaller thann, but depends on the order chosen
for variable elimination. Finding an order that minimizesw is anNP-hardproblem.
The minimum value ofw (called theinduced widthand denoted byw∗) depends on
the constraint graph. If this graph is a treew∗ = 1, which guarantees an efficient
algorithm. If the graph is completew∗ = n − 1, which guarantees exponential space
and time behavior. This is similar to the worst case time complexity of backtrack,
but with a far higher space complexity. This is in fact even worse because backtrack
practical time complexity is often far better than its worstcase complexity, whereas
practical variable elimination time and space complexity tends to be close to its worst
case complexity.

Whereas a backtrack algorithm processes variables by assigning them, a bucket
elimination algorithm processes them by computing and recording the impact they
have on the rest of the instance. Both approaches can cooperate and combinations
have been proposed [LAR 03a], based on the idea that eliminating a variable should
be preferred to assigning it when the elimination creates only a small arity constraint.

Relations between assignment and variable elimination become even clearer using
(hyper)tree decompositions of a constraint network [DEC 89, GOT 00] where nodes
represent sub-instances. A backtrack algorithm equipped with constraint recording
capabilities [JÉG 03] appears to be very similar to a variable elimination algorithm
[SHE 90].

6.6.3. Greedy search

Greedy search is the first method that comes to the mind of a newcomer to cons-
traint satisfaction problems. It relies on two heuristics:one for ordering variables and
one for choosing values. It simply assigns variables in the order indicated by the first
heuristics, using the value indicated by the second one, without ever reconsidering
previous choices. It can be seen as a depth-first search limited to its first branch.

Obviously, nothing guarantees that the final assignment is asolution. This method
is therefore not really adapted to CSP solving. It is better adapted to optimization
problems with a limited impact of constraints (for example,problems where producing
consistent assignments is not really difficult). In such a case, both heuristics simply
aim to produce a good quality solution. Using repeated random samplings biased by
these heuristics [BRE 96] is a simple method to improve the solution quality even
further.
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6.6.4. Local search

Local search can be seen as an extension of greedy search. If the assignment gen-
erated by greedy search is not a solution, we can modify it using local changes focused
on its flaws i.e. unsatisfied constraints, in order to producea solution.

At first sight, we may think that there is a contradiction between CSP which is a
satisfaction problem and local search which is designed foroptimization problems.
This contradiction disappears if we consider that CSP can also be seen as a pure opti-
mization problem where the goal is to minimize the number of unsatisfied constraints.

The min-conflictsalgorithm [MIN 92] is an example of a local search algorithm
applied to CSP. It consists of performing repeated trials until either one is successful
or a maximum fixed number of trials has been reached. Each trial starts with a random
generation of a complete assignment. It consists of modifying this assignment until
either a solution is reached (successful trial) or a maximumfixed number of modi-
fications has been reached (unsuccessful trial). A modification consists of randomly
choosing a variable among those that are involved in unsatisfied constraints, and then
randomly choosing a value for this variable among those thatminimize the number of
unsatisfied constraints given the assignment of the other variables.

Four essential parameters specify a local search: the initial assignment generation,
the neighborhood function, the neighbor choice function and the stopping criterion.

The initial assignment generationis equivalent to a greedy search. If several trials
are performed, using different initial assignments, it should include a random compo-
nent (see previous section).

Theneighborhood functionassociates with every complete assignmentA the set of
all its neighbor complete assignments, obtained fromA by performing a single modifi-
cation. It can be defined by the set of all possible modifications that can be applied to a
complete assignment. For CSP solving, the most frequently used neighborhood func-
tion associates with every complete assignmentA the set of all the assignments that
can be obtained by changing the value of only one variable inA. It can be generalized
by allowing the value ofk variables to be changed inA.

Different options exist for the neighbor choice function. This choice can be ran-
dom. We may also choose the assignment that improves or strictly improves over the
current assignment, or the best assignment in the neighborhood considering the num-
ber of unsatisfied constraints. To avoid being stuck in localoptima, we may be forced
to choose a neighbor that is worse than the current assignment, sometimes bounding
the loss in quality. Note that an assignment is a local optimum if there is no better
assignment in its neighborhood. A local optimum is not necessarily a global optimum.
See Figure 6.21, where the nodes represent assignments and where two nodes are
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connected by an edge when the two corresponding assignmentsare neighbors. The
number on the right of each node represents the cost of the assignment and the goal is
to find an assignment of minimum cost. AssignmentsA3 is a local optimum, but not
a global one becauseA4 is strictly better.

4A6A5

A4A3

A2

4

23

65A1

Figure 6.21.Example of a local optimum:A3

Thestopping criterionmay depend on the CPU time or on the number of trials or
modifications from the beginning of the search or from the last improving modifica-
tion.

Considered as an optimization problem, CSP can be handled using classical lo-
cal search algorithms [AAR 97] such assimulated annealing[KIR 83], taboo search
[GLO 93], genetic algorithms[GOL 89] or ant colony optimization[DOR 96]. On
problems combining constraints and optimization, the combination of constraint sat-
isfaction and optimization criterion value in the functionto be optimized remains nev-
ertheless a non-trivial issue.

Contrary to tree search and variable elimination, local search is incomplete: it may
be unable to prove the consistency of a consistent instance and it cannot prove the
inconsistency of an inconsistent instance. It usually doesnot exploit constraint propa-
gation mechanisms just before search, on the initial instance, in order to simplify it or
to detect inconsistency. During search, constraints are only passively checked.

Various combinations or tree search, constraint propagation, and local search have
been considered. An example of such a combination consists of applying local search
to partial assignments, i.e. not only to complete assignments [JUS 02, PRA 05]. This
can be considered as a mixture between tree search and local search allowing local
search and constraint propagation to be combined and, in some cases, inconsistency
to be proved.

6.7. Experimental evaluations and lessons learned

The conclusions that can be drawn from the numerous experimental evaluations,
performed either on real problems and instances or on randomly generated problems,
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are quite different. They depend upon the nature of the problem: pure constraint satis-
faction or constraint optimization problems.

6.7.1. Pure constraint satisfaction problems

The main lessons that can be derived are as follows:

– The solving time observed using e.g. backtrack algorithmsare often far smaller
than the time expected via a worst-case analysis, without being negligible. Reaching
the worst-case is extremely rare except for well-designed pathological instances.

– Under-constrainedinstances (few constraints or weak constraints) are usually
easily solved because they are consistent and a solution canrapidly be found.

– Over-constrainedinstances (many constraints or strong constraints) are also of-
ten easy to solve because they are inconsistent and the proofof inconsistency is easy
to build.

– Really difficult instances appear at the frontier between consistency and incon-
sistency. For such instances, proving consistency or inconsistency is a difficult task.
Experimentally, on randomly generated instances we can observe a suddencomplex-
ity peakwhen this frontier is crossed (peak of the median or mean solving time of
one instance, see Figure 6.22). The height of this peak increases exponentially with
the size of the instances considered. Moreover, at a given distance from the peak, it is
simpler to solve an under-constrained instance than an over-constrained one. Similarly
to what has been observed in physical systems that change phase (liquid to solid), this
is referred as aphase transitionphenomenon [HOG 96]. On randomly generated in-
stances, the position of this peak can be easily estimated with a reasonable precision.
This therefore allows us to predict beforehand whether an instance is consistent or
difficult to solve, given general statistics such as the number of variables, the domain
sizes, the number and the tightness of constraints. However, this prediction ability
does not extend from the very simple models used for random instance generation to
real instances with complex features. For these, it seems unrealistic to reliably predict
their consistency or their solving time using only a few global indicators.

6.7.2. Constraint optimization problems

In this case, the main lessons learned are as follows:

– Solvingoptimizationproblems is usually harder than solving puresatisfaction
problems. This can be explained by the fact that solving an optimization problem
using tree search reduces to a sequence of satisfaction problems. Among these, the two
final problems (finding an optimal solution and proving its optimality, which requires
proving that there is no better solution) are both close to the frontier between consistent
and inconsistent instances, which is the region where the complexity peak occurs.
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Figure 6.22.Mean CPU time for solving a set of randomly generated instances having the
same global characteristics: phase transition phenomenonat the consistency/inconsistency

frontier

– If we consider the quality of the solutions found as a function of CPU time, we
often observe thatlocal searchbehaves far better thantree searchand is generally able
to quickly produce good quality solutions (see Figure 6.23). This can be explained by
the disordered and opportunistic behavior of local search opposed to the ordered and
systematic behavior of tree search. The latter can take a lotof time to reconsider its
first (possibly bad) choices.

6.8. Polynomial classes

Even if the general CSP isNP-complete(see section 6.3), there may be sub-classes
of the general problem for which polynomial time algorithmsexist. A lot of effort has
been dedicated to try to identify suchpolynomialclasses. We present two such classes
that, despite the restriction they bring to the general case, still allow some real prob-
lems to be represented. In the first class ofacyclic constraint networks, the restriction
lies in the so-called syntactical or structural part of the problem: the constraint graph.
In the second class ofsimple temporal constraint networks, the restriction lies on the
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Figure 6.23.Evolution of the quality of the best solution found on a giveninstance as a
function of time

semantical part of the problem: the nature of the constraints. An algebraic charac-
terization of polynomial classes based on the semantics of the constraints (so-called
polynomial languages) is given in [JEA 95].

6.8.1. Acyclic constraint networks

Let us consider a constraint network with binary constraints such that its constraint
graph isacyclicor equivalently is atreeor aforest. (A forest is an acyclic graph and a
tree is an acyclic connected graph. A forest is therefore a set of disconnected trees. If
the constraint graph is a forest, each tree can be processed separately.) It can be solved
in two ways:

– The first method consists of filtering the network byarc-consistency(see sec-
tion 6.5.2). If filtering leads to an empty domain, then the problem is proven to be
inconsistent. Otherwise, it is possible to show that it is consistent and that a solution
can be produced without backtrack by assigning any variablewith any value in its
domain (remaining after filtering), and then recursively assigning each of its neighbor
variables with any value in its domain that is compatible with the previously chosen



Constraint Satisfaction Problems 297

values. Such a value always exists by arc-consistency itself. In fact, this is a case where
local consistency filtering, despite its polynomial time complexity, is complete.

– The second method consists of choosing an arbitrary variable v and in building
the rooted tree defined by the constraint graph and the choiceof v as its root. (The
rooted tree defined by a tree and one of its vertexs is obtained by takings as the root
and by recursively considering neighbor vertices as sons ofs.) Then, we can simply
apply abucket eliminationalgorithm (see section 6.6.2) which eliminates variables
from the leaves to the root of the tree. The constraints addedare unary constraints
similar to filtered domains because the induced width is equal to 1. As before, if an
empty domain appears, the network is inconsistent. Otherwise it is consistent and
a solution can be produced without backtrack by assigning variables in the inverse
order, from the root to the leaves.

If both methods have the same asymptotic temporal complexity of O(n · d2), the
latter is less expensive in practice because it is actually equivalent to performing arc-
consistency filtering in one direction only for each constraint. This is also calleddi-
rectional arc-consistency[DEC 87] and we are in a situation where directional arc-
consistency is complete.

6.8.2. Simple temporal constraint networks

A simple temporal constraint network is a binary constraintnetwork involving
integer or real variables (where discrete or continuous domains behave similarly and
can be treated the same). The variables represent temporal events with the restriction
that any constraint connecting a variableti and a variabletj can be written aslij ≤
ti − tj ≤ uij [DEC 91]. Despite its simplicity, such a framework allows many real-
time management problems to be represented. The so-called PERT (project evaluation
and review technique) [KEL 61] graphs which are largely usedin project management
are a specific case of such problems.

The problem defined here is a linear programming problem (linear constraints only,
no criterion). However, the specific nature of the linear constraints involved implies
that the problem can be solved either bypath-consistencyfiltering (see section 6.5.3),
or equivalently by anall-pairs shortest pathalgorithm such as the Floyd-Warshall
algorithm [GON 84]. Both algorithms have the same complexity of O(n3).

6.9. Existing tools

Historically, the first software tools for constraint programming were developed
on the foundations oflogic programming. This followed the work of [JAF 87] who
showed thatunification between terms, a fundamental mechanism of logic program-
ming, can be interpreted as a specific constraint solving problem. It could also, under
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some simple assumptions, be extended to handle various constraint systems such as
linear constraints over real variables [COL 90, JAF 92] or arbitrary constraints over fi-
nite domains [COD 96, DIN 88]. However, during the 1990s, constraint programming
tended to drift slowly away from the limiting framework of logic programming.

These research projects have given birth tocommercial tools such asCP Opti-
mizer[ILO 08], Chip [COS 08], orSICStus Prolog[SIC 08], but also to free academic
tools such asChoco[LAB 08], ECLiPSe[ECL 08], Comet[HEN 08], GNU Prolog
[DIA 08], Gecode[SCH 08] andFaCiLe [BRI 08].

6.10. Extensions of the basic framework

Several extensions of the basic CSP framework have been proposed in several
directions. We only present four of them: the handling ofcontinuous domains, the so-
calledconditionalanddynamicproblems and the simultaneous handling ofconstraints
andpreferences.

6.10.1. Continuous domains

Before any consideration about continuous domains, we remind ourselves that real
numbers cannot be directly represented in a computer which is fundamentally a dis-
crete and finite machine. Real numbers are usually approximated by floating point
numbers or by intervals whose bounds are floating point numbers. As the number of
different floating point numbers that can be represented in acomputer is finite we are
again handling finite domains, but with two important differences compared to the
previous case: (1) the size of the domains is such that it is generally not reasonable
to enumerate them, and (2) the real numbers between two successive floating point
numbers cannot be explicitly represented and processed.

Two types of methods of the original CSP framework on finite domains have been
extended to continuous domains:filtering methods andtree searchmethods.

A first type of filtering method relies on the results ofinterval analysis[MOO 66]
which extends the usual operations on real numbers to intervals. In interval arithmetic,
addition is simply defined as∀a, b, c, d/(a ≤ b) ∧ (c ≤ d), [a, b] + [c, d] = [a +
c, b + d], because the set of real numbersz such thatz = x + y, x ∈ [a, b], and
y ∈ [c, d] is indeed the interval[a+c, b+d]. More generally, an operation⊗f on reals
is extended to an operation⊗i on intervals of real numbers, such that∀x ∈ [a, b], ∀y ∈
[c, d], x⊗f y ∈ [a, b]⊗i [c, d].

Table 6.4 depicts an example of filtering using interval analysis on an instance
involving 3 variablesx, y andz. The variables have[0, 10], [1, 3] and [0, 2] as their
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respective domains (all reals) and two constraintsx = 4y andy ≤ z. Every row
represents the state of the domains of the variables at a given step of the algorithm. A
dash means that the domain is not changed compared to the previous step. The first
row represents the initial domains. The second row represents the domain ofx after
its filtering with respect to the constraintx = 4y and the domain ofy, sincey ∈ [1, 3]
andx = 4y, x ∈ 4 · [1, 3] = [4, 12] andx ∈ [0, 10], x ∈ [4, 12] ∩ [0, 10] = [4, 10].
The domains after the complete filtering appear on the last row. The constraints of this
tiny example are linear but this method also applies to nonlinear constraints such as
x · y = z or xygeqz.

Domains
Constraint Filtered variable x y z

[0, 10] [1, 3] [0, 2]
x = 4y x [4, 10] – –
x = 4y y – [1, 2.5] –
y ≤ z y – [1, 2] –
y ≤ z z – – [1, 2]
x = 4y x [4, 8] – –

[4, 8] [1, 2] [1, 2]

Table 6.4.Example of filtering based on interval analysis

Figure 6.24 represents the filtering on continuous domains as theprojection of
a constraint on a domain.d(x) andd(y) are the initial domains ofx and ofy. The
constraintc considered here is|x− xc|2 + |y− yc|2 ≤ r2. P (c, x, y) is the projection
on y of the combination of the constraintc and of the domaind(x) of x. The new
domaind′(y) of y is the intersection ofP (c, x, y) and of its previous domaind(y).
Note that it is possible to use any super-set ofP (c, x, y) instead ofP (c, x, y). The
main problem underlying filtering consists of designing mechanisms which allow the
domains of the variables to be as much as possible reduced without enumerating values
and without eliminating any value that participates in a solution. Interval analysis is
one way of achieving this goal. Other ways have been proposed, such as filtering by2B
consistency[LHO 93] or box consistency[BEN 94], which are approximations of arc-
consistency filtering based on interval bound reasoning. See [COL 99] for a synthetic
overview.

Considering tree search, thepartitioningmechanism which is the most often used
consists of splitting the domain of a chosen variable into two sub-domains of the
same size. However, more complex splitting mechanisms in several sub-domains of
different sizes can also be considered.

Numerica[HEN 97] is an example of a tool dedicated to modeling and solving
CSP on continuous variables.
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Figure 6.24.Example of constraint projection

6.10.2. Conditional problems

TheconditionalCSP framework has been introduced in order to represent prob-
lems whose solutions do not all have the same structure and involve different sets of
variables and constraints: the existence of some variablesand constraints in the prob-
lem may depend on the assignment of other variables. Such a situation may appear
in various problems such as configuration ones. In a car configuration problem, the
choice of a motor type (gas oil or not) may define two differentsets of variables and
associated constraints which describe the specific choicesand the constraints to be
satisfied in each case.

The so-calleddynamicCSP framework [MIT 90] has been proposed to model such
situations, although the termconditionalwould probably have been better suited. This
framework associates anactivation statewith every variable and introduced two types
of variables (variables that are always active and those that can become active or not)
and two types of constraints (compatibility constraints which are similar to usual ones
and activation constraints which define, often as rules, theactivation conditions of the
potentially active variables). For example, an activationconstraint may be ‘ifv = val,
thenv′ is active’.

It must be stressed that the conditional CSP framework can beconsidered simply
as syntactic sugar. It is easy to transform any conditional CSP into a classical one
where every potentially active variable includes, in its domain, a specialnull value
representing the fact that it is not active. This is done by modifying the compatibility
constraints in order to capture the fact that thenull value is compatible with all other
values and by reformulating, using thenull values, all the activation constraints as
classical constraints.
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6.10.3. Dynamic problems

The dynamicCSP framework [DEC 88] has been introduced to capture situa-
tions where local modifications are introduced in the problem to be solved because
of changes in the problem environment or objectives, for example in planning and
scheduling problems.

In the CSP framework, any problem modification can be expressed by the addition
or the removal of constraints (unary, binary orn-ary). The difficulty lies in the fact
that adding a constraint may invalidate the result of a previous search (a previous
solution may violate some of the new constraints), whereas removing a constraint
may invalidate a previous reasoning (a previous filtering may no longer be valid).

Specific dynamic reasoning and search methods have been proposed to deal with
these issues, which can cope with constraint additions or removals without requiring
a complete restart from scratch in case of invalidation [VER05]. Another more re-
cent direction of research consists of developing methods that can anticipate potential
changes. Examples include computingrobustsolutions (which are more likely to re-
sist predictable changes [HÉB 04]) orflexiblesolutions (which can be simply adapted
to the changes that occurred). Such methods are related to the problems considered in
section 6.11.1.

6.10.4. Constraints and preferences

We have seen that the basic CSP framework only allows pure satisfaction problems
to be expressed: a constraint can either be satisfied or not. If it is not satisfied, then it
completely invalidates the current assignment. This framework does not allow partial
or gradual satisfaction or dissatisfaction to be expressed. It cannot deal with inconsis-
tent problems or compare different assignments which each violate some constraints
(although not necessarily the same ones and are therefore not equivalent). It cannot
deal with consistent problems where solutions are not all equivalent from the user
point of view. To deal with these issues, several extensionsof the CSP framework
have been proposed:

– AdditiveCSP is where a positive number, which represents a violationcost, is
associated with each constraint and where the cost of a complete assignment is defined
as the sum of all violated constraint costs. The specific casewhere all constraints have
the same cost of 1 defines the Max-CSP problem where we seek an assignment that
maximizes the number of satisfied constraints (or minimizesthe number of violated
ones) [FRE 92, SHA 81].

– PossibilisticCSP is where a number between 0 and 1, which represents a priority,
is associated with each constraint. The level of a complete assignment is defined as
the maximum priority among all violated constraints [ROS 76, SCH 92].
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– FuzzyCSP is where a number between 0 and 1 is associated with each combina-
tion of valuesAc of the variables of a constraintc. This number can be interpreted as
the membership degree ofAc to the fuzzy relationc (interpreted using fuzzy set theory
[ZAD 78]) or as the satisfaction degree ofc byAc. The level of a complete assignment
A is then defined as the minimum of all the constraints of their satisfaction degrees
byA [DUB 96]. (Note that it is possible to transform a possibilistic CSP into a fuzzy
CSP. This is done by associating a membership degree1 − p with every combination
of values forbidden by a constraint whose priority isp, whereas allowed combinations
receive a degree of 1.)

– Probabilistic CSP is where a number between 0 and 1 is associated with each
constraintc, which represents the probability thatc exists in the real problem. The
level of an assignment is then defined as the probability of being a solution of the real
problem given the probability of existence of the constraints it violates [FAR 93a].

These extensions all share similar characteristics:

– A level (we could equivalently speak of priority, importance, degree, weight,
cost, etc.), numerical or not, is associated with either (1)every constraint, or (2) for
every constraint, with every combination of values of its variables. Case 1 can be
seen as a specific sub-case of case 2, where the level associated with a combination
of valuesAc of the variables of a constraintc is equal to an identity level whenAc
satisfiesc, and to the level ofc otherwise. Only two different levels are used for all
combinations of values of the variables ofc.

– The level associated with a complete assignmentA is the result of combining the
levels associated to either (1) the constraints violated byA or (2) the projections ofA
on the variables of each constraint. Each constraint is therefore a function which maps
assignments to levels and provides a local evaluation of theassignment. The different
local evaluations are then combined to define a global evaluation.

– Assignments with a preferred global evaluation are sought. The problem can
therefore be seen as an optimization problem where the criterion to be optimized is a
function of the constraint satisfaction.

This observation has lead to the definition of generic frameworks such asSemiring
CSP(SCSP) [BIS 95, BIS 97] orValued CSP(VCSP) [SCH 95]. These frameworks
are presented and compared in [BIS 99]. They rely on similar algebraic structures and
cover classical, additive, possibilistic, fuzzy and probabilistic CSP, as well as many
other extensions. The main difference between SCSP and VCSPlies in the ability of
the SCSP to represent partially ordered sets of levels, whereas the VCSP framework
assumes totally ordered levels. Adding this assumption to SCSP makes them equiva-
lent to VCSP.

If we consider the example of VCSP, a VCSP is defined as a 5-tuple(V,D,C, S, F ).
The first three elements are the same as in classical CSP: a sequenceV of variables,
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a sequenceD of domains and a sequenceC of constraints. The fourth elementS is a
so-called valuation structure, defined by a valuation setE and equipped with a total
order≺, a binary combination operator⊗, a minimum element⊥ and a maximum
element>. The fifth elementF is a valuation function which associates an element of
E with either (1) every constraint, or (2) for every constraint with each combination
of values of its variables.

E is used to associate a level with the constraints or with the combinations of val-
ues of variables of each constraint, and also with complete assignments.≺ is used
to compare different elements ofE and⊗ to combine them. (Note that in the VCSP
framework, elements ofE represent levels of dissatisfaction. Smaller elements are
therefore preferred.)⊥ is used to express a complete satisfaction and> to express
a complete dissatisfaction. Some reasonable properties are expected such as commu-
tativity, associativity and monotonicity of⊗, as well as the existence of an identity
element and of an absorbing element for⊗ (which must be⊥ and>, respectively).
The standard query, which is equivalent to the usual CSP query in the classical case
(see section 6.2.4), is to produce an optimal assignment (minimum according to≺).

For example:

– For classicalCSP,E contains two elementst (true) andf (false) with t =⊥,
f = >, and t ≺ f . ⊗ is the logicaland and the levelf is associated with every
constraint.

– For possibilisticCSP,E is the set of reals between0 and1, with 0 =⊥ and
1 = >. ≺ is the usual order on reals and⊗ = max. A strictly positive level is
associated with every constraint, indicating its priority.

– ForadditiveCSP,E is the set of non-negative integers completed with a special
+∞ level, with0 =⊥ and+∞ = >. ≺ is the usual order on integers and⊗ = +. A
strictly positive level is associated with every constraint, indicating its violation cost.

It is worth considering these problems from the point of viewof relaxations. A
relaxationof a problem is a classical CSP defined by a subsetC′ of the constraints
in the problem. A relaxation is associated with a level equalto the combination of
the levels of all the relaxed constraints (those inC − C′). It is easy to show that
every optimal assignmentA is associated with an optimal consistent relaxation of the
same level (the relaxation that relaxes all the constraintsviolated byA). Conversely,
it is easy to show that every optimal consistent relaxationC′ is associated with a set
of optimal assignments of the same level (the set of solutions of C′). Looking for
an optimal assignment is therefore equivalent to looking for an optimal consistent
relaxation.

Let us consider the CSP instance whose microstructure appears in Figure 6.25.
(This instance has been obtained from the instance of Figure6.2 by eliminating value
1 of v3 and value3 of v4, and by modifying constraintc4 (≤ 4 instead of≤ 3).)
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This instance is inconsistent: no complete assignment can simultaneously satisfy the
four constraints. Table 6.5 shows the unsatisfied constraints for every possible assign-
ment. The problem of choosing an assignment can be considered as a multiple criteria
optimization problem.

2
1

1
2

c2 : v2 < v4c1 : v1 = v2

c4 :

v2

v1

1
2

2

v1 + v2 + v3 ≤ 4

v4

v3 c3 : v3 6= v4

Figure 6.25.An inconsistent CSP instance

Variables Constraints
v1 v2 v3 v4 c1 c2 c3 c4

A1 1 1 2 1 ×
A2 1 1 2 2 ×
A3 1 2 2 1 × × ×
A4 1 2 2 2 × × × ×
A5 2 1 2 1 × × ×
A6 2 1 2 2 × × ×
A7 2 2 2 1 × ×
A8 2 2 2 2 × × ×

Table 6.5.Unsatisfied constraints for each of the 8 possible complete assignments. Each row
is associated with a complete assignment. The unsatisfied constraints are marked with a cross

Optimal solutions depend on the valuation structure and function considered:

– In classicalCSP, all the assignments have the same levelf and are equivalent.

– In Max-CSP(additive CSP with a cost of1 associated with every constraint),A1

andA2 are the two optimal assignments i.e. those that violate the smallest number of
constraints.

– In additiveCSP and if the constraint violation costs are1, 5, 2 and1, respectively,
A2 becomes the only optimal assignment with a cost of2.
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– If instead, we usepossibilisticCSP and if the priorities are0.1, 0.5, 0.2 and0.1,
respectively,A2 andA6 are the two optimal assignments both with a level of0.2,
even thoughA2 violates less constraints thanA6. This is called thedrowningeffect,
induced by the idempotent combination operator used. To avoid this effect, a usual
approach consists of shifting from possibilistic CSP tolexicographicCSP [FAR 93b],
where two assignments are compared using aleximinapproach [MOU 88]. In such a
framework,A2 would become the only optimal assignment.

Figure 6.26 shows the lattice of relaxations based on the inclusion relation, as well
as the frontier between consistency and inconsistency. We can see that:

– In theMax-CSPcase, the two consistent optimal relaxations are{c1, c2, c4} and
{c1, c3, c4}, which both relax one constraint.

– In theadditiveCSP case and if the constraints costs are1, 5, 2 and1, respectively,
{c1, c2, c4} becomes the only consistent optimal relaxation.

– In thepossibilisticCSP case, if the constraint priorities are0.1, 0.5, 0.2 and0.1,
respectively, the four optimal consistent relaxations are{c1, c2, c4}, {c1, c2}, {c2, c4}
and{c2}. However, the latter three are only subsets of the first and are not maximal
for inclusion. It is possible to add constraints to each of them without loosing consis-
tency. In thelexicographicCSP case,{c1, c2, c4} becomes the only optimal consistent
relaxation.

inconsistency

consistency

c1 c2 c3 c4

c1, c2 c1, c4 c2, c3 c2, c4 c3, c4

c1, c2, c3

c1, c2, c3, c4

c1, c2, c4 c1, c3, c4 c2, c3, c4

c1, c3

Figure 6.26.Relaxation lattice and the consistency/inconsistency frontier

If we consider additional properties of the combination operator⊗, we can distin-
guishidempotentVCSP (which use an idempotent operator) fromstrictly monotonic
VCSP (which use a strictly monotonic operator). (An operator⊗ is idempotent if and
only if ∀a, a⊗ a = a. This is the case formax and for the logicalandwhich is ac-
tually equivalent tomax on a set of two elements.) Among the first, we find classical,
possibilistic and fuzzy CSP. Among the second, we find classical, additive, probabilis-
tic and lexicographic CSP. It must be stressed that the only idempotent operator in the
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VCSP framework ismax (which captures classical, fuzzy and possibilistic CSP). The
the only VCSP structure that is both idempotent and strictlymonotonic corresponds to
classical CSP. There are structures that are neither idempotent, nor strictly monotonic
(see Figure 6.27).

VCSP

Idempotent VCSP Strictly monotone VCSP

Additive CSPClassical CSP

Probabilistic CSP
Lexicographic CSPPossibilistic and

Fuzzy CSP

Figure 6.27.Different VCSP classes

Although this classification may initially appear to be purely theoretical, its practi-
cal impact is strong. From the semantical point of view, we have seen in the example of
Figure 6.25 that non-strictly monotonic VCSP such as possibilistic or fuzzy CSP are
suffering from the so-called drowning effect: more unsatisfied constraints may lead to
no change in the level of an assignment. Conversely, from a computational point of
view, we shall see that the non-idempotent VCSP, such as lexicographic, probabilistic
or additive CSP, are usually much more difficult to solve.

Considering the reasoning methods presented in section 6.5such as arc-
consistency filtering, they can be simply extended to idempotent VCSP (possibilis-
tic and fuzzy CSP [DUB 96, ROS 76, SCH 92]), but this extensionis not so obvious
for non-idempotent VCSP (additive, lexicographic and probabilistic CSP). The reason
for this difficulty lies in the fact that filtering algorithmswork by adding deduced con-
straints to the filtered instance in order to ensure propagation in the constraint network.
If the operator used for combining violation levels is idempotent, adding a deduced
constraint to the instance produces an equivalent instance. However, if it is not idem-
potent, equivalence is no longer guaranteed. This is why dedicated filtering methods
have been developed which work on non-idempotent VCSP:

– methods based oninconsistency counts(arc-consistency or directed arc-
consistency counts [FRE 92, LAR 96, LAR 99, WAL 94]), which add no deduced
constraint and therefore perform no propagation in the constraint network; and

– real propagation-based methods (soft arc-consistency [COO 04, LAR 02,
LAR 03b, SCH 00]), which actually add deduced constraints, but compensate for
these additions, defining so-called equivalence preserving transformations.
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Considering thesearchmethods presented in section 6.6:

– Tree search methods such as thebacktrackalgorithm (see section 6.6.1) can be
easily extended to thedepth-first branch and boundalgorithm. Among the different
parameters that define this algorithm, the one that has the strongest influence on effi-
ciency is clearly the mechanism that computes at each noden of the tree alower bound
on the optimum of the sub-instance associated withn. This mechanism is equivalent
to the inconsistency detection mechanism used in classicalCSP. Indeed, this lower
bound allows us to backtrack each time it is greater than or equal to the level of the
best solution found so far (this guarantees that no optimal solution is lost because
in such a case all the assignments below the current node cannot have a level better
than the best one found so far). To compute such a lower bound,mechanisms such
as the backward and forward-checking can be easily extended. However, similarly
to what occurs with classical CSP, more sophisticated mechanisms such as directed
arc-consistency counts or soft arc-consistency presentedpreviously produce stronger
lower bounds with a better global efficiency.

– Variable elimination methods such asbucket elimination(see section 6.6.2) can
be directly extended to the VCSP framework. They were actually initially designed
to solve optimization problems such as VCSP [BER 72]. Let us consider a variable
v, C′ ⊆ C the set of all the constraints involvingv andV ′ ⊆ V the set of all the
variables involved in at least one of the constraints inC′, excludingv itself. Eliminat-
ing v consists of computing, for every combination of values for the variables inV ′,
the optimum level of its extension tov, taking into account constraints inC′ and in
recording these levels in a constraintc on the variables inV ′.

– Regarding greedy and local search methods (see sections 6.6.3 and 6.6.4), they
are explicit optimization methods and their adaptation to the VCSP framework is ob-
vious.

Overall, we should remember that although the VCSP search space is exactly the
same as the classical CSP search space, solving VCSP is usually much harder than
solving CSP.

The first reason has already been presented in section 6.7.2 for tree search methods.
To solve an optimization problem, we must solve a sequence ofsatisfaction problems
among which the latter two are located close to the consistency/inconsistency frontier
where the hardest problems are.

The second reason lies in the weakened pruning power of the lower bounds used in
VCSP solving, such as directed arc-consistency counts or soft arc-consistency, com-
pared to the pruning power or inconsistency detection mechanisms used in CSP solv-
ing such as hard arc-consistency. Experiments on randomly generated instances con-
firm this phenomenon: contrary to the classical CSP case where complexity decreases
suddenly after the consistency/inconsistency frontier, complexity actually starts to in-
crease tremendously after this frontier in the VCSP case.
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Once again, the idempotent possibilistic and fuzzy CSP havea specific behavior
because they can always be resolved by solving a sequence of classical CSP called
α-cuts. Theα-cut of a possibilistic CSP is the classical CSP that contains only con-
straints whose priority is greater than or equal toα. It is, for example, possible to start
by solving theα-cut defined byα set to the maximum priority over all the constraints.
Every time anα-cut is consistent, it is known for sure that the optimum of the possi-
bilistic CSP is strictly lower thanα and it is possible to take the priority immediately
below as a new value forα. As soon as anα-cut is inconsistent, then it is known
that the optimum of the possibilistic CSP isα. If k is the number of different levels
of priority used in the possibilistic CSP, its solution requires at mostk classical CSP
solvings. Using dichotomic search on priority levels, it iseven possible to reduce to
onlyO(log(k)) classical CSP solvings.

Consideringpolynomial classes, it is worth noting that the complexity of acyclic
constraint networks (see section 6.8.1) remains unchangedwhen shifting from clas-
sical CSP to VCSP. More generally, and quite logically, all the computational com-
plexity arguments that are based purely on the graph structure remain valid when the
VCSP framework is considered.

6.11. Open problems

There are still a number of topics that can be qualified as openproblems, con-
sidering that ongoing research has not yet reached the levelof maturity observed on
the previously described topics. We only consider four of them, chosen because we
consider that they are fundamental for dealing with real problems. They include si-
multaneous handling ofconstraintsanduncertainty, solving under hard or softreal
time constraintsandinteractiveanddistributedsolving.

6.11.1. Constraints and uncertainties

When CSP is used to represent constrained decision problems, the CSP variables
are used to represent either decisions made by the agent or deterministic consequences
of these decisions. An example is the cost of an action or the system state following
its execution. They cannot represent decisions made by the environment or by other
agents that would not be under the control of the agent itselfsuch as, for example, the
system state following the execution of a non-deterministic action.

Using a uniform representation for decisions coming from the agent, the environ-
ment or from other agents would lead to an incorrect modelingas showed by the
following example where the problem is to decide whether an umbrella should be
carried or not. Let us assume that three boolean variables are used:um (represent-
ing the decision to carry or not an umbrella),ra (representing the fact that it rains or
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not) andwe (representing the fact that the agent will be wet or not). Four constraints
allow the problem itself to be modeled:(¬um ∧ ra) → we, (um ∧ ra) → ¬we,
(¬ ra) → ¬we, ¬we. The first three constraints represent laws of physics. The lat-
ter represents the requirement of the agent who does not wantto be wet. One of the
solutions of this CSP is¬um, ¬ ra, ¬we, which would mean that the agent has the
ability to decide whether it rains or not.

This example brings to light the necessity of splitting variables intocontrollable
anduncontrollablevariables from the agent point of view, as it has been proposed in
[FAR 96]. This allows queries to be expressed: e.g. finding anassignment of the con-
trollable variables that is consistent whatever the valuesof the uncontrollable variables
(as long as they satisfy the constraints that involve them).If additional knowledge is
available on uncontrollable variables such as a probability distribution on every un-
controllable variable, the problem becomes astochastic CSP[FAR 95, WAL 02]. This
allows queries such as finding an assignment of the controllable variables whose prob-
ability of being a solution is maximum, given the possible values for the uncontrollable
variables.

Replacing probabilities by possibilities, possibilisticvariants of these queries can
also be defined [DUB 95]. We can observe the proximity betweenworks on stochastic
CSP and those onstochastic satisfiability[LIT 01]. We can also observe thatproba-
bilistic CSP(see section 6.10.4) offers yet another way of capturing uncertainty. In
this case, uncertainty is associated with the existence of some constraints rather than
the possible values of some uncontrollable variables.

6.11.2. Deciding or reasoning under time constraints

In practice, very few real decision making or reasoning problems exist with abso-
lutely no constraints on the time needed to produce an output. This time constraint is
specifically strong when the process is interacting with theenvironment (online situ-
ation analysis or planning for autonomous systems) or with auser (see the following
section): decision and reasoning must follow the timing imposed by the environment
or the user.

The development of increasingly efficient methods only offers a partial answer
to this problem because even the most efficient available tools cannot always solve
arbitrary instances to optimality in the available time. A natural question that arises
is the level of compromise between the solving time and the quality of the result
obtained. Theutility of the result is an increasing function of its quality, but also a
decreasing function of its delivery time.

This is why people have considered the use of concepts such asboundedreasoning
from a resource or time point of view, oranytimereasoning which is able to provide a
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result at any time with a increasing quality as a function of the running time [BOD 94,
DEA 88, RUS 91, ZIL 96].

In the CSP framework, or rather in the VCSP framework, most results have been
dedicated either to the adaptation of the algorithms to the instance to solve and to the
time available for solving it [LOB 98], or to the developmentof methods that produce
good quality profiles (evolution of the quality, or more generally of lower and upper
bounds on the optimum, as a function of time) [GIV 97].

6.11.3. Interactive decision

All the methods developed in the CSP framework assume an automatic solving of
decision making problems. However, in many situations, such as the management of
large systems including human supervision, if users require the support of software
tools for decision making, they do not necessarily want the decisions to be automat-
ically made by the software. Typically, some decisions may be too important to be
left to the software or the software does not have at its disposal all the information
needed to compare decisions and to select the best one (either because information is
too complex to be formalized, or because people do not want all the information to be
formalized and therefore explicit).

The problem of the interaction between a user and a decision making software fol-
lows from such situations. The main approaches that have been considered up to now
in this direction using the CSP framework include interleaving of user and software
choices, visualization by the software of the consequencesof user choices, production
of explanations in the case of inconsistency and interactive restoration of consistency
[e.g. AMI 02].

6.11.4. Distributed decision

Another restriction of the existing CSP methods is that theyassume that all the
data required to model and solve the problem are collected and processed by a single
computing agent. However, an increasing number of real decision making problems
occur in a distributed context where data are distributed between different agents and
processed locally by these agents. Even when a centralization of all data and process-
ing is technically possible, it is not necessarily acceptedfor confidentiality reasons or
to preserve the locality of the decisions.

Thedistributed CSPframework tries to answer these requirements. In a distributed
CSP, the set of variables of the network is divided between different agents (one vari-
able belongs to precisely one agent). The set of constraintsis divided between internal
constraints that involve variables belonging to only one agent (these constraints are
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assigned to this agent) and external constraints that involve variables from more than
one agent (these constraints are often duplicated inside each corresponding agent). A
distributed CSP can be seen as a set of CSP, one by agent, interconnected by exter-
nal constraints. The intra-agent connectivity isa priori stronger than the inter-agent
connectivity. Otherwise, we should probably reconsider the choice of a distributed
approach or the current organization of the distribution.

The methods developed to solve such CSP try to preserve the autonomy and the
asynchronism of local decisions while guaranteeing the consistency of the global de-
cision using a minimum number and size of messages [MOD 05, YOK 00]. Recent
works also focus on the preservation of confidentiality of local data during solving
[WAL 05].

6.12. Books, journals, web sites and conferences

There are a number of good references on this research area. Some of them are
more oriented towards the pure CSP framework (definitions, properties, algorithms,
etc.), such as [DEC 03, TSA 93]. Others are more oriented towards constraint pro-
gramming, logic or not (software, solvers, etc.), such as [APT 03, MAR 98, HEN 89].
The recent extensiveHandbook of Constraint Programming[ROS 06] covers both as-
pects and much more.

At the international level, theAssociation for Constraint Programming[ACP 08]
maintains a web site [CPO 08] and uses a mailing list [CSP 08].Beyond general ar-
tificial intelligence conferences and journals, publications on the topic appear in the
internationalConstraintsjournal [CON 08] and in annual conferences such as CP (In-
ternational Conference on Principles and Practice of Constraint Programming) and
CPAIOR (International Conference on Integration of Artificial Intelligence and Oper-
ations Research Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems).
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Chapter 7

Logical Representation of Preferences

7.1. Introduction

The specification of a decision making problem includes the agent’s preferences on
the available alternatives. We have to distinguish betweenpreference modeling, which
consists of choosing a mathematical model for preferences and studying its proper-
ties, frompreference representation(or specification), which consists of choosing a
language for expressing, storing and processing an agent’spreferences efficiently. A
third important problem ispreference elicitation, which consists of interacting with
the agent in order to acquire enough information about theirpreferences.

Preference representation languagesaim to represent preferences in a modular
and local way. This is carried out by means of preference statements describing basic
elements of preference, e.g. ‘in contextγ I prefer ϕ to ψ’ where γ, ϕ andψ ex-
press properties that each alternative may or may not satisfy. Such languages have
been studied in two different communities. The artificial intelligence community has
produced a considerable amount of work on languages forcompact preference repre-
sentation, whereaspreference logicshas been studied in the philosophical logic com-
munity. These two streams of work have very different motivations.

Compact preference representation is clearly driven by computational issues, and
consists of expressing and processing preferences over large domains (having gener-
ally a combinatorial structure) using as few computationalresources (space and time)
as possible. Preference logics are driven by more philosophical considerations, such
as understanding and reasoning with preferences.

Chapter written by Jérôme LANG.
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However, the links between the work in these two communitiesare surprisingly
strong, as they have developed (sometimes) very related languages. In this chapter we
choose to speak about these two streams of works in a more or less unified manner.

Because these two areas have given rise to an important number of works, we
cannot speak about every approach in detail. When discussing compact preference
representation we will therefore focus on logical representation languages.Graphi-
cal languagesfor compact representation will be presented in a logical manner, but
with somewhat less space than they deserve. Likewise, when talking about preference
logics we will focus on works that are related (or useful), atleast to some extent, to
compact representation.

A naive idea would consist of expressing preferencesexplicitly, simply by enu-
merating all possible alternatives together with their utility (in the case of cardinal
preferences), or the list of all pairs of alternatives contained in the relation (in the case
of ordinal, or more generally relational, preferences). Obviously, the explicit represen-
tation is practical only when the number of alternatives is small enough with respect
to the available computational resources. This assumptionis often unrealistic, in par-
ticular when the set of alternatives has a combinatorial (ormultiattribute) structure,
i.e. when each alternative consists of a tuple of values, onefor each of a given set of
decision variables (or attributes). In this case, the set ofalternatives is the Cartesian
product of the value domains and, of course, its cardinalitygrows exponentially with
the numbern of variables. Let us examine two motivating examples.

Example 7.1. An agent has to express their preferences about a meal composed of
a first course, a main course, a dessert and a wine, with a choice of six possibilities
for each; this makes64 alternatives. This would not be a problem if the preferences
of the four variables were separable. In this case, it would be sufficient to represent
them independently. The joint preference on the set of mealswould, for instance,
be determined by an aggregation function. Here, the preference structure on the64

alternatives would come down to four preference structures, each on6 alternatives.
However, this becomes much more complicated when the agent wishes to express
dependenciesbetween variables, as in ‘I prefer white wine if one of the dishes is fish
and none is meat, red wine if at least one of the dishes is meat and none is fish, and in
all other cases I have no preference between red and white wine’.

Example 7.2. Consider the following problem of a committee selecting applicants for
a job: a committee has to select not a single applicant butk applicants amongn. The
set of all possible alternatives can no longer be identified with the set of applicants,
but has a combinatorial structure (it is the set of all the subsets ofk applicants among
n). A member of the committee can express their preferences inan explicit way only
if the dependencies between applicants can be ignored. Thismeans that the members
cannot expresscorrelationsbetween applicants, such as e.g. ‘My preferred applicant
is A, the next is B then C; but since A and B work on similar subjects and C works on
another, I prefer to hire A and C, or even B and C, than A and B.’
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For such problems, the size of the set of alternatives and theimpossibility of de-
composing the preference structure into smaller structures (each bearing on one of the
variables) make it impossible in practice to ask the agents to give a utility function or a
preference relation on the set of all the alternatives in anexplicit way (under the form
of a table or a list). Therefore, expressing a utility function or a preference relation
on such sets of alternatives requires a language allowing the preference structure to
be expressed assuccinctlyor compactlyas possible. These languages, calledcompact
representation languages, should also be as expressive as possible and close enough to
human intuition, i.e. cognitively relevant. (Ideally, thespecification of the preference
structure in the representation language should be easily translated from the agent’s
preferences expressed in natural language, and should allow for efficient elicitation
techniques.) Finally, these languages should be equipped with efficient algorithms for
automizing inference or searching for an optimal decision.

Such preference representation languages have been particularly studied in artifi-
cial intelligence. Some of these languages are based on propositional (and sometimes
first-order) logic; some others, often called ‘graphical’,are not far from these logic-
based languages however. They consist of expressing elementary preferences locally
(on subsets of variables) by ‘preference statements’ that correspond to logical for-
mulae with a specific syntax. Of course, the issue of compact representation is also
very relevant for representingbeliefson the state of the world. For instance,Bayesian
networks(see Chapter 13) are the most familiar compact representation languages of
joint probability distributions on combinatorial sets of states.

For the sake of concision, we will focus in this chapter on formalisms directly
based on propositional logic, and will briefly present (some) graphical languages un-
der an equivalent logical form. Section 7.2 gives the basicsof propositional logic
required to understand the rest of the chapter. Section 7.3 gives the basic principles of
logical preference representation. In Section 7.4, we showhow classical propositional
logic can be used as a tool for logical preference representation by associating propo-
sitional formulae expressing preferences with weights, priorities or a distance between
interpretations. In Section 7.5 we focus on ‘preference logics’, whose first aim is to
interpret statements of the form ‘I desireϕ’ or ‘I prefer ϕ to ψ’ with respect to the
underlying preference relation between elementary alternatives. We will first consider
ceteris paribuspreferences, then preferences expressed in conditional logics. This sec-
tion will be completed by some brief considerations on the role of non-classical logics
(such as paraconsistent or multivalued logics) for preference modeling in the presence
of poor or inconsistent information. To conclude, we provide an informal discussion
about the arguments regarding the choice of a language for a given problem.

For pedagogical reasons, given that this book is dedicated to a large readership
who does not necessarily have a strong knowledge of propositional logic, the different
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languages will be presented rather informally and in a very progressive way. More im-
portance is given to examples than to technical results or algorithms. A non-beginner
may therefore skip the first parts of this chapter.

7.2. Basics of propositional logic

LPS is a propositional language built from a finite set of propositional symbols
PS, the usual connectives∧ (conjunction),∨ (disjunction),¬ (negation),→ (impli-
cation) and↔ (equivalence) and the two propositional constants> (tautology) and⊥
(contradiction). The elements ofLPS are calledformulae. Formally, the set of formu-
laeLPS is defined inductively by:

– for everyv ∈ PS, v is a formula;

– the symbols> and⊥ are formulae;

– for all formulaeϕ, ψ ∈ LPS ,¬ϕ,ϕ∧ψ, ϕ∨ψ,ϕ→ ψ andϕ↔ ψ are formulae.

If ϕ ∈ LPS , V ar(ϕ) is the set of propositional symbols appearing inϕ. A literal
l is a propositional symbol or the negation of a propositionalsymbol. Aclauseδ is a
disjunction of literals. Acubeγ is a conjunction of literals. A cubeγ′ (respectively, a
clauseδ′) is asubcube(respectively, asubclause) of γ (δ) if the literals ofγ′ (δ′) form
a subset of the literals ofγ (δ). A formula is under conjunctive normal form (CNF)
if it is a conjunction of clauses, and under disjunctive normal form (DNF) if it is a
disjunction of cubes.

Example 7.3. Let PS = {a, b, c, d}; a, ¬a are literals,δ = ¬a ∨ c ∨ ¬d is a clause
andγ = ¬a ∧ ¬b ∧ d a cube. We haveV ar(δ) = {a, c, d} andV ar(γ) = {a, b, d}.
γ′ = ¬a ∧ d is a subcube ofγ. (¬a ∨ c ∨ ¬d) ∧ (a ∨ b) ∧ ¬b is a CNF formula and
(b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ d) ∨ c is a DNF formula.

An interpretationw for LPS is a function fromPS to {>,⊥} assigning a truth
value to every propositional symbol. The set of interpretations forLPS is denoted by
ΩPS – it is isomorphic to2PS. The satisfaction relation|=⊆ ΩPS × LPS is defined
inductively as follows (wherew 6|= ϕ is an abbreviation for not (w |= ϕ)):

– if ϕ = v wherev ∈ PS, thenw |= ϕ if and only ifw(v) = >;

– w |= >;

– w 6|= ⊥;

– w |= ¬ϕ if not (w |= ϕ);

– w |= ϕ ∧ ψ if w |= ϕ andw |= ψ;

– w |= ϕ ∨ ψ if w |= ϕ orw |= ψ;

– w |= ϕ→ ψ if w |= ¬ϕ ∨ ψ;
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– w |= ϕ↔ ψ if w |= (ϕ→ ψ) ∧ (ψ → ϕ).

An interpretationw onPS is written by listing the literals it satisfies: for example,
if PS = {a, b, c, d} then the interpretationw in whicha andc are false andb andd are
true is written(¬a, b,¬c, d) or more simplȳabc̄d. The formula(¬a ∨ c ∨ ¬d) ∧ (a ∨
b) ∧ ¬b is not satisfied byw, while it is satisfied byw′ = (a,¬b, c, d). If X ⊆ PS,
w↓X is the restriction ofw toX . For example, ifw = ābc̄d thenw↓{b,c} = bc̄.

For every formulaϕ ∈ LPS , Mod(ϕ) = {w ∈ ΩPS | w |= ϕ}. Mod(ϕ) is the
set of themodels ofϕ. If Mod(ϕ) 6= ∅ thenϕ is satisfiable. if Mod(ϕ) = ΩPS
thenϕ is valid. if Mod(ϕ) ⊆Mod(ψ) thenψ is a logical consequenceof ϕ, denoted
by ϕ |= ψ. If Mod(ϕ) = Mod(ψ) thenϕ andψ are logically equivalent, denoted
by ϕ ≡ ψ. Every formula can be written as an equivalent CNF formula and as an
equivalent DNF formula.

Diff(w,w′) represents the set of all propositional symbols which are not assigned
the same truth value byw andw′. For example, ifw = (¬a, b,¬c, d) andw′ =
(¬a,¬b, c, d), thenDiff(w,w′) = {b, c}.

Propositional logic allows us to expresscardinality constraintssuch as ‘at least/at
most/exactlyk formulae amongpmust be satisfied’, which we denote[≥ k] : ϕ1, . . . , ϕp,
[≤ k] : ϕ1, . . . , ϕp and[= k] : ϕ1, . . . , ϕp, respectively. Such expressions, calledcar-
dinality formulae[BEN 94, HEN 91], are strictly speaking not formulae ofLPS . We
can consider them as such, however, since they can be expressed by formulae ofLPS .
For example,[≥ 2] : ϕ1, ϕ2, ϕ3 is short for(ϕ1∧ϕ2)∨(ϕ1∧ϕ3)∨(ϕ2∧ϕ3). It is im-
portant to note that these cardinality formulae can be expressed by polynomially long
plain formulae (i.e. without suprapolynomial increase of size), modulo the addition of
new propositional symbols to the language. Their use for syntactic convenience does
not therefore lead to a complexity gap.

Often, the description of existing alternatives makes use of non-binary variables.
However, the assumption that all variables are binary does not lead to a loss of gen-
erality compared to the more general case where all variables take their values on
finite domains. On the one hand, most models we will expose can be easily adapted
to this more general case but on the other hand, propositional logic easily allows for
representing preferences on variables whose domains are finite.

The simplest way of doing this (but not the most economical from the point of
view of the number of variables) is the following. LetV AR = {x1, . . . , xn} be a

finite set of variables and for eachi, Di = {v1
i , . . . , v

|Di|
i } the (finite) domain ofxi.

For every subsetU ⊆ V AR, we noteDU = ×{Di | xi ∈ U}. We noteD = DV AR,
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the set of all alternatives. LetPSD = {(xi = vji ) | xi ∈ V AR, vji ∈ Di} and

KD =
∧

xi∈V AR

[= 1] : (xi = v1
i ), . . . , (xi = v

|Di|
i ),

expressing that each variable takes a unique value.KD can be completed intoK =
KD ∧ K ′ by domain-specific constraints, defining the set of feasiblealternatives as
previously.

7.3. Principles and elementary languages

In this section, we make the important assumption that the set of alternatives
is W = Mod(K) ⊆ ΩPS , whereK is a propositional formula expressing con-
straints defining the set of feasible alternatives. For example, in the recruiting com-
mittee example, if at most two candidates among{a, b, c, d, e} can be hired then
K = [≤ 2] : a, b, c, d, e. The preference structure is therefore defined onMod(K).
Thus, alternatives are identified with propositional interpretations. By default, we take
K = > i.e.W = Mod(>) = ΩPS .

A utility function onW is a functionu : W → IR. A preference relation� on
W is a preorder, i.e. a reflexive and transitive relation (not necessarily complete). The
strict preferenceinduced by� is the strict order� defined byw � w′ if and only if
w � w′ and not (w′ � w). Theindifference relationinduced by� is the equivalence
relation∼ defined byw ∼ w′ if and only if w � w′ andw′ � w. If u is a utility
function then the preference relation�u induced byu is defined byw �u w′ if and
only if u(w) � u(w′).

A common way for an agent to express their preferences consists of enumerating
a set of goals, each of which can be represented by a propositional formula, possibly
with additional information such as weights, priorities, contexts or distances. In the
rest of the chapter,GB is a called a ‘goal base’ (analogous to ‘knowledge base’)
anduGB (respectively,RGB) denotes the utility function (respectively, the preference
relation) induced byGB.

We illustrate the various representation languages on an example, in which an
agent has to express their preferences on airplane tickets.The relevant criteria are the
following:

1) The destination: we consider 7 possible destinations, namely Amsterdam (A),
Cairo (C), Hong Kong (HK), Istanbul (I), Naples (N), New York (NY) and Rome (R).
Each of them is represented by a propositional symbol.

2) The price of the ticket: cheap, medium-priced or expensive, each possibility
being represented by a propositional symbol.
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3) The duration of stay: short, medium or long, each possibility being represented
by a propositional symbol.

4) The decision to buy a ticket or not, represented by the propositional symbol
ticket.

The set of possible alternatives is described by the set of formulaeK (interpreted
conjunctively), containing:

– exclusion constraints for the variables corresponding todestination, price and
duration:
¬ (A ∧ C), ¬ (A ∧ HK), ¬ (A ∧ I) etc.
¬ (cheap ∧ medium-priced), ¬ (cheap ∧ expensive), ¬ (medium-priced ∧
expensive);
¬ (short ∧ medium), ¬ (short ∧ long), ¬ (medium ∧ long);

– a constraint expressing that buying a ticket is equivalentto buying a ticket for
one of these 7 destinations, with a given price and a given duration:
ticket ↔ (A ∨ C ∨ HK ∨ I ∨ N ∨ NY ∨ R) ∧ (cheap ∨ medium-priced ∨
expensive) ∧ (short ∨ medium ∨ long);

– lastly, a constraint expressing that it is not possible to find a cheap ticket to Hong
Kong:
HK→ ¬ cheap.

A preference representation languageis a pairR = 〈LR, IndR〉 where

– LR is a language formed from a logical languageLPS and other constructs that
we will detail later.

– IndR is a function fromLR to P , whereP is the set of all preference rela-
tions on2PS mapping each element ofLR to the induced preference relation. In the
case ofcardinal preference representation languages, the preference relation is ob-
tained by the intermediary of a utility function. In this case we denote the function
mapping each element ofLR to the induced utility function byIndUR. We then have
IndR(Φ) =�IndU

R(Φ).

We denote the set of all preference relations representablein LR by SR ⊆ P i.e.
SR = IndR(LR). In the case of cardinal preference representation languages, we
noteSUR = IndUR(LR). We then haveSR = IndR(LR) = {�u, u ∈ IndR(LR)}.

The most basic way of representing preferences in propositional logic consists
of specifying a goal under the form of a propositional formulaG and then defining
uG(w) = 1 if w |= G anduG(w) = 0 if w |= ¬G. The preference relation induced
byG is dichotomous. It is therefore very rough, since it only allows us to distinguish
‘good’ alternatives (those of utility 1) from ‘bad’ alternatives (those of utility 0). For
example,G = (HK ∨ I ∨ R) ∧ ( ¬ HK→ cheap) ∧ (¬expensive) expresses that the
agent wants to go to Hong Kong, Istanbul or Rome, that they do not want to pay for
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an expensive ticket and that they accept paying for a non-cheap ticket only if they go
to Hong Kong. Let us call this languageRdicho; we haveInddicho(G) = uG, and it
is clear thatSdicho is the set of all dichotomous preference relations onΩPS .

This very rough representation technique can be refined by specifying a finite set
GB of propositional formulae and bycountingthe formulae satisfied by a given alter-
native. LetGB = {G1, . . . , Gn} be a set of propositional formulae and let us note

– sat(w,GB) = {i|w |= Gi}; and

– nonsat(w,GB) = {1, . . . , n} \ sat(w,GBi).

ThenuGB(w) = |sat(w,GB)|. We will denote the language defined this way by
Rcard. We can check thatSUcard is the set of all integer-valued utility functions and
Scard is the set of all complete preorders.

Example 7.4. LetGB = {G1, G2, G3, G4, G5, G6} with G1 = ticket,G2 = HK ∨
I ∨ R,G3 = HK ∨ I,G4 = HK,G5 = ( ¬ HK→ cheap) ∧ (HK→ medium-priced) and
G6 = ¬ expensive. This goal base deliberately contains apparent redundancies. For
example,G2, G3 andG4 together express that the agent ideally wants to go to Hong
Kong, that their second choice is Istanbul and their third choice is Rome, since an in-
terpretation containingHK (respectivelyI, R) satisfies all three formulae (respectively
two formulae, one formula) of{G2, G3, G4}. Let w1, . . . , w6 be six interpretations
such that
w1 |= I ∧ medium-priced, w2 |= HK ∧ expensive, w3 |= A ∧ cheap,
w4 |= I ∧ cheap, w5 |= HK ∧ medium-priced, w6 |= ¬ ticket.
We have
uGB(w1) = 4, uGB(w2) = 4, uGB(w3) = 3,
uGB(w4) = 5, uGB(w5) = 6, uGB(w6) = 2.

Instead of defining the preference according to thenumberof goals satisfied, one
may consider thesubsetof goals satisfied. Again, letGB = {G1, ..., Gn}, then
w �GB w′ if and only if sat(w,GB) ⊇ sat(w′, GB). This partial preorder is the
Pareto preorder induced byGB.w is strictly preferred tow′ if satGB(w) strictly con-
tainssatGB(w′), i.e. if w satisfies all the goals satisfied byw′ and at least another
goal. We will denote the language defined this way byRPareto. RPareto allows us to
express all preorders onΩ.

Example 7.5. Let us take the same set of goalsGB as in example 7.4. We have
sat(w1, GB) = {1, 2, 3, 6}, sat(w2, GB) = {1, 2, 3, 4}, sat(w3, GB) = {1, 5, 6},
sat(w4, GB) = {1, 2, 3, 5, 6}, sat(w5, GB) = {1, 2, 3, 4, 5, 6} andsat(w6, GB) =
{5, 6}. We therefore havew5 �GB w4, w4 �GB w1, w4 �GB w2, w4 �GB w3 and
w3 �GB w6. Note thatw1, w2 andw3 are pairwise incomparable, as well asw1 and
w6 andw2 andw6.

In the rest of this chapter we will define more sophisticated languages, of which
the previous three elementary languages will constitute degenerate cases.
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7.4. Weights, priorities and distances

7.4.1. Weights

An immediate generalization ofRcard consists of associating a numerical weight
with each formula ofGB, representing its importance. The utility functionuGB can
typically be defined by aggregating the weights of the formulae that are not satisfied:

R−
F :

∣∣∣∣
GB = {〈G1, α1〉, . . . , 〈Gn, αn〉};
uGB(w) = −F ({αi|w |= ¬Gi})

whereF is a function fromIR+ × IR+ to IR+, non-decreasing, commutative and asso-
ciative (which explainsa posterioriwhy we writeF ({αi|w |= ¬Gi})) (see [LAF 00]
for justification, in particular for associativity).

In this case, sinceuGB(w) ≤ 0, it is more intuitive to speak of adisutility function
(wheredisuGB(w) = −uGB(w)). The goalsGi are callednegative goals, or con-
straints. Some usual choices forF are, for example, the sum (weights are then called
penaltiesand the language is denoted byRpen) or the maximum. Symmetrically, one
can induce a (positive) utility function by aggregating theweights of the goals that are
satisfied:

uGB(w) = F ({αi|w |= Gi}).
The goalsGi are thenpositive goalsand the weights are rewards.

In many practical situations, it is sufficient to consider negative goals only or pos-
itive goals only. This implies that the utility function always has the same sign, which
is acceptable if the utility is considered as a relative rather than an absolute notion (i.e.
only differences of utility matter). However, in the general case, one may need both
kinds of goals. In this case, positive preferences (goals) have to be formally distin-
guished from negative preferences (constraints); this principle is known asbipolarity,
i.e.

R+−
F1,F2,F3

:

∣∣∣∣∣∣∣∣

GB = GB = 〈GB+, GB−〉, with
GB+ = {〈α1, G

+
1 〉, ..., 〈αn, G+

n 〉};
GB− = {〈β1, G

−
1 〉, ..., 〈βp, G−

p 〉}
uGB(w) = F1(F2{αi|w |= G+

i }), F3({βj |w |= ¬G−
j })

whereF2 andF3 are non-decreasing, commutative and associative andF1 is non-
decreasing in its first argument and non-increasing in its second argument.uGB(w) is
therefore a function of the weights of the goals satisfied byw and the weights of the
constraints violated byw.

We will not pursue here the discussion on the choice of satisfactory aggregation
functions (see discussions on bipolarity in [BEN 02a, LAN 02b]). In the following
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example we will stick to the choice:F1(x, y) = x− y, F2 = F3 = +, i.e.uGB(w) =∑{αi|w |= G+
i } −

∑{βj |w |= ¬G−
j }. Note, however, that the framework defined

in this way is nottruly bipolar, since positive and negative goals are handled in an
homogeneous way.

Example 7.6. LetGB = 〈GB+, GB−〉, where

GB+ = { 〈8, A〉, 〈8, C〉, 〈15,HK〉, 〈12,I〉, 〈9, N〉, 〈10,NY〉, 〈10,R〉} and
GB− = { 〈5, cheap〉, 〈5, cheap ∨ medium-priced〉,

〈3, short→ cheap〉, 〈3, ¬ long→ ( cheap ∨ medium-priced) 〉,
〈4, A ∨ N ∨ R→ short〉, 〈4, A ∨ N ∨ R→ short ∨ medium〉,
〈4, I ∨ C→ medium〉, 〈10,NY→ medium〉,
〈10,HK→ medium ∨ long〉, 〈5, HK→ long. 〉

}

Let PS = PV ∪ DV ∪ LV ∪ {ticket}, with PV = { cheap, medium-priced,
expensive}, DV = { short, medium, long} and LV = { A, C, HK, I, N, NY, R}.
The exclusion constraints imply that every interpretationsatisfyingticket can be
rewritten in a simpler way as a triple(d, p, l) whered ∈ DV , p ∈ PV and l ∈
LV . The utility function induced byGB is defined in Table 7.1 for the alternatives
satisfyingticket. As to the unique interpretation ofw∗ not satisfying¬ ticket, we
haveuGB(w∗) = 0.

ch, ch, ch, mp, mp, mp, exp, exp, exp

short medium long short medium long short medium long

A 8 4 0 0 –1 –5 –8 –9 –10
C 4 8 4 –4 3 –1 –12 –5 –6
HK imp. imp. imp. –8 5 10 –16 –3 5
I 8 12 8 0 7 3 –8 –1 –6
N 9 5 1 1 0 –4 –7 –8 –9
NY 0 10 0 –8 5 –5 –16 –3 –10
R 10 6 2 2 1 –3 –6 –7 –8

Table 7.1.Utility function indexed byGB (ch andmp: cheap andmedium-priced)

This requires a few comments. The two negative goals {〈5, cheap〉, 〈5, cheap ∨
medium-priced〉} together express that a penalty of 5 applies when the ticketbought
is not cheap, and that (in addition to this), another penaltyof 5 applies if the ticket
is expensive. This means that, independently of the rest, buying an expensive (re-
spectively, medium-priced) ticket results in a penalty of 10 (respectively, 5). The two
negative goals〈3, short→ cheap〉 and〈3, ¬ long→ ( cheap ∨ medium-priced)
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〉} imply that in addition to the previous penalties, a penaltyapplies if the duration of
the stay is not long enough with respect to the price of the ticket, i.e. a penalty of 3
for a medium-priced ticket if the stay is short or for a expensive ticket if the stay is
of medium length, and a penalty of 6 for an expensive ticket ifthe duration of stay is
short.

We end this section by mentioning two representation languages very close to the
previous ones: GAI-nets (generalized additive independence) and valued constraints.
Thesegraphicallanguages are more general and more specific than the language con-
sisting of weighted formulae. They are more general becausethe variables are not nec-
essarily binary but have more general domains with a finite number of values. They
are more specific because they impose specific syntactical restrictions on the weighted
formulae allowed.

Let V = {x1, . . . , xn} the set of variables, and letDi be the domain ofxi; for
Z ⊆ X , letDZ = ×xi∈ZDi. The starting point of GAI-nets is the notion of gener-
alized additive independence [BAC 95, FIS 70]. LetZ1, . . . , Zk be subsets ofV (not
necessarily disjoints) such thatV =

⋃
i Zi. Let u : DV → IR be a utility function.

Z1, . . . , Zk satisfies the property of generalized additive independence (foru), which
we will denote byGAIu(Z1, . . . , Zk), if and only if there existk local utility functions
ui : DZi

→ IR such that

u(w) =

k∑

i=1

ui(w
↓Zi )

(see Chapter 15). The interest of such a decomposition is clear: a utility functionu
for whichGAIu(Z1, . . . , Zk) holds can be represented byk local utility functions;
the size of the representation ofu is therefore only

∑k
i=1 Πj,xj∈Zk

|Dxj
| instead of

Πn
j=1|Dxj

|.

It has to be noted that such a representation under the form oflocal utilites can be
seen as a valued constraint satisfaction problem (Chapter 6) which immediately gives
optimization algorithms allowing us to find an alternative of maximal utility. Lastly,
when variables are binary, the representation of a utility function under the form ofk
local utility functions can be seen as a representation by weighted formulae, where the
formulae must beZk-cubes. Therefore, GAI-nets on binary variables can be obtained
as a sub-language of weighted goals by the latter syntactical restriction.

7.4.1.1.Bibliographical notes

Associating numerical weights to propositional formulae is natural and appears in
many places in the literature. We mention here a few works concerning the represen-
tation of utility functions in logical languages with weights.
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The principle of associating additive penalties to propositional formulae appears
in [DUP 94, HAD 92, PIN 91]. See [CHE 06, UCK 07, UCK 08] for further devel-
opments on the expressivity, succinctness and complexity of weighted goals. Using
weighted goals with theminimumor maximumaggregation function has been con-
sidered in a few papers on possibilistic logic for preference representation [BEN 01,
DUB 94, LAN 91, SAB 98]. In particular, Benferhatet al. [BEN 01] argue that there
are three ways of representing preferences in possibilistic logic, depending on whether
the weighted formulae correspond to (i) ‘level cuts’ of a goal expressed by a fuzzy set
(for example ‘I would like to arrive rather early’), (ii) non-fuzzy goals with different
piriority levels and (iii) sets of solutions more or less acceptable (for example ‘ifx
satisfiesϕ ∧ ψ thenx is totally satisfactory, and ifϕ is not satisfied,x is nevertheless
rather satisfactory if it satisfiesξ’).

The notion of bipolar preference has been developed in many recent works [GRA 00,
GRE 02, LAB 03, TSO 02b]; see also [BEN 02a, BEN 02b, LAN 02b, TOR 01] for
bipolar preference representation languages based on propositional logic.

GAI-nets were introduced by Bacchus and Grove [BAC 95]; preference elicitation
in GAI-nets is addressed in [BRA 05, BRA 07, GON 04]. UCP-nets[BOU 01] com-
bine some aspects of GAI-nets and CP-nets (section 7.5.1.4): a UCP-net can be seen
as a GAI-net whose independence structure verifies some specific properties that we
will not mention here. Expected utility networks [MUR 99] allow for a joint modu-
lar representation of utility functions (like GAI-nets) and probabilities of states of the
world (like Bayesian networks). GAI-nets are technically close both to valued con-
straints [BIS 99] (see also Chapter 6) and to valuation networks [SHE 89]. A logic of
soft constraints is constructed in [WIL 06].

7.4.2. Priorities

The ordinal counterpart of logical languages with weights is the family oflogical
languages with priorities. A stratified, or prioritized preference baseGB is a tuple
〈GB1, ..., GBn〉, whereGBi is the set of goals ofGB of priority i. (Strictly speaking,
GBi should be defined as amultisetrather than a set; the same formula may appear
several times in one of theGBi.) By convention, we consider thatGB1 andGBn
contain the formulae of greatest and least priority, respectively. We then have to define
a preorder relation onΩPS from GB, i.e. induce a preorder on alternatives from a
preorder on formulae. We now give a summary of the most usual choices.

7.4.2.1.Best-out

This criterion consists of comparing the alternatives according to the priority of the
most important non-satisfied goals. Letρ(w,GB) = min{i, nonsat(w,GBi) 6= ∅}.
Rbest−out :

w ≥best−outGB w′ifρ(w,GBi) ≥ ρ(w′, GBi).
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Note thatSbest−out is the set of all complete preference relations. For a simple
transformation of priorities into weights, this representation language suffers from
a so-called ‘drowning effect’: the presence of a non-satisfied formula of priorityi
inhibits the effect of all formulae of priorityj ≥ i. The following two refinements of
the best-out criterion avoid this drowning effect.

7.4.2.2.Discrimin

This criterion consists of comparing two alternatives according to the more impor-
tant goals satisfied by one alternative and not the other.

Rdiscrimin:

– w >discriminGB w′ if ∃i ≤ n such that

(
sat(w,GBi) ⊃ sat(w′, GBi)
∀j ≤ i, sat(w,GBj) = sat(w′, GBj)

)
;

– w ∼discriminGB w′ if ∀i ≤ n, sat(w,GBi) = sat(w′, GBi);

– w ≥discriminGB w′ if w >discriminGB w′ orw ∼discriminGB w′.

This preference relation is, in general, not complete. Notethat if GB contains
a single priority level, i.e.GB = GB1, then≥discriminGB coincides with≥ParetoGB ,
thereforeSdiscrimin is the set of all preference relations.

Example 7.7. Take the set of goals of example 7.4 with the following stratification:
GB = {GB1, GB2, GB3} withGB1 = { ϕ1 = ticket,ϕ2 = ¬ expensive}; GB2 =
{(ϕ3 = ¬ HK→ cheap) ∧ (HK→ medium-priced)} andGB3 = { ϕ4 = HK ∨ I ∨ R,
ϕ5 = HK ∨ I,ϕ6 = HK}. Let us neglect the duration of stay, and let the alternativesw1=
(I, medium-priced);w2 = (HK, expensive);w3 = (A, cheap); w4 = (I, cheap); w5

= (HK, medium-priced) andw6 = ¬ ticket. Table 7.2 shows the formulae ofGB
satisfied by each of these six alternatives.

w1 w2 w3 w4 w5 w6

sat(., GB1) 1, 2 1 1, 2 1, 2 1, 2 2
sat(., GB2) ∅ 3 3 3 3 3
sat(., GB3) 4, 5 4, 5, 6 ∅ 4, 5 4, 5, 6 ∅

Table 7.2.Formulae satisfied by alternatives

We havew5 >
discrimin
GB w4 >

discrimin
GB w3 >

discrimin
GB w1, w1 >

discrimin
GB w2 and

w1 >
discrimin
GB w6; w2 andw6 are incomparable for>discriminGB .
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7.4.2.3.Leximin

Rleximin consists of comparing two alternatives by identifying firstthe most im-
portant priority level for which the two alternatives do notsatisfy the same number of
goals, and then to prefer the one that satisfies more goals at this level. We denote the
cardinality ofsat(w,GBi) by #sat(w,GBi) , that is, the number of goals of leveli
satisfied byw.

Rleximin:

– w >leximinGB w′ if ∃i ≤ n such that

(
#sat(w,GBi) > #sat(w′, GBi)
∀j < i, #sat(w,GBj) = #sat(w′, GBj)

)
;

– w ∼leximinGB w′ if∀i ≤ n,#sat(w,GBi) = #sat(w′, GBi);

– w ≥leximinGB w′ if w >leximinGB w′ orw ∼leximinGB w′.

An equivalent expression of this criterion consists of defining the vector~sGB(w) =
〈#satqGB(w), . . . ,#sat1GB(w)〉 and comparing~sGB(w) and~sGB(w′) according to
the lexicographical order.≥leximinGB is a complete preorder. The following implications
hold:

– w >bestoutGB w′ ⇒ w >discriminGB w′ ⇒ w >leximinGB w′;

– w ≥discriminGB w′ ⇒ w ≥leximinGB w′ ⇒ w ≥bestoutGB w′.

Consider example 7.7 once more: now we havew2 ∼leximinGB w6 (the rest being
unchanged).

Note that ifGB contains a single priority level then≥leximinGB coincides with
≥cardGB ; Sleximin is therefore the set of all complete preference relations.

7.4.2.4.Bibliographical notes

Thediscrimin criterion was initially proposed by [BEH 77] and reused in differ-
ent contexts in many works [BEN 93, BRE 89, CAY 92, DUB 92, FAR 93, GEF 92,
JON 08, LIU 08, NEB 91]. Theleximincriterion has been studied for many years in
the literature of social choice and decision theory [e.g. MOU 88]. Its use with the
aim of ranking interpretations given a priority order on formulae appears in [BEN 93,
DUB 92, FAR 93, LEH 95]. See also [DUB 97, DUB 01].

[BRE 02] proposes a new logical connective (the no-commutative disjunction⊗,
whereϕ ⊗ ψ reads ‘I desire thatϕ be satisfied and, if it is not, then I desire thatψ
be satisfied’). This allows us to specify priorities betweenformulae in a more implicit
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way; this representation language is independent of the criterion chosen for generating
the preference relation on alternatives. [BRE 04] gives a more expressive representa-
tion language allowing for the coexistence in a same preference base of several criteria
for interpreting priorities. While the previous criteria do not allow for compensations
between different strata, [BEN 98] allow for including commensurability constraints
between combinaisons of goals (e.g. ‘I am indifferent between the simultaneous satis-
faction of goals 2, 3 and 5, and the simultaneous satisfaction 1 and 7’).

[DEL 03] generalize prioritized goals by introducing temporal preferences. [BIE 05]
use prioritized goals in in the context of planning.

7.4.3. Distances

A pseudo-distanceon propositional interpretations is a functiond :ΩPS×ΩPS →
IN satisfying
Sep ∀w,w′, d(w,w′) = 0⇔ w = w′ and

Sym ∀w,w′, d(w,w′) = d(w′, w).
If ϕ is a formula ofLPS andw,w′ ∈ ΩPS thend(w,ϕ) = minw′|=ϕ d(w,w

′) and
d(ϕ, ψ) = minw|=ϕ,w′|=ψ d(w,w

′).

A well-known example is theHamming distancedH , defined as the number of
propositional symbols taking a different value inw andw′, i.e.

dH(w,w′) = |Diff(w,w′)|.
For instance, ifw = (¬a, b,¬c, d) andw′ = (¬a,¬b, c, d), thend(w,w′) = 2. The
binary distancedδ is defined by

dδ(w,w
′) =

{
0 if w = w′

1 if w 6= w′.

Representing preferences using a pseudo-distance is basedon the intuitive idea
that when an agent expresses a goalG then, ideally,w must satisfyG. If this is not the
case, then the ‘further’ the interpretationw fromG, the less satisfactory is the solution.
Formally, a pair〈{G}, d〉, whereG is a propositional formula andd a pseudo-distance,
induces the utility function

uGB(w) = −d(w,G) = − min
w′|=G

d(w,w′).

This principle is then generalized by considering a set of goals. The pseudo-distances
to each of these goals is aggregated by an aggregation functionF , non-decreasing in
each of its arguments (as in section 7.4.1):

Rd,F

∣∣∣∣
GB = 〈{G1, ..., Gn}, d〉;
uGB(w) = F (d(w,G1), ..., d(w,Gn)).
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Example 7.8. Consider the following partition of the set of variables:PS = P ∪
DV ∪ LV ∪ {ticket} with PV = {cheap, medium-priced, expensive}, DV =
{short, medium, long} andLV = {A, C, HK, I, N, NY, R}. Now we define the distance
d by

d(w,w′) = dP (w↓PV , w↓PV ) + dD(w↓DV , w↓DV ) + dL(w↓LV , w↓LV )

+ db(w
↓{ticket}, w↓{ticket})

wheredP (respectively,dD, dL, db) is a ‘local’ distance onΩPV (respectively, on
ΩDV , ΩLV andΩ{ticket}), defined as in Tables 7.3–7.6.

dPV cheap mp exp

cheap 0
mp 10 0
exp 10 5 0

Table 7.3.Definition ofdPV

dLV short medium long

short 0
medium 6 0
long 6 3 0

Table 7.4.Definition ofdLV

db ticket ¬ ticket

ticket 0
¬ ticket 12 0

Table 7.5.Definition ofdb

Let GB = {G1, . . . , G8} with G1 = ticket→ cheap, G2 = ticket→ (HK ∨
NY ∨ I ∨ R),G3 = short→ cheap,G4 = ¬ long→ cheap ∨ medium-priced,G5

= A ∨ N ∨ R→ short,G6 = I ∨ C ∨ NY→ medium,G7 = HK→ long,G8 = ticket.
Consider the three alternativesw1 = (R, medium, medium-priced); w2 = (N, short,
cheap); w3 = ( ¬ ticket). Table 7.7 lists the distances ofw1, w2, w3 to theGi’s.

For example,d(w1, cheap) = d(w1, (R, medium, cheap)) = 5, i.e. the closest
interpretation tow1 among those satisfyingcheap is (R, medium, cheap).
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dDV A C HK I N NY R

A 0
C 10 0
HK 10 10 0
I 10 5 10 0
N 5 10 10 6 0
NY 6 10 6 10 10 0
R 4 10 10 6 1 10 0

Table 7.6.Definition ofdDV

G1 G2 G3 G4 G5 G6 G7 G8 u
w1 5 0 0 0 3 0 0 0 –5
w2 0 1 0 0 0 0 0 0 –1
w3 0 0 0 0 0 0 0 12–12

Table 7.7.Utility function induced byGB

7.4.3.1.Bibliographical notes

The idea of using distances between propositional interpretations in knowledge
representation appears in belief revision and update, notably in [KAT 91, KAT 92]
and in belief merging, notably in [KON 98, KON 02, REV 97]. Theidea also appears
in later work, more specifially dedicated to preferences [BEN 02b, LAF 00, LAF 01].
Two closely related notions are (1) ‘supermodels’ [GIN 98],defined as interpretations
that not only satisfy a given formula but that still satisfy it when they are subject to
small perturbations; and (2) similarity-based reasoning as in [DUB 95a].

7.5. Preference logics: conditionals andceteris paribuspreferences

Section 7.4 dealt with compact representation of ordinal, qualitative or numeri-
cal preferences. The formalisms presented, even if they made use of logic, were not
preference logicsin the meaning we give in this section. A preference logic consists
of a semantic and/or a formal system meant to interpret dyadic preferences between
propositional formulae, or monadic ‘absolute’ preferences.

The starting point of this section is that individuals oftenexpress relative or ab-
solute preferences that refer not to isolated alternatives, but to logical formulae rep-
resentingsets of alternativeswhich are generally not singletons, nor even disjoints
subsets. Of course, the preferences thus expressed betweenformulae must be linked
in some way to the preference structure of the agent on the setΩPS of alternatives.
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The central issue in preference logics is the choice of alifting operator inducing
preferences over formulae (or sets of alternatives) from preferences over interpreta-
tions (or alternatives). This lifting problem has been considered formally in several
places, especially [BAR 04, HAL 97]. It is, to some extent, the reverse process of the
induction of a preference relation on interpretations froma priority relation on for-
mulae discussed in section 7.4.2. Hansson [HAN 01b, chapter5] discusses these two
opposed approaches: theholisticapproach considers preferences between alternatives
as primary and preferences between formulae as derived fromthem, whereas theag-
gregativeapproach considers preferences between formulae as primary.

In section 7.5.1, we present a family of preference logics built on the ceteris
paribusprinciple for interpreting preferences expressed by an individual between log-
ical formulae. This section owes a lot to Hansson’s book [HAN01b]. In section 7.5.2
we present another family of preference logics, also based on conditional logics.
Lastly, in section 7.5.3 we briefly discuss the interest of some non-classical (multi-
valued or paraconsistent) logics, not for compact representation of preferences, but
for modeling incomplete and/or contradictory preferences.

7.5.1. Ceteris paribuspreferences

When an agent expresses in natural language a preference such as ‘I prefer a flat
on the sixth floor to a flat on the ground floor’, they surely do not want to say that they
preferanyflat on the sixth floor toanyflat on the ground floor, independently of their
other properties. This preference statement does not exclude that the agent prefers a
vast and luxurious flat on the ground floor to a studio on the sixth floor. The principle
at work in the interpretation of a such a preference statement is that the alternatives
must be comparedall other things being equal(ceteris paribus) or, more generally, all
irrelevant properties being equal.

We now proceed in three steps: first, we will see which meaningto give to com-
parisons between logical formulae that are not contradictory; we will then state the
principle ofceteris paribuscomparisons and its generalization based on ‘maximally
similar’ pairs of alternatives; lastly, we will briefly evoke a few languages that are less
expressive but more efficient from a computational point of view, especially CP-nets.

7.5.1.1.Preferences between non-contradictory formulae

Interpreting the statement ‘ϕ is preferred toψ’, written formallyϕ . ψ, is unprob-
lematic whenϕ andψ are complete formulae (corresponding each to a unique alter-
native). Such a statement corresponds directly to its semantical counterpartw � w′,
whereMod(ϕ) = {w} andMod(ψ) = {w′}. In a similar way, the indifference be-
tweenϕ andψ, written formally asϕ ./ ψ, corresponds tow ∼ w′. Defining a logic
of preferences where preference and indifference do not bear on complete formulae
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comes down to translating in logical terms the desirable properties of preference re-
lations (transitivity, acyclicity of strict preference, etc.). We do not go deeper into the
details of these constructions; see [HAN 01a, section 2].

Now, when expressing relative or absolute preferences, individuals often refer not
only to isolated alternatives, but also to logical formulaerepresentantsets of alter-
nativesthat are generally not singletons, nor even disjoint subsets. There is nothing
exceptional in expressing a statement such as ‘I prefer icecream to cake’, whereas
it might be inconceivable (in this context) to eat both an icecream and a piece of
cake. This statement actually refers to a comparison between icecream-and-no-cake
and cake-and-no-icecream. This convention, observed by Hallden [HAL 57] and von
Wright [WRI 63], is written formally:ϕ.ψ is translated byϕ∧¬ψ > ¬ϕ∧ψ, where
> has to be defined (the subject of sction 7.5.1.2).

However, this principle fails whenever one of these propositions is a logical con-
sequence of the other (since it would then consist of comparing a formula to a logical
contradiction). Some natural statements fall into this limit case: considerϕ = ‘I work
hard and earn a lot of money’ andψ = ‘I work hard’ [HAN 01b]. In order to take
this limit case into account, Hansson [HAN 89] proposes a generalization of the latter
principle: defineϕ\ψ (‘ϕ and if possible notψ’) as being equal toϕ if ϕ ∧ ¬ψ is
inconsistent, and toϕ∧¬ψ otherwise. The informal statement ‘ϕ is preferred toψ’ is
then traslated intoϕ\ψ > ψ\ϕ.

Hansson [HAN 01b] proposes an even more general translationobtained from the
previous one by replacingϕ\ψ byϕ\Σψ, whereΣ is a logical theory defined as being
equal toϕ if ϕ ∧ ¬ψ ∧ Σ is inconsistent, and toϕ ∧ ¬ψ otherwise.

In a similar way, the indifference betweenϕ andψ is translated byϕ\ψ ≈ ψ\ϕ,
where≈ remains to be defined. We will say that the preferences of the formϕ . ψ
andϕ ./ ψ expressed between formulae that are non-necessarily exclusive are under
generalform, and that their translations into preferences of the formα > β or α ≈ β
(between exclusive formulae) are underexclusiveform.

We can moreover introducecontextsinto conditional preferences: intuitively, if
γ is a propositional formula,γ : ϕ . ψ (respectively,γ : ϕ ./ ψ) means that the
preference ofϕ to ψ (respectively, the indifference betweenϕ andψ) applies only
whenγ is true. This introduction of contexts is rather unproblematic, since it suffices
to rewriteγ : ϕ . ψ into γ ∧ ϕ . γ ∧ ψ andγ : ϕ ./ ψ into γ ∧ ϕ ./ γ ∧ ψ.

7.5.1.2. Ceteris paribuscomparisons and their generalizations

The previous translations do not say how the preferences of the formϕ > ψ and
ϕ ≈ ψ are related to the preference relation between alternatives. A particularly in-
tuitive principle is theceteris paribusinterpretation of preference statements. This
consists of interpreting preferences between two logical formulaeϕ andψ such as



340 Decision Making

‘everything else being equal, I prefer an interpretation satisfying ϕ ∧ ¬ψ to an inter-
pretation satisfyingψ ∧ ¬ϕ’ (and similarly for indifference).

These principles are based on the works of von Wright [WRI 63]. Hansson sug-
gests rewriting them by taking the previous limit case into account, i.e. by replacing
ϕ∧¬ψ byϕ\ψ. A preference relation� therefore satisfiesϕ.ψ if and only ifw � w′

holds for every pair(w,w′) of alternatives such that

1) w |= ϕ\ψ;

2) w′ |= ψ\ϕ; and

3) w andw′ coincide on all other issues (everything else being equal).

and similarly for./, replacing� by∼.

The problem that arises is then how to interpret formally ‘everything else being
equal’ (i.e.ceteris paribus). Whenϕ andψ are opposed literals, i.e.ϕ = p andψ = ¬p
or vice versa, this is unproblematic:w andw′ are identicalceteris paribusif they give
the same truth value to all propositional symbols other thanp. Whenϕ andψ are
complex formulae, the interpretation ofϕ > ψ andϕ ≈ ψ is much more involved.

Hansson proposes a very general interpretation ofϕ > ψ that goes much beyond
theceteris paribusprinciple and is based on the notion ofrepresentation function. Let
ϕ andψ be two consistent propositional formulae, thenf(ϕ, ψ) is a non-empty subset
of Mod(ϕ) ×Mod(ψ). Intuitively, f(ϕ, ψ) is the set of pairs of alternatives that will
be compared when interpreting the formulaϕ > ψ or the formulaϕ ≈ ψ. Formally,
let � be a preference relation between alternatives andf a representation function.
Then� satisfiesϕ >f ψ if, for every pair of alternatives〈w,w′〉 ∈ f(ϕ, ψ), w � w′

holds.

A few concrete propositions for representation functions are as follows. Let us
first introduce the notion of equivalence of models modulo a subset of variables: for
X ⊆ PS, w andw′ are said to beX-equivalent, denoted byw =X w′, if w andw′

give the same truth value to all the propositional symbols that are not inX .

We can choosef∀(ϕ, ψ) = Mod(ϕ)×Mod(ψ), which leads to the interpretation
of ϕ > ψ as ‘every model ofϕ is preferred to every model ofψ’. This is much too
weak a definition to be practically interesting [WRI 63].

Von Wright [WRI 72] proposes a first extension of theceteris paribusprinciple to
formulae that are not opposed literals, making the following choice. LetV ar(ϕ) be
the set of propositional symbols appearing inϕ, and definefV by 〈w,w′〉 ∈ fV (ϕ, ψ)
if and only if w |= ϕ, w′ |= ψ andw coincides withw′ on all the symbols outside
V ar(ϕ) ∪ V ar(ψ).
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[DOY 91a, TAN 94a, TAN 94b] propose similar definitions but consider, instead
of V ar(ϕ), the supportS(ϕ) defined as the set of propositional symbols on which
ϕ depends. Formally,ϕ depends onx ∈ PS if there exists no formulaϕ′ logically
equivalent toϕ in which the symbolx does not appear [LAN 98]. Of course, we have
S(ϕ) ⊆ V ar(ϕ).

Then let (1)〈w,w′〉 ∈ fS(ϕ, ψ) if and only ifw |= ϕ, w′ |= ψ andw =S(ϕ)∪S(ψ)

w′ (cf. [TAN 94b], which considers only the case whereψ = ¬ϕ), and (2)〈w,w′〉 ∈
fDSW (ϕ, ψ) if w |= ϕ,w′ |= ψ and there exists an alternativew∗ such thatw∗ =S(ϕ)

w′ andw∗ =S(ψ) w
′ [DOY 91a]. Whenψ = ¬ϕ, the two definitions are equivalent

(sinceS(ϕ) = S(ψ)) and, informally, reduce to:w andw′ give the same truth value
to all propositional symbols that are irrelevant toϕ.

In presence of a contextγ, an issue is whether the previously defined functions can
allow the variables associated with the context to vary. Forinstance, when express-
ing a ∨ b : p > ¬p in the CP-net formalism (see following section), one compares
alternatives giving the same value to all variables exceptp; abp and ābp̄ remain in-
comparable. In order to give more expressivity to the representation language, some
approaches [COS 04, LAN 02a, WIL 04b] suggest adding a set of variablesX ⊆ PS
which are allowed to vary to a contextual preferenceγ : ϕ > ψ. Thus,γ : ϕ > ψ[X ]
inducesw � w′ if and only ifw |= ϕ, w′ |= ψ andw =X̄ w′. Of course, it is natural
to reqire thatS(ϕ) ∪ S(ψ) ⊆ X .

Hansson [HAN 01b] proposes using a representation functioninduced by a com-
parative similarity relation≤T , where〈w1, w2〉 >T 〈w3, w4〉means thatw1 is closer
tow2 thanw3 is tow4. Given such a relation (defined outside the logical language), the
representation functionfT is defined byfT (ϕ, ψ) = min(≤T ,Mod(ϕ) ×Mod(ψ)).
Therefore�fT

consists of comparing an alternative satisfyingϕ and an alternative sat-
isfyingψ, as soon as these two alternatives are as similar as possibleamong the pairs
of alternatives such that one satisfiesϕ and the otherψ. The comparison principle
induced by this representation function goes much beyond the basicceteris paribus
principle.

7.5.1.3.Preference relation induced byceteris paribuspreferences

It now remains to make explicit the preference relation�GB induced by a set of
preference statements and a representation functionf .

Let GB = {ϕ1 > ψ1, . . . , ϕp > ψp, ϕp+1 ∼ ψp+1, . . . , ϕq ∼ ψq} be a set of
preference statements under exclusive form, andf a representation function. Define
the satisfaction of a preference statement under exclusiveform by a preference relation
� as follows:

1)� satisfiesϕi > ψi if we havew � w′ for every〈w,w′〉 ∈ f(ϕ, ψ); and

2)� satisfiesϕi ≈ ψi if we havew ∼ w′ for every〈w,w′〉 ∈ f(ϕ, ψ).



342 Decision Making

Lastly,� satisfiesGB if and only if� satisfies each of the preference statements
of GB. GB is said to beconsistentif there exists a preference relation� satisfying
GB. The inconsistency of a set of preference items under exclusive form is caused
by the presence of a preference cycle containing at least a strict preference such as
{a > ¬a,¬a > a} or {a > ¬a,¬a ≈ a}.

Finally, whenGB is consistent, the preference relation�GB induced byGB is
the intersection of all the preference relations satisfyingGB.

On can show (see [BOU 04a] in the particular case of CP-nets) that�GB can
be characterized equivalently in the following constructive way. Define first the local
preference relation�i associated with the preference statementGi by:

– if Gi is of the formϕi > ψi, thenw �i w′ if and only if 〈w,w′〉 ∈ f(ϕ, ψ); and

– if Gi is of the formϕi ≈ ψi, thenw �i w′ if and only if 〈w,w′〉 ∈ f(ϕ, ψ) or
〈w′, w〉 ∈ f(ϕ, ψ).

We then have the following result: ifGB is consistent, then�GB is the reflexive
and transitive closure of∪{�i, i = 1 . . . , q}. This characterization allows us to deter-
mine if w � w′ by searching for a finite sequencew0 = w,w1, . . . , wr−1, wr = w′

of alternatives such that for everyj ∈ {0, . . . , r − 1} there exists ani ∈ {1, . . . , q}
such thatwj �i wj+1. The previous result allows us to say thatw � w′ if and only if
such a sequence exists, and thatw is a non-dominated alternative for�G if and only
if there exists no alternativew′ nor anyi ∈ {1, . . . , q} such thatw′ �i w.

Example 7.9. LetGB be the following set of contextual preference statements:

expensive ∨ HK : long . medium . short
cheap ∧ ¬ HK : short . medium . long

medium-priced∧ ¬ HK : short ./ medium ./ long
> : cheap . medium-priced . expensive
> : HK ∧ medium-priced . ¬ HK ∧ cheap

> : HK ∧ expensive . ¬ HK ∧ medium-priced

We can check that the induced preference relation (HK, medium-priced,long) is
preferred to (¬ HK, expensive,short). Indeed, we have the following chain of strict
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preferences:
(HK,medium-priced,long)

� (HK,medium-priced,medium) (application ofexpensive∨ HK: long . medium)
� (HK,expensive,medium) (application of >: medium-priced .

expensive)
� ( ¬ HK,medium-priced,medium) (application of>: HK ∧ expensive . ¬ HK ∧

medium-priced)
� ( ¬ HK,expensive,medium) (application of >: medium-priced .

expensive)
� ( ¬ HK,expensive,short) (application of expensive ∨ HK: medium .

short)

We also have (HK, medium-priced,medium)� ( ¬ HK, cheap,long) (by applica-
tion of>: HK ∧ medium-priced . ¬ HK ∧ cheap and ofcheap ∧ ¬ HK: medium .
long). On the other hand, it is not possible to derive a preference(nor an indifference)
between the alternatives (HK, medium-priced, medium) and (¬ HK, cheap, short),
which are therefore incomparable.

7.5.1.4.CP-nets

An important and recent stream of work in artificial intelligence focuses on a
graphical preference representation language which is also based onceteris paribus
comparisons:CP-nets. This language is both more general and less general than the
language ofceteris paribuspreferences, for similar reasons to those evoked for GAI-
nets in section 7.4.1. It is more general because variables are not necessarily binary,
and less general because the preference statements that canbe expressed must comply
with a fixed restricted syntax. For the sake of brevity, assume that all variables are
binary. If X andY are two disjoint subsets ofPS, andx ∈ ΩX , y ∈ ΩY are two
‘partial alternatives’ giving a value to the variables ofX andY respectively, then the
partial alternative(x, y) is the concatenation ofx andy, giving to each variable ofX
(respectively,Y ) the value given byx (respectively,y).

We now introduce the notion ofpreferential independence. Let {X,Y, Z} be a
partition of the set of variablesPS and� a preference relation.X is preferentially
independent ofY givenZ (for the preference relation�) if and only if for allx1, x2 ∈
2X , y1, y2 ∈ 2Y andz ∈ DZ ,

(x1, y1, z) � (x2, y1, z) iff (x1, y2, z) � (x2, y2, z).

Unlike probabilistic independence, preferential independence is an oriented no-
tion: it may be the case thatX is independent ofY givenZ without Y being inde-
pendent ofX givenZ. (If X is preferentially independent of̄X andX̄ preferentially
independent ofX , thenX is said to beseparable.)
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A CP-net [BOU 04a, BOU 99] onPS is a pair〈G, C〉whereG is an oriented graph
whose vertices arePS, andC = {C(x)|x ∈ PS} is a set ofconditional preference
tables. LetU be the set of parents ofx in G.C(x) associates with eachu ∈ ΩU a strict
preference onx, i.e.x � x̄ or x̄ � x.

The edges ofG express preferential independencies: ifPar(x) denotes the set of
parents ofx in G, then each variablex is independent of{x} ∪ Par(x) givenPar(x).
The conditional preferences tables contain elementary contextual preferences inter-
preted with theceteris paribusprinciple.

Example 7.10.PS = {x, y, z}; G =
y

↗ ↓
x → z

.

The conditional preference tables are:

x � x̄ x : y � ȳ
x̄ : ȳ � y

x ∨ y : z � z̄
¬(x ∨ y) : z̄ � z

The preference relation induced by this CP-net is

xyz
↙ ↘

xȳz xyz̄
↘ ↙
xȳz̄
↓
x̄ȳz̄
↓
x̄ȳz
↓
x̄yz
↓
x̄yz̄

Many works on CP-nets make the additional assumption that the graphG isacyclic.
Under this assumption, the set ofceteris paribuspreference statements expressed by
the tables of the CP-net is consistent. The associated requests, consisting of comparing
two alternatives or of searching for a non-dominated alternative, are computationally
reasonable [BOU 04b].

When variables are binary, the languageRcpnets of CP-nets can therefore be seen
as a restriction of the language of contextualceteris paribuspreferences, where the
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preference statementsγ : ϕ > ψ are such that (a)ϕ andψ are complementary literals
and (b) for every variablex,

∨{γi | GB containsγ : x > ¬x or γ : ¬x > x} is a
tautology.

Note that CP-nets cannot represent all preference relations: the computational gain
comes with a loss of expressivity. Several extensions of CP-nets have been proposed
in order to enhance their expressivity: [DOM 02c, WIL 04b, WIL 04a] allow for ex-
pressing relative importance relations between variables.

7.5.1.5.Comments and bibliographical notes

The principle consisting of interpreting preferences along with theceteris paribus
principle is due to von Wright [WRI 63] and has been considerably revisited by Hans-
son [HAN 89, HAN 01b] who, noticeably, has proposed the generalization based on
representation functions and who has studied in detail the logical properties. [ROY 09]
give an axiomatization of von Wright’sceteris paribuspreference logic. Theceteris
paribusprinciple was independently rediscovered by researchers from the AI commu-
nity [DOY 91a, DOY 91b].

[TAN 94a, TAN 94b] add to theseceteris paribuspreferences somenormalitycon-
siderations between worlds. [MCG 02] show how to compute utility functions that are
compatible with the (partial) order induced by a set ofceteris paribuspreference state-
ments.

The work on CP-nets is concerned with more practical issues such as preference
elicitation and computation of optimal outcomes. For an extensive presentation of CP-
nets see [BOU 04a, BOU 04b] as well as [DOM 02a]. See also [BRA 04, DOM 02b]
for the problem of the consistency checking in CP-nets and [GOL 05] for the complex-
ity of dominance and of consistency in CP-nets. [DUB 05] explore the links between
CP-nets and possibilistic logic, and [DOM 03] the link between CP-nets and valued
constraint satisfaction problems.

7.5.2. Defeasible preferences and conditional preference logics

We now give a summary of another stream of logical formalism logics for rep-
resentating conditional anddefeasiblepreferences, based onconditional logics. Con-
sider the following statements:

1) John desires to go to Brittany this week-end.

2) If there is a storm warning on Brittany next weekend, then John desires to stay
in Paris.

Statement (1) corresponds to adefeasibleor adefaultpreference; (1) applies not
only if we know that there is no risk of storm but more generally if there is no specific
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information about the weather forecast. This makes the assumption that the state of
the world isnormal (no storm warning), given that a later announcement of a storm
warning would invalidate statement (1) and give priority tostatement (2), which is
more specific. There is therefore no real inconsistency between (1) and (2), which
should be read the following way: ‘normally, John desires togo to Brittany, except in
the exceptional states where there is a storm notification’.

Reasoning on such preferences isnon-monotonic, in the sense that the application
of a preference statement sometimes has to be revised (or invalidated) after a more
specific piece of information is learned. (This kind of reasoning has been studied a
lot in AI under the name ‘non-monotonic reasoning’. However, it is more concerned
with factual beliefs and generic rules with exceptions thanwith preferences in the
decision-theoretic sense.)

What is the interest in this principle consisting of implicitly assuming that the state
of the world is normal, allowing us to draw defeasible conclusions about the agent’s
preferences? First, it fits the intuition and the expressionof preferences in natural
language, where normality assumptions about the state of the world are often made
implicitly. Then, it allows for a succinct and modular description of preferences: suc-
cinct because avoiding specifying explicitly all the exceptional conditions in which a
preference statement does not apply leads to an economy of representation; modular
because a set of such preference statements can be completedat any time, without gen-
erating an inconsistency. Returning the statements above,to the preference statements
(1) and (2) we add the following statement.

3) If, on the platform of the Montparnasse station, John instantly falls in love with
someone who is leaving for Brittany, then he desires to go to Brittany whatever the
meteorological conditions.

This statement will then have priority over statement (2) inthe ‘doubly excep-
tional circumstance’storm_notification ∧ in_love, statement (2) having pri-
ority over statement (1) in the simply exceptional circumstancestorm_warning∧ ¬
in_love.

A neat way of formalizing these contextual preferences consists of usingcondi-
tional logics. The idea of using conditionals for representing defeasible preferences
comes back to [BOU 94]. The language of propositional conditional logics contains,
in addition to the language of classical propositional logic, adyadic modalityI(.|.). If
ϕ andψ are formulae of the language, so isI(ψ|ϕ). (More common notation in the
literature on conditional logics isϕ⇒ ψ instead ofI(ψ|ϕ).) This inductive definition
allows us to express nested conditionals such asI(a|I(b|c)). However, as long as we
are interested only in preference representation we do not need these formulae with
nested modalities, therefore we will consider only formulae of depth no more than 1.
A formula of depth 0 is a classical propositional formula; ifϕ andψ are of depth 0
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thenI(ψ|ϕ) is of depth 1. Finally, ifϕ andψ are of depth 1 then¬φ, ϕ∧ψ andϕ∨ψ
are of depth 1. Let us callLC1

PS the set of all formulae of depth lower than or equal
to 1 built on the set of propositional symbolsPS. I(ψ) is short forI(ψ|>).

The semantics of the conditional logicCO [BOU 94] interprets formulae ofLC1
PS

in terms of complete preference relations: a model ofCO is a pairM = 〈W,≥〉
whereW ⊆ 2PS is a set of possible worlds and≥ is a complete preorderon W .
This identification of a world with its valuation is possiblebecause of the restriction
to formulae of depth lower than or equal to 1.

A modelM = 〈W,≥〉 of CO satisfies a conditional desireI(ϕ|ψ) if and only if

Max(≥,Mod(ψ)) ⊆Mod(ϕ).

Thus,I(ϕ|ψ) (‘ideally ϕ if ψ’) holds if, in the preferred worlds whereψ is true,ϕ is
true.

At first glance, it may appear paradoxical to favor an optimistic interpretation of
conditional desires; most approaches in qualitative decision making argue towards
using a pessimistic criterion for the choice of an action (see Chapter 11). However, the
paradox is easily resolved. When an agent specifiesI(ψ|>), for example, they express
that they have a preference forψ, which is not the same thing as saying they have
the intention to choose an action makingψ true, which can be seen in the following
example.

Example 7.11. LetGB = {D(¬i), D(i|p)}, wherei andp mean ‘take a umbrella’
and ‘it is raining’, respectively.D(¬i) expresses that ideally, the agent prefers not to
carry an umbrella; this does not mean that if they have the choice between taking their
umbrella or leaving it at home, they will choose to leave it athome.

This example illustrates that interpreting conditional desires and interpreting pref-
erences on acts are, to some extent, independent problems. It is perfectly possible to
interpret conditional desires in terms of ideality while having at the same time a pes-
simistic criterion for preferences between acts [LAN 03]. That being said, it is possi-
ble to replace the max-max criterion of the ideality semantics by other criteria such as
min-min, max-min or min-max. See [LAN 02b] for a discussion.

It now remains to make explicit the way a unique preference relation over alter-
natives can be induced from a set of preference statements expressed by conditional
desires. Since a model ofCO is isomorphic to a complete preference relation over
alternatives, an intuitive answer would consist of mappinga set of conditional desires
to the set of complete preference relations corresponding to its models.

Since the question reduces to: drawonepreference relation≥GB fromGB andK
(therefore to see conditional logic as a language for describing preference relations in
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an implicit and compact way), the most straightforward choice (called standard) would
then consist of defining≥GB as the intersection of preference relations corresponding
to the models ofGB. LetGB = {D(ϕ1|ψ1), . . . , D(ϕp|ψp)} be a set of conditional
desires andK a formula expressing, as before, feasibility constraints.≥cond,SGB is de-
fined: for allw,w′ ∈ Mod(K), w ≥cond,SGB w′ if and only if for everyM |= GB we
havew ≥M w′.≥cond,SGB thus built is a preference relation (i.e. a preorder).

GB generally has too many models, which implies that≥cond,SGB is much too weak.
Consider the example:GB = {D(a|>)}. For allw,w′ ∈ {(a, b), (a,¬b), (¬a, b),
(¬a,¬b)}, we havew ≥cond,SGB w′ if and only ifw = w′ and thereforew >cond,SGB w′

is never verified: all alternatives are non-dominated.

A way of remedying the latter problem consists of selectingonemodel satisfy-
ing GB: the one maximizing preference ‘interpretation wise’ or, equivalently, the
preference relation obtained by Z-completion ofGB [BOU 94, p. 79]. This principle
[ADA 75, PEA 90] was initially used in for reasoning with rules tolerating exceptions:
it consists of interpreting each default ruleϕ ⇒ ψ by the constraintProb(ψ|ϕ) ≥
1− ε whereε is infinitely smal, and then in ranking interpretations according to their
probability.

In the context of preferences with exceptions, this principle can be described in
the following way. LetGB = {I(ψi|ϕi), i = 1, . . . , n} be a set of conditional desires
(for the sake of simplicity, and without loss of generality we letK = >). Define the
satisfaction of a set of conditional desires by an integer-valued utility function and the
canonicalnon-positive integer-valued utility functionu∗GB : ΩPS → Z− associated
with GB as follows:

– for each conditional desireI(ψ|ϕ), u |= I(ψ|ϕ) if and only if
maxw|=ϕ∧ψ u(w) > maxw|=ϕ∧¬ψ u(w);

– letu : ΩPS → Z− be a non-positive integer-valued utility function, thenu |= D
if and only if u |= I(ψi|ϕi) for everyI(ψi|ϕi) in D; and

– for everyw ∈ ΩPS , u∗D(w) = maxu|=D u(w).

We can check thatu∗GB |= GB. Lastly, define�ZGB=�u∗
GB

, that is,w �ZGB w′

if and only if u∗GB(w) ≥ u∗GB(w′). Intuitively, �ZGB makes alternatives “gravitate
towards preference” [BOU 94]. We can computeu∗GB more simply than its definition
suggests, using the following algorithm [PEA 90]. Let∆ be a set of conditional desires
andδ = I(ψ | ϕ) ∈ ∆; we say that∆ toleratesδ if and only if ϕ ∧ ψ ∧ ∧{ϕ′ →
ψ′ | I(ψ′ | ϕ′) ∈ ∆} is satisfiable. Consider the following algorithm.

∆ := GB; k := 0;
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repeat
∆k = {δ ∈ ∆ | δ tolerated by∆};
∆ := ∆ \∆k;
k := k + 1

until ∆ = ∅

We can show thatu∗GB(w) = −max{k | I(ψ | ϕ) ∈ ∆k andw |= ϕ ∧ ¬ψ}.

This construction process can also be seen as transforming aset of conditional de-
sires into a set of classical propositional formulae obtained by replacing each condi-
tional desireI(ψ|ϕ) by the material implicationϕ→ ψ, these formulae being ranked
by a priority relation. Intuitively, this priority relation is such that if a ruler is more
specific than a ruler′, then the material implication associated withr has priority over
the material implication associated withr′, as it can be seen in the following example.

Example 7.12.
GB = {I(¬b), I(b | a), I(¬b|a ∧ c)}

We find out that onlyI(¬b) is tolerated byGB, hence∆1 = {I(¬b)}. Then∆2 =
{I(b | a)} and∆3 = {I(¬b|a∧c)}, henceu∗GB(abc) = −3,u∗GB(ab̄c) = u∗GB(ab̄c̄) =
−2, u∗GB(ābc̄) = u∗GB(ābc) = u∗GB(abc̄) = −1 andu∗GB(āb̄c) = u∗GB(āb̄c̄) = 0.

Once this priority relation has been obtained, we can use thecriteria defined in
section 7.4.2. The criterion that allows us to recover the original definition is thebest-
out criterion. This criterion has one major drawback: it is subject to the drowning
effect [BEN 93] as can be seen in the following example.

Example 7.13. Let GB = {I( cheap), I(medium-priced| ¬ cheap), I(long|HK), I(
¬ short|cheap), I(short|cheap), I(HK| ¬ cheap), I(lh)}, where each propositional
symbol is defined as in example 7.6 andlh in the desire I(lh) means that the agent
prefers to fly with Lufthansa. The Z-completion process creates three levels of priori-
ties. The formula with the greatest priority is the materialimplication associated with
I( ¬ short|cheap), i.e.cheap→ ¬ short. The formulae of intermediate priority are
¬ cheap→ medium-priced, ¬ cheap→ HK andHK→ long (recall that there exists
no interpretation whereHK andcheap are simultaneously true). Lastly, the formulae of
weakest priority arelh, cheap andcheap→ short. Thus, (¬ HK, medium-priced,
medium, lh) is not preferred to (¬ HK, expensive, medium, lh). On the other hand,
the preference for Lufthansa is abandoned as soon as the ticket is not cheap or the stay
is not short.

The advantage of this characterization by means of a stratified preference base
defined fromGB is that the drowning effect can be avoided by interpretingGB ac-
cording to criteria other thanbest-out, especiallydiscrimin and leximin as seen in
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section 7.4.2. This resolves the previous problems but leaves the formulaecheap and
lh at the same priority level, which is not justified. An alternative approach to inter-
preting these conditional rules that does not use a completion step (even if it deals
with specificity) is proposed by [LAN 96] and extended (with weights expressing rule
strength, as well as polarities) in [LAN 02b].

Finally, conditional logics of preferences allow for expressing relativeplausibil-
ity (or normality) of worlds, and then allow for a logical formalization ofqualitative
decision theory(Chapter 11). A model of the logic QDT (qualitative decisiontheory)
[BOU 94] is a tripleM = 〈W,�P ,�N〉 whereW is a set of worlds (that we assume
to be finite for the sake of simplicity) identified with propositional interpretations as
before.�P is a complete preorder expressing preference and�P is a complete pre-
order expressingnormality. I(.|.) is defined as before, whereasN(B|A) (‘normally
B if A’) is defined byM |= N(B|A) if and only if the most normal worlds among
those satisfyingA also satisfyB. [BOU 94] then defines the notion ofideal goal,
that combines normality and preference as follows.M |= IG(B|A) if and only if
Max(�P ,Max(�N ,Mod(A))) ⊆ Mod(B), i.e. IG(B|A) is true if the most pre-
ferredA-worlds among the most normal worlds satisfyB.

This interpretation of ideal goals only allows a weak interaction between prefer-
ence and normality, since only the most plausible worlds aretaken into consideration.
Moreover, undesirable properties appear: for example,normally p implies thatp is
an ideal goal. The definition of conditional desires in [LAN 03] avoids these pitfalls.
A modelM (defined as before) satisfiesI(B|A) if and only if the most preferred
among the most normalA ∧ B-worlds are preferred to the most preferred among the
most normalA ∧ ¬B-worlds. In other words,∀w′ ∈ Max(�N ,Mod(A ∧ ¬B))
∃w ∈Max(�N ,Mod(A ∧B)) such thatw �P w′.

Example 7.14. This is adapted from a classical example from the deontic logics lit-
erature:

1) John does not wish to have a fence around his cottage (I(f)).

2) If John has a dog, then he wishes to have a fence (I(f |d)).
3) John wishes to have a dog (I(d)).

That is,GB = {I(¬f), I(f |d), I(d)}. WhereasGB is unsatisfiable with the seman-
tics of [BOU 94] (and remains so ifI is replaced byIG), it becomes satisfiable with
the semantics of [LAN 03]; it suffices to consider a model where having a dog is ex-
ceptional:
�N : d̄f, d̄f̄ �N df, df̄
�P : every complete preorder satisfyingdf �P df̄ �P d̄f .
Note thatGB possesses several other models [LAN 03].
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We wonder about how normality should be interpreted in an example such as the
above where all variables are controllable. The interpretation of�N in terms ofplau-
sibility is not relevant here; ‘normality’ here can be interpreted asthe distance to the
actual matter of facts [LAN 03].

Whereas conditional logics call fordyadicmodalities, a few works call formonadic
modalities or predicates for representing preferences. Inparticular, [HAN 01b, chap-
ter 8] studies logics for expressing monadic preferences (ϕ is good/bad).

We end this section by mentioning a few approaches to reasoning about prefer-
ences that are based on Reiter’s default logic (we discuss them here because of the
existence of strong links between default logic and conditional logics).

The system of [THO 00] considers both defaults of the ‘preference’ type and de-
faults of the ‘belief’ type, with a procedural strategy thatdiffers totally from the se-
mantical definitions of the previous approaches. The goals are derived in two steps:
first an application of ‘belief’ defaults, allowing us to determine the plausible prop-
erties of the actual state of the world, then an application of ‘preference’ defaults.
This strict separation into two separate steps allows us to avoid the ‘wishful think-
ing’ paradox (when using inference rules in an uncontrolledway without formally
distinguishing between beliefs and preferences) [THO 00].

‘Decision-theoretic defaults’ [BRA 95, POO 92] are also interpreted in terms of
both normality and preference, this time using the classical criterion of expected util-
ity. The interpretation of a defaultA : B in [POO 92] is that ifA is true, then the
actionacceptB is better (in terms of expected utility) than the actionsaccept¬B and
accept neitherB nor¬B.

7.5.2.1.Bibliographical notes

Conditional logics has existed since the works of Lewis [LEW73] and have been
the subject of many research papers, both in philosophical logic and in AI. They were
initially developed for reasoning with counterfactuals. (A conditionalA⇒ B is trans-
lated into the statement ‘ifA were true, thenB would be true’, interpreted: the closest
A-worlds satisfyB.) The specificity of the dyadic conditional modality (and also of
conditional objects [DUB 95b]) is that a conditional rule has three possible truth val-
ues.D(ϕ|ψ) is satisfied inw if w |= ψ ∧ϕ, violated ifw |= ψ ∧¬ϕ and unapplicable
if w |= ¬ψ. Since their semantics are often defined in terms of preorderrelations
between worlds, it is not surprising that they have played a role in preference repre-
sentation.
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Finally, representing preferences by conditional desiresis close, to some extent, to
the representation of obligations and permissions (and especially conflictual obliga-
tions such as ‘contrary-to-duty’ obligations). Table 7.8 lists three different interpreta-
tions of conditionals (see [MAK 93, TOR 97] for a deeper discussion on the various
interpretations of rankings on sets of alternatives).

≥ I(ϕ|ψ)
epistemic interpretation normality normallyϕ if ψ
preferential interpretation preference ideallyϕ if ψ
deontic interpretation permissionϕ obligatory ifψ

Table 7.8.Three interpretations of rankings

7.5.3. Logical modeling of incomplete and/or contradictory preferences

We only mention briefly a stream of works very different to that considered in
the rest of the chapter: the use of non-classical logics for modeling certain classes of
preferences. Here the goal is neither compact representation nor the interpretation of
preference statements between logical formulae, but usinglogic for axiomatizing a
given mathematical model of preferences structures.

The first works on the subject, notably [HAN 68, RES 67], axiomatize or-
dinal preferences in first-order logic. For example, transitivity is expressed by
∀xyzR(x, y)∧R(y, z)→ R(x, z). More recent extensions of these approaches make
use of non-classical logics for modeling complex preferences that cannot simply be
modeled by orderings (see [ÖZT 05, TSO 92] for a synthesis):

– Paraconsistent logicsallow for the presence of ‘local’ and ‘non-explosive’ con-
tradictions, i.e. they allow a formula which is inconsistent in classical logic (such
A ∧ ¬A) to become consistent and not entail any other formula of thelanguage.
These logics are therefore of interest for the axiomatization of conflictual preferences.
[TSO 02a] makes use of Belnap’s four-valued logic [BEL 77] (whose so-called ‘truth
values’ are true, false, indefinite and inconsistent). The distinction between the lack
of information concerning the preference between two alternativesA andB, and the
excess of information resulting from the presence of elements in favor of the (strict)
preference ofA overB and elements in favor of the (strict) preference ofB over
A, is expressed. A continuous extension of these approaches,allowing us to express
intensities of preference and conflict, is developed in [PER98].

– Multivalued logicsand particularlyfuzzy logicsare multivalued logics with a
continuum of truth values. They allow the introduction of a notion of intensity in ordi-
nal preferences. Fuzzy/multivalued logics make the concept of truth gradual, and thus
introduce intermediate truth degrees such as ‘completely true’ and ‘rather true’ which



Logical Representation of Preferences 353

apply to statements referring to vague propositions or predicates. They are naturally
relevant for the axiomatization offuzzy preferences. A fuzzy preference relation spec-
ifies, for each pair(x, y) of alternatives, the degree to whichx is preferred toy (or the
degree to whichy is preferred tox). There exist two possible interpretations of a fuzzy
preference relationR: µR(x, y) represents either a degree of intensity of preference
(the degree to whichx is preferred toy) or an degree of uncertainty concerning the
preference ofx overy [FOD 98, ORL 78, ROY 77].

7.6. Discussion

In this chapter, we have discussed several families of logical formalisms allowing
the expression of preferences in a structured and/or succinct way. This variety does
not make the choice of a suitable language easy. We provide a few hints allowing the
evaluation of the different formalisms. The choice betweenthem must, of course, be
guided by the characteristics of the problem at hand.

7.6.1. Cognitive and linguistic relevance, elicitation

A language for preference representation has to be as close as possible to the way
individuals know their preferences and express them in natural language (in other
terms, the preferences expressed in a given language shouldbe intuitively understand-
able by an individual). If philosophers and computer scientists have focused on the
links between logic and preferences, these logics for preference representation have
not yet been evaluated by cognitive psychologists and linguists.

Preference elicitationconsists of building interactive algorithms allowing the min-
imization of the number of questions asked of an agent, whilemaximizing the infor-
mational usefulness of the preferences obtained. A preference representation language
should be, if possible, coupled to efficient elicitation algorithms, whose output consists
of preferences expressed in the target language.

7.6.2. Expressivity

Evaluating the expressivity of a languageL consists of determining the set pref-
erence (preference relations or utility functions) expressible inL. To make it short,
we will only consider here the expressivity of languages forordinal preferences, using
SL as defined in section 7.3. Table 7.9 lists a quick survey of theexpressivity of the
languages evoked in this chapter. Most results are straightforward; those which are not
generally come from [COS 04].
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L Section Syntax SL
Rdicho 7.3 G all dichotomous preorders
Rcard 7.3 {G1, . . . , Gn} all complete preorders
RPareto 7.3 {G1, . . . , Gn} all preorders
Rpond 7.4.1 {〈G1, α1〉, . . . , 〈Gp, αp〉} all complete preorders
RGAI−nets 7.4.1 local utility functions all complete preorders
Rbest−out 7.4.2 {G1, . . . , Gn} + stratification all complete preorders
Rdiscrimin 7.4.2 {G1, . . . , Gn} + stratification all preorders
Rleximin 7.4.2 {G1, . . . , Gn} + stratification all complete preorders
Rdist 7.4.3 {G1, . . . , Gp} + d all complete preorders
RCP 7.5.1.3 {Ci : Gi]G

′
i, i = 1 . . . p}, ] ∈ {., ./} all preorders

RCP−nets 7.5.1.4 〈G, C〉 some preorders
RScond 7.5.2 {D(G1|C1), . . . , D(Gp|Cp)} some preorders
RZcond 7.5.2 {D(G1|C1), . . . , D(Gp|Cp)} all complete preorders

Table 7.9. ‘Ordinal’ expressivity of languages

7.6.3. Complexity and algorithms

Once a preference structure has been represented in a given languageL, a key
question is to identify the computational difficulty of the following decision problems.
(We do not give any technical results here. For some of the languages considered in
this chapter, see [LAN 04] for corresponding complexity results.)

– Comparison: given two alternativesw andw′, determine ifw � w′.

– Optimality: given an alternativew, determine ifw is non-dominated, i.e. if there
does not exist an alternativew′ such thatw′ � w.

– Optimization: find one (or all) non-dominated alternative(s).

– Inference: given a property represented by a logical formulaϕ, determine if there
exists a non-dominated alternative satisfyingϕ.

In addition to assessing the complexity of the latter decision problems, it is crucial
to construct algorithms for finding a non-dominated alternative given a preference
specification in a particular language.

7.6.4. Spatial efficiency

The spatial efficiency (or succinctness power) of a languageis a relative notion.
A languageL is said to be at least as succinct as a languageL′ if, informally, any
preference structure that can be expressed inL′ can also be expressed inLwithout any
superpolynomial increase of size or, formally, if there exists (a) a functionf : L′ → L
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such thatIndL′ = IndL ◦ f or (b) a polynomialp such that for everyΦ ∈ L′,
|f(Φ)| ≤ p(|Φ|) where|.| represents the size of the input. Clearly, ifL is at least as
succinct asL′ thenL is at least as expressive asL′, i.e.SL ⊆ SL′ [COS 04].
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Chapter 8

Decision under Risk: The Classical Expected
Utility Model

8.1. Introduction

We make most of our decisions without definitely knowing their consequences:
the outcome of each decision depends on the realization of some uncertain event.

To help an individual facing a decision problem under uncertainty, the axiomatic
approach that we adopt in this chapter takes the following steps:

1) Assume that the decision maker has well-defined preferences.

2) Propose a set of ‘rationality’ axioms that are sufficiently intuitive.

3) Derive from these axioms a representation of the decisionmaker’s preferences.

4) Evaluate all possible decisions with this representation and take the one that
scores best.

Importantly, if the decision maker agrees with the set of axioms, they will also
agrees with the model derived from these axioms. This model will then help them to
take the right decisions.

We deal with a specific uncertain environment in this chapter, known asrisk, in
which the probability of each event is known. In this setting, we define the main prop-
erties of decision under risk, the different possible behavior under risk and their com-
parison. We then study the standard model of behavior under risk: the expected utility
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model. We provide axiomatic foundation, study the properties of the model and its
behavioral implications. We then discuss the problems raised by this expected utility
model, which cannot account for some observed behavior. We then expose a few al-
ternative models, although the main generalization of the expected utility model, in
which decisions are evaluated by Choquet integrals, is presented in Chapter 10.

8.1.1. Decision under uncertainty

A decision problem under uncertainty is usually described through a setS called
the set of states of nature (or states of the world), identifying events with subsets ofS.
We will only need to use the sub-family of ‘relevant’ events for the problem at hand
and will then use the smallestσ-algebraA including this sub-family.

We denote a set of possible outcomes or consequences byC, and an algebra con-
taining the singletons ofC byG . A decisionor act is defined as a measurable mapping
from (S,A) to (C,G). We denote the set of all such mappings fromS to consequences
C by X.

We assume that a decision maker has a well-defined weak preference relation%
on X. Strict preference is denoted� and indifference is denoted∼. The preference
relation onX induces(through constant acts) a preference relation on the setC of
consequences. Abusing notation, we also denote this preference relation as% onC.

We aim to represent the decision maker’s preferences(X, %) by a real valued
utility function, that is, a mappingV from X to R such that:X % Y if and only if
V (X) ≥ V (Y ). This function will take different forms depending on the set of axioms
imposed.

8.1.2. Risk versus uncertainty

We can distinguish different forms of uncertainty according to the information the
decision maker has on the states of nature. The two extreme situations are:

1) risk, in which there exists aunique probability distributionP on(S,A), and this
distribution is objectively known; and

2) complete ignorance, in which no information whatsoever is available about the
events.

The distinction between risk and uncertainty is due to [KNI 21]. In between these
two extreme cases, we can distinguish between different situations depending on how
much information we have on the probability of the various events.

In this chapter, we assume that the decision maker is in a situation of risk. The
probability distributionP is known, which is exogenous on the set of states of natures.
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The set(S,A) endowed with this probability measure is therefore a probability space
(S,A, P ).

Since each decisionX induces a probability distributionPX on (C,G), and under
the rather natural assumption that two decisions with the same probability distribution
are equivalent, the preference relation defined on the set ofprobability distributions
with support inC. This relation is denoted% with a slight abuse of notation.

Furthermore, we identify the consequencec of C with the Dirac measureδc in L,
and will indifferently use the notationδc % PX , c % PX or c % X . We therefore work
on the setL of probability distributions on(C,G) endowed with the relation%. The
decision maker must therefore compare probability distributions.

Let L0 ⊂ L be the set of probability distributions withfinite supportin C; in this
case, the probability distribution of decisionX is denotedPX = (x1, p1, . . . , xn, pn)
wherex1 -, . . . ,- xn, pi ≥ 0 and

∑
i pi = 1. Such distributions with finite supports

are called lotteries.

In the following section, we provide intrinsic definitions (i.e. independent of rep-
resentation models) of measures of risk and risk aversion.

8.2. Risk and increasing risk: comparison and measures

In this section, we takeX to be the set ofA− measurable functions that are real-
valued and bounded from(S,A) to (R,B), that is, the set ofreal, bounded, ran-
dom variables. A mappingX : (S,A) → (R,B) is measurable if, for allB ∈ B,
X−1(B) ∈ A whereX−1(B) = {s ∈ S : X(s) ∈ B} andB is the algebra of Borel
sets.

8.2.1. Notation and definitions

A decision inX is a random variableX whose probability distributionPX is de-
fined for allB ⊂ R, PX(B) = P {s ∈ S | X(s) ∈ B}. We will restrict our attention
to bounded random variables.PX has a cumulative distribution functionFX(x) =
P ({s ∈ S : X(s) ≤ x}). Its expected value or mean is denotedE(X). We define the
functionGX(x) = P ({s ∈ S : X(s) > x}) = 1−FX(x) to be the survival function.

We now provide definitions for the comparison of various probability distributions.
The preference relations so defined will be partial, and are sometimes called stochastic
orders.
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8.2.1.1.First-order stochastic dominance

Definition 8.1. Let X andY be elements ofX. ThenX first-order stochastically
dominates (FSD)Y if, for all x ∈ R, FX(x) ≤ FY (x).

Remark8.1. – If X FSDY , the graph ofY is above the graph ofX .

– This condition can be expressed through survival functions: Pr{X > x} ≥
Pr{Y > x}: for all x the probability of having more thanx is always larger forX
than forY .

– This notion implies thatE(X) ≥ E(Y ).

– The relation FSD only partially ranks the elements ofL.

LetX andY be two acts whose consequences are described in each state ofnature
s ∈ S in Table 8.1.

s1 s2 s3 s4
Pr({s}) 0.1 0.2 0.3 0.4

X 1 2 3 4
Y 2 1 2 3

Table 8.1.Example of FSD

The cumulative distribution functions ofX andY are:

FX(x) =





0 if x < 1
0.1 if 1 ≤ x < 2
0.3 if 2 ≤ x < 3
0.6 if 3 ≤ x < 4
1 if 4 < x

FY (x) =





0 if x < 1
0.2 if 1 ≤ x < 2
0.6 if 2 ≤ x < 3
1 if 3 ≤ x < 4
1 if 4 < x,

respectively. It is easily seen that for allx in R, FX(x) ≤ FY (x) and henceX FSD
Y . We now provide a characterization of this notion.

Proposition 8.1.X first-order stochastically dominates (FSD)Y if and only if for all
increasing functionsu fromR to R,

∫
u(x)dFX(x) ≥

∫
u(x)dFY (x).
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8.2.1.2.Second-order stochastic dominance

We can also compare probability distributions according totheir risks: there exist
several possible definitions of what it means for a distribution to be more risky than
another. For each of these notions, there is an associated notion of risk aversion and
these different definitions are independent of the decisionmodel that is retained.

The usual notion of increasing risk is the one associated with second-order stochas-
tic dominance (SSD), introduced in economics by Rothschildand Stiglitz [ROT 70].

Definition 8.2. LetX andY be inX,X second-order stochastically dominates (SSD)
Y if for all T ∈ R,

∫ T

−∞

FY (x)dx ≥
∫ T

−∞

FX(x)dx.

We have the following implication:[X FSDY ] ⇒ [X SSDY ]. The converse is
false. The relation SSD also only partially ranks the elements ofL. WhenX andY
have the same mean, we have the following definition.

Definition 8.3. ForX andY in X, Y is a mean preserving spread (MPS) ofX if (i)
E(X) = E(Y ) and (ii)X SSDY .

We also say thatY is more risky thanX with the same mean.

Example 8.1. LetX andZ be two acts whose decisions in each state of natures ∈ S
are reported in Table 8.2.

s1 s2 s3 s4
Pr({s}) 0.1 0.2 0.3 0.4

X 1 2 3 4
Z 4 1 4 3

Table 8.2.Example of SSD

Computing the cumulative distribution functions ofX andZ, we obtain

FX(x) =





0 if x < 1
0.1 if 1 ≤ x < 2
0.3 if 2 ≤ x < 3
0.6 if 3 ≤ x < 4
1 if 4 < x

FZ(x) =





0 if x < 1
0.2 if 1 ≤ x < 2
0.2 if 2 ≤ x < 3
0.6 if 3 ≤ x < 4
1 if 4 < x,
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respectively. We can check thatE(X) = E(Y ) and that the surface between0 andT
of the difference betweenFZ(x) andFX(x) is always positive, which implies thatX
SSDZ and henceZ MPSX . The following proposition makes the definition of MPS
more intuitive.

Proposition 8.2. Let X andY be two random variables with thesame mean. The
following three assertions are equivalent [ROT 70]:

1) Y is a mean preserving spread ofX , that isY MPSX .

2) Y has the same distribution as(X + θ) whereθ is a random variable such that
E(θ|X) = 0 almost everywhere.

3) For all increasing and concaveu from R → R,
∫
u(x)dFX(x) ≥∫

u(x)dFY (x).

The characterization (2) reveals the intuition behind the definition since it ex-
presses the fact thatY is a mean preserving spread ofX whenY can be obtained
by adding somenoisetoX . After we define an expected utility decision maker (sec-
tion 8.3), we will interpret condition (3) behaviorally.

Remark8.2. Several other notions of increasing risk can be defined, which we will
not develop here, although they are sometimes more suited for particular comparative
static problems. (See [CHA 97, CHA 04] for some of these definitions and their prop-
erties, as well as applications.) Some of these notions willbe developed in Chapter 10.

Remark8.3. If Y MPSX , then the variance ofY is greater than or equal to that
of X . The converse is not always true (see section 8.3.5.3). The variance could be
intuitively used as a measure of increases in risk but, as we shall see, it might lead to
inconsistencies.

8.2.2. Behavior under risk

8.2.2.1.Model-free behavioral definitions

For a decision maker with a preference relation% on X, we define some typi-
cal behavior under risk. Let us first recall that comparingE(X) andX amounts to
comparingδE(X) andX .

We can define various notions of risk aversion. We will focus on two of them in
this chapter.

Definition 8.4. An agent isweakly risk averseif, for any random variableX in X, the
expected value is preferred to the random variable itself [ARR 65, PRA 64]:

∀X ∈ X, E(X) % X.
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They areweakly risk seekingif

∀X ∈ X, X % E(X).

They arerisk neutralif

∀X ∈ X, X ∼ E(X).

This definition is usually not strong enough to rank two distributions with the same
mean. One can also use another definition as follows.

Definition 8.5. A decision maker isstrongly risk averseif for any two random vari-
ablesX,Y in X with the same expected value, such thatY is more risky thanX
according to second-order stochastic dominance, the less risky variableX is preferred
to Y :

∀X,Y ∈ X, YMPS X =⇒ X % Y.

They arestrongly risk seekingif

∀X,Y ∈ X, Y MPS X =⇒ Y % X.

They arerisk neutralif

∀X,Y ∈ X, Y MPS X =⇒ Y ∼ X.

If a decision maker does not always rank a couple of random variables(Y MPSX)
in the same way, they will not fit into any of these categories.

Remark8.4. It is easy to see that for allX , X MPS E(X). Hence, a strongly risk
averse decision maker will necessarily be weakly risk averse. The converse does not
hold in general.

8.2.2.2.Certainty equivalent, risk premium and behavior comparison

8.2.2.2.1. Certainty equivalent

For each random variableX in X, its certainty equivalent, if it exists, is the certain
outcomecX in C that is indifferent toX : cX ∼ X . In this chapter, any random variable
in X has a unique certainty equivalent.
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8.2.2.2.2. Risk premium

The risk premiumattached toX is denotedρX . It is the difference between the
expected value ofX and its certainty equivalent:ρX = E(X)− cX .

This premium can be interpreted as the maximum amount the decision maker is
willing to pay to exchange the variableX with its mean. This premium is negative
whenever the decision maker is weakly risk seeking.

The risk premium captures the intensity of (weak) aversion to risk. It is possible to
use it to compare, in a partial manner, different behaviors.

Definition 8.6. Decision maker 1 ismore weakly risk aversethan decision maker 2
if, for all X ∈ X, the risk premiumρ1

X of decision maker 1 is greater than or equal to
the risk premiumρ2

X of decision maker 2.

8.3. Expected utility (EU) model [VON 47]

We now return to the decision problem faced by a decision maker endowed with
a preference relation% on X and the associated relation onL. We now expose the
axiomatic foundation of the classical model of decision under risk: theexpected utility
(EU) model due to von Neumann–Morgenstern [VON 47]. We studyhow notions of
risk aversion defined above translate in this model.

We consider here the setL of probability distributions on(C,G) whereC is a set
endowed with an algebraG which contains, by assumption, all thesingletons.

Before giving the axioms, we first need to define a mixture operation on the set of
probability distributions.

8.3.1. Mixing probability distributions

For all P,Q ∈ L andα ∈ [0, 1], we refer to theα-mixture ofP andQ as the
distributionR = αP + (1 − α)Q such that, for allA in A, R(A) = αP (A) +
(1− α)Q(A). The mixture of two distributions can be interpreted, whenP andQ are
discrete, as a two-stage lottery. In the first stage, the distributionsP andQ are drawn
with probabilityα and(1 − α), respectively. In the second stage, a consequence is
chosen according to the distribution drawn at the first stage. L is then a convex subset
of a vector space.
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8.3.2. Generalized mixture

For anyα1, . . . , αn ∈ [0, 1] such that
∑
αi = 1 and for allP1, . . . , Pn ∈ L, one

can define in a similar way the mixture of thesen distributionsPi as the distribution
R =

∑
αiPi such that for allA ∈ G,R(A) =

∑
αiPi(A).

Any distribution with finite support can therefore be written as a mixture of Dirac

distributions:P =
i=n∑
i=1

piδxi
. This can also be referred to as a ‘convex combination of

consequences’.

8.3.3. Axiomatic foundation of the EU model

The model is based on three fundamental axioms: a weak order axiom, a continuity
axiom and an independence axiom, to which an extra axiom is added in certain cases.
Intuitive presentations of the axioms as well as elegant proofs of the von Neumann–
Morgenstern [VON 47] theorem (both in the finite and infinite case) can be found in
[e.g. FIS 70, FIS 82, HER 53, JAF 78, JAF 88, JEN 67, KRE 88]. We follow here the
presentation of Jaffray [JAF 78, JAF 88].

Axiom 8.1. Weak order: The preference relation% on L is a complete weak order
that is non-trivial.

The relation% is thus reflexive, transitive and complete. Furthermore, there exists
at least one coupleP,Q in L such thatP � Q.

The completeness assumption, i.e. the fact that the decision maker is assumed to
be able to rank all alternatives, is rather strong in some contexts. It is nevertheless
widely accepted in standard economic models.

Adding the continuity axiom to this weak order axiom allows the relation% to be
represented by a function often called theutility functionV : X→ R, such that:

X % Y ⇐⇒ V (X) ≥ V (Y ).

The precise formulation of the continuity axiom depends on the topological struc-
ture ofX on which preferences are defined [DEB 54, GRA 72]. When this set is a set
of probability distributions, as is the case here, the continuity axiom can be expressed
as follows.

Axiom 8.2. Continuity: The preference relation% onL is continuous (in the sense
of [JEN 67]): for all P,Q,R in L such thatP � Q � R, ∃α, β ∈ ]0, 1[ such that
αP + (1− α)R � Q andQ � βP + (1− β)R.
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This axiom requires that there does not exist a consequencecM that is so desirable
(actually infinitely desirable) that if a distributionP0 was offered this consequence
with the smallest (positive) probability, this distribution would be preferred to any
other distribution that would not havecM as a possible consequence. Axiom 8.2 also
prevents the existence of an infinitely undesirable consequencecm (think of cM as
being paradise andcm as being hell, as in Pascal’s bet).

The independence axiom that we now give is central to the construction of the
expected utility model.

Axiom 8.3. Independence: For allP,Q,R in L and allα ∈ ]0, 1],

P % Q⇐⇒ αP + (1− α)R % αQ+ (1− α)R.

This axiom can be interpreted as follows (building on the interpretation of the
mixture we gave above). A decision maker that prefersP toQ and who has to choose
between the two mixturesαP + (1 − α)R andαQ + (1 − α)R would reason in the
following manner. If an event of probability(1−α) occurs, they get the distributionR
independently of their choice. However, if the complement event occurs, they face the
choice betweenP andQ. SinceP is preferred, the mixtureαP+(1−α)R is preferred.
The logic behind this axiom is therefore intuitive. For an interesting discussion around
the independence axiom see [FIS 82].

However, axiom 8.3 has attracted a lot of criticism: numerous experimental studies
(such as the Allais paradox) have shown that most decision makers make decisions that
contradict this axiom. We will return on this issue in section 8.4.1. The representation
theorem can be decomposed into two important results as follows.

8.3.3.1.Linear utility theorem

Theorem 8.1. Let (L,%) be a convex subset of a vector space onR endowed with a
preference relation%. The following two conditions are equivalent:

1) (L,%) satisfy weak order, continuity and independence.

2) There exists alinear functionU fromL to R that represents the weak order i.e.
such that (a) for allX,Y fromL, X % Y ⇐⇒ U(X) ≥ U(Y ) and (b) for allα in
[0, 1], U(αX + (1− α)Y ) = αU(X) + (1− α)U(Y ).

Proof. We only give a sketch of the proof. It consists of proving the following
points:

1) For allP,Q in L andµ in ]0, 1], P � Q =⇒ P � µQ+ (1− µ)P .

2) For allP,Q in L andλ, µ in [0, 1], [P �, Q, λ > µ] =⇒ λP + (1 − λ)Q �
µP + (1 − µ)Q.
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3) For allP,Q,R in L such thatP � Q � R, there existsα in ]0, 1[ such that
Q ∼ αP + (1− α)R.

4) For allP1, P2 in L such thatP1 � P2, there exists a linear utility function on
the setL12 defined by:L12 = {P ∈ L, P1 % P % P2}.

5) This linear utility onL12 is unique up to a positive affine transformation.

6) Extrapolating, there exists a linear utility function on(L,%) which is unique up
to a positive affine transformation.

This theorem is true as soon asL is a convex subset of a vector space. In order
to be able to express the functionU as an expected utility, it is necessary to explore
several cases according to the structure ofC:

– When the distributions do not have finite support, the algebra G must be rich
enough and, furthermore, one needs to add a dominance axiom.

– WhenC is already ordered by a complete weak order (in particular whenC is
a subset ofR), it is necessary to impose a stronger axiom (sometimes labeled mono-
tonicity axiom) that ensures the compatibility of the preference relation onX and the
preference relation onC.

8.3.3.2.von Neumann–Morgenstern theorem for distributions with finite support in
(C,G)

We restrict our attention to the setL0 of distributions with finite support over
C. Any distributionP can then be writtenP = (x1, p1, . . . , xn, pn) (i.e. P yields
consequencexi with probabilitypi and

∑
pi = 1). (L0,%) is a convex set and the

previous axioms are sufficient for the representation theorem of % as an expected
utility.

Theorem 8.2. LetL0 be the set of distributions with finite support inC endowed with
the preference relation%. The following two statements are equivalent:

1) (L0,%) satisfies weak order, continuity and independence.

2) There exists a utility functionU representing the relation% such that

U(P ) = Eu(P ) =

n∑

i=1

piu(xi),

whereu is a strictly increasing function fromC to R defined byu(x) = U(δx) and
unique up to a positive affine transformation (that is, any functionv = au + b with
a > 0 is also admissible).

We easily understand in this formulation why the expected utility model is said
to be linear: it deals with probabilities in a linear way sinceU(αP + (1 − α)Q) =
αU(P ) + (1− α)U(Q).
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8.3.3.3.von Neumann–Morgenstern theorem for distributions with bounded suport in
(C,G)

This theorem can be generalized to the setL of probability distributions on(C,G).
We first assume that∀c ∈ C, the sets {c′ ∈ C, c′ - c} and {c′ ∈ C, c′ % c} belong
to the algebraG. We furthermore impose the following dominance axiom, which will
guarantee that the utility functionu is bounded and therefore that

∫
C u dP is well

defined.

Axiom 8.4. Dominance: For allP in L andc0 in C,
1) P{c ∈ C/c % c0} = 1 impliesP % δc0 ; and

2) P{c ∈ C/c - c0} = 1 impliesP - δc0 .

Axiom 8.4 expresses the fact that if all the outcomes of the distributionP are
preferred to the outcomec0, thenP is preferred to the degenerate distribution onc0.

For a distributionP with bounded support in(C,G), define its cumulative distri-
bution functionF as follows.F is a mapping fromC to [0, 1] defined byF (x) =
P{X - x}. We can then state the von Neumann–Morgenstern theorem in this setting
as follows.

Theorem 8.3. Let L be the set of probability distributions with bounded support
in (C,G) endowed with the preference relation%. The following two statements are
equivalent:

1) (L,%) satisfies weak order, continuity, independence and dominance.

2) There exists a utility functionU representing the relation% with

U(P ) = Eu(P ) =

∫

C

u(x)dF (x),

whereu is a strictly increasing, bounded mapping fromC to R defined byu(x) =
U(δx), unique up to a positive affine transformation.

Remark8.5. In the remainder, a decision maker who obeys the axioms of thevon
Neumann–Morgenstern model will be referred to as an EU decision maker.

Remark8.6. The behavior of an EU decision maker is entirely characterized by the
functionu.

8.3.3.4.von Neumann–Morgenstern theorem for distributions with bounded support
in (R,B)

WhenC is a subset ofR, axioms 8.1–8.3 combined with axiom 8.4 are not suffi-
cient to obtain the representation. We need to express the compatibility between the
preference relation% and the order relation≥ that exists onR; we then need to replace
axiom 8.4 by a stronger axiom as follows.
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Axiom 8.5. Monotonicity: For allx, y in R, x ≥ y ⇐⇒ x % y.

One can then state the theorem in this setting as follows.

Theorem 8.4. LetL be the set of probability distributions with bounded support in R
endowed with the preference relation%. The following two statements are equivalent:

1) (L,%) satisfies weak order, continuity, independence and monotonicity.

2) There exists a utility functionU representing the relation% such that

U(P ) = Eu(P ) =

∫

R

u(x)dF (x),

whereu is a strictly increasing function fromR to R defined byu(x) = U(δx), which
is unique up to a positive affine transformation.

8.3.4. Characterization of risk aversion in the EU model

In the remainder of section 8.3, we consider the setX of random variables with
bounded support in(R,B) and the associated set of distributions with bounded support
in (R,B).

How are the two notions of risk aversion, previously introduced, characterized in
the EU model? The following proposition shows that they cannot be distinguished in
this model.

Proposition 8.3. The following three assertions are equivalent for an expected utility
decision maker [ROT 70]:

1) The decision maker is weakly risk averse.

2) The decision maker is strongly risk averse.

3) The decision maker utility functionu is concave.

The equivalence (1)–(3) is straightforward. The equivalence (2)–(3) was proved by
Rothschild and Stiglitz [ROT 70].

Remark8.7. Proposition 8.3 therefore reveals that an EU decision makercannot make
a distinction between weak and strong risk aversion. In the EU model, one can simply
speak ofrisk aversionwithout ambiguity.

8.3.4.1.Characterization of first- and second-order dominance in the EU model

One can now interpret propositions 8.2 and 8.3(3) in the EU model as follows:

– Proposition 8.2:X first-order stochastically dominatesY if and only if any EU
decision maker preferes X to Y.

– Proposition 8.3(3): a randomY is a mean preserving spread ofX if and only if
E(X) = E(Y ) and any weakly risk averse EU decision maker prefersX to Y .
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8.3.5. Coefficient of absolute risk aversion, local value of the risk premium

In the EU model, it is possible to define the intensity of risk aversion for a decision
maker through properties ofu.

8.3.5.1.Coefficient of absolute risk aversion

Definition 8.7. When the functionu which characterizes the behavior of an EU de-
cision maker is strictly increasing and twice continuouslydifferentiable with strictly
positive derivative, we call the coefficient of absolute risk aversion the functionRA
from R to R defined by

RA(x) = −u
′′(x)

u′(x)
.

Note that this coefficient is independent of the choice of thefunctionu representing
the preferences. Any other functionv = au+ b, a > 0 will have the same coefficient.

8.3.5.2.Local value of the risk premium

When the distributionX with an expected valuex and a varianceσ2 takes its
values in an interval[x− h, x+ h] whereh is smallwith respect tox, one can show
[ARR 65, PRA 64] that the risk premium is proportional to the coefficient of absolute
risk aversion:

ρX(x) ≈ −σ
2

2

u′′(x)

u′(x)
=
σ2

2
RA(x).

This approximation is useful as, in the expression for the risk premium, it serves to
distinguish an objective part which depends solely on the variance of the distribution
from a subjective part that is linked to the decision maker’spreferences,RA(x). This
result can be used to derive the following theorem that compares the behavior of two
EU decision makers.

Theorem 8.5. Let 1 and 2 be two EU decision makers, with utility functionsu1 and
u2 respectively, that are assumed to be strictly increasing and twice continuously dif-
ferentiable. The following assertions are equivalent [ARR65, PRA 64]:

1) 1 is more risk averse than 2:ρ1
X ≥ ρ2

X .

2) There exists an increasing and concave functionϕ from R to R such thatu1 =
ϕ(u2).

3) The coefficient of absolute risk aversion foru1 is greater than or equal to the
coefficient of absolute risk aversion foru2 for all x ∈ R: R1

A(x) ≥ R2
A(x).

Remark8.8. The notions of risk premium and coefficient of absolute risk aversion can
also be defined for decision makers that are not necessarily risk averse. The theorem
can be applied to compare such decision makers.

Remark8.9. The equivalence between (1) and (2) remains true even whenu1 andu2

are not twice continuously differentiable.
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8.3.5.3.Variance and EU model

We saw in remark 8.7 that the notion of an increase in risk in the sense of second-
order stochastic dominance was justified in the EU model. Thevariance is not a good
indicator of riskiness as the following example shows [ING 87].

Example 8.2. Consider two lotteriesP = (0, 1/2; 4, 1/2) andQ = (1, 7/8; 9, 1/8).
We haveE(P ) = E(Q) andV ar(Q) > V ar(P ). Take a decision maker that satis-
fies the axioms of the EU model, who exhibits weak aversion with a concave utility
function given byu(x) =

√
x. One can check that for this decision makerQ � P , i.e.

the expected utility of the lotteryP , which has the smallest variance, is lower than the
expected utility ofQ. In the EU model, a risk averse decision maker might therefore
prefer a random variable with higher variance (holding means constant).

Note, however, that whenu(x) is a second-order polynomial (as in the capital
asset pricing model, CAPM), a risk averse decision maker will always prefer the vari-
able with the lowest variance of two random variables with the same mean. One can
actually show that with such a utility function, the expected utility of a distribution
depends only on its mean and variance.

The EU model is widely used in economics. It has useful properties that make
it very tractable. In particular, in a dynamic setting, it iscompatible with dynamic
programming and backward induction. However, it has been criticized on a number of
different grounds.

8.4. Problems raised by the EU model

We analyze here a few problems raised by the EU model [see MAC 87].

8.4.1. Allais paradox

As early as 1953, Allais [ALL 53] built a couple of alternatives for which a ma-
jority of subjects, confronted with these choices, selected in contradiction with the
independence axiom. We present here the original Allais experiment. Subjects were
confronted with a choice between the following lotteries (e.g. in euros):

– L1: win 1M with certainty; or

– L2: win 1M with probability 0.89, 5M with probability 0.10 and nothing with
probability 0.01

and also with a choice between:

– L′
1: win 1M with probability 0.11 and nothing with probability 0.89; or



378 Decision Making

– L′
2: win 5M with probability 0.10 and nothing with probability 0.90.

Most subjects choseL1 overL2 andL′
2 overL′

1. This choice violates the indepen-
dence axiom (axiom 8.3). Indeed, letP be the lottery yielding 1M with probability
1 andQ the lottery yielding nothing with probability1/11 and 5M with probability
10/11. One can check that:

L1 = 0.11P + 0.89 δ1

L2 = 0.11Q+ 0.89 δ1

L′
1 = 0.11P + 0, 89 δ0

L′
2 = 0.11Q+ 0, 89 δ0

whereδ0 is the lottery win of nothing with probability 1 andδ1 is the lottery win of
1M with probability 1. The observed choices are therefore incontradiction with the
independence axiom.

This experiment has been run many times on various subjects with similar results:
about 66% of the choices are in contradiction with the independence axiom. These
results have led researchers to acknowledge some descriptive deficiencies of the EU
model. However, most remain convinced that the normative aspect of the model should
be given more weight.

8.4.2. Interpreting the utility function

On top of experimental violations of the independence axiom, the expected utility
model raises a theoretical issue concerning the interpretation of the utility functionu.
This function captures two distinct behavioral features atthe same time: (1) it captures
the decision maker’s risk attitude (concavity ofu implies that the decision maker is
risk averse) and (2) it captures the decision maker’s attitude towards certain outcomes
(concavity ofu implies a decreasing marginal utility of wealth, say). It istherefore
impossible to represent in this model a decision maker that would be risk seeking and
would have a decreasing marginal utility.

Since the EU model is so parsimonious, it cannot separate risk attitudes from atti-
tudes towards wealth under certainty. This distinction is possible in more flexible but
less parsimonious models, which will be presented in Chapter 10.

8.4.3. Weak and strong risk aversion under expected utility

As stated in remark 8.7, weak and strong risk aversions cannot be distinguished
in the expected utility model. We can indeed interpret proposition 8.3 as a limit of
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the expected utility model: any agent who is weakly risk averse but not strongly risk
averse cannot satisfy the model’s axioms. We can show [CHA 97, CHA 04] that sev-
eral notions of risk aversion, corresponding to different stochastic orders on random
variables, are confounded in the expected utility model. Itis therefore not surprising
that this model lacks flexibility to account for a wide range of different behavior in
the face of increases in risk in different problems. The moregeneral rank-dependent
expected utility model that will be presented in Chapter 10 does not face this problem.

8.4.4. Notion of SSD as a risk indicator in the EU model

Despite the fact that second-order stochastic dominance iswell-characterized in
the EU model, this notion can lead to some counter-intuitiveresults. We will focus on
two of them.

First, in the classical portfolio choice problem when the decision maker has the
choice between any mixture of a risky asset and a riskless asset, a natural predic-
tion would be that if the risky asset becomes riskier in the sense of MPS, then any
risk averse investor should reduce his position in this asset. Rothschild and Stiglitz
[ROT 71] have shown that this is not always the case in the expected utility model.

The second issue deals with insurance choices. A decision maker that is more risk
averse than another is not necessarily ready to pay at least as much as the other to get
the same risk reduction (in the sense of MPS) [e.g. ROS 81].

8.5. Some alternative models

There exist several decision models under risk that, to fit the observed behavior
better, weaken one or several of the von Neumann–Morgenstern axioms. We briefly
expose a few of them. A review of these models and the experimental evidence can be
found in Harless and Camerer [HAR 94].

8.5.1. Machina’s model

In the model in Machina [MAC 82], the independence axiom is dropped while
weak order and continuity are retained. Still, the functionused to represent preferences
is smooth (i.e. Fréchet differentiable). As a consequence,this model is locally very
similar to the EU model since the function can be approximated by a linear function.

8.5.2. Models with security and potential levels

Several experiments have shown that violations of the EU model disappear when
the compared distributions have the same maximum and minimum. Cohen [COH 92],
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Essid [ESS 97], Gilboa [GIL 88] and Jaffray [JAF 88] axiomatized a model in which
the independence axiom is satisfied only for distributions with the same minimum
[GIL 88, JAF 88] or same minimum and maximum [COH 92, ESS 97]. This is a rather
weak condition. One therefore needs to add some other axiomsin addition to weak
order and continuity. The representation takes the form of the combination of three
criteria: the minimum, maximum and expected utility. This model is compatible with
many experiments that have shown that the iso-utility curves are parallel (as in the EU
model) when the distributions have the same extremal points, while they move away
from parallel lines when extrema are different.

Other models exist in the literature [e.g. HAR 94]. Probablythe most well-known
model compatible with Allais’ experiment is the rank-dependentexpected utility model
[QUI 82], based on the Choquet integral which will be presented in some detail in
Chapter 10.
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Chapter 9

Decision under Uncertainty: The Classical
Models

9.1. Introduction

This chapter is dedicated to classical decision models under uncertainty. Following
Knight [KNI 21], the termrisk is reserved to situations in which events have ‘objec-
tive’ probabilities with which the decision maker agrees. This is typically the case in
games of chance such as card games and roulette; risk also encompasses all situa-
tions in which reliable statistical data are available. In addition to situations of risk,
there seems to be a great variety of other situations of uncertainty that the decision
maker can encounter: upper/lower probability intervals, possibilities/necessities, com-
plete ignorance and small samples. Rather surprisingly, the classical models of deci-
sion making under uncertainty enforce the universal use of aprobabilistic representa-
tion: every situation of uncertainty is identifiable to a situation ofsubjectiverisk. This
means that every decision maker behaves as if they had probabilistic beliefs on all the
events; on the other hand, these beliefs can vary from one decision maker to another.

The justification of this representation is based on axioms of ’rational behavior’.
The most famous model giving an axiomatic justification of the subjective expected
utility (SEU) criterion is due to Savage [SAV 54]: uncertainty reduces to subjective
risk and decisions are ranked according to the expected utilities (EU) of their con-
sequences. Anscombe and Aumann [ANS 63] also justify the SEUcriterion, with a
different model and in a different framework.

Chapter written by Alain CHATEAUNEUF, Michèle COHEN and Jean-Yves JAFFRAY.
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We present these two theories with an interpretation and justification of the axioms;
outlines of the proofs are also provided.

9.2. Subjective expected utility (SEU)

9.2.1. Definitions and notation

S is the set ofstates of nature, E ⊂ 2S is a set of parts ofS,A ∈ E is aneventand
C is the set ofconsequences.

Decisions are identified toacts, which are applications fromS into C. Axiom P8
will add a ‘measurability’ requirement. An actf is asimple step act(respectively,step
act) when there exists a finite (respectively, denumerable) partition {Ei, i ∈ I} of S,
with Ei ∈ E for everyi ∈ I such thatf(Ei) = {ci} i.e. a singleton. In particular, a
constantactδc is characterized byδc(S) = {c}.

A grafting is an operation which associates with two actsf , g and an eventE a
third act, their grafth defined byh(s) = f(s) for s ∈ E, h(s) = g(s) for s ∈ Ec;
such an act is denoted byh = fEg.

Preferencesare represented by binary relation% on the set of actsV.

9.2.2. The SEU criterion

Preferences% comply with SEU theory when they can be explained by the ex-
pected utility criterion, i.e. when there exist a (subjective) probability measureP on
the events and a utility functionu on the consequences such that, for all actsf , g:

f % g ⇐⇒
∫

S

u(f(.))dP ≥
∫

S

u(g(.))dP.

Savage [SAV 54] (and later Anscombe and Aumann [ANS 63]) proposed axiomatic
justifications of this criterion. Anscombe and Aumann [ANS 63] require a special
structure for the consequence set, which is the set of all lotteries (finite support distri-
butions) on the outcome set. Moreover, they assume the validity of the EU criterion for
comparing these lotteries. Savage’s framework is more general and may seem more
natural since it does not require any particular structure of the consequence set. On the
other hand, his approach is rather complex. Anscombe and Aumann have a simpler
task, since they can take advantage of the properties of linear utility on the lotteries.
We begin with the presentation of the theory of Savage.
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9.3. Savage’s theory [SAV 54]

9.3.1. Savage’s axioms and their interpretation and implications

Note that the axiom system presented here is somewhat different from that of Sav-
age. The theory presented here leads to a representation of the beliefs on the events
by aσ-additive probability measure (as opposed to a simply additive probability in
Savage’s).

9.3.1.1.Preferences on the acts

The first axiom postulates the existence of a rich structure on both the set of the
events and the set of the acts and requires that the preference relation be a weak order
(reflexivity, transitivity and completeness).

Axiom 9.1. P1: Weak ordering of the acts

1) The set of the eventsE is aσ-algebra.

2) The set of the actsV contains all step acts and is closed with respect to the
grafting operation.

3) % is a weak order onV.

Conditions (1) and (2) are technical; the structures imposed onE andV could not
be dispensed with, even although they imply the existence ofunrealistic acts (e.g. acts
giving good consequences conditionally on unfavorable events). Condition (3) is stan-
dard in decision theory. Note, however, that standard rationality arguments such as the
avoidance of money pumps forbid preference cycles but cannot justify completeness.

The next axiom is the key axiom of Savage’s theory. It states that a common mod-
ification of the common part of two acts cannot modify the preference order between
them.

Axiom 9.2. P2: Sure-thing principle
For all actsf, g, h, h′ and for every eventE,

fEh % gEh⇐⇒ fEh′ % gEh′.

Remark9.1. Here again money pump arguments can only justify the following weak-
ened version of axiom 9.2, referred to below asP′2:

fEh � gEh =⇒ fEh′ % gEh′.

This is an important remark becausebackward inductionis an efficient method
for solving dynamic decision problems. However, its validity does not rely onP2 but
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only onP′2; this opens the gate to alternative theories which, despitethe fact they use
different representations of uncertainty, remain operational.

Let us finally note that actual behavior often violates the sure-thing principleP2

and alsoP′2; see the Ellsberg paradox [ELL 61] below (section 9.3.3). The Allais
paradox [ALL 53] can be presented as a violation of these axioms.

9.3.1.1.1. Induced preferences

The axiom system will make it possible to derive several other binary relations
from a single primitive preference relation% on the acts. These will be interpreted as
conditional preferences, preferences under certainty or preferences on the events.

9.3.1.1.2. Conditional preferences given events

For any eventE ∈ E , P2 allows us to define on the set of actsV a binary relation,
preference givenE, by:

f %E g ⇐⇒ for everyh, fEh % gEh.

Relation%E can betrivial , i.e. such thatf %E g for all f, g ∈ V, in which case
eventE is called anull event; in particular,∅ is a null event.

Let us note that%E only depends on the restrictions off andg toE. This relation
is generally interpreted whenE is not null as the expression of the decision maker’s
preferences conditionally toE. Note, however, this is only an interpretation [GHI 02].

It is clear that for every eventE ∈ E , %E (preference givenE) is a weak order.

9.3.1.1.3. Preferences under certainty

Preferences on acts% also inducepreferences under certainty, %C, by

c′ %C c
′′ ⇐⇒ δc′ % δc′′ for all c′, c′′ ∈ C.

Relation%C is also a weak order.

The introduction of%C is not interesting unless there existsintrinsic preferences
under certainty, i.e. which do not depend on the informationin the following axiom.

Axiom 9.3. P3: Existence of intrinsic preferences under certainty
For all consequencesc′, c′′ ∈ C, for every non-null eventE ∈ E ,

c′ %C c
′′ ⇐⇒ δc′ %E δc′′ .

This axiom is more restrictive than it seems. For example, itdoes not leave the
possibility of expressing the influence on the ordering of consequences of an emo-
tional trauma. Certain theories allowstate-dependentpreferences and do not require
this axiom [KAR 93].
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9.3.1.1.4. Preferences on the events

We next define a preference relation on the events. For this, we shall use a partic-
ular class of step acts: the one-step acts.

Givenc′, c′′ ∈ C such thatc′ �C c
′′, actfA offers prize(c′/c′′) onA when

fA(s) = c′ if s ∈ A, fA(s) = c′′ if s ∈ Ac.

A preference relation%E on the set of eventsE can then be defined as follows.

Definition 9.1. For allA,B ∈ E , A %E B ⇐⇒ there exists a prize(c′/c′′) such that
actsfA, fB offering that prize onA andB, respectively, satisfyfA % fB.

Axiom 9.4 states that the value of the prize does not matter atall, which will make
relation%E a weak order. Its interpretation is: if, for a given prize, wepreferfA to fB,
it is because we believeA to be more likely to obtain thanB.

Axiom 9.4. P4: Non-influence of the prize
For all consequencesc′, c′′, k′, k′′ ∈ C such thatc′ �C c′′ andk′ �C k′′, for every
act fA (respectively,fB) offering prize(c′/c′′) on eventA (respectively,B) ∈ E and
every actgA (respectively,gB) offering prize(k′/k′′) on eventA (respectively,B):

fA % fB ⇐⇒ gA % gB.

To prevent%E being trivial, there must exist at least one feasible prize.

Axiom 9.5. P5: Non-triviality of preferences under certainty
There exists consequencesc′, c′′ ∈ C such thatc′ �C c′′. Note thatE is null if and
only ifE ∼E ∅.

Together, the preceding assumptions (axioms P1–P5) are sufficient to endow rela-
tion %E with propertiesQ1 andQ2 of a qualitative probability(see section 9.3.2.1
below). We shall need the following definition.

Definition 9.2. An eventA �E ∅ is anatom(for %E) when there is no eventB ⊂ A
such that:A �E B �E ∅.

Axiom 9.6 implies that setS is atomlessfor %E , a property which will prove to
be crucial for the existence of a unique subjective probability. This axiom also implies
continuity properties, related to those of the continuity axiom of linear utility theory.
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Axiom 9.6. P6: Continuity
For every pair of actsf, g ∈ V such thatf � g, for every consequencec ∈ C, there
exists a finite partition{Ei, i ∈ I} of S such that, for alli ∈ I:

1) fi � g wherefi(s) = f(s) for s /∈ Ei andfi(s) = c for s ∈ Ei;
2) f � gi wheregi(s) = g(s) for s /∈ Ei andgi(s) = c for s ∈ Ei.

Axiom 9.6 can be interpreted as follows. If the modification of f on Ei cannot
reverse preferences, then eachEi must be judged sufficiently unlikely. One therefore
assumes:

1) the existence of partitions composed of arbitrarily unlikely events, which will
imply the absence of atoms;

2) that everyfi which is sufficiently close tof (for the distance of weak conver-
gence) must be ranked in the same way asf with respect tog, which is a continuity
property.

The last axiom in the original Savage system is a dominance (or monotony) axiom,
as follows.

Axiom 9.7. P7: Dominance
For every eventE ∈ E :

1) f �E δc for everyc ∈ g(E) impliesf �E g;

2) f ≺E δc for all c ∈ g(E) impliesf ≺E g.

Axiom 9.7 states that if we preferf to any consequence which can result fromg,
then we should preferf to g. Axioms 9.8 and 9.9 are not part of the original system
of Savage; they will ensure that the subjective probabilityconstructed is alwaysσ-
additive.

Axiom 9.8. P8: Measurability
For every actf ∈ V and for every consequencec ∈ C, sets{s ∈ S : f(s) %C c} and
{s ∈ S : f(s) -C c} belong toE .

Axiom 9.9. P9: Event-wise continuity
For all eventsA,B ∈ E and for every sequence of events(An)n∈N , ifAn ↓ A, An %E

B for everyn thenA %E B.

9.3.2. Construction of Savage’s theory

This section is based on Jaffray’s notes [JAF 78]. Savage proves that:
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1) There exist, on the event set, qualitative probabilitiesand subjective (quantita-
tive) probabilities which are compatible with them. Every act generates then a (sub-
jective) probability measure on the consequence set.

2) Preferences on the acts generate preferences on these probability measures, and
these preferences satisfy the von Neumann–Morgenstern [VON 47] axioms for deci-
sion making under risk.

9.3.2.1.From qualitative to subjective probabilities

9.3.2.1.1. Existence of qualitative probabilities

By definition, relation%E is a qualitative probabilityon E when it satisfies the
following three properties:

1) Q1: %E is a weak orderS �E ∅ and, for allA ∈ E , S %E A %E ∅.

2) Q2: For allA1, A2, B1, B2,∈ E ,
a) [A1 ∩A2 = ∅, A1 %E B1, A2 %E B2] =⇒ A1 ∪A2 %E B1 ∪B2;
b) [A1 ∩A2 = ∅, A1 �E B1, A2 %E B2] =⇒ A1 ∪A2 �E B1 ∪B2.

3) Q3: For allA,B ∈ E and(An)n∈N , [An ↓ A, An %E B for all n] =⇒ A %E

B.

The validity of propertiesQ1 andQ2 is a direct consequence of axioms 9.1–9.5
(P1 − P5). To establish the validity ofQ2, the following intermediate property is
useful:

A1 %E B1 ⇐⇒ A1 ∪E %E B1 ∪ E for everyE such thatE ∩ [A1 ∪B1] = ∅

which is a straightforward consequence of axiom 9.2. Finally, propertyQ3 is simply
axiom 9.9 (P9). Therefore relation%E is a qualitative probability ofE .

Remark9.2. ConditionsQ1 andQ2 are due to De Finetti [DEF 37]. Villegas [VIL 64]
added axiomQ3 in order to obtain aσ-additive version of subjective probability the-
ory.

9.3.2.1.2. Existence of a compatible subjective probability

A probabilityP onE is compatiblewith %E if P (A) = P (B)⇐⇒ A %E B.

It can easily be seen that conditionsQ1 andQ2 are necessary for the existence of
a probabilityP onE which is compatible with%E . A counter-example due to Kraftet
al. [KRA 59] shows that these conditions are not sufficient to insure the existence of
a compatible probability. However, by adding the assumption that setE is atomless,
Villegas [VIL 64] obtained the following result.

Theorem 9.1. WhenE is atomless,Q1, Q2 andQ3 are sufficient conditions for the
existence of a unique subjective probabilityP on (S, E) compatible with qualitative
probability%E . Moreover,
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1) E ∈ E is null if and only ifP (E) = 0; and

2) for everyE ∈ E and everyρ ∈ (0, 1), there existsA ⊂ E such thatP (A) =
ρP (E).

Sketch of proof.Every eventA can be divided into two sub-eventsA1 andA2

satisfyingA1 ∼E A2; this implies, by an inductive argument, that there exists a2n-
partition{Ei} of the sure eventS withEi ∼E Ej for all i, j.Necessarily, a compatible
probabilityP is such thatP (Ei) = 1/2n for all i. Moreover, probabilityP (A) of an
eventA of E such that

∪
1≤i≤k+1

Ei �E A %E ∪
1≤i≤k

Ei,

shall satisfy

P (A) ∈
[
k

2n
,
k + 1

2n

[
.

By taking the limit (n 7→ ∞), P (A) will be uniquely determined. Finally, one
proves the additivity and theσ-additivity ofP .

The preceding result can be interpreted roughly as follows:E contains all events
linked to the outcomes of an arbitrary sequence of coin throws, where the coin used
is believed to be unbiased by the decision maker. To evaluatethe probability of any
given event, they only need to compare it with events linked to the throwing sequence,
to which probabilities of the formk/2n are already attributed.

The absence of atoms in Savage’s axiom system is essentiallydue to axiom 9.6
(P6): for every non-null eventA, one can find a partition{Ei} such thatA �E Ei �E

∅ for everyi and, in particular,Ei0 such thatB = Ei0 ∩A satisfiesA �E B �E ∅.

Together, Savage’s axioms imply both the absence of atoms and the validity of
conditionsQ1, Q2 andQ3. They therefore imply the existence of a unique subjective
probability on the events. We are therefore now facing a problem of decision making
under risk (subjective risk). However, as we shall see, the decision maker’s behavior
will not differ from their behavior under objective risk.

9.3.2.2.Subjective lotteries and linear utility

Now that a (unique) subjective probabilityP has been constructed on the events,
we can associate with every actf the probability measurePf which it generates on
consequence setC (Pf is the image ofP by f ). We denote the set of these probability
measures byL0. In particular, a simple step act generates a (subjective)lottery on C,
i.e. a probability measure with finite support. If the only feasible consequences off are
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the set{xi, i = 1, . . . , n}, this set is the support ofPf andPf (xi) = P (f−1(xi)), i =
1, . . . , n.

We then need to show that two acts generating the same lotteryare necessarily
indifferent for relation%. This is a crucial step in the construction of Savage, and also
one of the most delicate ones. It basically exploits two properties: (i) the sure-thing
principle (P2); and (ii) the existence, for every eventA and everyρ ∈ [0, 1], of an
eventB ⊂ A such thatP (B) = ρP (A).

It results fromP1 thatL0 is the set of all lotteries onC. There then exists a prefer-
ence relation on lottery setL0, induced by the preferences existing on the acts, which
we also denote by% i.e.

P % Q⇐⇒ there exist simple step actsf andg such that

Pf = P, Pg = Q andf % g.

Relation% onL0 is clearly a weak order, thus satisfying axiom 9.1 of linear utility
theory. The next step consists of proving that it moreover satisfies axioms 9.2 (inde-
pendence) and 9.3 (continuity).

The proof of these results confirms that axiom 9.6 is indeed a continuity axiom
(and not only a non-atomicity axiom); it also stresses the narrow links betweenP2

and Anscombe-Aumann’s axiomAA2 (see section 9.4.1). Indeed, the Allais paradox
[ALL 53] constitutes a violation of both.

The theorem of von Neumann–Morgenstern therefore applies to L0: there exists
onL0 a linear utility functionU and an associated von Neumann–Morgenstern utility
u. Returning to acts, we can therefore state:

– The restriction to simple step acts of preference relation% can be explained by
an expected utility criterion with respect to subjective probability measureP on the
events and utility functionu on the consequences. For two such actsf andg:

f % g ⇐⇒ Eu(Pf ) > Eu(Pg)⇐⇒
n∑

i=1

Pf ({xi})u(xi) >

n′∑

j=1

Pg({yj})u(yj).

The extension of the validity of the expected utility criterion from simple step acts
to general acts remains to be demonstrated.

9.3.2.3.Extension of SEU to all acts

Savage’s axiom 9.7 (P7) which concerns acts implies the validity of dominance
axiom Anscombe-Aumann’s dominance axiomAA4 for the probability measures these
acts generate onC. It therefore follows that utility functionu is bounded.
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Moreover, by using axiom 9.8 (P8), one can show thatu is also measurable so
that the integral ∫

S

u(f(.))dP =

∫

C

u(.)dPf

exists and has a finite value. Its value can then be associatedwith actf . It still remains
to show that the expected utility criterion is valid for preferences on the whole set
of acts. First the extension from simple step acts (for whichthis criterion is valid)
to generalized step acts is made by a similar reasoning to that used in EU theory.
The extension to general acts follows; it uses the fact that every act is indifferent to a
generalized step act.

Theorem 9.2. Under axiomsP1− P9, preference relation% on V is representable
by a utility functionU(.) of the form:

U(.) : f 7→
∫

S

u(f(.))dP =

∫

C

u(.)dPf

whereP (.) is aσ-additive probability on the events ofE andu(.) is the von Neumann–
Morgenstern utility on the probability set formed by the images ofP generated by
the acts. Moreover,P is unique, whereasU(.) and u(.) are unique up to a strictly
increasing affine transformation.

The empirical validity of theorem 9.2 (Savage’s model) has serious limitations.
The Allais paradox does not only exhibit a pattern of behavior which is incompatible
with EU under risk, but a pattern which is also incompatible with SEU under uncer-
tainty.

There are other experiments, specific to uncertainty situations, where subjects dis-
play behavioral patterns which are incompatible with the existence of subjective prob-
abilities (anda fortiori with SEU), such as the famous Ellsberg paradox.

9.3.3. The Ellsberg paradox

Ellsberg [ELL 61] describes the following situation. An urncontains90 balls:30
are red and60 are blue or yellow in unknown proportions. There are thereforek blue
balls and(60 − k) yellow balls, withk of value0 − 60. A random drawing of a ball
from the urn will lead to the realization of one of the eventsR,B andY , according to
the color of the ball drawn. Ellsberg asks the subjects to choose between the following
options: a bet onR (decisionX1) or a bet onB (decisionX2) and a bet onR ∪ Y
(decisionX3) or a bet onB ∪ Y (decisionX4).

Table 9.1 gives the payments (ine) associated with each decision for each possible
event.
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R B Y
X1 100 0 0
X2 0 100 0
X3 100 0 100
X4 0 100 100

Table 9.1.Ellsberg’s acts: Savage’s framework

Typically, a majority of subjects chooseX1 andX4, thus revealing preferences:
X1 � X2 andX4 � X3. This constitutes a violation of the sure-thing principleP2.
A modification of eventy of the common consequence0e ofX1 andX2, consisting of
replacing it by a different common consequence100e which transformsX1 intoX3

andX2 intoX4, should leave preferences unchanged, i.e. lead toX3 � X4 whenever
X1 � X2.

Since they do not respectP2, these subjects cannot abide by the SEU criterion. As
a matter of fact, their behavior is incompatible with the very existence of subjective
probabilitiespR, pB, pY for elementary eventsR,B, Y .X1 � X2 would implypR >
pB whereasX4 � X3 would implypB + pY > pR + pY : a contradiction.

To represent the situation described by Ellsberg, we have takenS′ = {R,B, Y }
as a set of states of nature and identified the bets with applications (acts)X : S′ → R.

We might have adopted another approach and taken a set of states of nature com-
posed of61 states,S = {s0, s1, . . . , sk, . . . , s60}, where a statesk corresponds to
the composition of the urn ‘30 red balls,k blue balls and(60− k) yellow balls’. The
decisions are then identifiable with applications fromS into Y, the set of lotteries on
C = {0, 100} (i.e. the set of all probability measures onC which have a finite support).

The uncertain prospect offered by the decision giving a gainof 100e if the ball
drawn is blue and of0e otherwise (X2) is therefore characterized by applicationg2,
associating with every state of naturesk of S the corresponding lottery

(0,
90− k

90
100,

k

90
).

This is equivalent to the lottery giving a null gain with probability (90− k)/90 and a
gain of100e with probabilityk/90.

This is the framework adopted in the model of Anscombe and Aumann [ANS 63],
which we present in the following section.
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9.4. Anscombe and Aumann theory [ANS 63]

The set of states of natureS is finite. The algebra of events isA = 2S. We denote
by Y the set of lotteries on an outcome setC (i.e. the set of all probability measures
with finite support inC). The set of actsF0 is then defined as the set of all applications
fromS intoY.

An act of this kind is called a ‘horse lottery’ by reference tothe sweepstake tickets,
which offer different random gains (lottery tickets) depending on which horse wins the
race.

In this model, consequences are not outcomes (elements ofC) but lotteries onC,
which are elements ofY. The setY is a mixture set (see section 8.3.1). By using this
structure we can define, for allf andh in F0 and everyα in [0, 1], actαf + (1− α)h
by

(αf + (1− α)h)(s) = αf(s) + (1− α)h(s)

for everys in S. For this operation,F0 is itself a mixture set.

Preferences are defined by a weak order on set of actsF0, denoted by%. Relation
% induces a preference relation (also denoted by%) on the set of lotteries, by identi-
fying a lotteryy of Y with theconstant actδy in F0 (the act taking the same value,
consequencey, for everys in S):

for all y, z in Y, y % z ⇔ δy % δz.

9.4.1. The Anscombe–Aumann axiom system

The Anscombe–Aumann axiom system consists of the followingfive axioms.

Axiom 9.10. AA1: Ordering
Preference relation% is a weak order onF0.

Axiom 9.11. AA2: Continuity
For all X , Y , Z in X0 satisfyingX � Y � Z, there existα, β ∈]0, 1[ such that:

αX + (1− α)Z � Y � βX + (1 − β)Z.

Axiom 9.12. AA3: Independence
For all X,Y, Z in F0 and for everyα ∈ ]0, 1],

X % Y ⇐⇒ αX + (1− α)Z % αY + (1− α)Z.

Axiom 9.13. AA4: Monotony
For all X,Y in F0,

[X(s) % Y (s) for everys ∈ S]⇒ X % Y.

Axiom 9.14. AA5: Non-triviality of preferences
There exists at least one pair of actsX,Y such that

X � Y.
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9.4.2. Comments and discussion

The introduction of a set of lotteriesY among the primitive concepts presupposes
the existence of ‘exogeneous’ probabilities, i.e. which have no relation to the beliefs
of the decision maker. This was not the case with the model of Savage, in which the
existence of a probability is always a result and never an assumption.

In the model of Anscombe and Aumann [ANS 63], the outcome of anact is de-
termined in two steps. During the first step, the uncertaintyabout the states of nature
is resolved and the true state identified. During the second step, the lottery associated
with this state is resolved and the final outcome determined.One of the important
points of the proof of the representation theorem consists of showing that the order of
resolution of the two kinds of uncertainty is irrelevant to the decision maker.

The mixture set structure ofF0 suggests the formal use of the axioms of von Neu-
mann and Morgenstern [VON 47]. However, since the acts ofF0 are more complex
than probability measures, these axioms acquire a wider significance. In particular, in
this framework, the independence axiom (in the presence of the other axioms) implies
the validity of Savage’s sure-thing principle (axiomP2).

9.4.3. The Anscombe-Aumann representation theorem

Theorem 9.3. Under axiomsAA1 − AA5, preference relation% on F0 is repre-
sentable by a utility function:

V (.) : X 7→
∑

s∈S

U(X(s))P ({s})

whereP (.) is an aditive probability measure on(S, E) andU(.) is the linear utility
function on(L,%L). P is unique andV (.), as forU(.), is unique up to a strictly
increasing linear transformation.

In theorem 9.3, every type of uncertainty is reducible to subjective risk, and the
criterion under risk (under objective risk (lotteries) as under subjective risk) is the EU
criterion. The proof has several steps.

First, by restricting axiomsAA1–AA3 to the constant actsδy, identified with lot-
teriesy, one remarks that the von Neumann–Morgenstern theory applies to these con-
stant acts. It is then easily seen that the following representation is valid for general
acts:

X % Y ⇐⇒ U(X) > U(Y ) whereU(X) =
∑

s∈S

Us(X(s))
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where eachUs is a linear utility, i.e. whereUs(X(s)) is the expectation of a utility
functionus with respect to lotteryX(s). The preceding linear utilitiesUs depend on
states.

Secondly, by taking into account axiomsAA4–AA5, one can show that theUs
are in fact proportional and that there therefore exists a unique probability measureP
such that ratioUs/P ({s}) is independent ofs. It then suffices to setUs/P ({s}) = U
to obtainU(X) =

∑
s∈S U(X(s))P ({s}).

Remark9.3. In the Anscombe–Aumann framework, sinceS is finite, the question of
theσ-additivity of probabilityP is pointless.

Remark9.4. Fishburn [FIS 70] has extended the Anscombe–Aumann theory to an
infinite set of states of nature. In his extension, subjective probabilityP is only finitely
additive.

9.4.4. Return to the Ellsberg paradox

Let us now show that the Ellsberg paradox can be interpreted in the Anscombe–
Aumann theory framework as a violation of the independence axiom 9.12 (AA3). Let
us use the formalizationS = {s0, s1, . . . , sk, . . . , s60}, where statesk corresponds to
urn content ‘30 red balls,k blue balls and60− k yellow balls’.

The uncertain prospect described by actXi in Savage’s framework is now char-
acterized in the framework of Anscombe and Aumann [ANS 63]. This is carried out
by mappinggi, associating with each state of naturesk in S, a lottery as indicated in
Table 9.2. Rows 1–4 of the table indicate what becomes of actsX1, X2, X3, X4 in this
new framework. Note that actsg1, g4, δ0 are now constant acts.

Act Consequence onsk, k = 1, . . . , 60
g1(≈ X1) (0, 60/90; 100, 30/90)
g2(≈ X2) (0, (90− k)/90 100, k/90)
g3(≈ X3) (0, k/90 100, (90− k)/90)
g4(≈ X4) (0, 30/90 100, 60/90)
δ0 (0, 90/90)
f (0, (30 + k)/90; 100, (60− k)/90)
g1/2 + f/2 = g3/2 + δ0/2 (0, (90 + k)/180; 100, (90− k)/180)
g2/2 + f/2 = g4/2 + δ0/2 (0, 120/180; 100, 60/180)

Table 9.2.Ellsberg acts: Anscombe–Aumann’s framework
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Axiom 9.12 (AA3) and the equalities of mixtures of acts in rows 7 and 8 of Ta-
ble 9.2 imply that:

g1 � g2 ⇐⇒
1

2
g1 +

1

2
f � 1

2
g2 +

1

2
f ⇐⇒ 1

2
g3 +

1

2
δ0 �

1

2
g4 +

1

2
δ0 ⇐⇒ g3 � g4.

Choicesg1 andg4 in the experiment are therefore a violation of axiom 9.12 (AA3).

9.5. Conclusion

The possibility of justifying the most crucial axioms of thetheories of Savage
[SAV 54] and Anscombe and Aumann [ANS 63] by rationality arguments, has se-
cured the rank of dominant normative model to the SEU model. Moreover, its use
being simple, SEU has become a major tool in economic theory as well as in domains
of application as diverse as insurance, finance, management, health care and the envi-
ronment.

On the other hand, the limitations of SEU as a descriptive model (i.e. its inability to
take into account fairly common behavior (Ellsberg’s paradox)) may create difficulties
in applications, e.g. when assessing subjective probabilities or constructing the utility
function.

There exist other models in the literature which are more flexible than SEU. How-
ever, the two axiom systems which we have presented in this chapter have invariably
been the source of inspiration of the alternative ‘new’ theories.
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Chapter 10

Cardinal Extensions of EU Model Based on
Choquet Integral

10.1. Introduction

It has been proven that the classical models of decision under risk (the expected
utility (EU) model [VON 47]) and under uncertainty (the subjective expected utility
(SEU) model [SAV 54]) are often violated by observed behaviors. The most famous
evidence is the Allais paradox [ALL 53] under risk and the Ellsberg paradox [ELL 61]
under uncertainty. Among others, these two paradoxes have called into question these
classical models.

To take into account these behaviors, Schmeidler [SCH 89] (under uncertainty)
and Quiggin [QUI 82] and Yaari [YAA 87] (under risk) have built new axiomatizations
of behavior for which the EU (or SEU) model is a particular case.

The comonotonic (terminology is from common monotony) independence axiom
is an appealing and intuitive axiom which requires that the usual independence axiom
holds only when hedging effects are absent. Under this axiom, Schmeidler, Quiggin
and Yaari have independently characterized the preferences by means of a functional
(a Choquet integral), under uncertainty as well as under risk. The Choquet integral
has therefore proven to be an important tool for decision making under risk and un-
certainty.

These models – referred to as Choquet expected utility (CEU)models – explain
most of the observed paradoxes. They also offer simple but flexible representations,
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allow for more diversified patterns of behavior under uncertainty as well as under
risk and allow the separate perception of uncertainty or of risk from the valuation of
outcomes.

The aim of this chapter is mainly to emphasize the role of the models of behavior
based on the Choquet integral.

10.2. Notation and definitions

Let us recall some notation from the previous chapters.S is the set ofstates of
nature, E ⊂ 2S is aσ-algebra of subsets ofS, A ∈ E is aneventandC is the set of
consequences. A decision is identified with anact, which is a mapping fromS to C.
The set of acts will be denotedV and the set of consequencesC.

Thepreferencesbetween acts are represented by a binary relation denoted% on the
set of actsV. Strict preference will be denoted� and indifference∼. The preference
relation onV induces(thanks to constant acts) a preference relation on the setC of
consequences. Abusing notation, we denote this preferencerelation onC as%.

An actf is asimple step actif there exists a finite partition{Ai, i ∈ I} of S, with
Ai ∈ E for all i ∈ I, such thatf(Ai) = {ci} i.e. a singleton. Whenf is a simple step
act, we will denotef = (c1, A1, . . . , cn, An) wherec1 - . . . - cn. In particular, a
constantactδc is characterized byδc(S) = c, c ∈ C.

In this chapter, we differentiate the following two particular cases:

1) When the set of consequences is a subset ofR and consequentlyalready or-
dered, the set of acts will be denotedX. Furthermore, a simple step act will be denoted
X = (x1, A1, . . . , xn, An) wherex1 ≤ . . . ≤ xn.

We define the characteristic function ofAi. 1Ai
is defined by1Ai

(s) = 1 if s ∈
Ai, 1Ai

(s) = 0. Otherwise, we have

X =

i=n∑

i=1

xi1Ai
.

2) When the set of consequencesY is a set of lotteries(or equally, distributions
of probability with finite support) on a given setC of outcomes and when the setS
of states of nature isfinite, the set of acts (equally the set of mappings fromS to
Y) will be denotedF0. In this case acts are called ‘horse lotteries’. Since the set of
consequencesY is a mixture set (see Chapter 8), one can use this structure inorder to
define, for allf andh in F0 and allα in [0, 1], the actαf + (1− α)h by:

(αf + (1− α)h)(s) = αf(s) + (1− α)h(s) for all s ∈ S.

For this operation,F0 is also a mixture space.
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10.2.1. The notion of comonotony

The notion of comonotony is crucial for the axiomatic of models that we will
develop in this chapter.

Definition 10.1. Two actsf andg of V are said to be comonotonic if there exists no
pairs, s′ ∈ S such thatf(s) � f(s′) andg(s) ≺ g(s′).

When the set of consequences is a subset ofR ordered with the usual order≥, the
definition is as follows.

Definition 10.2. Two actsX andY of X are said to be comonotonic if for alls, s′ ∈ S,

(X(s)−X(s′))(Y (s)− Y (s′)) ≥ 0

If two actsX andY are comonotonic, they both vary in the same direction from
one states to another states′. Thus, it is impossible to ensure against the ‘variability’
of the payments of a financial assetX by purchasing an other assetY which would be
comonotonic with it. In other words,two comonotonic acts with value inR cannot be
used for hedging purposes.

Let us illustrate this notion with the following example.

Example 10.1.Consider the five mappings defined on the spaceS = {s1, s2, s3} by:

s1 s2 s3

X1 1 2 3
X2 −5 0 9
X3 10 5 0
X4 7 3 5
X5 2 2 2

Since every mapping is comonotonic with a constant mapping,X5 is comonotonic
with all other decisions. The decisionsX1 andX2 are comonotonic.X1 and−X3

are comonotonic (we also say thatX1 andX3 are anti-comonotonic).X4 presents no
comonotonic relation withX1, X2 orX3. Note that comononotonicity is not transitive:
X4 is comonotonic withX5,X5 is comonotonic withX1 and neverthelessX4 andX1

are not comonotonic.

For more information on comonotony, see [CHA 97, DEN 94].
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10.2.2. The Choquet integral

In order to understand the models of decision under uncertainty that we will de-
velop in the following section, let us define the Choquet integral [CHO 53] by first
giving the definition of a capacity.

Definition 10.3. A (normalized) capacityv on (S, E) is a set-function fromE to [0, 1]
satisfyingv(φ) = 0, v(S) = 1 and monotone i.e.

∀A,B ∈ E , A ⊂ B ⇒ v(A) ≤ v(B).

A capacity is said to beconvexif:

∀A,B ∈ E , v(A ∪B) + v(A ∩B) ≥ v(A) + v(B).

Another usual denomination is supermodular or monotone of order 2.

WhenS is finite, one considersE = 2S.

Definition 10.4. For any measurable mappingX from (S, E) to R, the Choquet inte-
gral

∫
Ch

Xdv is defined by:

∫

Ch

Xdv =

∫ 0

−∞

[v(X > t)− 1] dt+

∫ ∞

0

v(X > t)dt (10.1)

– First note that the Choquet formula remains unchanged if strict inequalities are
replaced by weak ones.

– Note also that ifv is a probability measureP ,
∫
Ch

Xdv reduces to
∫
XdP =

EP (X), the mathematical expectation ofX with respect toP .

– WhenX takes only a finite number of values, one can write:

X = (x1, A1, . . . , xi, Ai, . . . , xn, An)

wherexi ∈ R, x1 ≤ . . . ≤ xi ≤ . . . ≤ xn and whereAi ∈ E , (Ai) is a partition ofS.
The Choquet integral ofX is then given by:

∫

Ch

Xdv = x1 + (x2 − x1)v [X ≥ x2] + . . .+ (xn − xn−1)v [X ≥ xn] .

– LetC be a set of consequences,f a mapping from S inC andu a non-decreasing
mapping fromC in R. By settingX = u ◦ f , X is a mapping fromS to R. Then we
can therefore define for a givenu andv:

∫

Ch

u(f)dv =

∫ 0

−∞

[v(u(f) > t)− 1]dt+

∫ ∞

0

v(u(f) > t)dt (10.2)

We will refer to equation (10.2) as the Choquet expected utility (CEU) of the actf i.e.
CEU(f).
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10.2.3. Characterization of the Choquet integral

Schmeidler [SCH 86] gave a characterization of functionalswhich are Choquet
integrals. This characterization will be a crucial tool forthe decision model initiated
by Schmeidler and more generally for all Choquet expected utility models (CEU).

Theorem 10.1. Characterization of the Choquet integral [SCH 86]
Let us consider the functionalI : X → R satisfyingI(1S) = 1 and the following two
conditions:

1) Comonotonic additivity: ifX andY in X are comonotonic, this impliesI(X +
Y ) = I(X) + I(Y ) (henceI(0) = 0).

2) Monotonicity:X ≥ Y onS impliesI(X) ≥ I(Y ).

Then definingv byv(A) = I(1A) onE , we obtain for allX in X:

I(X) =

∫

Ch

Xdv, or equally,I(X) =

∫ 0

−∞

[v(X > t)− 1]dt+

∫ ∞

0

[v(X > t)] dt.

Conversely, any Choquet integral

I : X ∈ X→ I(X) =

∫

Ch

Xdv ∈ R

satisfiesI(1S) = 1 and conditions (1) and (2).

This theorem is at the root of decision models under uncertainty based on the
Choquet integral.

10.3. Decision under uncertainty

Let us recall that by decision under uncertainty we mean, in contrast to decision
under risk, situations when a given objective probability distribution on the setS of
states of the world is not available to the decision maker. Wesaw in Chapter 9 that the
classical SEU model of decision under uncertainty imposes the use of aprobabilistic
representation, dictating that any situation of uncertainty should become a situation of
subjectiverisk. This model contradicts the observed behaviors as shown by Ellsberg’s
Paradox.

10.3.1. Ellsberg’s paradox

Ellsberg’s paradox is important in constructing extensions of the classical model.
Described in detail in Chapter 9, we simply recall it here. Ellsberg [ELL 61] proposes
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the following situation: an urn contains90 balls of which30 are red (R) and60 are
blue (B) or yellow (Y) in some unknown proportion. The numberof blue balls may
be 0 − 60 and the complement consists of yellow balls. We draw (at random) one
ball from the urn and ask the subjects to make the two following decisions: bet onR
(decisionX1) or bet onB (decisionX2), then bet on (R ∪ Y ) (decisionX3) or bet on
(B ∪ Y ) (decisionX4).

10.3.1.1.Interpretation of Ellsberg’s paradox in the framework of Savage

Table 10.1 lists the value of consequences for each decision(expressed ine) ac-
cording to the event.

30/90 60/90
Red Blue Yellow
R B Y

X1 100 0 0
X2 0 100 0
X3 100 0 100
X4 0 100 100

Table 10.1.Ellsberg’s acts: Savage’s framework

Typically, the majority of subjects make the choices:X1 � X2 andX4 � X3. As
demonstrated in Chapter 9, such behavior is incompatible with the Savage sure-thing
principle, one of the major axioms of theory.

Moreover, as noticed by Machina and Schmeidler [MACH 92], such subjects are
not even probabilistically sophisticated. This means thatthey do not ascribe subjec-
tive probabilitiespR, pB, pY to states of nature (i.e. elementary eventsR,B, Y ) and
then use the first-order stochastic dominance axiom. (Let usrecall that, ifX andY
are real random variables, the first-order stochastic dominance rule stipulates that if
∀t ∈ R, P {X ≥ t} ≥ P {Y ≥ t}, thenX should be weakly preferred toY . The pref-
erence becomes strict ifP {X ≥ t} > P {Y ≥ t} for somet0 ∈ R.) The first-order
stochastic dominance axiom is a widely accepted rule for partially ordered random
variables. Otherwise,X1 � X2 would imply pR > pB andX4 � X3 would imply
pB + pY > pR + pY : a contradiction.

10.3.1.2.Interpretation of Ellsberg’s paradox in the framework of Anscombe and Au-
mann

In the previous presentation of the Ellsberg paradox, uncertainty is modeled through
the set of the states of the worldS′ = {R,B, Y } and bets are interpreted as mappings
X : S′ → R.
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We have seen in Chapter 9 that Ellsberg’s paradox is robust. However, if we con-
sider Ellsberg’s experiment in the context of Anscombe and Aumann [ANS 63], the
independence axiom 9.12 (AA3) is violated.

The composition of the urn is now uncertain. The setS of states of nature is com-
posed of 61 states:S = {s0, s1, . . . , sk, . . . , s60} where a statesk represents a given
composition of the urn: ‘30 red balls,k blue balls and60− k yellow balls’.

Let us refer to the set of all lotteries onC = {0, 100}, or equally of all probability
distributions onC, asY with finite support. The uncertain prospect described by the
actXi in the Savage framework is now characterized in the framework of Anscombe
and Aumann [ANS 63] by the mappinggi from S to Y, gi: S → Y in the following
way.

To each state of naturesk of S, the consequencegi(sk) is the lottery:

(Xi(R), 30/90;Xi(B), k/90;Xi(J), (60− k)/90)

or equally the lottery offeringXi(R) with probability30/90,Xi(B) with probability
k/90 andXi(J) with probability(60− k)/90 (see Table 9.2).

Assume, as implicitly assumed by Schmeidler [SCH 89] and Anscombe–Aumann
[ANS 63], that under risk the decison maker maximizes an expected utility (see Chap-
ter 8) with a von Neumann utility functionu. This utility function can be assumed
without loss of generality such thatu(0) = 0, u(100) = 1. We can therefore establish
through a direct computation that, in the Anscombe–Aumann framework, the expected
utility model under uncertainty cannot explain preferences described above. We can
actually imagine that the decision maker ascribes probabilities to the eventssk, and
that they behave in accordance with the Anscombe–Aumann expected utility model,
i.e. prefersh to g if and only if

∑
pku(h(sk)) ≥

∑
pku(g(sk)). Then, a simple com-

putation shows thatg1 � g2 would give30 >
∑
kpk while g4 � g3 would give

30 <
∑
kpk: a contradiction.

10.3.2. Schmeidler’s model in Anscombe–Aumann framework

In order to explain such paradoxes and to separate perception of uncertainty from
valuation of outcomes, Schmeidler [SCH 89] has proposed a model which relaxes the
usual independence condition while offering a flexible but simple formula. As previ-
ously discussed, Schmeidler [SCH 89] has developed his model in the framework of
Anscombe–Aumann [ANS 63]. In this section, the setS of sets of nature is therefore
finite and the events are the elements ofE = 2S. The set of consequencesY is the set
of lotteries on a given set of outcomesC (i.e.Y is the set of probability distributions
on C with finite support). The set of acts is the set of mappingsF0 from S to Y, also
called ‘horse lotteries’. Let% be the preference relation of the decision maker on the
setF0.
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10.3.2.1.Comonotonic independence

Let us recall that, in the Anscombe–Aumann framework, the subjective expected
utility model (SEU) (see Chapter 9) is obtained mainly through the following axiom.

Axiom 10.1. Independence axiom [ANS 63]
For all f, g, h in F0 and for allα in ]0, 1[, f � g implies

αf + (1− α)h � αg + (1− α)h.

We have seen that most behavior contradicts axiom 10.1 (interpretation of Ells-
berg’s paradox in Anscombe and Aumann framework). In order to weaken this axiom,
Schmeidler introduced the definition of comonotonic acts which led to the following
weakened axiom.

Axiom 10.2. Axiom of comonotonic independence [SCH 89]
For all pairwise comonotonic actsf, g and h in F0 and for all α in ]0, 1[, f � g
implies

αf + (1− α)h � αg + (1− α)h.

Roughly speaking, comonotonic independence requires the direction of prefer-
ences to be retained, as long as hedging effects are not involved. This intuition (crucial
in Schmeidler’s model) will appear more transparent in Schmeidler’s representation
theorem [SCH 89].

By adding weak order and continuity conditions to this key axiom, Schmeidler
[SCH 89] derived the characterization of his model where typical preferences ob-
served in section 10.3.1 become admissible.

10.3.2.2.Representation of preferences by a Choquet integral in the framework of
Anscombe–Aumann

Schmeidler shows that the preference relation% on F0 (the acts in Anscombe–
Aumann’s framework) satisfying the axioms previously described is represented by a
Choquet integral with respect to a unique capacityv. More precisely, for allf andg
in F0:

f % g if and only if
∫

Ch

u(f(.))dv ≥
∫

Ch

u(g(.))dv

whereu is the von Neumann utility function on the setY of lotteries onC. Notice that
capacityv is substituted to probabilityP in Anscombe–Aumann’s theorem.

The strategy of Schmeidler’s proof consists of first noting that axiom 10.2 en-
tails axiom 10.1 on the set of constant actsFc0. The existence of a von Neumann–
Morgenstern utility functionu on the setY of lotteries is therefore established, as is
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the ability of linking any act

f = (y1, A1, . . . , yn, An) =

i=n∑

i=1

yi1Ai

in a natural way whereyi ∈ Y with the real random variable

u(f) =
i=n∑

i=1

xi1Ai

wherexi = u(yi), i = 1, . . . , n.

By denoting the set of such variables byX0, Schmeidler shows in a second step
that the preorder induced onX0 (denoted%0) is representable by a Choquet integral.
Equally, there exists a capacityv onS such that:

∀(X,Y ) ∈ X
2
0, X %0 Y if and only if

∫

Ch

Xdv ≥
∫

Ch

Y dv.

10.3.3. Choquet expected utility (CEU) models in Savage’s framework

By Choquet expected utility (CEU) models, we mean those non-additive models
directly connected to the Choquet integral which, following the pioneering work of
Schmeidler [SCH 89] in the Anscombe–Aumann framework, havebeen derived in the
Savage framework [e.g. GIL 87, WAK 90].

The Savage framework seems more natural than that of Anscombe–Aumann,where
consequences are lotteries but the axiomatization becomesmore sophisticated.

Although the Savage framework allows for more general consequence setsC, we
will confine C = R within section 10.3.3only, permitting a simple exposure of the
main properties of CEU models.

We therefore consider a decision maker making their choiceswithin the setX of
acts consisting of allε-measurable and bounded functionsX : (S, E) → R, whereS
is a set of states of nature andE aσ-algebra of subsets ofS. This decision-maker is in
a situation of uncertainty, and% is a preference relation onX.

10.3.3.1.Simplified version of Schmeidler’s model in Savage’s framework

In the Savage framework, which fits the first and simple presentation of Ellsberg’s
paradox, asimplifiedtranslation of the comonotonic independence axiom of Schmei-
dler is as follows.
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Axiom 10.3. Axiom of comonotonic independence [CHA 94a]
LetX,Y, Z ∈ V andZ be comonotonic withX andY , then

X ∼ Y ⇒ X + Z ∼ Y + Z.

ForC = R, the definition of comonotonic acts is that of definition 10.2.

This axiom of comonotonic independence requires us to maintain the direction of
preferences when adding the same act, as long as no asymmetric reduction of uncer-
tainty is involved through hedging effects. On the contrary, in the case of asymmetric
reduction of uncertainty (through hedging effects), this axiom allows us to modify the
direction of preferences.

Example 10.2 below demonstrates how such a behavior under uncertainty can be
taken into account in a case where the acts give results dependent upon the realization
of the eventA or of the complementary event

_
A.

Example 10.2.Assume at the beginning indifference betweenX andY (X ∼ Y ). Z
is comonotonic withY but not withX . Z may be used as a hedge againstX but not
againstY , and consequently an uncertain averse decision maker may express (after
addition of the variableZ) the strict preferenceX + Z � Y + Z.

A A
X 25,000 15,000
Y 12,000 30,000
Z 15,000 25,000
X + Z 40,000 40,000
Y + Z 27,000 55,000

Under the key comonotonic independence axiom and other classical axioms such
as weak order and continuity, it is then possible to derive a simplified version of
Schmeidler’s model where preferences can be represented bya Choquet integral with
respect to a capacityv [CHA 94a], i.e.

for all X,Y ∈ X, X % Y if and only if
∫

Ch

Xdv ≥
∫

Ch

Y dv.

Note that this model is simplified in the sense that utility ofoutcomes is linear, a
consequence of the independence axiom of Chateauneuf [CHA 94a]. Such a result is
deduced from the fundamental theorem of Schmeidler [SCH 86], which characterizes
the Choquet integral [CHO 53] and appears as a crucial tool for Schmeidler’s model
and more generally for Choquet expected utility (CEU) models.
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10.3.3.2.Choquet expected utility model in Savage’s framework

When utility of results is no longer necessarily linear, we obtain the following
classical definition of the Choquet expected utility model.

Definition 10.5. A decision maker satisfies the Choquet expected utility (CEU) model
if the decision maker’s preferences on the set of actsV can be represented with the
help of a utility function under certaintyu: R → R, increasing and defined up to
an increasing affine transformation and with the help of a personal evaluation of the
likelihood of events through a capacityv. Preferences representation is given by

I(u(X)) =

∫

Ch

u(X)dv,

the Choquet integral ofu(X) with respect to capacityv, defined forX ∈ X by

∫

Ch

u(X)dv =

∫ 0

−∞

[v(u(X) > t)− 1] dt+

∫ ∞

0

[v(u(X) > t)] dt (10.3)

Note that this CEU model generalizes equation (10.1) with a functionu which is
not necessarily linear. For a simplestepact

X = (x1, A1, . . . , xn, An) =

i=n∑

i=1

xi1Ai

wherexi ∈ R, Ai ∈ E and(Ai) is a partition ofS, we obtain:

∫

Ch

u(X)dv = u(x1) + (u(x2)− u(x1))v [X ≥ x2]

+ . . .+ (u(xn)− u(xn−1))v [X ≥ xn] .

Remark10.1. One can interpret the behavior of a decision maker using the model

∫

Ch

u(X)dv

as follows. The decision maker valuesX by first evaluating the utility of the min-
imum resultx1 obtained with certainty, and then adding the additional increases of
utility u(xi+1) − u(xi), 1 ≤ i ≤ n − 1 weighted by personal beliefv [X ≥ xi+1] of
occurence.
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φ {s1} {s2} {s3 {s1, s2} {s1, s3} {s2, s3} S
v 0 1/3 0 0 1/3 1/3 2/3 1

u(X) a b c

Table 10.2.Computation of CEU

10.3.3.3.Example of computation of such a Choquet integral

Let S = {s1, s2, s3}. Let v be a capacity onS as below andX an act such that
the values ofu(X) are given in Table 10.2.

The evaluation of the Choquet integralI =
∫
Ch u(X)dv depends upon the ranking

of a, b, c:

– If a < b < c,∫

Ch

u(X)dv = a+ (b− a)v({s2, s3}) + (c− b)v({s3})

= 1/3a+ 2/3b

– If c < a < b, ∫

Ch

u(X)dv = 2/3c+ 1/3a.

– If b < c < a, ∫

Ch

u(X)dv = 2/3b+ 1/3a.

– etc.

A classical integral, with an additive measure, would naturally take the same value
whatever the ranking of consequences. We will now provide the key axiom of CEU
theory.

10.3.3.4.The comonotonic sure-thing principle

The main feature of the CEU model is to take into account possible hedging ef-
fects. For this purpose, the crucial axiom in the axiomatization of CEU is the comono-
tonic sure-thing principle [e.g. CHE 96, GIL 87], a weakening of Savage’s sure-thing
principle which can be stated in the following way.

Axiom 10.4. The comonotonic sure-thing principle
Let

X =
n∑

i=1

xi1Ai

and

Y =

n∑

i=1

yi1Ai
,
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where{Ai} is a partition ofS andx1 ≤ . . . ≤ xi ≤ . . . ≤ xn and y1 ≤ . . . ≤
yi ≤ . . . ≤ yn are such thatxi0 = yi0 for some1 ≤ i0 ≤ n. ThenX % Y implies
X ′ % Y ′ for the actsX ′ andY ′ obtained from actsX andY by merely replacing
thei0th common result by any other common result which preserves the rankingi0 for
both actsX andY .

Axiom 10.4 states that, as long as acts remaincomonotonic(i.e. no hedging effect),
there is no reason to change the direction of preferences when a common outcome is
modified. Note, however, that even when combined with standard axioms of weak
order, continuity and monotonicity, the comonotonic sure-thing principle fails to fully
characterize CEU. For instance, Wakker [WAK 89] completes the axiomatization of
the CEU model by strengthening axiom 10.4 to an axiom ofcomonotonic trade-off
consistency.

We now turn to the ability of Schmeidler’s model to handle uncertainty aversion
and, symmetrically, uncertainty appeal.

10.3.4. Uncertainty aversion

In his seminal papers, Schmeidler [SCH 89] has demonstratedthe great ability
of his model to capture the concept of uncertainty aversion.He defined uncertainty
aversion through convexity of preferences i.e.

∀f, g ∈ F0, ∀α ∈ [0, 1] , f ∼ g ⇒ αf + (1 − α)g % f,

interpreting this axiom as ‘smoothing’ or averaging potential outcomes makes the
decision maker better off. This definition is particularly meaningful since, as proved
by Schmeidler [SCH 86, SCH 89], uncertainty aversion is equivalent to the capacityv
beingconvex.

Proposition 10.1. Schmeidler [SCH 86]
Let I : X→ R be a Choquet integral with respect to a capacityv, i.e.

∀X ∈ X, I(X) =

∫

Ch

Xdv,

the following conditions (1) and (2) are equivalent:

1) v is convex;

2) core(v) 6= φ where

core(v) =

{
simply additive probabilitiesP onE

such thatP (A) ≥ v(A), ∀A ∈ E

}
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and for allX in X:

I(X) = Min

{∫
XdP, P ∈ core(v)

}
.

Proposition 10.1 offers an attractive interpretation of uncertainty aversion in terms
of pessimism. In Schmeidler’s model, an uncertainty averse decision maker behaves as
follows. They consider for every act, among all probabilitydistributionsP in core of
v, the one giving the minimum expected utilityEPu(f) of this act, and then chooses
the act which maximizes this minimum i.e.

∀f, g ∈ F0, f % g if and only if min
P∈core(v)

∫

S

u(f)dP ≥ min
P∈core(v)

∫

S

u(g)dP.

Such an interpretation remains true for the CEU model (i.e. in Savage’s frame-
work) since for such a model, convexity of preferences is equivalent tov convex (and
u concave) [see CHA 02]. Moreover, in the simple case of the CEUmodel with con-
stant marginal utility(u(x) = x, ∀x ∈ R), we can give a direct interpretation in
terms of hedging effects since convexity of preferences is equivalent to the following
uncertainty aversion axiom [CHA 94a].

Axiom 10.5. Uncertainty aversion
For X,Y, Z ∈ X, Y andZ comonotonic,

X ∼ Y ⇒ X + Z % Y + Z.

Note that this uncertainty aversion axiom implies the comonotonic independence
axiom and therefore characterizes the simplified Schmeidler’s model where, moreover,
v is convex.

Axiom 10.5 allows us to take hedging effects into account sinceZ is not a hedge
againstY but may be a hedge againstX .X +Z may therefore display a reduction of
uncertainty with respect toY + Z, and thereforeX + Z may be preferred toY + Z
by an uncertainty averse decision maker.

Such an interpretation is particularly suitable for interpreting behavior in Ellsberg’s
example. Let us describe uncertainty in Ellsberg’s example(section 10.3.1) by:

S = {R,B, Y } , E = 2S.

Let P be the set of all probability distributions on(S, 2S) compatible with the infor-
mation i.e.

P =
{

probability distributions on(S, 2S) such thatP (R) = 1/3
}
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φ R B Y R ∪B R ∪ Y B ∪ Y S
v 0 1/3 0 0 1/3 1/3 2/3 1

Table 10.3.Capacity in Ellsberg’s example

wherev is defined byv(A) = Inf
P
P (A), ∀A ∈ E ; we obtain Table 10.3.

It is straightforward to show thatv is a convex capacity and thatP = core(v).
(Note thatv is actually an infinite monotone capacity or else a belief function.) Let us
compute

I(X) =

∫

Ch

Xdv

for all considered acts:

I(X1) = 1/3× 100 > I(X2) = 0× 100 thusX1 � X2

I(X4) = 2/3× 100 > I(X3) = 1/3× 100 thusX4 � X3.

Consequently, one can explain the behavior in Ellsberg’s paradox by uncertainty
aversion.

10.3.5. The multiprior model

We now consider the max-min model of Gilboa and Schmeidler [GIL 89]. In this
model, the agents have a set ofa priori probability laws (not a single one as in the
Bayesian paradigm) and use the maximin criterion for evaluating decisions through
this set of initial beliefs (multiple prior).

10.3.5.1.The axiomatic of the model

Gilboa and Schmeidler [GIL 89] consider an Anscombe–Aumannframework [ANS 63]
where the set of consequences is a setY of laws with finite support over a setC. This
axiomatic is very simple and is mainly derived from the following two axioms. The
first is the axiom of certainty independence.

Axiom 10.6. Certainty independence
For all f, g of F0 andh constant decisionof F0, then for allα ∈]0, 1[:

f � g =⇒ αf + (1− α)h � αg + (1 − α)h.

Axiom 10.6 is weaker than the usual independence axiom, since it applies only
when adding a ‘common consequence’ which is constant. This axiom is implied by
the comonotonic independence axiom (axiom 10.3). The second axiom is one of un-
certainty aversion previously defined in Schmeidler’s model [SCH 89].
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Axiom 10.7. Uncertainty aversion
For all f, g in F0 andα ∈]0, 1[,

f ∼ g =⇒ αf + (1− α)g % f.

Proposition 10.2. Gilboa and Schmeidler [GIL 89]
Under the axiom of weak order, an axiom of monotony, an axiom of continuity and

axioms 10.6 and 10.7, there exists a set of probability measuresP , closed and convex,
and a von Neumann utility functionu : Y → R such that:

f % g ⇐⇒ min
P∈P

∫
u(f)dP ≥ min

P∈P

∫
u(g)dP.

The functionu is unique up to a positive affine transformation, while the set P is
unique if closed in the weak-star topology.

The interpretation of this representation is fairly simple. The decision maker be-
haves as if they had a set ofa priori beliefs (instead of a unique one as in the expected
utility model). In order to evaluate an act, they compute theexpected utility of this act
with respect to all probability distributions considered in P , and then take the mini-
mum. This last operation represents an attitude of pessimism or uncertainty aversion.
Note that by reversing the last preference in axiom 10.7, this model takes into account
uncertainty loving and therefore optimistic behavior.

10.3.5.2.Comparing multiprior model with Choquet utility model

The multiprior model is closely linked with the Choquet utility model. With this
model, it is possible to interpret the Choquet capacity in terms of beliefs. From propo-
sition 10.1:

v is convex⇐⇒
{
core(v) 6= ∅ and∫
Ch u(X)dv = minP∈core(v)

∫
u(X)dP for all X ∈ X.

When the decision maker’s capacity is convex, the decision maker behaves as in
a multiprior model whose set of probability measures is given by the core of a con-
vex capacity. Nevertheless, one should note that every closed and convex family of
probability measures is not necessarily the core of a convexcapacity and, therefore,
that the multiprior model is a more general model than the Choquet utility case with a
convex capacity. Moreover, the behavior described by a Choquet integral with respect
to a non-convex capacity cannot be described by the multiprior model.

Remark10.2. The behavior of a decision maker of the multiprior type may becon-
sidered as excessively pessimistic. In fact, in the next section we present the models
of Jaffray [JAF 89a, JAF 89b] and Jaffray–Philippe [JAF 97],which represent less ex-
treme behavior.
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10.3.5.3.CEU model and lower and upper envelopes of a probability distributions
family

Jaffray [JAF 89a, JAF 89b] and Jaffray and Philippe [JAF 97] have proven that,
under some conditions, it was possible to write a Choquet integral with respect to any
capacityv as a convex combination of two terms. These terms are the minimum and
the maximum of expected utilities with respect to a family ofprobability distributions,
the weight between the two representing an index of pessimism.

As shown previously in the Ellsberg experiment, the uncertainty can be summa-
rized by the lower envelope

v(.) = Inf
P∈P

P (.).

In this case the capacityv is convex, therefore allowing the simpler formula as in
proposition 10.1. Indeed, ifv is a convex capacity on(S, E), then

∀X ∈ X,min

{∫
XdP, P ∈ core(v)

}
=

∫

Ch

Xdv.

Such situations of uncertainty summarized by a lower envelope (i.e. a convex
capacity) have been defined by Jaffray [JAF 89a, JAF 89b] as being ‘regular uncer-
tainty’.

Definition 10.6. We have a situation ofregular uncertaintywhen the situation of
uncertainty, defined by a family of probability distributionsP on(S, E), is completely
characterized by its lower envelopec where

c(A) = Inf
P∈P

P (A)

andc is convex, meaning thatP = {P on (S, 2S), P ≥ c}. We will denote the upper
envelope ofP : C = Sup

P∈P
P (.) byC, whereC(A) = 1− c(

_
A), ∀A ∈ E .

This ‘regular uncertainty’ can be encountered in natural situations as shown by
Dempster [DEM 67]. Let us assume (as in [DEM 67]) that(Ω, 2Ω, π) is a finite prob-
ability space and thatΓ is a correspondence fromΩ to E∗ = E − {φ}, whereE = 2S

andS is a finite state space. Let us interpretΓ as implying that if$ ∈ Ω occurs, then
the true states belongs toΓ($) (such a state space(Ω, 2Ω, π) is called a message
space). We can then state that each eventA ∈ E occurs with a probability at least
equal toc(A) where

c(A) =
∑

B⊂A

m(B),
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and
m(B) =

∑

{$∈Ω,Γ($)=B}

π({$}).

It can be shown thatc is a belief function (i.e. a particular case of a convex capacity)
[e.g. JAF 89b, SHA 76].

In such situations of regular uncertainty, it can be the casethat a CEU decision
maker does not necessarily exhibit uncertainty aversion, i.e. does not necessarily have
a subjective assessment of events represented by a capacityv = c, but by a subjective
assessment of events represented by a capacityv = αc+ (1− α)C with α ∈ [0, 1] , c
being convex.

Such a behavior, where the value ofα can be interpreted as the pessimism index
due to Hurwicz, has been studied and axiomatized by Jaffray and Philippe [JAF 97]
who have shown that this behavior was compatible both with the CEU model and with
the Jaffray models [JAF 89a, JAF 89b].

10.4. Decision under risk

From this point onwards, we assume that there is an ‘objective’ probability distri-
butionP on(S, E) and that the decision maker knows it. We then say that the decision
maker is facing aproblem of decision under risk.

Moreover, to make the exposition simpler, we suppose that the probability dis-
tribution P is σ-additive and non-atomic i.e.∀A ∈ E , such thatP (A) > 0, ∀α ∈
(0, 1] , ∃B ∈ E , B ⊂ A such thatP (B) = αP (A). Due to these assumptions, the set
X of acts generates any real bounded random variable.

Any elementX of X is then a random variable whose probability distribution
is PX . Let us denote the cumulative distribution function ofX asFX i.e. ∀x ∈
R, FX(x) = P {s ∈ S/X(s) ≤ x} = PS {X ≤ x}, its expected value asE (X) and
the set of all probability distributions of elements ofX asL.

Since everyX of X induces a probability distributionL(X) on R, the preference
relation% onX also induces a preference relation onL that (by abuse of notation) we
also denote% under the following conditionH0.

– ConditionH0 Neutrality: Two random variables with the same probabilitydis-
tribution are always indifferent.

Hence, under this condition, any axiomatization on(X,%) can be replaced by an
axiomatization on(L,%).
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Remark10.3. Any discrete actX of X can be written:

X = (x1, A1, . . . , xk, Ak, . . .Xn, An),

whereAi(i = 1, . . . , n) is a partition ofS andxi the consequence ofX on eachAi.
Under risk, the probability distribution of this random variable is denoted:

L(X) = (x1, p1, . . . , xk, pk, . . . , xn, pn)

with
x1 ≤ x2 ≤ . . . ≤ xn, pi = P (Ai) ≥ 0 and

∑
pi = 1.

In the following, it can be useful to use the notation:

L(X) = (x1, 1− q1;x2, q1 − q2; . . . ;xn−1, qn−2 − qn−1;xn, qn−1) (10.4)

where, fori = 1, . . . , n− 1,

qi =

j=n∑

j=i+1

pj.

In this section, we identify any consequencec with its Dirac probability distribu-
tion δ{c}.

10.4.1. EU model and Allais paradox

In Chapter 8 we studied the classical model of decision underrisk in detail: the
expected utility (EU) model. From as early as 1953, Allais [ALL 53] built a couple of
alternatives for which a majority of subjects, confronted with those choices, choose in
contradiction with the independence axiom and therefore inviolation of the EU model
(see section 8.4.1).

As this experiment (known as the Allais ‘paradox’) has been fundamental in the
questioning of the EU model, let us first recall the original Allais paradox [ALL 53].
Subjects were asked to choose between the lotteries (say in thousand euros)L1 (win
1M with certainty) orL2 (win 1M with probability 0.89, 5M with probability 0.10
and 0 with probability 0.01), and then (independently) to choose between the lotteries
L′

1 (win 1M with probability 0.11 and 0 with probability 0.89) orL′
2 (win 5M with

probability 0.10 and 0 with probability 0.90).

Most subjects chooseL1 overL2 andL′
2 overL′

1. These simultaneous choices
violate the independence axiom. Indeed, definingP as the lottery yielding 1M with
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probability 1 andQ as the lottery yielding 0 with probability 1/11 and 5M with prob-
ability 10/11, we can check that:

L1 = 0.11P + 0.89δ1

L2 = 0.11Q+ 0.89δ1

L′
1 = 0.11P + 0.89δ0

L′
2 = 0.11Q+ 0.89δ0

whereδ0 is the lottery ‘win 0 with probability 1’ andδ1 is the lottery ‘win 1M with
probability 1’. The observed choices are therefore in contradiction with the indepen-
dence axiom. Note that under the independence axiom:

L1 � L2 =⇒ P � Q =⇒ L′
1 � L′

2.

This experiment has been run many times on various populations of subjects with
similar results: about 66% of the choices are in contradiction with the independence
axiom.

Not only are observed behaviors in contradiction with EU theory, but the EU model
also raised a theoretical difficulty: the interpretation ofthe functionu (called von Neu-
mann’s utility) characterizing the decision maker’s behavior. As pointed out by Allais
himself, the functionu has in fact the double role of expressing the decision maker’s
attitude with respect to risk (concavity ofu implying risk aversion) and the decision
maker’s valuation of differences of preferences under certainty (concavity ofu im-
plying diminishing marginal utility of wealth). This evidence has led researchers to
build more flexible models, a pioneering famous work in this stream being [KAH 79].
We will focus in what follows on the rank-dependent expectedutility (RDU), more
directly related with Choquet integral. The RDU model presented in the next section
will not only disentangle attitude towards risk and satisfaction of outcomes, but will
also be compatible with observed behaviors in Allais experiment.

10.4.2. The rank-dependent expected utility model

10.4.2.1.Definition of the rank-dependent expected utility model

The rank-dependent expected utility (RDU) model is due to Quiggin [QUI 82]
under the description of ‘anticipated utility’. Variants of this model are due to Yaari
[YAA 87], Segal [SEG 87, SEG 93] and Allais [ALL 88]. More general axiomatiza-
tions can be found in Wakker [WAK 94] and Chateauneuf [CHA 99].
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Definition 10.7. A decision maker behaves in accordance with the RDU model if the
decision maker’s preferences on(L,�) are characterized by two functionsu andf .
A continuous, increasing, cardinal (if defined up to an affineincreasing transforma-
tion) utility function u: R → R plays the role ofutility on certainty. An increasing
probability-transformationfunctionf : [0, 1] → [0, 1] satisfiesf(0) = 0, f(1) = 1.
Such a decision maker prefers the random variableX to the random variableY if and
only if V (X) ≥ V (Y ), where the functionalV is given by:

V (Z) = Vu,f (Z) =

∫ 0

−∞

[f(P (u(Z) > t))− 1]dt +

∫ ∞

0

f(P (u(Z) > t))dt.

We can note the following:

– If the transformation functionf is the identity functionf(p) ≡ p, thenV (Z) =
Vu,I(Z) is the expected utilityE[u(Z)] of the random variableZ.

– If the utility u is the identity functionu(x) ≡ x, thenV (Z) = VI,f (Z) is
the Yaari functional [YAA 87]. In fact, Yaari independentlyaxiomatized his model,
referred to as ‘Dual Theory’. This model is as parcimonious as the EU model since
it only uses one functionf . However, this model allows us to distinguish strong risk
aversion from weak risk aversion, which is not possible in EUmodel.

– If both transformation and utility are identity functions, thenV (Z) = VI,I(Z)
is simply the expected valueE[Z] of the random variableZ.

WhenZ is discrete,V (Z) can be written as

V (Z) = u(x1) + f(q1)[u(x2)− u(x1)] + . . .

+ f(q2)[u(x3)− u(x2)] + . . .+ f(qn−1)[u(xn)− u(xn−1].

We can then interpret the evaluation of an RDU decision maker. They certainly
evaluate first the utility of the worst outcomeu(x1), and then weight the additional
possible increases of utilityu(xi)−u(xi−1) by their personal transformationf(qi) of
the probabilityvi of havingat leastxi.

According to this interpretation, if the decision maker behaves in such a way that
f(p) ≤ p, it means that they underestimate all the additional utilities of gains. In this
sense, we will call thempessimistic under risk. In the same way,u now reflects their
satisfaction for wealth and the concavity ofu reveals diminishing marginal utility.

Remark10.4. Let us note that various attempts to generalize EU model by a func-
tional:

(x1, p1; . . . ;xk, pk; . . . ;xn, pn) 7−→
∑

f(pi)u(xi)
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with f : [0, 1] −→ [0, 1] andf(0) = 0, f(1) = 1 failed because the only function-
als compatible with the first-order stochastic dominance isobtained forf(p) = p,
meaning that this functional is reduced to EU.

10.4.2.1.1. Allais paradox is compatible with RDU model

As an exercise, we can evaluate the different lotteries of the Allais example in an
RDU model. Settingu(0) = 0 (without loss of generality) we have

V (L1) = u(1);V (L2) = u(1)(f(0.99)− f(.0.10)) + u(5)f(0.10)

V (L′
1) = u(1)f(0.11)

and
V (L′

2) = u(5)f(0.10).

L1 � L2 impliesu(5)f(0.10) < u(1)[1−f(0.99)+f(0.10)] andL′
2 � L′

1 implies
u(5)f(0.10) > u(1)f(0.11). The simultaneous choicesL1 � L2 andL′

2 � L′
1 are

therefore explained by RDU theory for anyf satisfying1 − f(099) > f(0.11) −
f(0.10), revealing that the same probability difference 0.01 is considered as more
important in the neighborhood of certainty.

10.4.2.2.Key axiom of RDU’s axiomatization: comonotonic sure-thingprinciple

Axiom 10.8. Comonotonic sure-thing principle under risk
The justification of the description of this axiom results from a natural interpretation of
P,Q, P ′, Q′ as probability distributions of pairwise comonotonic random variables.

LetP andQ be two lotteries ofL andP = (x1, p1; . . . ;xk, pk; . . . ;xn, pn) and
Q = (y1, p1; . . . ; yk, pk; . . . ; yn, pn) be such thatxk0 = yk0 . ThenP � Q implies
P ′ � Q′ for lotteries obtained from lotteriesP andQ simply by replacing the common
outcomexi0 by a commonk0th outcomex′i0 in bothP ′andQ′.

Axiom 10.8 [CHA 99] is very similar to the ordinal independence axiom of Green
and Julien [GRE 88], to the irrelevance axiom of Segal [SEG 87] and to the comono-
tonic independence of Chew and Wakker [CHE 96]; see also [CHE89, QUI 82] and
[WAK 94]. It is clearly much weaker than Savage’s sure-thingprinciple, which re-
quires no restriction onx′i0 .

Remark10.5. In the statement of axiom 10.8, the common modification of thetwo
lotteries does not change the order of the common outcomes intheir respective dis-
tributions. The corresponding random variables canonically associated to the distri-
butionsX andY , taking valuesxk andyk respectively on setsEk with probability
pk(k = 1, . . . , n) stay comonotonic.
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Probabilities
0.01 0.89 0.1

L1 1M 1M 1M
L2 0 1M 5M
L′

1 1M 0 1M
L′

2 0 0 5M

Table 10.4.Allais’ lotteries

To capture the real meaning of axiom 10.8, let us return to Allais’ experiment
where subjects have to choose first betweenL1 andL2 then (independently) between
L′

1 andL′
2. The four different lotteries are described in Table 10.4.

The common modification fromL1 toL′
1 and fromL2 toL′

2 does not preserve the
rank of the common outcome in both modified lotteries. More precisely, the common
value 1M (with probability 0.89) inL1 andL2 corresponds to an intermediate value.
The common value 0M (with the same probability) correspondsto the smallest value.
Thus, the two choicesL1 andL′

2 do not contradict the previous comonotonic sure-
thing principle.

This attractive axiom is central in the characterization ofRDU. However, as in the
case of CEU, this axiom fails to fully characterize RDU even when considered jointly
with the standard axioms of weak order, continuity and monotony.

A complete characterization of RDU model can be obtained e.g. with the help
of non-contradictory comonotonic trade-offs[WAK 94] or else with acomonotonic
mixture independence axiom. The latter is an adaptation of mixture independence,
which underlines the role played not only by comonotony but also by the extrema
outcomes [CHA 99].

More precisely, Chateauneuf [CHA 99] adds axiom 10.9 to the usual axioms of
weak order, monotony, continuity and the comonotonic sure-thing principle under risk
in order to characterize the RDU model.

Axiom 10.9. Comonotonic mixture independence
For everyp in [0, 1],

1) P1 = (1− p)δx1 + pδa ∼ Q1 = (1− p)δy1 + pδb and

2) P2 = (1− p)δx1 + pδc ∼ Q2 = (1 − p)δy1 + pδd imply

3) αP1 + (1− α)P2 ∼ αQ1 + (1− α)Q2 for everyα in [0, 1].
For everyp in [0, 1],

4)R1 = (1 − p)δa + pδz1 ∼ S1 = (1− p)δb + pδt1 and

5)R2 = (1 − p)δc + pδz1 ∼ S2 = (1− p)δd + pδt1 imply
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6) αR1 + (1− α)R2 ∼ αS1 + (1− α)S2 for everyα in [0, 1].

Axiom 10.9 underlines the role played not only by comonotonicity but also by the
security factorsx1 andy1 in (1) and (2) and potential factorsz1 andt1 in (4) and (5)
[see COH 92, JAF 88].

10.4.3. From CEU to RDU model using first-order stochastic dominance[WAK 90]

Let us first show that the RDU representation can be viewed as aChoquet integral.

10.4.3.1.RDU representation is a Choquet integral

In the RDU model, the functionf from [0, 1] to [0, 1] is increasing and satisfies
f(0) = 0 andf(1) = 1. The corresponding ‘transformed’ probabilityfoP is therefore
a capacity and the RDU functional is a Choquet integral with respect to this capacity
v = foP . More precisely,

V (Z) =

∫

Ch

u(Z)d(foP ) = −
∫ ∞

−∞

u(x)df(P (Z > x)) = −
∫ ∞

−∞

u(x)df(1−F (x)).

Remark10.6. Let us note that iff is a convex function, thenv = foP is a convex
capacity [e.g. CHA 91, DEN 94]. Moreover, iff is below the diagonal (i.e. satisfies
f(p) ≤ p, ∀p ∈ [0, 1]), then it can be easily seen thatcore(v) 6= φ.

10.4.3.2.From CEU to RDU

It has been recognized by several authors [e.g. CHA 91, WAK 90] that the RDU
model under risk can be derived from the CEU model under uncertainty simply by
postulating the respect of first-order stochastic dominance. We will use this approach
first to obtain Yaari’s model from the simplified version of Schmeidler’s model (sec-
tion 10.2.3.1), then to obtain the RDU model from the Choquetexpected utility model.

Being under risk, we suppose that the objective probabilityP is compatible with
the preference relation on(V,�). More precisely, we suppose the following axiom.

Axiom 10.10. First-order stochastic dominance

[A,B ∈ A, P (A) ≥ P (B)]⇒ A � B.

Let us note that axiom 10.10 is actually weaker than the first-order stochastic dom-
inance axiom but proves to be equivalent in this framework.
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10.4.3.2.1. From simplified Schmeidler model to Yaari model

Let us suppose that the preference relation on(V,�) satisfies the comonotonic
independence axiom 10.3 as well as the usual axioms of non-trivial weak-order, con-
tinuity and monotonicity. The preference relation is then represented by a Choquet
integral with respect to a capacityv such thatA � B implies v(A) ≥ v(B). The
axioms then state thatP (A) ≥ P (B) impliesv(A) ≥ v(B).

This gives us an intuition of the result. There exists a unique transformed increas-
ing functionf : [0, 1]→ [0, 1] satisfyingf(0) = 0, f(1) = 1 such thatv = foP .

It can then be seen that the simplified Schmeidler model reduces to the Yaari model
under the assumption of first-order stochastic dominance [CHA 94a, WAK 90].

10.4.3.2.2. From general CEU model to RDU model

Let us suppose that the preference relation on (V,�) satisfies all the axioms to
obtain the general CEU model characterized byv andu (see definition 10.5), then
A � B impliesv(A) ≥ v(B). Moreover, if the objective measureP on S satisfies
first-order stochastic dominance then, sinceP (A) ≥ P (B) implies v(A) ≥ v(B),
there exists a unique transformation functionf such thatv = foP . We obtain the
following result [WAK 90].

Let the preference relation on(V,�) satisfy all the axioms to obtain general CEU,
and letP be a probability distribution onS satisfying first-order stochastic dominance.
Then the preference relation on(V,�) can be represented by the RDU model.

10.4.4. Risk aversion notions and characterization in the RDU model

We defined two notions of risk aversion (RA) in Chapter 8: strong RA and weak
RA. In the EU model, both notions have the same characterization: concavity ofu.
Let us recall these two notions here. The most natural way to define risk aversion is
the following.

Definition 10.8. A decision maker isweakly risk averseif they always prefer to any
random variableX the certainty of its expected valueE(X). They areweakly risk
seekingif they always prefer any random variableX to the certainty of its expected
valueE(X) andrisk neutralif they are always indifferent betweenX andE(X).

An other possible way to define some type of risk aversion is todefine it as aversion
to some type of (mean preserving) increase in risk. All kindsof stochastic orders
can then generate many different kinds of risk aversion. There therefore exist many
different definitions of risk aversion. However, their different meanings have been
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hidden by the fact that, under expected utility theory, all are equivalent. They all reduce
to the concavity of the utility function (see section 8.4.3).

We now provide usual definitions of (mean preserving) increase in risk with cor-
responding definitions of risk aversion.

10.4.4.1.Strong risk aversion

Y is a general mean preserving increase in risk (MPIR) ofX if
∫ t

−∞

FY (x)dx ≥
∫ t

−∞

FX(x)dx

for all t ∈ R and ∫ +∞

−∞

FY (x)dx =

∫ +∞

−∞

FX(x)dx.

This usual concept of (mean preserving) increasing risk is classically used in eco-
nomics [ROT 70] and we define the corresponding notion of strong risk aversion as
follows.

Definition 10.9. A decision maker isstrongly risk averseif they are averse to any
general (mean preserving) increase in risk, i.e. for anyX andY in V such thatY is a
MPIR ofX , X is preferred toY . They are strongly risk seeking ifY is preferred to
X and risk neutral if indifferent.

10.4.4.2.Monotone risk aversion

Quiggin [QUI 92] first noted that strong risk aversion may be too strong a concept
and introduced a new notion,monotone (mean-preserving) increase in risk, defined in
terms of comonotonic random variables instead of a general mean-preserving increase
in risk.

Y is a (mean preserving) monotone increase in risk (MPMIR) ofX if and only if
Y =

d
X + Z, whereZ is such thatE(Z) = 0 andX andZ arecomonotonic. (Note

that notation=
d

represents equality of probability distributions.)

Before giving an important property of this notion, let us recall thatF−1(p) =
inf {z ∈ R|F (z) ≥ p}. We can then interpretF−1(p) as the highest gain among the
least favorablep% of the outcomes.

Landsberger and Meilijson [LAN 94b] proved that for two random variables with
equal mean this notion is equivalent to the statistical notion of ‘dispersion’ introduced
by Bickel and Lehmann [BIC 76]:Y is more dispersed thanX if

F−1
Y (q)− F−1

Y (p) ≥ F−1
X (q)− F−1

X (p),
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whereF−1 is defined from(0, 1] into R by

F−1(p) = inf {z ∈ R|F (z) ≥ p} ,

for all 0 < p < q < 1. Thus, ifY is MPMIR ofX , all the interquantile intervals are
shorter forX than forY . Let us then define the corresponding notion of monotone
risk aversion.

Definition 10.10. A decision maker ismonotone risk averseif averse to any monotone
increase in risk i.e. for every pair(X,Y ) whereY is MPMIR ofX , they always prefer
X toY . They are monotone risk seeking ifY is always preferred toX and risk neutral
if always indifferent betweenX andY .

This notion ofmonotone risk aversion[e.g. COH 95] is particularly fitted to RDU
theory where comonotony plays a fundamental part at the axiomatic level.

10.4.4.3.Left monotone risk aversion

The order induced by monotone increasing risk is a very partial order since it can
order very few pairs of random variables. The following notion compares more pairs.
This notion of increasing risk is asymmetric in the sense that it treats downside and
upside risks differently. This notion will prove to be particularly suitable for deductible
insurance [VER 97].

The following definition, due to Jewitt [JEW 89], was referred to as location-
independent risk (see also Landsberger and Meilijson [LAN 94a]). (However, note
that in the original definition the notion is given forX andY with possibly different
meanings.) The motivation of Jewitt was to find a notion of increase in risk that models
coherent behavior in a context of partial insurance.

Y is said to be aleft monotone mean preserving increase in risk(LIR) of X if

∫ F−1
Y

(p)

−∞

FY (x)dx ≥
∫ F−1

X
(p)

−∞

FX(x)dx

for all p ∈ (0, 1). We define the corresponding notion of left monotone risk aversion
as follows.

Definition 10.11. A decision maker isleft monotone risk averse(respectively, left
monotone risk seeking) if they are averse to any left monotone increase in risk, i.e. for
anyX andY in V such thatY is a left monotone MPIR ofX , X is preferred toY
(respectively,Y toX).

Remark10.7. It can readily be seen that strong risk aversion⇒ left motone risk aver-
sion⇒ monotone risk aversion⇒ weak risk aversion. The reverse implications are
generally not true. However, in the EU model, all these notions are equivalent and are
reduced to the concavity ofu.
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10.4.4.4.Characterization of risk aversion notions in the RDU model

Contrary to the EU model, each of the different notions of aversion to risk has a
specific characterization in the RDU model. Machina [MACH 82a, MACH 82b] was
the first to notice that the equivalence between different notions of risk aversion in
the EU model does not carry over to generalized models. Gathering several results
from different papers, we obtain the following results. Letan RDU decision maker be
characterized by two differentiable functionsu andf .

1) An RDU decision maker isstrongly risk averse(respectively strongly risk seek-
ing) if and only if the utility functionu is concave and the transformation functionf is
convex (respectivelyu convex andf concave) [CHE 87]. Note thatf convex implies
that the capacityfoP is convex.

2) An RDU decision maker isleft monotone risk averseif and only if their trans-
formation functionf is star-shaped at 1 from above (i.e. if for anyx of R+, x < 1,
(1− f(x))/(1 − x) is increasing) and their utility functionu is concave [CHA 04].

3) An RDU decision maker isleft monotone risk seekingif and only if the trans-
formation functionf is star-shaped at 1 from below (i.e. if for anyx of R+, x < 1,
(1− f(x))/(1 − x) is decreasing) and the utility functionu is convex [CHA 04].

4) The characterization of monotone risk aversion is based on two indices:
a)

Pf = inf
0<v<1

[
1− f(v)

f(v)
/
1− v
v

]

referred to as the index ofpessimism, which is≥ 1 as soon asf(p) ≤ p and
b)

Gu = sup
y≤x

u′(x)

u′(y)

referred to as the index ofnon-concavityif u is not differentiable [CHA 97]. In this
caseGu becomes more complex:

Gu = sup
x1<x2≤x3<x4

[
u(x4)− u(x3)

x4 − x3
/
u(x2)− u(x1)

x2 − x1

]

and is referred to as the index ofgreediness.Gu ≥ 1 is always satisfied and the value
1 corresponds exclusively to concavity.

An RDU decision maker with probability transformation function f and differ-
entiable utilityu is monotone risk averseif and only if their index of pessimism is
greater than their index of non-concavity, i.e.Pf ≥ Gu [CHA 05]. The most signif-
icant feature of this result is that a decision maker does notneed to have a concave
utility function u to be monotone risk averse.

5) The characterization of monotone risk seeking is based ontwo indices:
a)

Of = inf
0<v<1

[
f(v)

1− f(v)
/

v

1− v

]
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referred to as the index ofoptimism, which is≥ 1 as soon asf(p) > p, and
b)

Tu = sup
x<y

u′(x)

u′(y)

referred to as the index ofnon-convexity, which always satisfiesTu ≥ 1 and the value
1 corresponds exclusively to convexity.

A RDEU decision maker with probability perception functionf and utility func-
tion u is monotone risk seekingif and only if the decision maker’s index of optimism
exceeds the index of non-convexity: i.e.Of ≥ Tu.

6) For a weakly risk-averse RDU decision maker, there is no known characteriza-
tion but sufficient conditions, not implying concavity ofu [CHA 94b].

An interesting point can be made from all these results. RDU models not only
allow the separation of transformation of probability fromvaluation of outcomes but
also explain diversified behaviors e.g. weakly risk seekingwith a diminishing marginal
utility of wealth or a dislike of risk (to be weakly risk averse) while accepting a (mean
preserving) increase in risk i.e. without being a strongly risk-averse decision maker.

All the cardinal extensions of the EU model proposed in this chapter allow a better
representation of real behavior under uncertainty.

Recent years have shown an increase in interest in new cardinal generalizations
of the subjective EU model, building upon the Choquet modelsinitiated by Schmei-
dler, Quiggin and Yaari. The interested reader should see [CHA 07, GAJ 08, GHI 04,
GHI 05, GIL 04, KLI 05, MAC 06]. In the following chapter, we shall investigate ‘or-
dinal’ extensions of the EU model.
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Chapter 11

A Survey of Qualitative Decision Rules under
Uncertainty

11.1. Introduction

Traditionally, decision-making under uncertainty (DMU) relies on a probabilistic frame-
work. When modeling a decision maker’s rational choice between acts, it is assumed that the
uncertainty about the state of the world is described by a probability distribution, and that the
ranking of acts is carried out according to the expected utility of the consequences of these acts.
This proposal was made by economists in the 1950s, and justified on an axiomatic basis by
Savage [SAV 54] and his school (see Chapter 9). More recently, in artificial intelligence, this
setting has been applied to problems of planning under uncertainty, and is at the root of the
influence diagram methodology for multiple stage decision problems (see Chapters 13 and 14).

However, in parallel to these developments, artificial intelligence has witnessed the emer-
gence of a new decision paradigm calledqualitative decision theory[DOY 99], where the ra-
tionale for choosing among decisions no longer relies on probability theory nor on numerical
utility functions. Motivations for this new proposal are twofold. There exists a tradition of sym-
bolic processing of information in artificial intelligence, and it is not surprising this tradition
should try and stick to symbolic approaches when dealing with decision problems. Formulating
decision problems in a symbolic way may be more compatible with a declarative expression of
uncertainty and preferences in the setting of some logic-based language [BOU 94, THO 00].

In addition, the emergence of new information technologiessuch as information systems
or autonomous robots has generated many new decision problems involving intelligent agents
[BRA 97]. An information system is supposed to help an end user retrieve information and
choose between courses of action, based on a limited knowledge of the user needs. It is not clear
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that numerical approaches to DMU, developed in the framework of economics, are fully adapted
to these new problems. Expected utility theory might sound too sophisticated a tool for handling
queries of end users. Numerical utility functions and subjective probabilities presuppose a rather
elaborate elicitation process that is worth launching for making complex decisions that need to
be carefully analyzed [see BOU 00]. Users of information systems are not necessarily capable
of describing their state of uncertainty by means of a probability distribution, nor may they
be willing to quantify their preferences [BOU 94]. This is typical of electronic commerce, or
recommender systems (that provide advice or suggestions) for example.

In many cases, it sounds more satisfactory to implement a choice method that is fast and
based on rough information about the user preferences and knowledge. Moreover, the expected
utility criterion makes full sense for repeated decisions whose successive results accumulate
(for instance money in gambling decisions). In contrast, some decisions made by end users are
rather one-shot, in the sense that obtaining wrong advice one day cannot always be compen-
sated by good advice the next. Note that this kind of application often needs multiple-criteria
decision making rather than DMU. However, there is a strong similarity between the two prob-
lems [DUB 00b], and some notions and results in this chapter can be expressed in the setting of
multiple-criteria decision making.

In the case of autonomous robots, conditional plans are often used to monitor the robot
behavior and the environment of the robots is sometimes onlypartially observable. The theory
of partially observable Markov decision processes leads tohighly complex methods due to
handling infinite state spaces. A qualitative, finitistic, description of the goals of the robot and of
its knowledge of the environment might lead to more tractable methods [e.g. SAB 01]. Besides,
the expected utility criterion is often adopted because of its mathematical properties (it enables
dynamic programming principles to be used). However, it is not clear that this criterion is always
the most cogent one e.g. cautious policies should be followed in risky environments. Dynamic
programming techniques are also compatible with qualitative settings such as possibility theory
(see [DUB 05, FAR 98] and Chapter 14).

There is a need for qualitative decision rules. However, there is no real agreement on what
‘qualitative’ means. Some authors assume incomplete knowledge about classical additive util-
ity models, whereby the utility function is specified via symbolic constraints [e.g. BAC 96,
LAN 96]. Others use sets of integers and the like to describe rough probabilities or utilities
[GIA 00, TAN 94]. Lehmann [LEH 01] injects some qualitative concepts of negligibility in the
classical expected utility framework. However, some approaches are genuinely qualitative in
the sense that they do not involve any form of quantification.We take it for granted that a quali-
tative decision theory is one that does not resort to the fullexpressive power of numbers for the
modeling of uncertainty, nor for the representation of utility.

This chapter proposes an overview of qualitative decision theory, focused on discussing
the rationale of the various possible decision rules and their properties. It is stressed that two
kinds of approach exist, according to whether degrees of uncertainty and degrees of utility are
commensurate (i.e. belong to a unique measurement scale) ornot. A Savage-like axiomatics is
proposed for each of these two approaches. In this setting, acts are modeled as functions from
the set of states to the set of consequences, and decision rules stem from properties which the
preference relation over acts is requested to satisfy.
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The natural uncertainty theory at work in qualitative frameworks is generally possibility
theory rather than probability theory. However, qualitative decision rules are often either in-
decisive (due to incomparability incurred or ties) or too adventurous (concentrating on most
plausible states of nature and neglecting other ones). Somerules lack discrimination simply
because the measurement scale is too coarse. Recent resultsshow how to refine some criteria,
using a specific form of standard expected utility encoding lexicographic refinements.

The chapter is organized as follows. A survey of qualitativedecision rules is proposed,
including those that assume commensurability between utility and uncertainty (section 11.2).
Section 11.3 then motivates a decision rule that does not presuppose it, and shows its potential
limitations. Section 11.4 presents Savage-like representation results for such qualitative deci-
sion rules, on the basis of axioms expressing properties of the preference relation between acts.
Finally, section 11.5 explains how to refine them in order to tackle this weakness, acknowledg-
ing the lack of discrimination power of qualitative decision rules.

11.2. Quantitative versus qualitative decision rules

A decision problem can be cast in the following framework: consider a setS of states (of
the world) and a setX of potential consequences of decisions. States encode possible situations,
states of affairs, etc. An act is viewed as a mappingf from the state space to the consequence
set, namely, in each states ∈ S, an actf produces a well-defined resultf(s) ∈ X. The
decision maker must rank acts without knowing what is the current state of the world in a
precise way. The consequences of an act can often be ranked interms of their relative appeal:
some consequences are judged better than others. This is often modeled by means of a numerical
utility function u which assigns a utility valueu(x) ∈ R to each consequencex ∈ X.

Classically, there are two approaches when modeling the lack of knowledge of the decision
maker about the state of affairs. The most widely-found assumption is that there is a probability
distributionp on S. It is either obtained from statistics (this is called decision under risk, Von
Neumann and Morgenstern [NEU 47]; see Chapter 8) or it is a subjective probability [SAV 54]
supplied by the agent via suitable elicitation methods. Then the most usual decision rule is based
on the expected utility criterion:

EUp,u(f) =
∑

s∈S

p(s)u(f(s)). (11.1)

An actf is strictly preferred to actg if and only ifEUp,u(f) > EUp,u(g). The expected
utility criterion is by far the most commonly used. This criterion makes sense especially for
repeated decisions whose results accumulate. It also clearly presupposes subjective notions like
belief and preference to be precisely quantified. In particular, in the expected utility model, the
way in which the preference on consequences is numerically encoded will affect the induced
preference relation on acts. The model exploits some extra information not contained solely in
preference relations onX, namely, the absolute order of magnitude of utility grades.Moreover,
the same numerical scale is used for utilities and degrees ofprobability. This is based on the
notioncertainty equivalent, i.e. the idea that a lottery (involving uncertainty) can becompared
to a sure gain or a sure loss (involving utility only) in termsof preference.
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Another proposal is the maximin criterion often credited toWald [WAL 50]. It applies when
no information about the current state is available, and it ranks acts according to its worst con-
sequence:

W−
u (f) = min

s∈S
u(f(s)). (11.2)

It is a (very) pessimistic criterion. An optimistic counterpartW+
u (f) toW−

u is obtained by
turning minimum into maximum in equation (11.2). Clearly, the maximin and maximax criteria
do not need numerical utility values. Only a total ordering on consequences is needed. No
knowledge about the state of the world is necessary. However, these criterion have the major
defect of being extremely pessimistic and over-optimistic, respectively. In practice, they are
never used for this reason. Hurwicz has proposed to use a weighted average ofW−

u (f) and its
optimistic counterpart, where the weight bearing onW+

u (f) is viewed as a degree of optimism
of the decision maker. Other decision rules have been proposed, especially some that generalize
bothEUp,u(f) andW−

u (see [JAF 89, SCH 89] and Chapter 10). However, all these extensions
again require the quantification of preferences and/or uncertainty.

Qualitative extensions of the maximin criterion, which account for some knowledge about
the state of affairs, nevertheless exist. Boutilier [BOU 94] is inspired by preferential inference
of non-monotonic reasoning, whereby a propositionA entails another oneB by default ifB is
true in the most normal situations whereA is true. He assumes that states of nature are ordered
in terms of their relative plausibility using a weak order relation� onS. He proposes to make
decisions on the basis of the most plausible states of naturein accordance with the available
information, neglecting other states. If the available information is thats ∈ A, a subset of
states, and ifA∗ is the set of maximal elements inA according to the plausibility ordering�,
then the criterion is defined by

W−
�,u(f) = min

s∈A?
u(f(s)). (11.3)

Another refinement of the Wald criterion is the possibilistic qualitative criterion. It is based
on a utility functionu onX and a possibility distributionπ on S [DUB 88a, DUB 98b], both
mapping on the same totally ordered value scaleV , with top 1 and bottom 0. The ordinal value
π(s) represents the relative plausibility of states ∈ S. A pessimistic criterionW−

π,u(f) is
proposed of the form [DUB 95b]:

W−
π,u(f) = min

s∈S
max(ν(π(s)), u(f(s))). (11.4)

Here,V is equipped with its involutive order-reversing mapν; in particularν(1) = 0,
ν(0) = 1. ν(π(s)) therefore represents the degree of potential surprise [SHA61] caused if
the state of the world weres. In particular,ν(π(s)) = 1 for impossible states. The value of
W−

π,u(f) is small as soon as there exists a highly plausible state (ν(π(s)) = 0) with low utility
value. This criterion is actually a prioritized extension of the Wald maximin criterionW−

u (f).
The latter is recovered ifπ(s) = 1 for all s ∈ S. The decisions are again made according to the
merits of acts in their worst consequences, now restricted to the most plausible states, such as
equation (11.3). However, the set of most plausible statesS∗ = {s, π(s) ≥ ν(W−

π,u(f))} now
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depends on the act itself. It is defined by the compromise between belief and utility expressed
in the min-max expression. However, contrary to the other qualitative criteria, the possibilistic
qualitative criterion presupposes that degrees of utilityu(f(s)) and possibilityπ(s) share the
same scale and can be compared.

The optimistic counterpart to this criterion [DUB 95b] is:

W+
π,u(f) = max

s∈S
min(π(s), u(f(s))). (11.5)

This expression is due to Zadeh [ZAD 78] but its interpretation as a decison criterion was
first proposed by Yager [YAG 79]. The pessimistic criterion was first proposed as such by
Whalen [WHA 84]. Similar ideas have actually appeared in theworks of Shackle [SHA 49],
a forerunner of possibility theory.

These two criteria have been used for a long time in fuzzy information processing for the
purpose of triggering fuzzy rules in expert systems [CAY 82]and flexible querying of an incom-
plete information database [DUB 88b]. They were used in scheduling under flexible constraints
and uncertain task durations, when minimizing the risk of delayed jobs [DUB 95a].

These optimistic and pessimistic possibilistic criteria are actually particular cases of a more
general criterion based on the Sugeno integral [SUG 74], a qualitative counterpart to the Cho-
quet integral used in extensions of expected utility approaches; see [GRA 00a] and Chapter 17.
One expression of this criterion can be written as follows:

Sγ,u(f) = max
λ∈V

min(λ, γ(Fλ)) (11.6)

whereFλ = {s ∈ S, u(f(s)) ≥ λ} is a set of preferred states for actf andγ(A) is the degree
of likelihood of eventA. The set-functionγ reflects the decision maker attitude in uncertainty.
This expression achieves a trade-off between the degrees oflikelihood of preferred events and
the figures of merit of the worst consequences when they occur. If the set of states is rearranged
in decreasing order of merit viaf in such a way thatu(f(s1)) ≥ . . . ≥ u(f(sn)), then denoting
Ai = {s1, . . . , si}, it turns out thatSγ,u(f) is the median of the set

{u(f(s1)), . . . , u(f(sn))} ∪ {γ(A1), . . . , γ(An−1)}.

For instance, consider actf resulting in a good consequencex if eventA occurs and a bad
consequencey (with u(x) > u(y)) otherwise. It is easily seen thatSγ,u(f) is the median of
{u(x), u(y), γ(A)}. In other words:

– if A is likely enough,γ(A) ≥ u(x) andSγ,u(f) = u(x), then the decision maker thinks
they can getx;

– if A is unlikely to a sufficient degree,γ(A) ≤ u(y) andSγ,u(f) = u(y), then the
decision-maker thinks they can get onlyy;

– else (u(x) > γ(A) > u(y)), the value of actf exactly reflects the likelihood of the
successful event (Sγ,u(f) = γ(A)).
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In this approach, the attitude of the decision maker in uncertainty is encoded by the choice
of a likelihood functionγ. If optimistic, they select a possibility measureγ = Π, i.e. a function
Π(A) = maxs∈A π(s), whereπ(s) ∈ V is the grade of plausibility of eventA. Π(A) = 1
as soon as the decision maker thinks the opposite eventAc of A has no certainty of occurring.
They then bet on the occurrence ofA, henceSγ,u(f) = u(x) (more generallySΠ,u = W+

π,u).
If pessimistic, they select a necessity measureγ = N , adjoint to a possibility measure:N(A) =
1 − Π(Ac), which evaluates the grade of certainty ofA. N(A) = 0 as soon as the decision
maker is uncertain aboutA. They then bet on the non-occurrence ofA. ThenSγ,u(f) = u(y)
(more generallySN,u = W−

π,u).

11.3. Ordinal decision rule without commensurateness

Several of the above decision rules presuppose that utilityfunctions and uncertainty func-
tions share the same range, so that it makes sense to writemin(π(s), u(f(s))) for instance.
In contrast, one may look for a natural decision rule that computes a preference relation on
acts from a purely symbolic perspective, no longer assumingthat utility and partial belief are
commensurate, that is, share the same totally ordered scale[DUB 97]. The decision maker then
only supplies a likelihood relation�L between events and a preference relation�P on conse-
quences. The strict part�L of the likelihood relation�L is defined byA �L B if and only if
A �L B, but notB �L A, and the indifference relation∼L induced by�L is defined in the
usual way:A ∼L B if and only ifA �L B andB �L A. A �L B means that eventA is at
least as likely asB.

In the most realistic model, the strict part�L of a likelihood relation on the set of events
is irreflexive, transitive and non-trivial (S �L ∅). Moreover, it should be faithful to deductive
inference, which means for the strict part of the likelihoodrelation:

∀A,B,C,D,A �L B impliesA ∪ C �L B ∩D.

Finally, if A ⊆ B then it should hold thatB �L A (inclusion-monotony). The inclusion-
monotony property states that ifA impliesB, thenA cannot be more likely thanB. Let si � sj

denote the plausibility relation between states induced by�L on elements ofS.

The preference relation on the set of consequencesX is supposed to be a weak order (a
complete preordering, e.g. see Chapter 2). Namely,�P is a reflexive and transitive relation,
and completeness meansx �P y or y �P x. x �P y therefore means that consequencex
is not worse thany. The induced strict preference relation is derived as usual: x �P y if and
only if x �P y and noty �P x. It is assumed thatX has at least two elementsx andy
such thatx �P y. The assumptions pertaining to�P are natural in the scope of numerical
representations of utility, however, we do not require thatthe likelihood relation is also a weak
order.

If the likelihood relation on events and the preference relation on consequences are not
comparable, a natural way of lifting the pair(�L,�P ) to XS is as follows: an actf is more
promising than an actg if and only if the event formed by the disjunction of states inwhich f
gives better results thang is more likely than the event formed by the disjunction of states in
which g gives results better thanf . A states is more promising for actf than for actg if and
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only if f(s) �P g(s). Let [f �P g] be an event made of all states wheref outperformsg, that
is [f �P g] = {s ∈ S, f(s) �P g(s)}. Accordingly, we define the preference between acts�,
the corresponding indifference∼ and strict preference� relations as follows:

– f � g if and only if [f �P g] �L [g �P f ];

– f � g if and only if¬(g � f ), i.e. if and only if[f �P g] �L [g �P f ]; and

– f ∼ g if and only if f � g andg � f .

This is the Likely Dominance rule [DUB 97]. It is the first one that comes to mind when
information is only available under the form of an ordering of events and an ordering of con-
sequences and when the preference and uncertainty scales are not comparable. Events are only
compared to events, and consequences to consequences. The properties of the relations�,∼
and� onXS will depend on the properties of�L with respect to Boolean connectives. An
interesting remark is that if�L is a comparative probability ordering then the strict preference
relation� in XS is not necessarily transitive, nor acyclic.

Example 11.1. A very classical and simple example of undesirable lack of transitivity is when
S = {s1, s2, s3} andX = {x1, x2, x3} with x1 �P x2 �P x3, and the comparative proba-
bility ordering is generated by a uniform probability onS. Suppose three actsf, g, h are such
that

– f(s1) = x1 �P f(s2) = x2 �P f(s3) = x3,

– g(s3) = x1 �P g(s1) = x2 �P g(s2) = x3,

– h(s2) = x1 �P h(s3) = x2 �P h(s1) = x3.

Then[f �P g] = {s1, s2}; [g �P f ] = {s3}; [g �P h] = {s1, s3}; [h �P g] = {s2} and
[f �P h] = [h �P f ] = {s2, s3}. The likely dominance rule yieldsf � g, g � h, h � f
(while, of course,f � f does not hold). Note that the presence of this cycle does not depend
on figures of utility that could be attached to consequences to the extent that the ordering of
utility values is respected for each state. Moreover, the undesirable cycle remains as long as
probabilitiesp(s1) > p(s2) > p(s3) of states remain close to each other, so thatp(si) +
p(sj) > p(sk),∀i, j, k distinct. In contrast, the ranking of acts induced by expected utility
completely depends on the choice of utility values, even if we keep the constraintu(x1) >
u(x2) > u(x3). The reader can check that, by symmetry, any of the three linear ordersf �
g � h, g � h � f, h � f � g can be obtained by the expected utility criterion, by suitably
quantifying the utility values of states without changing their preference ranking.

This situation can be viewed as a counterpart to the Condorcet paradox in social choice.
Indeed, the problem of ranking acts can be cast in the settingof a voting problem (see [MOU 88]
and Chapter 19). LetV be a set of voters,C be a set of candidates and let�i be a relation on
C that represents the preference of voteri on the set of candidates.�i is a weak order, by
assumption. The decision method consists of constructing arelationR onC that aggregates the
relations{�i, i ∈ V } as follows.

Let V(c1, c2) = {i ∈ V, c1 �i c2} be the set of voters who findc1 more valuable thanc2,
and|V(c1, c2)| the cardinality of that set. Then the social preference relationR onC is defined
as follows by Condorcet:c1Rc2 if and only if |V(c1, c2)| > |V(c2, c1)|.
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This is the so-called pairwise majority rule. It is well known that such a relation is often not
transitive and may contain cycles. More generally, Arrow [ARR 51] proved that the transitivity
of R is impossible under natural requirements on the voting procedure such as independence of
irrelevant alternatives, unanimity, and non-dictatorship (i.e. there should be no voteri enforcing
their preference relation:R 6=�i,∀i ∈ V).

Condorcet procedure is therefore a special case of the likely dominance rule based on a
uniform probability distribution, lettingV = S,C = XS , and considering for eachs ∈ S the
relationR on acts such that∀f, g ∈ XS : f �s g if and only if f(s) �P g(s). Computing the
probabilityProb([f �P g]) is a weighted version of|V (c1, c2)| with V = S, c1 = f, c2 = g,
which explains the intransitivity phenomenon. Such weighted extensions of Condorcet proce-
dure are commonly found in multicriteria decision making [VIN 92]. However, the likely dom-
inance rule makes sense for any inclusion-monotonic likelihood relation between events and is
then much more general than the Condorcet pairwise majorityrule even in its weighted version.

Assume now that a decision maker supplies a weak order of states� and a weak order
of consequences�P onX. Let�Π be the induced possibilistic ordering of events [DUB 86,
LEW 73]. Namely, denote any (most plausible) states ∈ A by max(A) such thats� s′,∀s ∈
A. Then defineA �Π B if and only ifmax(A)�max(B). The preference on acts in accordance
with the likely dominance rule, for any two actsf andg, is: f � g if and only if [f �P g] �Π

[g �P f ]; f � g if and only if ¬(g � f). Then, the undesirable intransitivity of the strict
preference vanishes.

Example 11.1. (continued)
Consider again the 3-state+ 3-consequence example. If a uniform probability is changedinto
a uniform possibility distribution, then it is easy to checkthat the likely dominance rule yields
f ∼ g ∼ h. However, ifs1 � s2 � s3 then

– [f �P g] = {s1, s2} �Π [g �P f ] = {s3};
– [g �P h] = {s1, s3} �Π [h �P g] = {s2};
– [f �P h] = {s1} �Π [h �P f ] = {s2, s3}.

So f � g � h follows. It contrasts with the cycles obtained with a probabilistic approach.
However the indifference relation between acts is generally not transitive.

Let us study the likely dominance rule induced by a single possibility distribution (and the
possibilistic likelihood relation it induces).

1) If the decision maker is ignorant about the state of the world, all states and all events
are equipossible except for∅. If f andg are such that[g �P f ] 6= ∅ and [f �P g] 6= ∅,
then neitherf � g nor g � f holds, following the likely dominance rule. The case when
[f �P g] 6= ∅ and[g �P f ] = ∅ corresponds to whenf Pareto-dominatesg, i.e. f �P g
and∃s ∈ S, f(s) �P g(s). The preference relation induced on acts by the likely dominance
rule then reduces to Pareto-dominance. This method, although natural, is not at all decisive (it
corresponds to a unanimity rule in voting theories).

2) Conversely, if there is a total orderings1 � s2 � . . .� sn of S, then for anyA,B such
thatA ∩ B = ∅, it holds thatA >Π B or B >Π A, then∀f 6= g, eitherf � g or g � f .
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Moreover, this is a lexicographic ranking:

f � g if and only if ∃k such thatf(sk) �P g(sk) andf(si) ∼P g(si),∀i < k.

It corresponds to the following procedure. Check iff is better thang in the most normal state:
if yes preferf , if f and g give equally preferred results ins1 do the same test in the sec-
ond most normal state, and so on. This comes down to a lexicographic ranking of vectors
(f(s1), . . . , f(sn)) and(g(s1), . . . , g(sn)). It is a form of dictatorship by most plausible states,
in voting theory terms. It also coincides with Boutilier’s criterion, except that ties can be broken
by less normal states.

3) More generally any weak order splitsS into a well-ordered partitionE1∪E2∪. . .∪En =
S,Ei∩Ej = ∅(∀i 6= j) such that states in eachEi are equally plausible and any state inEi is
more plausible than all states inEj ,∀j > i. Then, the ordering of events is defined as follows:

- f � g if and only if ∃k ≥ 1 such that:∀s ∈ E1 ∪ E2 ∪ . . . ∪ Ek−1, f(s) ∼P g(s),
and∀s ∈ Ek, f(s) �P g(s) and∃s ∈ Ek, f(s) �P g(s)

- f ∼ g if and only if either∀s ∈ S, f(s) ∼P g(s), or ∃k ≥ 1 such that:∀s ∈
E1 ∪E2 ∪ . . .∪Ek−1, f(s) ∼P g(s), and∃s 6= s′ ∈ Ek, f(s) �P g(s) andg(s′) �P f(s′).

This decision criterion is a blending of lexicographic priority and unanimity among states.
Informally, the decision maker proceeds as follows.f andg are compared on the set of most
normal statesE1: if f Pareto-dominatesg in E1, thenf is preferred to g. If there is a disagree-
ment inE1 about the relative performance off andg thenf andg are not comparable. Iff
andg have equally preferred consequences in each most normal state then the decision maker
considers the set of second-most normal statesE2, etc.

This is basically a prioritized Pareto-dominance relation. Preferred acts are selected by re-
stricting choices to the most plausible states of the world,and a unanimity rule is used on
these maximally plausible states. Ties are broken by lower level oligarchies. This procedure is
therefore similar to Boutilier’s decision rule in that it focuses on the most plausible states, but
Pareto-dominance is required instead of the maximin rule onthem and ties can be broken by
subsets of lower plausibility. This decision rule is cognitively appealing, but it has a limited
expressive and decisive power.

One may also apply the maximin rule in a prioritized way: the maximin decision rule can
be substituted to unanimity within the likely dominance rule inside the oligarchies of states. It
is also easy to imagine a counterpart to the likely dominancerule where expected utility applies
inside the oligarchies of states [LEH 96]. However reasonable these refined decision rules may
look, they need to be formally justified.

11.4. Axiomatics of qualitative decision theory

A natural question is whether it is possible to found rational decision making in a purely
qualitative setting, under an act-driven Savage framework. The idea of the approach is to extract
the decision maker’s likelihood relation and the decision maker’s preference on consequences
from the decision maker’s preference pattern on acts, as only the latter is observable from hu-
man behavior. Enforcing ‘rationality’ conditions on the way the decision maker should rank
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acts then determines the kind of uncertainty theory implicitly ‘used’ by the decision maker for
representing the available knowledge on states. It also prescribes a decision rule. Moreover, this
framework is operationally testable, since choices made byindividuals can be observed and the
uncertainty theory at work is determined by these choices. However, it is right away assumed
that states of nature are imperfectly perceived: it comes down to considering a finite setS rep-
resenting states in a granular way, each element inS clustering indiscernible states of nature
according to the decision maker’s language and perception.

As seen in sections 11.2 and 11.3, two research lines can be followed in agreement with this
definition: the relational approach and the absolute approach. Following the relational approach
[DUB 02, DUB 03a], the decision maker uncertainty is represented by a partial ordering relation
among events (expressing relative likelihood), and the utility function is simply encoded as
another ordering relation between potential consequencesof decisions. The advantage is that it
is faithful to the kind of elementary information users can directly provide. The other approach,
which can be dubbed the absolute approach [DUB 00c, DUB 01b],presupposes the existence
of a totally ordered scale (typically a finite one) for grading both likelihood and utility. Both
approaches lead to an act-driven axiomatization of the qualitative variant of possibility theory
[DUB 98b, ZAD 78].

11.4.1. Savage theory: a refresher

The Savage framework (already described in Chapter 9) is adapted to our purpose of de-
vising a purely ordinal approach because its starting pointis indeed based on relations even if
its representation is eventually made on an interval scale.Suppose a decision maker supplies a
preference relation� over actsf : S → X. XS usually denotes the set of all such mappings.
In Savage’s approach, any mapping in the setXS is considered to be a possible act (even if it is
an imaginary one rather than a feasible one). The first requirement stated by Savage is:

Axiom 11.1. P1: (XS ,�) is a weak order.

Axiom 11.1 is unavoidable in the scope of expected utility theory. If acts are ranked accord-
ing to expected utility, then the preference over acts will be transitive, reflexive and complete
(f � g or g � f for any f, g). What this axiom also implies (ifX andS are finite) is that
there exists a totally ordered scale, sayV , that can serve to evaluate the worth of acts. Indeed
the indifference relation (f ∼ g if and only if f � g andg � f ) is an equivalence relation, and
the set of equivalence classes, denotedXS/ ∼ is totally ordered via the strict preference�. If
[f ] and[g] denote the equivalence classes off andg, [f ] � [g] holds if and only iff � g holds
for any pair of representatives of each class. It is therefore possible to rate acts onV = XS/ ∼
and[f ] is interpreted as the qualitative utility level off .

An event is modeled by a subset of states and understood as a disjunction thereof. The set
of acts is closed under the following combination involvingacts and events. LetA ⊆ S be an
event,f andg two acts, and denote byfAg the act such that:

fAg(s) = f(s) if s ∈ A, andg(s) if s /∈ A.
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For instance,f may mean ‘bypass the city’,g ‘cross the city’ andA represents the presence
of a traffic jam in the city. ThenS represents descriptions of the state of the road network, and
X represents a timescale for the time spent by an agent who drives to their working place. Act
fAg then means: bypass the city if there is a traffic jam, and crossthe city otherwise. More
generally the notationf1A1f2A2, . . . , An−1fnAn, whereA1, . . . , An−1, An is a partition of
S, denotes the act whose result isfi(s) if s ∈ Ai,∀i = 1, . . . , n. fAg is actually short for
fAgAc whereAc is the complement ofA.

Savage proposed an axiom that he called thesure-thing principle. It requires that the rel-
ative preference between two acts does not depend on states where the acts have the same
consequences. In other words, the preference between actfAh and actgAh does not depend
on the choice of acth.

Axiom 11.2. P2: ∀A, f, g, h, h′, fAh � gAh if and only iffAh′ � gAh′.

For instance, if you bypass the city (f ) rather than cross it (g) in case of a traffic jam (A), this
preference does not depend on what you would do in case of fluidtraffic (Ac), say, cross the city
(h = g), bypass it anyway (h = f ) or make a strange decision such as staying at home. Grantet
al. [GRA 00b] pointed out that the name ‘sure-thing principle’ for this postulate was not fully
justified since it is hard to grasp where the sure-thing is. Grantet al.propose several expressions
of a genuine sure-thing principle, one version they called the weak sure-thing principle being as
follows.

Axiom 11.3. WSTP: fAg � g andgAf � g impliesf � g.

Axiom 11.3 really means that the weak preference of actf over actg does not depend on
whetherA occurs or not. It is obvious that axiom 11.3 is implied by axioms 11.1 and 11.2, since
from fAg � g = gAg and axiom 11.2 we derivef = fAf � gAf and using transitivity of�
due to axiom 11.1,f � g follows.

The sure-thing principle enables two notions to be simply defined, namely conditional pref-
erence and null events. An actf is said to be weakly preferred to another actg, conditioned
on eventA if and only if ∀h, fAh � gAh. This is denoted by(f � g)A. Conditional prefer-
ence(f � g)A means thatf is weakly preferred tog when the state space is restricted toA,
regardless of the decision made whenA does not occur. Note thatf � g is short for(f � g)S .
Moreover(f � g)∅ always holds for anyf andg, since it is equivalent to the reflexivity of�
(i.e.h � h). Clearly, the sure-thing principle enables(f � g)A to hold as soon asfAh � gAh
for someacth.

An eventA is said to benull if and only if ∀f,∀g, (f � g)A holds. Any non-empty set of
statesA on which no act makes a difference then behaves like the emptyset in the perspective
of choosing a best decision.

Conditional preference enables the weak sure-thing principle to be expressed like a unanim-
ity principle in the terminology of voting theory, providedthat the sure-thing principle holds.
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Axiom 11.4. U: (f � g)A and(f � g)Ac impliesf � g (unanimity).

Note that in the absence of axiom 11.2, axiom 11.4 implies axiom 11.3 but not the converse.
The unanimity postulate has been formulated by Lehmann [LEH96].

Among acts inXS areconstant actssuch that:∃x ∈ X, ∀s ∈ S, f(s) = x. They are
denotedfx. It seems reasonable to identify the set of constant acts{fx, x ∈ X} andX. The
preference�P onX can be induced from(XS,�) as follows:

∀x, y ∈ X,x �P y if and only if fx � fy .

This definition is self-consistent provided that the preference between constant acts is not
altered by conditioning. The third Savage postulate is as follows.

Axiom 11.5. P3: ∀A ⊆ S,A not null,(fx � fy)A if and only ifx �P y.

Clearly, Pareto-dominance should imply weak preference for acts. And indeed underP1,
P2, andP3, f �P g (that is,∀s ∈ S, f(s) �P g(s)) impliesf � g.

The preference on acts also induces a likelihood relation among events. For this purpose,
it is enough to consider the set ofbinary actsof the formfxAfy, which due toP3 can be
denotedxAy, wherex ∈ X, y ∈ X andx �P y. Clearly for fixedx �P y, the set of
binary acts{x, y}S is isomorphic to the set of events2S . However the restriction of(XS ,�) to
{x, y}S may be inconsistent with the restriction to{x′, y′}S for other choices of consequences
x′ �P y′. A relative likelihood�L among events can however be recovered, as suggested by
Lehmann [LEH 96]:

∀A,B ⊆ S,A �L B if and only if xAy � xBy,∀x, y ∈ X such thatx �P y.

In order to obtain a weak order of events, Savage introduced yet another postulate as follows.

Axiom 11.6. P4: ∀x, y, x′, y′ ∈ X such thatx �P y, x′ �P y′, it holds thatxAy � xBy if
and only ifx′Ay′ � x′By′.

Under axiom 11.6, the choice ofx ∈ X, y ∈ X with x �P y does not affect the ordering
between events in terms of binary acts, namely:A �L B is short for∃x �P y, xAy � xBy.

Lastly, Savage assumed that the ordering� is not trivial.

Axiom 11.7. P5: X contains at least two elementsx, y such thatfx � fy (or x �P y).
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UnderP1–P5, the likelihood relation on events is a comparative probability ordering [see
FIS 86], i.e. satisfies the preadditivity property

If A ∩ (B ∪ C) = ∅, thenB �L C if and only ifA ∪B �L A ∪ C.

Such relations are induced by probability measures, but theconverse is not true [KRA 58].

Savage introduces yet another postulate that enables him toderive the existence (and unique-
ness) of a numerical probability measure onS that can represent the likelihood relation�L.

Axiom 11.8. P6: For any f, g with f � g in XS and anyx ∈ X, there is a partition
{E1, . . . , En} of S such that∀i = 1, . . . n, xEif � g andf � xEig.

Under the postulatesP1–P6, not only can�L be represented by a unique numerical proba-
bility function but(XS ,�) can be represented by the expected utility of acts:

u(f) =

∫

s∈S

u(f(s)) dP (s),

where the numerical utility functionu represents the relation�P onX uniquely, up to an affine
transformation. According to postulateP6, the probability of subsetEi can be made arbitrary
small, without altering the relationf � g whenx is very bad (so thatxEif � g) or very good
(so thatf � xEig). Clearly, such a postulate makes sense only if the state spaceS is infinite,
which goes against our assumptions. In contrast, we assume that bothS andX are finite in this
chapter, andP6 is trivially violated in such a finite setting. There is, to our knowledge, no joint
representation of subjective probability and expected utility that would assume a purely finite
setting for both states and consequences.

11.4.2. The relational approach to decision theory

The relational approach introduced in [DUB 97] (further developed in [DUB 02, DUB 03a])
tries to lay bare the formal consequences of adopting a purely ordinal point of view on DMU,
while retaining as much as possible from Savage’s axioms (especially the sure-thing principle
which is the cornerstone of theory). To this end, an axiom of ordinal invariance, originally due
to [FIS 75] in another context, is then added [FAR 99]. This axiom says that what matters for
determining the preference between two acts is the relativemerit of consequences of acts for
each state, not the figures of merit of these consequences or the relative positions of these acts
relative to other acts. More rigorously, two pairs of acts(f, g) and(f ′, g′) such that

∀s ∈ S, f(s) �P g(s) if and only if f ′(s) �P g′(s)

andg(s) �P f(s) if and only if g′(s) �P f ′(s)

are called statewise order-equivalent. (As pointed out in [DUB 07b], only one of these two
equivalence conditions is explicitly stated in [DUB 02] and[DUB 03a], even although the intent
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was clearly to have both of them, and the proofs of subsequentresults presuppose it. However,
stating only one of these equivalence conditions is not sufficient for proving the representation
theorem.) This is denoted(f, g) ≡ (f ′, g′). It means that, in each state, consequences off, g
and off ′, g′ are rank-ordered likewise. The ordinal invariance axiom isas follows.

Axiom 11.9. OI: ∀f, f ′g, g′ ∈ XS , if (f, g) ≡ (f ′, g′) then (f � g if and only iff ′ � g′).

Axiom 11.9 expresses the purely ordinal nature of the decision criterion. It is easy to check
that the likely dominance rule obeys this. This is obvious noticing that if (f, g) ≡ (f ′, g′)
then, by definition,[f �P g] = {s, f(s) �P g(s)} = [f ′ �P g′]. More specifically, under
axiom 11.9, if the weak preference on acts is reflexive and theinduced weak preference on
consequences is complete, the only possible decision rule is likely dominance.OI implies the
validity of SavageP2 andP4 axioms. Adopting axiom 11.9 and sticking to a transitive weak
preference on acts leads to problems exemplified in the previous section by the probabilistic
variant of the likely dominance rule. Indeed, the followingresult was proved in [DUB 02].

Theorem 11.1. If (XS,�) is a weak order on acts satisfying axiom 11.9, andS andX have
at least three elements, let�L be the likelihood relation induced by axiomP4 (implied byOI ).
Then there is a permutation of the non-null elements ofS, such that

{s1} �L {s2} �L�L {sn−1} �L {sn} . . . �L ∅

and∀i = 1, . . . , n− 2, {si} �v {si+1, . . . , sn}.

In the general case whereX has more than two elements, the ordinal invariance axiom
forbids a Savagean decision maker to believe that there are two equally likely states of the
world, each of which is more likely than a third state. This isclearly not acceptable in practice.
Nevertheless, ifX only has two consequences of distinct values, then such a trivialization is
avoided.

If we analyze the reason why this phenomenon occurs, it is found that axiom 11.1 (P1)
plays the crucial role.P1 assumes the full transitivity of the likelihood relation�L. Giving up
the transitivity of�L suppresses the unnatural restriction of an almost total plausibility ordering
of states, to the extent that we wish to keep the sure-thing principle. We are led to formulate a
weak form ofP1 [DUB 02] as follows.

Axiom 11.10. WP1: (XS ,�) is a transitive, irreflexive, partially ordered set.

Dropping the transitivity of� cancels some useful consequences of the sure-thing principle
under axiom 11.1 (P1), which are nevertheless consistent with the likely dominance rule. For
instance, axiom 11.3 (WSTP) (or equivalently, the unanimity axiomU) will not follow from
the relaxed framework. We must add it to get it. As a consequence, if one insists on sticking to
a purely ordinal view of DMU, we come up to the framework defined by axiomsWP1, WSTP
(or U), P3, P5andOI . The likelihood relation induced byP4 is in agreement with the classical
deduction:

if B �L A thenB ∪ C �L A andB �L A ∩ C. (11.7)
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The null events are then all subsets of a subsetN of null states. Moreover, ifX has more
than two elements, the likelihood relation satisfies the following strongly non-probabilistic
property [DUB 95c]: for any three pairwise disjoint non-null eventsA,B,C,

B ∪ C �L A andA ∪ C �L B imply C �L A ∪B. (11.8)

The statementB �L A really means that eventB is muchmore likely thanA, becauseB
will never be more likely than any disjunction of events nor more likely thanA. This likelihood
relation can always be represented by a family ofpossibility relations. Namely, there is a family
F of possibility relations�Π on S and a weak order relation�P onX such that the prefer-
ence relation on acts is defined by the likely dominance rule restricted to possibility relations
[DUB 04b]:

f � g if and only if ∀ �P∈ F , [f �P g] �Π [g �P f ].

In [DUB 04b], it is shown that this ordinal Savagean framework actually leads to a repre-
sentation of uncertainty at work in the non-monotonic logicsystem of Krauset al. [KRA 90]
(see Friedman and Halpern [FRI 96] who also study property (11.8)).

A more general setting starting from a reflexive weak preference relation on acts is used in
Duboiset al. [DUB 03a]. In this frameworkP3 is replaced by a monotonicity axiom on both
sides, implied by Savage’s framework, namely for any eventA:

Axiom 11.11. Monotonicity: If h �P f andf � g thenfAh � g; if g �P h andf � g then
f � gAh.

Two additional axioms (also valid in Savage’s framework) enable a unique possibility rela-
tion to be enforced as the resulting likelihood relation between disjoint events [DUB 03a]:

Axiom 11.12. EUN: ∀A,B ⊆ S, (f � g)A and(f � g)B jointly imply (f � g)A∪B.

Axiom 11.13. ANO If s1 ∼L s2 then:∀f, g, f � g if and only iff(s1){s2}f(s2){s1}f �
g(s1){s2}g(s2){s1}g.

Axiom 11.12 (EUN) extends unanimityU to any disjunction of events. Axiom 11.13 is an
anonymity property ensuring that exchanging consequencesof two equally plausible states does
not alter the preferences between acts. Note thatf(s1){s2}f(s2){s1}f represents actf where
statess1 ands2 have been exchanged. The following result is obtained.

Theorem 11.2. The two following properties are equivalent:

– Relation� onXS is reflexive and complete, has a transitive strict part with at least two
non-null states and it satisfies axiomsOI, A1, A5, LM, RM, EUN, ANO .

– There exists a complete preorder�P onX and a unique non-trivial possibility relation
�Π on events, such that∀f, g ∈ XS , f � g if and only if [f � g] �Π [g � f ].
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While these results do characterize the possibilistic approach to uncertainty in qualitiative
decision theory, the family of ‘rational’ decision rules inthe purely relational approach to de-
cision under uncertainty is very restrictive. This restricted family only reflects the situation
faced in voting theories where natural axioms lead to impossibility theorems [e.g. ARR 51,
SEN 86]. This kind of impediment was already pointed out by Doyle and Wellman [DOY 91]
for preference-based default theories. These results question the very possibility of a purely or-
dinal solution to this problem, in the framework of transitive and complete preference relations
on acts.

The likely dominance rule lacks discrimination, not because of indifference between acts,
but because of incomparability. Actually, it may be possible to weaken axiomOI while avoid-
ing the notion of certainty equivalent of an uncertain act. It must be stressed thatOI requires
more than the simple ordinal nature of preference and uncertainty (i.e. more than separate or-
dinal scales for each of them). ConditionOI also involves a condition of independence with
respect to irrelevant alternatives (in the sense of [ARR 51]). It states that the preferencef � g
only depends onf andg. This unnecessary part of the condition could be cancelled within the
proposed framework, thus leaving room for a new family of rules not considered in this paper,
for instance involving a third act or some prescribed consequence considered as an aspiration
level [PER 06].

11.4.3. Qualitative decision rules under commensurateness

Let us now consider the axiomatization of absolute qualitative criteria (11.4–11.6), based on
the Sugeno integral in the scope of Savage theory. Note that the maximin and maximax criteria,
to which possibilistic decision rules reduce when total ignorance prevails (∀s ∈ S, π(s) = 1),
were axiomatized very early by Chernoff [CHE 54]. Arrow and Hurwicz [ARR 72] character-
ized the pair of criteria(W−

u (f),W+
u (f)) for decision making under total ignorance. Interest-

ingly, they carefully distinguish it from equiprobable states, and credit Shackle [SHA 49] for
the invention of these criteria. More recently, Brafman andTennenholtz [BRA 00] axiomati-
cally characterize the refinementW−

�,u of the maximin rule to unequally plausible states, due
to Boutilier, in terms of conditional policies (rather thanacts). Finally the first axiomatization
of possibilistic decision rules was proposed by Dubois and Prade [DUB 95b] in the style of
decision under risk, assuming a possibility distribution is known, and adapting Von Neumann
and Morgenstern axioms [NEU 47] (see [DUB 99b] for the complete study).

Clearly, pessimistic, optimistic possibilistic criteriaand the Sugeno integral satisfy ax-
iom 11.1 (P1). However, the sure-thing principle can be severely violated by the Sugeno in-
tegral. It is easy to show that there may existf, g, h, h′ such thatfAh � gAh while gAh′ �
fAh′. It is enough to consider binary acts (events) and notice that, if A is disjoint fromB ∪
C, generally nothing prevents a fuzzy measureγ from satisfyingγ(B) > γ(C) along with
γ(A∪C) > γ(A∪B) (for instance, Shafer’s belief functions). The possibilistic criteria equa-
tions (11.4) and (11.5) violate the sure-thing principle toa lesser extent, since

∀A ⊆ S,∀f, g, h, h′,W−
π,u(fAh) > W−

π,u(gAh) impliesW−
π,u(fAh′) ≥W−

π,u(gAh′)

and likewise forW+
π,u. Moreover, only one part ofP3holds for Sugeno integrals. The obtained

ranking of acts satisfies the following axiom.
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Axiom 11.14. WP3: ∀A ⊆ S,∀x, y ∈ X,∀f, x �P y impliesxAf � yAf .

Besides, axiomP4 is violated by Sugeno integrals, but only to some extent. Namely, the
preference relation between binary acts satisfies a weak form of it as follows.

Axiom 11.15. WP4: ∀x �P y, x′ �P y′ ∈ X : xAy � xBy impliesx′Ay′ � x′By′

Axiom 11.15 forbids preference reversals when changing thepair of consequences used to
model eventsA andB. Moreover, the strict preference is maintained if the pair of consequences
is changed into more extreme ones:

if u(x′) > u(x) > u(y) > u(y′)

thenSγ,u(xAy) > Sγ,u(xBy)⇒ Sγ,u(x′Ay′) > Sγ,u(x′By′). (11.9)

The Sugeno integral and its possibilistic specializationsare weakly Pareto-monotonic since
f �P g impliesSγ,u(f) ≥ Sγ,u(g). However, we may havef(s) �P g(s) for some state
s, while Sγ,u(f) = Sγ,u(g). This is the so-called drowning effect, which also appears in the
violations ofP4. It is because some states are neglected when comparing acts.

The basic properties of the Sugeno integrals exploit disjunctive and conjunctive combina-
tions of acts. Namely, given a preference relation(XS ,�), and two actsf andg, definef ∧ g
andf ∨ g as

f ∧ g(s) = f(s) if g(s) �P f(s) andg(s) otherwise

f ∨ g(s) = f(s) if f(s) �P g(s) andg(s) otherwise.

Act f ∧ g always produces the worst consequences off andg in each state, whilef ∨ g
always makes the best of them. They are the union and intersection of fuzzy sets viewed as acts.
Obviously

Sγ,u(f ∧ g) ≤ min(Sγ,u(f), Sγ,u(g)) andSγ,u(f ∨ g) ≥ max(Sγ,u(f), Sγ,u(g))

from weak Pareto monotonicity. These properties hold with equality wheneverf or g is a con-
stant act. The latter equality is in fact characteristic of Sugeno integrals for monotonic ag-
gregation operators [MAR 00]. This characterization can actually be expressed by means of
axioms 11.16 and 11.17, called restricted conjunctive and disjunctive dominance (RCD and
RDD) on the preference structure(XS,�) [DUB 00c].

Axiom 11.16. RCD: If f is a constant act,f � h andg � h jointly implyf ∧ g � h.
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Axiom 11.17. RDD: If f is a constant act,h � f andh � g jointly implyh � f ∨ g.

The area of significance of qualitative decision theory and,more precisely, that of ax-
ioms 11.16 and 11.17, is restricted to the case whereX andS are finite and where the value
scale is coarse. For instance,RCD means that limiting from above the potential utility values
of an actg that is better than another oneh, to a constant value that is better than the utility of
acth, still yields an act better thanh.

This is in contradiction with expected utility theory and debatable in that setting. Indeed,
supposeg is a lottery where you win 1000 euros against nothing with equal chances. Suppose
the certainty equivalent of this lottery is 400 euros received for sure, andh is the fact of receiving
390 euros for sure. It is likely that iff represents the certainty-equivalent ofg, f ∧ g will be
felt strictly less attractive thanh, as the former means you win 400 euros against nothing with
equal chances. Axiom 11.16 implies that such a lottery should never be preferred to receiving
400 ε euros for sure, for arbitrary small values ofε. This axiom is thus strongly counter-intuitive
in the context of economic theory, with a continuous consequence setX. However, the area of
significance of qualitative decision theory is precisely when bothX andS are finite.

Two presuppositions actually underlie axiom 11.16 (and similarly for axiom 11.17):

1) There is no compensation effect in the decision process: in case of equal chances, win-
ning 1000 euros cannot compensate for the possibility of notearning anything. It fits with the
case of one-shot decisions where the notion of certainty equivalent can never materialize: you
can only get 1000 euros or get nothing if you just play once. You cannot get 400 euros. The
latter can only be obtained in the average, by playing several times.

2) There is a big step between one levelλi ∈ V in the qualitative value scale and the next
oneλi+1 with V = {1 = λ1 > . . . > λm = 0}. The preference patternf � h always means
thatf is significantly preferred toh so that the preference level off ∧g can never get very close
to that ofh wheng � h. The counter-example above is obtained by precisely bringing these
two preference levels very close to each other so thatf ∧ g can become less attractive than the
sure gainh. Levelλi+1 is in some sense considered negligible compared toλi.

The Sugeno integral can be axiomatized in the style of Savage[DUB 00c].

Theorem 11.3. If the preference structure(XS ,�) satisfiesP1, WP3, P5, RCDand RDD,
then there a finite chainV of preference levels, aV−valued capacity functionγ, and aV−valued
utility functionu on the set of consequencesX, such that the preference relation on acts is de-
fined byf � g if and only ifSγ,u(f) ≥ Sγ,u(g).

Proof. Clearly, P1, WP3andP5 jointly imply Pareto-monotonicity between acts. In the
representation method,V is the quotient setXS/ ∼ and the utility valueu(x) is the equivalence
class of the constant actfx. Because the sure-thing principle is lacking, the degree oflikelihood
γ(A) is the equivalence class of the binary act1A0, having extreme consequences. It yields the
most refined likelihood relation between events due to equation (11.9). The equalityu(xA0) =
min(u(x), u(1A0)) can then be proved usingRCD. Finally, due toRDD, u(xA0 ∨ yB0) =
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max(u(xA0), u(yB0)) can be obtained. The result is easy to obtain by expressing any actf in
a canonical form∨x∈XxFx0, with Fx = {s, u(f(s)) ≥ u(x)}.

Axioms RDD andRCD can be replaced in Theorem 11.3 by non-compensation assump-
tions.

Axiom 11.18. NC:



1LAy ∼ y or 1LAy ∼ 1LA0
and
xA0L ∼ x or xA0L ∼ 1LA0L

Axiom 11.18 formalizes the following intuition: in order toevaluate act1LAy, there is no
middle term between valuesu(y) andγ(1LA0).

Theorem 11.3 still holds if, in the expression ofRCD and RDD, we consider any two
comonotonic actsf andg (i.e. f(s) >P f(s′) ⇒ g(s) �P g(s′),∀s, s′ ∈ S). Indeed, the
Sugeno integrals are ‘linear’ for operations maximum and minimum with respect to disjunc-
tions and conjunctions of comonotonic actsf, g: Sγ,u(f ∧ g) = min(Sγ,u(f), Sγ,u(g)) and
Sγ,u(f ∨g) = max(Sγ,u(f), Sγ,u(g)). In this sense, the Sugeno integral is a qualitative coun-
terpart to the Choquet integral.

It is easy to check that these equalities hold with any two actsf andg for the pessimistic and
the optimistic possibilistic preference functionals,W−

π,u(f ∧ g) = min(W−
π,u(f),W−

π,u(g))
andW+

π,u(f ∨ g) = max(W+
π,u(f),W+

π,u(g)), respectively. The criterionW−
π,u(f) can there-

fore be axiomatized by strengthening axiomRCD as follows.

Axiom 11.19. CD: ∀f, g, h, f � h andg � h, f ∧ g � h (conjunctive dominance).

Axiom 11.19 means that if two actsf, g are individually better than a third act, the actf ∧g
which yields the worse result of both acts still remains better than the third. It makes sense in
the scope of a one-shot decision. Together withP1, WP3, RDDandP5, CD implies that the
set-functionγ is a necessity measure and thereforeSγ,u(f) = W−

π,u(f), for some possibility
distributionπ.

In order to determine why axiom 11.19 leads to a pessimistic criterion, Duboiset al.[DUB 01b]
have noticed that it can be equivalently replaced by the following property.

Axiom 11.20. PESS: ∀A ⊆ S,∀f, g, fAg � g impliesg � gAf (pessimism).

Axiom 11.20 can be explained as follows. If changingg into f whenA occurs results in a
better act, the decision maker has enough confidence in eventA to consider that improving the
results onA is worthwhile. However, in this case, there is less confidence on the complement
Ac than inA, and any possible improvement ofg whenAc occurs is neglected. Alternatively,
the reason whyfAg � g holds may be that the consequences ofg whenA occurs are very
bad and the occurrence ofA is not unlikely enough to neglect them, while the consequences
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of g whenAc occurs are acceptable. Suppose then that consequences off whenA occurs are
also acceptable; thenfAg � g. However, actgAf remains undesirable because, regardless of
whether the consequences off whenAc occurs are acceptable or not, actgAf still possesses
plausibly bad consequences whenA occurs; henceg � gAf .

For instance,g means losing (= A) or winning (= Ac) 10,000 euros with equal chances
according to whetherA occurs or not andf means winning either nothing (= A) or 20,000
euros (= Ac) conditioned on the same event. ThenfAg is clearly safer thang as there is no
risk of losing money. However, if axiom 11.20 holds, then thechance of winning much more
money (20,000 euros) by choosing actgAf is neglected because there is still a good chance to
lose 10,000 euros with this lottery. Such behavior is clearly cautious.

Similarly, the optimistic criterionW+
π,u(f) can be axiomatized by strengthening axiom 11.17

as follows.

Axiom 11.21. DD: ∀f, g, h, h � f andh � g, h � f ∨ g (disjunctive dominance.)

Together withP1, WP3, RCD, P5, axiom 11.21 implies that the set-functionγ is a possi-
bility measure and soSγ,u(f) = W+

π,u(f) for some possibility distributionπ. The optimistic
counterpart to property axiom PESS that can serve as a substitute to axiom 11.21 for the repre-
sentation of criterionW+

π,u is as follows.

Axiom 11.22. OPT: ∀A ⊆ S, ∀f, g, g � fAg impliesgAf � g (optimism).

11.5. Toward more efficient qualitative decision rules

The absolute approach to qualitative decision criteria is simple (especially in the case of
possibility theory). Naturally, a complete preorder on acts is obtained. The restriction of the
pessimistic approach to the most plausible states, at work in possibilistic criteria, makes them
more realistic than the maximin criterion, and more flexiblethan purely ordinal approaches
based on the likely dominance rule.

However, approaches based on an absolute qualitative valuescale have their own shortcom-
ings. First, one has to accept the commensurability assumption between utility and degrees of
likelihood. It assumes the existence of a common scale for grading uncertainty and preference.
It can be questioned, although it is already taken for granted in classical decision theory (via
the notion of certainty equivalent of an uncertain event). It is already implicit in the Savage
approach, and looks acceptable for decision under uncertainty (but more debatable in social
choice). As a consequence, the acts are then totally preordered. This is not actually a drawback
from a normative point of view.

More importantly, absolute qualitative criteria lack discrimination due to many indifferent
acts. The obtained ranking of decisions is bound to be coarsesince there cannot be more classes
of preference-equivalent decisions than levels in the finite scale used. The above possibilistic
decision rule and the maximin rule are consistent with Pareto dominance only in the wide sense:
they can consider two acts as indifferent even if one Pareto-dominates the other. The sure-thing
principle may be violated (even if not drastically for possibilistic criteria). This section describes
approaches that attempt to remedy this problem.
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11.5.1. Refining qualitative criteria

The main reason for the lack of discrimination power of absolute qualitative criteria is the
fact that they do not use all the available information for discriminating among acts. An actf
can be considered indifferent to another actg, even iff is at least as good asg in all states and
strictly in some states (including some of the most plausible ones). This defect is absent from
the expected utility model.

We may consider refining the optimistic possibilistic criterion by the pessimistic one or vice
versa [DUB 00a]. Along this line, Giang and Shenoi [GIA 00, GIA 05] have tried to obviate the
need for making assumptions on the pessimistic or optimistic attitude of the decision maker and
therefore improve the discrimination power in the absolutequalitative setting. They use a totally
ordered set of possibility measures on a two-element set{0, 1} containing the values of the best
and the worst consequences, as a utility scale. Each such possibility distribution represents a
qualitative lottery. LetVΠ = {(a, b),max(a, b) = 1, a, b ∈ V }. Coefficienta represents
the degree of possibility of obtaining the worst consequence, and coefficientb the degree of
possibility of obtaining the best. This set can be viewed as abipolar value scale ordered by the
complete preordering relation:

(a, b) ≥V (c, d) if and only if (a ≤ c andb ≥ d).

The fact this relation is complete is due to the fact that pairs (a, b) and (c, d) such that
(a, b) >V (c, d) and(c, d) >V (a, b) cannot both lie inVΠ, since then eithermax(a, b) < 1
or max(c, d) < 1. The bottom of this utility scale is(1, 0), its top is(0, 1) and its neutral
point (1, 1) means ‘indifferent’. The canonical example of such a scale is the set of pairs
(Π(Ac),Π(A)) of degrees of possibility for eventA = ‘getting the best consequence’, and its
complement. The inequality(Π(Ac),Π(A)) >V (Π(Bc),Π(B)) means thatA is more likely
(certain or plausible) thanB (because it is equivalent toΠ(A) > Π(B) orN(A) > N(B)). In
fact, the induced likelihood ordering between events

A �LΠ B if and only if (Π(Ac),Π(A)) ≥V (Π(Bc),Π(B))

is self-conjugate i.e.A �LΠ B is equivalent toBc �LΠ Ac.

Each consequencex is supposed to have a utility value(α, β) in VΠ. The proposed prefer-
ence functional map acts, viewed asn−tuplesf = ((α1, β1), . . . , (αn, βn)) of values inVΠ, to
VΠ itself. The uncertainty is described by possibility weights(π1, . . . , πn) with maxi=1,...,n πi =
1. The utility of an actf , calledbinary possibilistic utility, is computed as the pair

WGS(f) = ( max
i=1,...,n

min(πi, αi), max
i=1,...,n

min(πi, βi)) ∈ VΠ.

This form results from simple and very natural axioms on possibilistic lotteries, which are
counterparts to the Von Neumann and Morgenstern axioms [NEU47]: a complete preorder of
acts, increasing in the wide sense according to the orderingin VΠ, substitutability of indifferent
lotteries and the assumption that any consequence of an act is valued onVΠ. More recently,
Weng [WEN 06a] proposed a Savage-style axiomatization of binary possibilistic utility. It puts
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together the axiomatizations of the optimistic and the pessimistic possibilistic criteria by Dubois
et al.[DUB 01b], adding to the axioms justifying the Sugeno integral two additional conditions:
(i) the self-conjugateness of the preference relation on binary acts, and (ii) a postulate enforcing
axiom 11.22 on the subset of acts{f : f � h, f ∈ XS} weakly preferred to an acth that plays
the role of a neutral point separating favorable from unfavorable acts inXS .

Pessimistic and optimistic possibilistic criteria turn out to be special cases of this bipolar
criterion. They correspond respectively to either using the negative part ofVΠ only (not being
able to separate(1, 1) from (0, 1) in case of pessimism) or using the positive part ofVΠ only
(not being able to separate(1, 0) from (1, 1) in case of optimism). The decision rule of Giang
and Shenoy can capture the lexicographic use of possibilistic criteriaW−

π,n(u) andW+
π,u, where

the optimist one is used when the pessimistic one cannot discriminate (or conversely) [GOD 05,
WEN 05]. However, this criterion has a major drawback. Whenever two statessi andsj are
such thatαi = 1 andβj = 1 (a bad or neutral, and a good or neutral state, respectively)and
these states have maximal possibilityπi = πj = 1, thenWGS(f) = (1, 1) results, expressing
indifference. This limited expressiveness seems to be unavoidable when using finite bipolar
scales [GRA 04].

Lehmann [LEH 01] axiomatizes a refinement of the maximin criterion whereby ties be-
tween equivalent worst states are broken by considering their respective likelihoods. This de-
cision rule takes the form of an expected utility criterion with qualitative (infinitesimal) utility
levels. An axiomatization is carried out in the Von Neumann–Morgenstern style [NEU 47].

The lack of discrimination of the maximin rule itself was actually addressed a long time
ago by Cohen and Jaffray [COH 80] who improve it by comparing acts on the basis of their
worst consequences ofdistinctmerits, i.e. one considers only the setD(f, g) = {s, u(f(s)) 6=
u(g(s))} when performing a minimization. Denoting the strict preference between acts by
f �D g,

f �D g if and only if min
s∈D(f,g)

f(s) > min
s∈D(f,g)

g(s) (11.10)

and the weak preference isf �D g if and only if¬(g �D f). This refined rule always rates an
actf better than another actg wheneverf is at least as good asg in all states and better in some
states (strict compatibility with Pareto-dominance). However, only a partial ordering of acts is
then obtained. This last decision rule is actually no longerbased on a preference functional
(i.e. it cannot be encoded by a numerical function, such as expected utility). This decision rule
has been independently proposed by Fargier and Schiex [FAR 93] and used in fuzzy constraint
satisfaction problems [DUB 99a] under the namediscrimin ordering.

This criterion can be further refined by the so-calledLeximin ordering [MOU 88]. The
idea is to reorder utility vectors~f = (u(f(s1)), . . . u(f(sn))) by non-decreasing values as
(f(1), . . . , f(n)), wheref(k) is thekth smallest component of~f (i.e.f(1) ≤ . . . ≤ f(n)). Simi-
larly, aLeximaxpreorder can be envisaged as a refinement of the one induced bythe maximum.
Let ~f,~g ∈ LN . Define the Leximin (�lmin) and Leximax (�lmax) rules as:

– ~f �lmin ~g ⇔ either∀j, f(j) = g(j) or ∃i,∀j < i, f(j) = g(j) andf(i) > g(i)

– ~f �lmax ~g ⇔ either∀j, f(j) = g(j) or ∃i,∀j > i, f(j) = g(j) andf(i) > g(i).
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The two possible decisionsf andg are indifferent if and only if the corresponding reordered
vectors are the same. The Leximin-ordering is a refinement ofthe discrimin ordering, hence
of both the Pareto-ordering and the maximin-ordering [DUB 96]: f �D g implies f �lmin

g. Leximin optimal decisions are always discrimin maximal decisions, and thus indeed min-
optimal and Pareto-maximal:�lmin is the most selective among these preference relations.
The Leximin ordering can discriminate more than any symmetric aggregation function; e.g. in
the numerical setting when the sum of theu(f(si))s equals the sum of theu(f(si))s, this does
not mean that the reordered vectors are the same.

11.5.2. A bridge between generalized maxmin criteria and expected utility

Criteria of the discrimin and Leximin type unfortunately never take into account the avail-
able information on the state of affairs, contrary to possibilistic criteria. One idea is to refine the
latter by changing minimum into Leximin and maximum into Leximax in each of them in order
to integrate the plausibility of states within the lexicographic approach. It turns out that this can
be encoded by means of an extreme form of expected utility [FAR 05].

First note that, in a finite setting, the qualitative Leximinand Leximax rules can be simulated
by means of a sum of utilities provided that the levels in the qualitative (finite) utility scaleV
are mapped to values sufficiently far away from one another ona numerical scale. Consider an
increasing mappingφ from V to the reals. It is possible to define this mapping in such a wayas
to refine the maximax ordering:

max
i=1,...n

fi > max
i=1,...n

gi implies
∑

i=1,...n

φ(fi) >
∑

i=1,...n

φ(gi). (11.11)

For instance, the transformationφ(λi) = N i with N > n achieves this goal. It is a super-
increasing mapping in the sense thatφ(λi) >

∑
j<i φ(λi),∀i = 1, . . . ,m. In order to mapV

to [0, 1] so thatφ(λ0) = 0 andφ(λm) = 1, just take

φ(λi) =
N i − 1

Nm − 1
.

It can actually be checked that the Leximax ordering is equivalent to applying the Bernoulli
criterion with respect to such a convex utility functionφ(.):

f >Leximax g if and only if
∑

i=1,...n

φ(fi) >
∑

i=1,...n

φ(gi). (11.12)

A similar encoding of the Leximin procedure by a sum can be achieved using another super-
increasing mapping (for instance, the transformationψ(λi) = (1−N−i)/(1−N−m)):

min
i=1,...n

fi > min
i=1,...n

gi implies
∑

i=1,...n

ψ(fi) >
∑

i=1,...n

ψ(gi). (11.13)
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The Leximin ordering comes down to applying the Bernoulli criterion with respect to such
a concave utility functionψ(.). Notice that these transformations are not possible whenV is not
finite [MOU 88] although the Leximin and Leximax procedures still make mathematical sense
even in this case. The qualitative pessimistic and optimistic criteria under total ignorance are
therefore refined by means of a classical criterion with respect to a risk-averse and risk-prone
utility function respectively, as can be seen by plottingV against numerical values inφ(V ) and
ψ(V ).

These refinement principles have been extended to possibilistic criteria [FAR 05] using
weighted averages. Consider first the optimistic possibilistic criterionW+

π,µ under a given pos-
sibility distributionπ. We can again define an increasing mappingχ from V to the reals such
thatχ(λ0) = 0 and especially:

max
i

min(π(si), u(f(si))) > max
i

min(π(si), u(g(si)))

implies (11.14)
∑

i=1,...n

χ(π(si)) · χ(u(f(si))) >
∑

i=1,...n

χ(π(si)) · χ(u(g(si))). (11.15)

A sufficient condition is that:

∀i ∈ {1, . . . ,m}, χ(λi)
2 ≥ Nχ(λi−1) · χ(>) (11.16)

for N > n. The increasing mappingχ(λi) = N/(N2m−i

), i = 1, . . . , m andχ(λ0) = 0 with
N = n+ 1 can be chosen withn = |S|;m = |V |. The mapping is such thatχ(λm) = 1.

Moreover, let{E0, . . . , Ek} be the well-ordered partition ofS induced byπ,Ek containing
the most plausible states andE0 the null states. Let

K =
1∑

i=1,k |Ei| · χ(π(si))
.

Defineχ∗(λi) = Kχ(λi); the following holds:

– p = χ∗(π(·)) is a probability assignment respectful of the possibilistic ordering of states.
In particular,p is uniform on equipossible states (the setsEi). Moreover, ifs ∈ Ei thenp(s)
is greater than the sum of the probabilities of all less probable states i.e.p(s) > P (Ei−1 ∪
. . . ∪ E0). Such probabilities, here said to bebig-stepped, generalize the linear big-stepped
probabilities that form a super-increasing sequence of numbers assigned to singletons. They
are introduced by Snow [SNO 99] and also studied in Benferhatet al. [BEN 99] in connection
with non-monotonic reasoning. Linear big-stepped probabilities are recovered when theEi’s
are singletons.

– χ(u(·)) is a big-stepped numerical utility function (a super-increasing sequence of reals
ul > . . . > u1 such that∀l ≥ i > 1, ui > n · ui−1) that can be encoded by a convex real
mapping.
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– The preference functional

EU+(f) =
∑

i=1,...n

χ∗(π(si)) · χ(u(f(si)))

is an expected (big-stepped) utility criterion for a risk-seeking decision maker, andW+
π,u(f) >

W+
π,u(g) impliesEU+(f) > EU+(g). Namely this is precisely equation (11.15) up to the

multiplicative constantK i.e. the expected utility criterion so-obtained refines thepossibilistic
optimistic criterion. As a refinement, it is perfectly compatible with but more decisive than
the optimistic utility. Since it is based on expected utility, it obviously satisfies the sure-thing
principle as well as the strict Pareto-dominance, actuallyrecovering Savage’s five first axioms.
Moreover, it does not use any other information but the original ordinal one. It can be shown
that it is not the only criterion in this family of sound ‘unbiased’ refinements, but it is the most
efficient among them (up to an equivalence relation), since it refines any unbiased refinement of
the possibilistic optimistic criterion (see [FAR 05] for more details).

The pessimistic criterion can be similarly refined. Note that W−
π,u(f) = ν(W+

π,ν(u)(f))

using the order-reversing mapν of V . Then, choosing the same mappingχ∗ as above, we may
have

min
i

max(π(si), u(f(si))) > min
i

max(π(si), u(g(si)))

implies
∑

i=1,...n

χ∗(π(si)) · φ(u(f(si))) >
∑

i=1,...n

χ∗(π(si)) · φ(u(g(si))) (11.17)

whereφ(λi) = 1 − χ(ν(λi)) (equal to1 − (n + 1)/((n + 1)2
i

) here). Functionφ(u(·)) is a
super-increasing numerical utility function that can be encoded by a concave real mapping. The
expected utility criterion

EU−(f) =
∑

i=1,...n

χ∗(π((si))) · φ(u(f(si)))

is a risk-averse one, refiningWπ,µ in the sense thatW−
π,µ(f) > W−

π,µ(g) impliesEU−(f) >
EU−(g).

These results highlight the deep agreement between qualitative possibilistic criteria and
expected utility. The former is simply coarser than the latter, and as such cannot account for
compensative effects. Actually, both types of criteria aresubsumed within a more abstract al-
gebraic approach using operations on a semi-ring by Chu and Halpern [CHU 04] and Weng
[WEN 06b].

11.5.3. Weighted Leximax/Leximin criteria

The orderings induced byEU+(f) andEU−(f) actually correspond to generalizations
of Leximin and Leximax to prioritized minimum and maximum aggregations, thus bridging
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the gap between possibilistic criteria and classical decision theory. To make this generaliza-
tion clear, let us simply consider that Leximin and Leximax orderings are defined on sets
of tuples whose components belong to a totally ordered set(Ω,�), sayLeximin(�) and
Leximax(�). Now, suppose(Ω,�) = (V l, Leximin) or (Ω,�) = (V l, Leximax), with
any l ∈ N. Lexicographic ordering relations can be recursively defined by nesting procedures
such asLeximin(Leximin(≥)), Leximax(Leximin(≥)), Leximin(Leximax(≥)) and
Leximax(Leximax(≥)), in order to compareV -valued matrices.

Consider for instance the procedureLeximax(Leximin(≥)) which defines the relation
�lmax(�lmin). It applies to matrices[a] of dimensionp × q with coefficientsaij in (V,≥).
These matrices can be totally ordered in a very refined way by this relation. Denote rowi of
[a] by ai·. Let [a?] and[b?] be rearranged matrices[a] and[b] such that terms in each row are
reordered increasingly and rows are arranged lexicographically top-down in decreasing order.
[a] �lmax(�lmin) [b] is defined as follows:

∃k ≤ p such that∀i < k, a?
i· =lmin b

?
i· anda?

k· >lmin b
?
k·.

Relation�lmax(�lmin) is a complete preorder.[a] 'lmax(�lmin) [b] if and only if both
matrices have the same coefficients up to the above describedrearrangement. Moreover, relation
�lmax(�lmin) refines the ranking obtained by the optimistic criterion:

max
i

min
j
aij > max

i
min

j
bij implies [a] �lmax(�lmin) [b]

In particular, if[a] Pareto-dominates[b] in the strict sense (∀i, j, aij ≥ bij and∃i∗, j∗ such that
ai∗j∗ > bi∗j∗ ), then[a] �lmax(�lmin) [b].

Comparing actsf andg in the context of a possibility distributionπ can be done using
relations�lmax(�lmin) applied ton × 2 matrices on(V,≤). n is the number of states inS,
namely on the matrix[f ]π,u and [g]π,u with coefficientsfi1 = π(si) andfi2 = u(f(si)),
gi1 = π(si) andgi2µ(g(si)).

The big-stepped expected utilityEU+(f) defined in the previous section precisely encodes
the relation�lmax(�lmin) as follows.

Theorem 11.4. [FAR 05]: EU+(f) ≥ EU+(f) if and only if [f ]π,u �lmax(�lmin) [g]π,u.

In other terms,EU+ applies a Leximax procedure to utility degrees weighted by possibility
degrees. Similarly,EU− applies a Leximin procedure to utility degrees weighted by ‘impossi-
bility degrees’.

Theorem 11.5. [FAR 05]:EU−(f) ≥ EU−(g) if and only if[f ]n(π),u �lmin(�lmax) [g]n(π),u.

In other words,EU−(f) just encodes the application of a procedureLeximin(Leximax)not
directly on[f ]π,u and[g]π,u but on the correspondingπ-reverse matrix[f ]n(π),u and[g]n(π),u

with coefficientsfi1 = ν(π(si)) andfi2 = µ(f(si)), gi1 = ν(π(si)) andgi2 = u(g(si)).
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As a consequence, the additive preference functionalsEU+(f) andEU−(f) refining the
possibilistic criteria are qualitative despite their numerical encoding. Moreover, the two order-
ings�lmax(�lmin) and�lmin(�lmax) of acts are defined even on coarse ordinal scalesV while
obeying Savage’s five first axioms of rational decision. Weng [WEN 05] has extended this ap-
proach to the binary possibilistic utility of Giang and Shenoy, recalled in section 11.5.1.

11.5.4. The representation of uncertainty underlying Leximax(Leximin) and Lex-
imin(Leximax) criteria

The two relations�lmax(�lmin) and�lmin(�lmax) coincide if the utility functions are
Boolean, and then compare events by their likelihood. The corresponding uncertainty represen-
tation is precisely the lexi-refinement of possibility orderings

�Π (A �Π B if and only if Π(A) ≥ Π(B))

already identified by [DUB 98a]:

A �lΠ B if and only if ~πA �lmax ~πB (11.18)

where ~πA is the vector(a1, . . . , an) such thatai = π(si) if si ∈ A andai = 0 otherwise. This
relation among events is called the Leximax likelihood [DUB98a, DUB 04a]. It is a complete
preordering whose strict part refines the possibilistic ordering of events together with its adjoint
necessity ordering (A �N B if and only if Π(Bc) ≥ Π(Ac)).

This is not surprising since�lmin and�lmax are conjugate:~u �lmin ~v if and only if
(ν(v1), . . . , ν(vk)) �lmax (ν(u1), . . . , ν(uk)). If ~u and~v are Boolean and encode eventsA
andB, it comes down toA �lΠ B if and only ifBc �lΠ Ac. Relation�lΠ is therefore self-
conjugate.

Another natural way of refining a possibility relation is to delete, in the spirit of Cohen–
Jaffray’s decision rule�D, states common to two eventsA andB [DUB 98a]:

A >DΠ B if and only if Π(A \B) > Π(B \A).

This partial ordering relation, calledpossibilistic likelihoodalso refines the weak order induced
by the necessity measure. It is preadditive as in probability relations, and also self-adjoint.

The relation�lΠ refines the above possibilistic likelihood relation and coincides with it for
linear plausibility rankings of states (by whichS is totally ordered). In the case of a uniform
distribution, the Leximax likelihood relation coincides with a qualitative probability relation
induced by a uniform probability distribution (comparing the cardinality of sets,A �lΠ B if
and only if|B| > |A|).

The uncertainty representation underlying the�lmax(�lmin) and�lmin(�lmax) decision
rules is therefore probabilistic, although qualitative. The Leximax likelihood relation is a spe-
cial qualitative probability relation representable by means of the big-stepped probabilityP ,
involved in functionalsEU+(f) andEU−(f), i.e.A �lΠ B if and only if P (A) ≥ P (B).
Another formulation of the reason why the Leximax likelihood relation is self-conjugate there-
fore consists of noticing thatEU+(f) andEU−(f) share the same big-stepped probability
functionP .
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11.6. Conclusion

This chapter is an overview of qualitative criteria for decision under uncertainty. These
results also apply, to some extent, to multicriteria decisions, where the various objectives play
the role of states and the likelihood relation is used to compare the relative importance of groups
of objectives [DUB 01a, DUB 03b]. Indeed, the commensurability assumptions of the absolute
possibilistic approach are often more difficult to advocatebetween objectives having different
natures in multicriteria evaluation than for states of the world in decision under uncertainty. To
reconcile the two frameworks, evaluation methods in this chapter should be articulated with
conjoint measurement methods described by Bouyssou and Pirlot (see Chapters 16 and 19).

Qualitative criteria can be instrumental in solving discrete decision problems involving fi-
nite state spaces, or problems where it is not natural or verydifficult to elicitate numerical utility
functions or probabilities including:

– when the problem is located in a dynamic environment involving a large state space, a
non-quantifiable goal to be reached, and a partial information on the current state (this case can
be found in robotic planification problems [SAB 01]);

– when only a very high level description of a decision problem is available, where states
and consequences of decisions are coarsely defined (e.g. in some kinds of strategic decision-
making);

– or when there is no time to quantify utilities and probabilities because advice is requested
quickly (as in recommender systems).

Possibilistic criteria were also used in scheduling problems, in order to produce robust se-
quencings of tasks, ensuring moderate and balanced violations of due-dates in case of unex-
pected events [DUB 95a]. These criteria are compatible withdynamic programing in multistep
decision problems [FAR 98].

A number of natural properties any realistic decision theory should satisfy in information
system applications are as follows:

1) Faithfulness to available information supplied by decision-makers, as poor as it be: an
ordinal declarative approach sounds closer to human capabilities.

2) Cognitive relevance: the number of levels in the value scale must be small enough (ac-
cording to well-know psychological studies, people cannotunderstand the meaning of more
than seven value levels).

3) Good discrimination: especially respecting the strict Pareto-dominance.

4) Decisive power: avoiding incomparability and favor linear rankings.

5) Taking into account the decision maker’s attitude in the face of risk and uncertainty.

6) Taking into account the available information on the current state of affairs.

These requirements are often conflicting. Expected utilityis information demanding, and
hardly compatible with the limited perception capabilities of human decision makers. The max-
imin criterion of Wald and its refinements neglects available information on the state of affairs.
In the present overview, two kinds of qualitative decision rules, compatible with the two first
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requirements, have been laid bare. Approaches based on ordinal preference relations, including
the likely dominance rule, are in full agreement with Pareto-dominance. They satisfy the sure-
thing principle, but either leave room to incomparability to a large extent, or focus too much on
the most plausible states.

Approaches based on an absolute value scale improve the expressivity of maximin and
maximax criteria by injecting the respective plausibilityof states. They provide rankings of
decisions but lack discrimination power. There is some inconsistency between the requirement
of a fine-grained discrimination (respecting Pareto-dominance) and the requirement of a total
(especially transitive) ranking of acts in the qualitativeframework. Enforcing both conditions
seems to bring us back to a special case of expected utility asexplained in section 11.5.2.
In a purely qualitative setting, nested lexicographic criteria seem to maximize the number of
satisfied natural requirements listed above.

Many problems remain open in this area:

– How to refine the coarse ranking induced by the Sugeno integral? Recent results
[DUB 07a] suggest it can be refined by means of the Choquet integral.

– The likely dominance rule compares two acts independentlyof others. More expressive
decision rules involving the comparison with a third reference act can be envisaged by weaken-
ing the ordinal invariance axiom [PER 06].

– How do qualitative criteria behave in a dynamic environment where new information is
acquired, in the absence of the sure-thing principle to ensure dynamic consistency? It requires
the study of conditional acts and qualitative conditional preference functionals. See [DUB 07c]
for a preliminary study in the case of possibilistic criteria.
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Chapter 12

A Cognitive Approach to Human Decision
Making

12.1. Introduction

The initial studies in the psychology of decision making under uncertainty were based on
expected utility theory. However, this theory rapidly appeared to be incompatible with subjects’
actual behavior, which followed another kind of rationality rooted in millions of years of evo-
lution under the pressure of natural selection. For instance, a double tendency exists in every
individual: risk aversion, a drive to avoid risky situations, and the drive to realize one’s poten-
tial, which incites us towards risk-taking behaviors. Since these conflicting motivations can be
found in other mammals, they were probably acquired long before invention of money, number
systems, spoken language and more generally, of any symbolic system. Evolution also equipped
us with a cognitive architecture capable of processing information through two very different
functioning modes. The first makes use of a lower level of automatic, fast, subconscious pro-
cesses essentially based on the detection or activation of associations. The second ‘symbolic’
mode is slower. It is cognitively more costly as it requires attentional resources for inhibiting
and guiding automatic processes. However, it alone enablesformal reasoning and mathemati-
cal models such as expected utility theory. Due to its high ‘cognitive cost’, formal reasoning is
unlikely to be used in everyday life. Mundane reasoning is therefore largely determined by au-
tomatic processes, that is, by a processing mode that sometimes differs markedly from classical
norms of rationality.

Chapter written by Éric RAUFASTE and Denis J. HILTON.
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12.2. Humans do not match current rational models

The fact that humans do not match rational models can be demonstrated by two comple-
mentary approaches. These show that there are systematic deviations between the statistical
structure of reality and the representation people have of it. In particular, we discuss the bias of
overconfidence and the lack of internal coherence of mental representations.

12.2.1. Overconfidence and calibration of judgement

Formal models of reasoning generally use the language of probability to represent uncer-
tainty. The birth of the modern theory of probability is often dated to the 17th century, when
French mathematicians set themselves the task of calculating the chances of winning at games
of cards or tennis [BER 96, HAC 75]. Can one suppose, however,that ordinary people use ob-
jective probabilities (even when available) to express or calculate their chances of winning? Or
do they systematically mis-estimate the chances of their judgements and predictions of being
correct compared to an objective standard?

One way of addressing these questions is to examine the quality of the calibration of human
judgements [ALP 82]. Imagine that a hundred people are askedthe question: ‘What was the age
of Martin Luther King at his death?’, and then asked to state an upper and lower bound such that
they are 90% sure that the correct response falls in this interval. If this group of respondents is
well calibrated, 90 of them should give responses that fall in the interval and only 10 responses
should fall outside the interval. One can also establish whether an individual is well calibrated by
asking them 100 general knowledge questions of this type. Ifthis individual is well calibrated,
90 of the correct responses should fall inside the intervalsthat they gives and only 10 outside.

In a recent study [HIL 09] that used 10 such questions about general knowledge with various
samples of French students (university students in economics, management and psychology and
Grande Ecolebusiness students), we obtained overall surprise rates of between 71–80%. As the
expected surprise was only 10% for well-calibrated participants, we are led to conclude that
these students are overconfident in the quality of their judgements. These results correspond to
those found by other researchers [e.g. LIC 82]. For example,Russo and Schoemaker [RUS 92]
found that managers only gave the correct response during 42–62% of cases, even although their
supposed domains of expertise were tapped by the questions posed. In the studies conducted by
Klaymanet al. [KLA 99], the correct response fell within participants’ confidence interval in
only 43% of cases. In addition, this bias seems to be difficultto eradicate: thus Fischhoffet al.
[FIS 77] found that financial incentives had little or no effect on performance on this task.

(Indeed, the most spectacular demonstration of the resistance of miscalibration to financial
incentives that we know of was made by Denis Bouyssou while hewas a professor in a Paris
business school. As part of his course on decision analysis,he invited his students to bet on the
accuracy of their judgements using similar techniques to those described in this chapter. His
average win from classes of 30 or so students was 4000 francs (about 600e), which he always
graciously reimbursed to the students at the end of the course in the form of champagne.)
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Experts are not immune from overconfidence in their judgements, which could prove costly.
Stephan [STE 98] found high levels of miscalibration in German traders who were asked ques-
tions about future currency exchange rates and market indicators. Physicians prescribe and dose
painkillers based on their estimates of their patients’ pain level but Marquiéet al. [MAR 03]
found systematic error in physicians’ estimates of patients’ pain. The finding that overconfi-
dence is observed in experts answering questions in their domain of everyday expertise suggests
that overconfidence is not necessarily an artefact created by an over-sampling of trick questions
in the set posed to participants, as suggested by Gigerenzeret al. [GIG 91] and Juslin [JUS 94].

What is more, overconfidence in judgement can have negative effects on performance. Bi-
ais et al. [BIA 05] therefore used a calibration questionnaire composed of general knowledge
questions to measure overconfidence in finance students. They then showed that overconfident
students were likely to lose in an experimental market game,and above all to make poor deals in
times where there was high ambiguity about the relation between stated price and actual value.
It is in such situations that overconfidence about the diagnosticity of market signals (stated
prices) as indicators of true value of assets can prove most costly.

While people are better calibrated when the judgement task is easy [FIS 77], and miscali-
bration is less extreme when measured by other methods than confidence intervals [KLA 99],
the robustness of this phenomenon indicates that people often, indeed systematically, underes-
timate what they do not know. In a later part of this chapter, we will discuss processes capable
of explaining why overconfidence in judgement occurs, such as judgemental heuristics. In the
following section, we continue our examination of whether human judgement follows norma-
tive standards, by demonstrating that they often show considerable internal inconsistency (for
example, in the domain of preference formation).

12.2.2. Preference reversals and framing effects

Imagine that a new disease spreads throughout your town. Twovaccines are available. One
is certain to save 200 lives, but no more, whereas the other has one chance out of three to save
600 lives and two chances out of 3 of saving none. You are responsible for the choice of the
vaccine that will be applied. Which one do you choose?

Now, imagine a new disease arrives. Two other vaccines are available. With the first, it is
certain that 400 persons will die. With the second, there is one chance out of three that no one
dies and two chances out of three that 600 die. Which one do youchoose?

Experimental results [TVE 81] show that the majority of subjects significantly prefer the
more certain option in the first choice (certainty of saving 200 lives). Participants prefer the
more uncertain option in the second choice (possibility of saving 600 lives). The problems are
logically equivalent, however.

This is a demonstration of what psychologists call ‘framingeffects’. Slovic and Lichtenstein
[LIC 71, SLO 68] have shown that superficial characteristicsof problems, irrelevant from a
rational standpoint, have a qualitative and quantitative impact on the final choice to the point
that such preference reversals can appear. Thus, bets having a high probability of winning a
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little amount are chosen more often than equivalent bets with a low probability of winning a
large amount. Moreover, when subjects are asked to provide avalue for the bets, highly valued
bets are those associated with a large-but-unlikely gain, despite the same participants having
preferred bets having a high probability of making a small gain.

Numerous studies have since confirmed the possibility of inducing preference reversals
between rationally equivalent options [SLO 95]. Indeed, preferences generally do not preexist
in individuals’ minds but rather are constructed during thedecision making process, which
is influenced by that construction. We first present a psychological theory of expected utility,
which is aimed at explaining framing effects. However, we will see that a finer analysis of the
cognitive mechanisms underlying the construction of preferences is necessary.

12.2.3. Subjectivation of expected utility: prospect theory

Prospect theory, proposed by the cognitive psychologists Kahneman and Tversky in 1979
[KAH 79], constitutes a first formalization of the acknowledged effect framing has on decision
making. Kahneman received the Nobel Prize in Economics for his work on the psychology of
decision making under uncertainty. Letα be an action prospect (vaccines A or B in the example
above) with potential outcomesri having some utilitiesu(ri) (e.g. patient’s survival, cost of
treatment, etc.), and having some probabilities of occurrence p(ri) (success rate). Classical
decision theory computes the expected utility of a possibleactionU(α) by summing the utility
multiplied by the probability products of all the potentialconsequences of the action, i.e.

U(α) =
∑

u(ri).p(ri).

Prospect theory ‘subjectivizes’ this approach by substituting a subjective function (value)
for the objective utility (amount), and a subjective function (weighting) for the objective prob-
abilities. Letv(.) be the subjective value felt in response to the objective price of the outcome
of the action under consideration, andπ(.) the weighting felt with regard to the objective prob-
ability of the outcome realization. The resulting subjective value will be:

V (α) =
∑

v(u(ri)).π(p(ri)).

The question is to determine properties of the subjective functionsv(.) andπ(.) as a func-
tion of the objective utilities and probabilities. Prospect theory postulates two fundamental prop-
erties for the shape of the value function (empirically verified). It is convex in the domain of
losses and concave in the region of gains. It is not symmetricas a loss produces a negative
reaction of higher intensity than the positive reaction produced by the corresponding gain (Fig-
ure 12.1).

The S-shape of the value function represents an aversion to risky choices in the region
of gains and a tendency towards risky choices in the region oflosses. As an example, let us
compare the prospect of ae1000 gain that is 75% probable and the certainty of ae750 gain.
The classical theory computes ae750 expected utility in both cases (indifference). However,
because the subjective value function is concave in the region of gains, the subjective value of
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Figure 12.1.Subjectivization functions in prospect theory

e750 will be greater than three-quarters of the subjective value ofe1000. The cautious prospect
will therefore be chosen.

The weighting functionπ(.) also has particular properties (a curve satisfying those proper-
ties is presented in Figure 12.1(b)). Only one is of interesthere: low objective probabilities are
weighted too much and high objective probabilities are not weighted enough. Then a reduction
in uncertainty from 5% to 0% will generally have more effect than a reduction from 10% to
5%. Individuals will therefore generally be more ready to pay an insurance policy that totally
eliminates a risk than a policy that reduces the risk in the same proportion but without removing
the randomness attached to the final outcome.

In a more recent version, Tversky and Kahneman [TVE 92] refined their approach by tak-
ing into account the interaction between the uncertainty and utility conditions. In the original
version the weighting was therefore the same whether utility was in the region of gains or in the
regions of losses. In the later version, weighting functions change with the utility region under
consideration. Risk seeking and risk aversion are no longerdetermined by the utility function
but by the conjunction of utilityand the level of uncertainty. A more specific pattern of attitudes
towards risks is given in Table 12.1.

Low probabilities High probabilities
Region of gains Risk seeking Risk aversion
Region of losses Risk aversion Risk seeking

Table 12.1.Attitudes towards risk depending on the type of outcomes andthe degree of
uncertainty

12.2.4. Questions raised by the standard model

Despite being a descriptive but not a normative approach, prospect theory has a number
of postulates that make it somewhat similar to the standard expected utility theory. Those pos-
tulates leave room for discussion, and other phenomena described in the literature cannot be
captured by prospect theory.
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One of the more questionable postulates states that utilities can be measured on a numerical
scale. Baron and Spranca [BAR 97] introduced the notion of ‘protected values’ defined as values
that cannot be negotiated, particularly not against money.Such values stem from deontological
rules about actions, that is, about the way in which outcomesare produced. For example, even
if some behavior enables money to be made, say by killing somebody, a decision maker may
not want to do it because this way of making money is morally inacceptable to them.

Protected values have several properties, one of which is ofparticular interest here. Pro-
tected values are not sensitive to differences in quantity.This property induces people to refuse
to attach numerical values to human lives, thus producing results that are incoherent according
to formal models. (Note that this phenomenon should not be confused with the ‘psychophysi-
cal numbing’ sometimes evoked to account for the tendency ofundervaluing individual human
lives as the number of endangered lives increases.) Protected values exist in every culture, even
although their nature varies from one culture to another. The very existence of those values calls
into question the idea that utilities can be measured by means of a simple numerical scale.

As regards processing of uncertainty, classical approaches to expected utility use uncertainty
functions of a probabilistic (or Bayesian) nature. If numerical scales are not always compatible
with the way humans evaluate utility, as when protected values are involved, it is also possible
that numerical scales are no more suitable for evaluating uncertainty. As a matter of fact, in a se-
ries of experiments (some of which were conducted with psychology undergraduates and some
expert radiologists [RAU 98a, RAU 03]) we showed that a possibilistic (qualitative) approach
to uncertainty judgements was more in agreement with human judgement than a probabilistic
(quantitative) approach. Specifically, conjunctions and disjunctions of elementary judgements
appeared to be combined through min, max and order-reversing algorithms rather than through
additive and multiplicative processes. These results entail a qualitative approach to uncertainty,
which is fundamentally different to the probabilistic approach. In the remainder of this chapter,
we cover other phenomena that prospect theory does not capture.

Perhaps more embarrassing than the previous two points is the fact that prospect theory
summarizes a number of empirical phenomena but does not enable understanding of their ori-
gin. Where do the properties of the subjective value and weighting functions described above
come from? In addition, some studies have shown that public reactions are determined by var-
ious factors as diverse as the perception of social inequalities in the distribution of risks and
benefits, or aversion to situations that induce a feeling of not being in control. Some persons
therefore prefer taking their car because of a fear of aircraft accidents, while the objective risk
is notoriously higher in personal vehicles. Explaining such effects requires study of the very
origin of the subjective value function. It was shown, for example, that the nature of the task
proposed to the subject had a decisive effect on the final decision. Tasks where subjects have
to choose between various options lead to results differentfrom tasks where subjects have to
put a price on the same options. It is then necessary to study the cognitive mechanisms leading
to decisions, and first of all the construction of a mental representation of the decision making
situation.
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12.3. A global descriptive approach to decision making

Some researchers study cognitive processes underlying judgement and decision making
under risk in domains far more complex and less structured than classical laboratory settings.
Participants in these studies are senior managers, aircraft pilots, doctors, insurance brokers and
traders. While the traditional approach to decision makingemphasizes choice among possible
options and the rational way of making the choice, investigation of human cognitive processes
in naturalistic settings shows that professionals acting in their own domain of expertise seem
to devote the bulk of their attention to building and updating a reliable representation of the
problem situation [KLE 93, ZSA 97].

Exploring the set of possible choices seems to be a secondarypreoccupation for those ex-
perts. From the first studies on chess players [e.g. CHAS 73],numerous works in domains such
as military decision making [see ZSA 97] or medicine [e.g. ELS 78, RAU 98b] showed that
experts rarely evoke more than one or two options even although a long reflection time is then
devoted to analyzing these options. Our own results on expertise in radiology, a specialty where
physicians are used to reason based on sets of differential diagnoses rather than on individual
hypotheses, show that the maximal diversity can be observedin novices, and minimal diversity
in some of the experts [RAU 98b]. Diversity in novices comes from the incapacity to eliminate
some irrelevant hypotheses whereas diversity in experts comes from the activation, while rea-
soning, of knowledge about relevant particular cases. Relevance of the initial selection set of
options is therefore a key element. Indeed, what is the pointof perfectly ranking the retained
options if none of them contains the correct solution? Otherwork about decision making in the
workplace led to a general descriptive model that we now present: ‘the search for dominance’
[MON 83]. To understand this model, we first need to remind ourselves of some basic notions
of multicriteria decision making.

12.3.1. The concept of multicriteria decision making

One of the major concerns for researchers in the psychology of decision making was to
study the construction of preferences in the case where the options differ on several attributes
[EDW 00]. For example, imagine that you would like to buy a video recorder. Numerous param-
eters can guide your choice. Some parameters can be evaluated on numerical dimensions (price,
resolution, etc.). Other parameters refer to a qualitativedimension (for instance, the presence
or absence of options such as a video screen or the type of recording devices, flash memory or
magnetic tape). Several questions arise. What process can combine the various attributes? How
is the relative weight of each attribute determined? The issue of decision making as a whole
appears as a particular case of these questions. A classicalapproach consists of determining the
weight of an option from a linear combination of the various attributes:

W = a1X1 + a2X2 + a3X3 + . . .+ anXn,

where each coefficientai represents the weight associated to the attributei and where eachXi

represents the value of this attribute. More sophisticatedmodels exist, such as stochastic models
that also include a random component enabling an explanation of why the same individual with
the same pattern of attribute weightings may change his choice between morning and afternoon.



476 Decision Making

Here, we will not present normative models of multicriteriadecision making but simply consider
the general process of choice.

From a purely descriptive standpoint, the decision making processes actually used by sub-
jects do not always take into account the whole set of available attributes. For example, in
the so-called ‘lexicographic’ procedures, decision makers ground their decisions on the most
important attributes [e.g. TVE 72]. If this attribute does not enable differentiation among the
options, the second attribute in the order of importance is taken into account, and so on. It can
be seen that such a process is non-compensatory in nature: ifthe first criterion is sufficient for
the decision to be taken, other attributes are not even examined. Therefore they have no chance
to balance or compensate for the influence of the most important factor. For the moment we will
simply note that multicriteria decision making is not necessarily the result of computing some
more or less complex function, but rather that it may be understood as a process.

12.3.2. The notion of dominance structure

12.3.2.1.The dominance rule

The dominance rule is a normative rule. It states that one should always choose an alterna-
tive that is dominated on no attribute by the other alternatives and that is better than all other
alternatives on at least one attribute. Although being a crucial element of the theory of rational
choice, the dominance rule suffers from a serious drawback:it is not always possible to find an
alternative that, strictly speaking, dominates the others.

12.3.2.2.The search for dominance

When the mental representation of the problem does not allowdetection of a dominant
alternative, decision makers must transform their representations in order to make a dominant
alternative appear. Reasoning in decision making settingscan therefore be construed as a partic-
ular case of representation transformation, the purpose ofwhich is to make dominance appear.
In this model, the transformation of the problem representation is guided by reasoning rules
(logical rules, pragmatic rules, etc.). The search for dominance can pass through the search
of new information in the environment. But it can also directly operate by means of a direct
transformation of some of the attributes in the problem. Thesubject may try to neutralize or
counterbalance some attributes in the representation, or else try to introduce new attributes.
Hence, it is possible to define the descriptive counterpart of the dominance rule.

12.3.2.3.Dominance structures

Montgomery [MON 83, p. 344] defined a dominance structure as “equivalent to a repre-
sentation where one alternative has at least one advantage compared to other alternatives, and
where all disadvantages associated with that alternative are neutralized or counterbalanced in
one way or another”.

To create such a structure, the decision maker can modify their evaluations of attributes, or
can modify the attributes under consideration. The dominance structure is more or less distant
from the dominance rule: the more the chosen alternative presents disadvantages that must be
neutralized or counterbalanced, the greater the distance to pure dominance. An essential feature
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of the dominance structure resides in its construction. It consists of a construction process that
taps various reasoning rules. The rule of dominance can be one of these rules but, in the general
case, rules for building a dominance structure ought to be construed as operators enabling local
transformations of the representation so that the dominance rule can be applied to the resulting
representation. For instance, a rule may consist of excluding the alternatives unlikely to become
dominant. Another rule can be used to neutralize a disadvantage of a promising alternative.

In other terms, the decision making process as a whole is construed as the search for a
dominance structure by means of the successive applicationof rules, the scope of which is
generally local (with the exception of the rule of dominance). Let us now examine the steps of
the decision making process.

12.3.3. Steps in the decision making process

According to Montgomery, the decision making process can bedecomposed into four main
phases: pre-edition, the selection of a focal alternative,the test of dominance and the structuring
of dominance (see Figure 12.2). The first two phases are particularly sensitive to affect-driven
phenomena, such as social values that determine what is important and what is not.
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Figure 12.2.The model of search for dominance (after Montgomery [MON 83])
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12.3.3.1.Pre-edition

The goal of the pre-edition phase is to separate relevant from less relevant information.
The latter can be neglected by subsequent steps of the information processing. For example, in
medicine, a small number of diagnostic hypotheses is selected in a few seconds, and hypotheses
that do not belong to this initial set are very unlikely to be taken into account later [ELS 78].

The pre-edition phase involves two operations: selecting the relevant facts (attributes) and
selecting the choice possibilities (alternatives) to consider. In the case of diagnosis, for example,
this step consists of selecting the symptoms that ought to beaccounted for and the diagnostic
hypotheses in competition. The hypotheses retained are those having a fair probability of con-
stituting a dominance structure while the hypotheses having a low probability of generating a
dominance structure are eliminated.

It is noteworthy that this phase is sensitive to factors completely unaccounted for by clas-
sical normative theories. For instance, construction of the mental representation depends on
socio-cultural factors [SLO 97]. Thus, in the US whatever the nature of the risks under con-
sideration (infectious diseases, pollution, accidents orX-rays) white males provide lower risk
judgements than white females and black males and females [FLY 94]. More generally, since
1971 many studies showed that males are less sensitive to risks than females (for a review, see
[SLO 97]). For almost every danger source, they judge the risks to be lower and the conse-
quences less problematic. Even when studies involve experts in the domain (medicine toxicity,
nuclear power, etc.), female scientists deem risks to be higher than their male colleagues.

12.3.3.2.Search for a focal alternative

This phase aims to find, among the alternatives selected in the previous phase, the one
having the best chance of acquiring the status of a dominancestructure.

12.3.3.3.The test of dominance

This phase aims to evaluate whether the focal alternative selected in the previous phase can
actually be considered as dominant. In particular, the decision maker checks whether the focal
hypothesis presents some disadvantages compared to its competitors.

12.3.3.4.Dominance structuring

Operations of this phase take place when the focal hypothesis violates a condition for access
to the status of a dominance structure. This phase then aims to neutralize this violation. In the
case of success, the decision making process returns to the phase of dominance testing until all
available information has been processed. In the case of failure, decision makers come back to
one of the first two phases, in order to select a new and promising hypothesis or new facts and
hypotheses. They can also delay the decision.

At least four structuring methods can be distinguished:

1) ‘De-emphasizing’ refers to when decision makers reduce the importance (the weight)
of an attribute or minimize the differences between alternatives relative to this attribute. For
example, decision makers change their criteria as regards what is important or not. They may
also decide that the dominated attribute has a low probability of occurrence.
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2) ‘Bolstering’ consists of augmenting the support received by the focal hypothesis. De-
cision makers can increase the weight of attributes where the focal hypothesis dominates, for
example by rehearsing positive arguments in order to make the elements that support the focal
hypothesis more vivid in their imagination (see the availability heuristic below). They can also
seek new arguments favouring the focal hypothesis.

3) ‘Cancellation’ is a type of tradeoff where two specific attributes are nullified, one on
which the focal hypothesis is dominated, in exchange of the nullification of another specific
attribute on which the focal hypothesis dominates. Obviously, using cancellation requires an
attribute on which the focal hypothesis dominates.

4) ‘Collapsing’ is an operation by which two or more attributes are merged into a newer,
more comprehensive, attribute. For example, imagine that you want to buy a car. You hesitate
between A and B with a preference for B. But B consumes more petrol than A and is therefore
dominated on this attribute. You convert the consumption difference into money (e.g. overcon-
sumption by B representse100 a year) and you integrate the initial cost of buying (e.g.B is
initially cheaper than A bye1000) with the cost overrun caused by overconsumption. You ob-
tain a global cost on which, say, B dominates. Assuming the car will be kept 5 years, the total
overconsumption by B representse500, but as it initially costse1000 less, the global balance
is e500 in favor of option B. Since the global cost includes consumption, consumption can be
eliminated and then a dominance structure has been obtained.

From this global approach to decision making, it is necessary to deepen the details of each
specific mechanism. Some of those mechanisms have a cognitive cost (i.e. mental effort is
necessary to execute them). The process of setting a particular mental mechanism to work is
also subjected to a decision making process [e.g. PAY 93].

The remainder of this chapter will be limited to some transversal determinants, that is,
psychological phenomena that affect various steps in the model of Montgomery. We will prin-
cipally evoke attentional focusing and heuristic utilization, and will conclude with the issue of
emotional determinants.

12.4. Attentional focusing

An often observed phenomenon is the effect of attentional focusing stemming from the
fact that individuals essentially base their reasoning anddecision making on what is explicitly
present in their representation of the problem. Information, knowledge and ideas under the focus
of attention are therefore weighted more in reasoning and decision making [LEG 93].

On the contrary, hypotheses excluded from the attentional field have a weak influence on
decision making [CHE 03, FIS 78]. In agreement with this principle, Tversky and Koehler
[TVE 94] presented and tested a model enabling a better understanding of the origins of sub-
jective probability judgements, namely support theory. According to this theory, confidence
judgements about a hypothesis depend on the strength of evidence that support this hypothesis.
In turn, this strength depends on the vividness of the representation in the decision maker’s mind
at the moment where the judgement is made. In other words, themore the representation of a
hypothesis – as a happy or unhappy consequence of a choice – isvivid, the more this hypothesis
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will receive strength. Indeed, focusing one’s attention ona prospect allows better perception of
its details.

Due to general mechanisms that favor the perception of elements that are coherent with
the focal hypothesis, if subjects successively focus theirattention on several variants of a hy-
pothesis, the overall quantity of elements supporting thathypothesis will generally be higher
compared to subjects who do not clearly represent all the details. The subjective probability
associated with that hypothesis will then be reinforced.

Hence, a presentation that inclines subjects to represent the consequences of a risk with a
lot of details will generally increase the subjective probability associated with that risk (how-
ever, other mechanisms exposed later can oppose this tendency). Reciprocally, the subjective
probability felt about a risk can be lowered by describing this risk in abstract terms that do not
facilitate concrete representation. One can easily imagine the implications this approach has for
the design of risk prevention strategies.

The effect of attentional focusing is all the more importantwhen simultaneously represent-
ing the whole set of costs and benefits is difficult. This is thecase in ‘intertemporal choice’,
which consists of deciding between action possibilities whose expected costs and benefits are
not simultaneous. For example, when investing in technicalequipment, cost is immediate whereas
expected benefits only occur after some delay. Various studies [e.g. AHL 97, HAU 79] show that
an important proportion of subjects underestimate the temporal dimension in their global assess-
ment of benefits. Modeling of such phenomena can be traced back to Samuelson [SAM 37] (for
a more recent review, see [LOE 92]).

For example, subjects chose options that offer the fastest payback, even although they are
less advantageous in the long run. People may therefore tendto avoid investing in a machine
that is costly in the short term despite the fact that it should bring them a greater revenue in later
periods such that the final profit will be higher. Such temporal myopia may affect the decision
to buy protection such as insurance policies; buying an insurance policy is a typical case of
trade-offs combining a short-term certain cost with a long-term potential benefit. This effect is
also a consequence of attentional focusing.

In anti-seismic protection of houses, Kunreutheret al. [KUN 98] were able to observe an
increase in the likelihood of buying protection measures that were onerous in the short term.
This increase was linked to the explicit mention of the temporal horizon, of the probabilities
of associated damages and of the magnitude of damage reduction brought by the protective
measure. In other words, helping subjects to comprehend decision parameters also helps them
to include those parameters in the decision making process.However, it does not mean that an
explicit description systematically increases buying behaviors.

For example, in a study about the purchase of a warranty at themoment of buying an
electronic device [HOG 95], the probability of purchase washigher in subjects who received no
information on costs and probabilities of potential repairs than in subjects who received such
information. Without this information, subjects simultaneously took into account the respective
prices of the product and of the guarantee. However, bringing concrete information about risks
induced a direct comparison of the cost of repair and the price of the warranty. In this situation,
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information reduced the likelihood of purchase by as much asa 5% increase in the price of the
warranty.

Other attentional effects have more complex causes than thepresence or absence of some
aspects of the problem in the representation. Interactionswith the task also matter. For example,
significantly different preferences seem to be elicited when different methods are used to elicit
preferences. Choice therefore operates by direct comparison (both options are simultaneously
present in consciousness), which favors the most importantdimension. In evaluation, on the
other hand, options are processed independently of each other. In lottery experiments, where
options that differ on two dimensions are compared, namely financial utility and the uncertainty
attached to the outcome, reversals often occur. This depends on whether preferences are mea-
sured by asking subjects to provide a direct choice (betweenoptions) or by estimating the value
of each option (‘pricing’).

This finding is a violation of the invariance principle according to which, for the same
problem, two rational decision procedures should produce the same result. According to the
‘compatibility principle’ [TVE 88], the relative weight ofa given piece of information in a
judgement or decision making situation is increased if thispiece of information is compatible
with the scale used for providing the response. Thus, estimating the price of a bet tends to
increase the weight of the value dimension compared to the probability dimension because
both the value dimension and the price of a bet are expressed using monetary units. In other
words, the question makes the monetary dimension ‘salient’. Compatibility effects constitute
an important cause of preference reversals [SLO 02].

All pieces of information in the decision making situation do not contribute equally to the
various processes. In addition to the compatibility principle proposed below, Tverskyet al.
[TVE 88] proposed a ‘prominence principle’, describing when individuals choose according to
the subjectively most important dimension (then at least partially neglecting other dimensions)
but give more balanced weights to the various dimensions when pricing the options. Conse-
quently, the most prominent attribute will weigh more in choice than in appraisal.

Consider the request ‘you must decide whether you country should invest 55 million dollars
in a road safety program that will save 570 lives, or 12 million dollars in a program that will
save only 500 lives’. Sixty-eight per cent of subjects choose the more expensive program that
saves more lives [TVE 88]. A preference reversal appears when – instead of being asked to
choose the program they prefer – subjects are asked to evaluate the price of a program allowing
570 lives to be saved so that it would be as attractive as an existing 12 million dollar program
that allows 500 lives to be saved. The percentage of subjects, the appraisal of which would lead
a rational decision maker to choose the more expensive program, falls to 4%. Money is usually
deemed less important than the lives it might save. This is why in this experiment, according to
the prominence principle, money weighs lower in choice thanin appraisal.

As well as effects of an attentional origin, specific evaluation mechanisms play a key role
in judgement and decision making: heuristics.
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12.5. Evaluation heuristics and ecological rationality

12.5.1. Logical rationality and ecological rationality

Imagine that a lion is pursuing you. You are 25 sec ahead. You arrive in front of a lake. You
have two escape routes, one on the left and one on the right. One leads you to a safe (solid)
shelter but you will need 24 sec to reach the shelter. The other is less safe but you can reach the
shelter in 20 sec. Which way will you chose?

The point here is that after 5 sec of reflection with no action,you are dead whatever the
option you take! From an evolutionist standpoint, it is therefore better to have an imperfect
decision system that reacts swiftly, even by providing suboptimal responses, than to have a
decision system that provides the perfect response too late. Then exists a second form of ratio-
nality, different from logical rationality: so-called ‘ecological rationality’. (We use this phrase
with its usual meaning in psychology, which refers to the rationality of an organism having to
adapt its environment.) One can therefore expect the existence of a difference between actual
behaviors of subjects (descriptive models of decision making) and the ‘ideal’ behavior (norma-
tive models). If the ideal cannot be reached, is it still possible to produce behaviors that (at least
statistically) provide an advantage in the struggle for life?

Ecological rationality suggests decision making processes employ what Simon [SIM 56]
calls ‘bounded rationality’, that is, with algorithms (heuristics) that provide a ‘satisficing’ rather
than ideal response, but in a reasonable time. By satisficing, one must understand responses that
in a majority of cases will allow the desired goal to be reached. Although it is not possible to
compute the whole set of possible consequences of an action,Simon [SIM 56, p. 27] showed
that very simple decision making processes may provide satisficing solutions in reasonable time.
He concludes that “. . . we should be skeptical in postulatingfor humans, or other organisms,
elaborate mechanisms for choosing among diverse needs.”

De facto, the ability to produce satisficing responses in a limited time represents a clear
adaptive advantage. The theory of evolution by natural selection then suggests that the pro-
gressive adaptation of the cognitive system to environmental constraints should endow us with
mechanisms allowing decision making at speeds compatible with the requirement of the species’
survival. If the adaptive advantage provided by a heuristicpersists for the species (by using it
rather than by not using it, more individuals survive long enough to reproduce), and if the se-
lection pressure is strong enough, the proportion of individuals using the heuristic will tend
to grow in the population. The other side of the coin is that this adaptation is only partial: if
heuristics provide satisficing responses in a majority of cases, they nevertheless produce erro-
neous responses in a minority of cases.

Researchers in the psychology of human decision making havebased their study of human
heuristics on the existence of such failures. Indeed, whilethe classical normative theory can
only predict the correct response, heuristics can also predict error patterns. If one knows the
context and the heuristic that is used, it is generally possible to anticipate the direction of errors.
Work by Kahnemanet al. [KAH 79] thus initiated a research stream known under the name
of ‘heuristics and biases’. As well as preference reversal cited above, this research program
uncovered several heuristic reasoning rules, some examples of which will now be presented.
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12.5.2. The representativeness heuristic

Let us consider the following problem. Linda is 31 years old,single, outspoken and very
bright. She majored in philosophy. As a student, she was deeply concerned with issues of dis-
crimination and social justice and also participated in anti-nuclear demonstrations. Please check
the most probable alternative.

– Linda is a bank teller.

– Linda is a bank teller and is active in the feminist movement.

A large majority of participants (over 80%) answer that Linda is more probably a bank teller
than bank teller and active in the feminist movement. However, formally it is impossible to have
p(A ∩B) > p(A) because every element inA ∩B is also an element ofA. Thus, the problem
demonstrates a very robust bias. This bias is the other side of the coin of a powerful heuristic:
the representativeness heuristic.

The representativeness heuristic consists of judging the probability of a class depending
on the perceived similarity between the properties of the target class and the properties of a
stimulus that can be viewed as an instance of this class. In other words, we estimate thatI
is probably an instance of the categoryC if the properties ofI resemble typical properties of
theC category. This heuristic is powerful because it allows generalizing of prior knowledge in
order to predict the behavior of reality. For example, if I see an unknown animal that resembles
a lion, it is not unreasonable to behave as if it were a lion, that is, to preventively protect oneself
against the potential danger that a big feline represents.

Applying this heuristic to the Linda problem, one sees that Linda is described in a way
very similar to the prototype of exemplars of the category ‘feminist’: Linda is representative of
the class of feminists. In contrast, Linda is not very representative of the class of bank tellers.
Then we are prone – due to the representativeness heuristic –to give a high probability to
‘bank teller and feminist’ because the representative element (‘feminist’) is only present in this
second option. But this choice violates a basic principle ofnormative theories, ‘extensionality’:
the probability of a subset can never be greater than the probability of a set within which it
is included. Every single woman who is feminist and bank teller is a bank teller. The reverse
is not true and then the probability to be bank teller AND feminist can never be greater than
the probability to be bank teller alone. (Note that the extensionality argument can only hold if
‘Linda is a bank teller’ is not pragmatically interpreted tomean ‘Linda is a bank teller, and not
a feminist’ [DUL 91, KAH 02].)

12.5.3. The availability heuristic

Let us consider a new problem. For each of the following pairsof causes of death, indicate
which is the most frequent:
1. Lung cancer or Road accident
2. Emphysema or Homicide
3. Diabetes or Fire and flames
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The availability heuristic consists of judging the probability of a class depending on how
easily instances of the class come to mind. This heuristic validity stems from the very properties
of human memory. Indeed, for reasons bound to human brain functioning, we recall frequent
rather than non-frequent events better and more easily. Hence, ease of retrieval of information
from memory often constitutes a valid cue to the frequency ofthe represented element.

However, the coin still has another side. In the three questions above, the majority of sub-
jects answer with the right column elements, whereas the death causes considered in the left
column killed many more than those placed in the right column(the statistics are from Slovic
et al. [SLO 80] from the US in the 1970s, where their experiments were conducted). This bias
is linked to the fact that frequency is not the only determinant of the ease with which memories
are retrieved.

Information salience, its subjective importance and its associated affective reactions are
among the factors that contribute to affect information availability. It is therefore possible to
construct situations where an element will be easily retrieved, thereby inducing a high prob-
ability judgement despite its relatively low actual frequency. In the preceding examples, the
causes of death on the right are easy to represent because they are regularly reported in the
media. However, the frequency of mention in the media does not reflect the real frequency of
occurrence of these events. Moreover, media shows are oftenassociated with dramatic pictures
that, by affectively tagging the event, facilitate later retrieval. On the contrary, in an ordinary
population, the presented pathologies do not spontaneously come to mind. They are then judged
– erroneously in the present case – to be less probable.

Another example perhaps illustrates the underlying mechanism more clearly. Consider the
letter R. Is R more likely to appear in:

1) words that start with R; or

2) words the third letter of which is R.

In this kind of example, two-third of individuals choose theanswer ‘words that start with R’.
According to Kahneman and Tversky [KAH 79], it can be explained by the fact that it is easier
to mentally generate words that start with a given letter than by words having a given letter in
the third position.

It should be remarked that, due to the availability heuristic, bringing subjects to imagine the
details of an event (e.g. showing pictures of AIDS patients to induce less risky sexual behaviors)
does not necessarily lead to higher probability judgements, as suggested by the focusing effects
presented earlier. Indeed, in cases where evoking the details is difficult, as in subjects who
are distressed by those pictures and repress them, the estimated probability might be lower
[SHE 85]. The event will only be deemed more likely if evokingits details is easy.

12.5.4. The anchoring-adjustment heuristic

Let us consider a mental arithmetic exercise to be done in 5 sec, an impossible task for an
ordinary non-prodigy subject. Half the participants have to estimate the result of the following
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operation:8 × 7 × 6 × 5 × 4 × 3 × 2 × 1. The other half must estimate1 × 2 × 3 × 4 ×
5 × 6 × 7 × 8. Obviously the results are the same but estimates of the firstgroup are greater
than estimates of the second. It can be explained by the fact that subjects mentally compute the
first operations during a few seconds then, discovering thatthere will not be enough time for
the whole calculation, extrapolate the effect of the remaining operations starting from the last
intermediate result reached.

This situation illustrates the anchoring and adjustment heuristic, more complex than the
two previous heuristics because it is a two-step process. Inthe first step (anchoring), the subject
has a value that can serve as a starting point for the extrapolation. In the example, it is the last
intermediate result that was calculated. In a second step (adjustment), the subject updates their
initial estimate towards the most plausible direction. This heuristic is valid when the anchor is
chosen validly and the adjustment sufficient. For example, aprivate individual willing to buy a
second-hand car can start from a global estimate of the mean sale price for vehicles of the same
type, age and mileage. This first estimate constitutes the anchor. The buyer may then adjust
this price depending on more subjective parameters such as aesthetic quality and state of the
paintwork.

This heuristic generates strong biases when the anchor is invalid. The following experi-
ment illustrates such biases. Subjects are presented with awheel of fortune providing a number
between 10 and 200. Depending on the resultr, the experimenter asks ‘is the percentage of
African countries in the UN below or abover?’ As a matter of fact, the wheel is under the
control of the experimenter who can produce either 10 or 65. In the 65% case, participants are
sure that the answer is ‘below’. In the 10% case, participants are sure that the answer is ‘above’.
For the moment, no surprise. The interesting point is that, without being aware of it, subjects
just anchored a value in their minds, 10% in a case, 65% in the other case. In a second phase,
the experimenter asks ‘what is the exact percentage of African countries in the UN?’ The effect
of an insufficient adjustment then appears: estimates from subjects anchored to 65% are biased
in excess whereas estimates anchored to 10% are biased down.Various explanations of such ef-
fects have been proposed [e.g. EPL 06, STR 97] and anchoring-and-adjustment effects are now
viewed as a multi-determined phenomenon [e.g. EPL 04].

The anchoring-and-adjustment heuristic is a powerful means to manipulate people, widely
used in daily life. When politicians provide a biased statistics, they provide anchors from which
people will adjust insufficiently. This is why, in France, demonstrations always give rise to two
estimates, most often outrageously divergent, that of the police and that of the demonstrators.
In a striking demonstration of the seemingly irresistible nature of anchoring effects, Englich
et al. [ENG 06] show that high versus low anchors influenced sentence recommendations by
experienced legal professionals, even when it was made clear that the anchor was irrelevant
(because it came from a question posed by a journalist), or randomly determined (by a dice
throw made by the judge him/herself). This anchoring effectstill persisted despite the fact that
judges corrected for the fact that the demand was made by the prosecutor. According to the
traditional explanation, the biases associated to this heuristic stem from insufficient adjustment.
However, if anchoring effects are robust, the issue of theirexplanation is still open [CHA 02,
EPL 01].
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12.5.5. Conclusion on heuristics

The heuristics presented here are far from being an exhaustive sample of all heuristics
known in human decision making. An influential research program conducted by Gigerenzer
et al. [e.g. GIG 99] explores what they call fast and frugal heuristics, because these heuristics
consume few cognitive resources. In addition to the human algorithmic ‘cognitive toolbox’, this
approach advocates the need for better comprehension of thefunctional aspect of heuristics
than the bias and heuristics approach, which essentially applied itself to show their dysfunc-
tional side. De facto, the challenge for current psychologyof decision making is no longer to
demonstrate the existence of deviations between human behavior and the ideal norm of expected
utility theory. Such deviations are now accepted. Above all, we now have to understand ‘how it
works when it works’.

After a period of time focused on the irrationality of human decision making, we observe
the return to a conception where humans can reason, if not logically, at least ecologically. After
all, humans exhibit a stunning capacity to easily handle very complex operations such as those
required by language processing. If one is ready to believe that evolution may also have affected
decision making, it is not surprising that humans would be well adapted in matters of decision
making. Concomitantly of this resurgence of a more optimistic conception of human rationality,
the old antagonism between reason and emotion is also undergoing resorption.

12.6. The role of affect in decision making

For centuries, the prevailing conception was that reason – pure, providing much good –
could only be disturbed by emotions that, in contrast, were largely considered as irrational. The
drastic change brought by modern cognitive sciences is the conception that emotions can be
necessary to the correct functioning of reason. We now know that, without emotions, it becomes
very hard or even impossible to make decisions adapted to thecomplexity of social life.

12.6.1. The positive role of emotions

In the introduction of this chapter, we saw that positive andnegative presentations of an
event induce different choices. Choices presented in termsof gains make us prefer safe op-
tions whereas choices presented in terms of losses make us prefer risky options. Other findings,
issuing from the study of cognitive deficits induced by cerebral lesions, show that affect also
determines attentional focusing, whose effect on the weighting function was presented above.

Damasioet al. [DAM 91] showed that, when confronted with a complex decision making
situation, subjects do not consciously consider all hypotheses. As we are told, this has long been
known in the psychology of decision making in natural situations and corresponds to phenom-
ena described in the ‘pre-edition’ phase of Montgomery’s model. What is new in Damasio’s
work is the realization that a major determinant of the process selecting the hypotheses to be
considered is affect. Subjects consider only a small numberof hypotheses, selected on the ba-
sis of an emotional sensation. Individuals in whom this capacity is damaged become unable to
make acceptable decisions in a reasonable time, even if their IQ remains high. Damasio reports
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the case of EVR, a patient who had become emotionally deficient after brain surgery but with
an intact IQ, still over 130 (i.e. an individual who still belonged to the 2% most intellectually
gifted subjects). At the same time, this individual had become unable to make correct deci-
sions in daily life. For an enlightening discussion of the dissociation between intelligence and
rationality, see [STA 09].

The previous results question the interaction between affect and conscious processes in
decision making. In a subsequent series of experiments by the Damasio team [BEC 97], subjects
received four decks of cards (A, B, C and D) and $2000 in fake money. The task was to decide,
for each deck, if the next hidden card had to be uncovered. Uncovering a card immediately
yielded $100 (for decks A or B) or $50 (for decks C or D). However, the card could also
unpredictably yield a punishment. The player knew that the punishment was large in decks A
and B and small in decks C and D (which the player ignored). Players did not know when the
game would stop (actually, after 100 cards had been picked).Instructions were to play in order
to maximize gains and minimize losses, but subjects had no means of precisely computing the
net gains or losses associated with each particular deck.

Initially, all players were ignorant. Subjects with functional emotional systems eventually
succeeded in finding a profitable strategy, while emotionally deficient subjects did not. Results
showed that explicit reasoning (e.g. when the subject consciously decides not to take any more
cards in a deck felt to be ‘dangerous’) was preceded by an unconscious step. Subjects with
spared emotional systems began choosing advantageously before consciously understanding
which strategy was the best. However, emotionally deficientpatients continued choosing disad-
vantageously even after determining the good strategy. In addition, emotionally spared patients
started generating electrodermal responses (temporary drops in the electrical resistance of the
skin surface, resulting from the unconscious release of micro-drops of sweat after an excitation
of the sympathetic system e.g. after an emotional excitation) as soon as they were presented
with a risky choice, even before explicitly knowing that it was a risky choice. On the contrary,
emotionally deficient patients never developed electrodermal responses, even although some of
them had consciously realized which choices were risky.

On the whole, without emotional processes, explicit knowledge and conscious reasoning
seem to be insufficient to ensure profitable behaviors.

12.6.2. Affect and expected utility

Since affect helps in determining the favorable options, wecan reasonably expect some
overlap between affect and the key elements of expected utility theory, that is, utility calculus
on one hand, and uncertainty handling on the other. The relationship between utility and affect is
quite intuitive and has never really been questioned by psychologists. However, this relationship
has several implications not always taken into account by economists. Indeed, some differences
exist between purely financial utilities considered by economists and affective (hedonic) utilities
considered by psychologists. Economic utilities are therefore monotonic functions of financial
benefits whereas hedonic experiences can be non-monotonic functions of financial benefits be-
cause they take into account counterfactual comparisons.
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For example, depending on the subject’s expectancies, a little gain initially unexpected may
bring great pleasure whereas a large gain may bring displeasure if it comes in the context of an
even larger expectancy.Ceteris paribus, people evaluate the outcome of a bet as worse when a
counterfactual result is better. This type of finding led psychologists to develop psychological
variants of expected utility theory. For example, the theory of ‘expected subjective emotion’ by
Mellerset al. [MEL 97] proposed a model of the computation of feeling as a function of objec-
tive financial utilities and the probabilities associated with these utilities and of the computation
of expected subjective-emotion by summation of the probability feeling products.

It is often considered in psychology that daily affective experience can be summarized fairly
well by two independent dimensions of experience, the most important being ‘valence’. Valence
is the dimension that represents the positive versus negative character of affect. Thus, it differ-
entiates between the region of gains and the region of losses. Experimental studies found that
emotions felt about a stimulus are more ambivalent than ‘colder’ evaluations. Abelsonet al.
[ABE 82] therefore found that Americans could simultaneously feel positive and negative emo-
tions about presidential candidates (e.g. ‘he made me feel happy’ and ‘he made me feel afraid’),
whereas their estimates of the candidates’ personality (e.g. he is competent, dishonest, etc.)
were much more evaluatively coherent. Due to their greater variability, but also because they
seem to be bound more closely to the formation of preferencesthan estimates of the candidates’
personality [ZAJ 80], emotions better predicted participants’ intentions of vote. It seems that
two distinct motivational systems underlie estimates of the positive and negative meanings of
a stimulus [HIG 00, RAU 08]. If the two systems are weekly activated, it is indifference. If the
two systems are strongly activated, it is ambiguity.

Therefore, contrary to the classical utility approach, gains and losses do not compensate
each other. It is probably this dissociation between the twoaffective subsystems of appraisal
which explains the difference that can be observed, in prospect theory, between the slopes of
the subjectivation functions for positive and negative utilities.

Affect also influences the uncertainty function. Thus, Johnson and Tversky [JOH 83] showed
that, in normal subjects, reading a text relating a tragic death (e.g. a murder described in detail)
induced a negative affect that subsequently increased the frequency estimates related to other
causes of death that were unrelated to the initial text (e.g.the probability of having a car acci-
dent).

This double influence of affect, on both the utility and uncertainty functions, opens a breach
in an important postulate of many normative decision theories: independence of utilities and
uncertainties. Imagine that you have to choose between two lottery tickets having a 1% chance
of winning. If you win with the first, you earn $50. If you win with the second you have the
opportunity to meet and kiss your favorite cinema star. Faced with such a choice under uncer-
tainty, 65% of the participants in Rottenstreich and Hsee [ROT 01] chose the kiss of the star.
In another condition (certainty condition) where participants had to imagine between choosing
directly the fifty dollars or the opportunity to meet and kisstheir favorite cinema star, 70% of
the participants chose to get the money.

These results illustrate a striking interaction between the level of certainty and the type of
utility. In a second experiment, the authors compared the price that students would be willing to
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pay for a lottery ticket that would allow them to win a voucherfor travel to Europe to the value
of $500 or a coupon for a $500 reduction on the price of their university’s yearly registration.
Eighty-eight per cent of the students judged the travel coupon more emotionally exciting. Stu-
dents of one group were then told the tickets had a 1% chance ofwinning. Students of another
group were told the tickets had a 99% chance of winning. The median value of the price the
students were ready to pay for the travel coupon ticket was $20 in the low-probability condi-
tion (versus $5 for the reduction coupon ticket). In the high-probability condition, the mean
value of the travel coupon ticket was $450 against $475 for the reduction coupon ticket. Thus,
these experiments show that purely affective factors may create preference reversals due to the
interactions between utilities and uncertainties attached to the prospects of gain.

12.7. Conclusion

Throughout this chapter, we have tried to show why psychologists have been led to aban-
don expected utility theory as a descriptive framework of human decision making processes.
We outlined an approach to the multiple determinants that contribute to make human decision
making specific. Certainly, human judgement and decision making appears to be strongly bi-
ased in some respects, particularly when their decisions are compared to that of formal models.
However, when considering the multiplicity of decision making situations humans have to cope
with, in addition the imprecise and incomplete character ofinformation to take the decisions,
the weakness of attentional resources in the cognitive system and, finally, considering that hu-
mans must rapidly take decisions in a social environment that is not so easy to formalize, we
must conclude that global human performance is surprisingly good. Despite being efficient on
local and well-defined problems, the best artefacts available today are very far from reaching
such a global efficiency, and there are few complex situations (if any) over which we would be
ready to delegate the full responsibility to an artificial decision making system.

We can therefore admire the efficiency of the heuristics thatsupport human reasoning,
judgement and decision making. The human cognitive system evolved in conditions over which
uncertainty and incompleteness of available information ruled supreme. In such conditions,
current normative theories have little to say about the optimal behavior. It is not surprising that
adaptation of the cognitive system has been achieved by means of processes aimed at optimiz-
ing the construction of the representation of the decision making situation. We think that it is
mainly from this standpoint that behaviors that appear as biases under the auspices of usual
normative theories must be understood.

In the many uncertain situations humans have to cope with, itis often impossible to reach
a perfect decision. As argued by Hammond [HAM 96], such situations often entail a social
trade-off between ‘inevitable error’ and ‘unavoidable injustice’. Thus, perfect decision making
is probably beyond hope. In addition, everyone can recall some example of catastrophic human
errors in, say, finance, medicine and jurisprudence. But however dramatic some of those tragic
errors may appear, we must not neglect the innumerable decisions that day after day turn out to
be correct, and are therefore forgotten. First and foremost, we need to understand what adaptive
advantage the behavior provides. Only once this is completemay we wonder about the remedies
that can be brought to the remaining weaknesses. This is because the solutions designed to cor-
rect the biases must not disturb the positive functions fulfilled by these cognitive mechanisms.
Otherwise, the remedy may turn out to be worse than the disease.
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Chapter 13

Bayesian Networks

13.1. Introduction

We constantly have to make choices and take actions in a worldwhich we perceive to be full
of uncertainty. A doctor knows that some disease can be accompanied by a certain symptom,
but that sometimes it is not; he moreover knows that the same symptom can also be present
with other diseases. A mechanic knows that a car engine whichis improperly maintained is
likely to break down, but he also knows that replacing it by a new one is not a guarantee that
this will not happen. A manufacturer knows that they cannot expect market research to make
them certain that their new products will sell well; they also know that a careful study of the
economic situation cannot completely eliminate the uncertainty concerning the amount of sales.

Fortunately, information can be useful even when it is not complete. A symptom, which
is often present with some disease and not so often with others, directs the doctor’s diagnosis
towards the first one. Their trust in their own conclusion will possibly be reinforced by the
observation of other symptoms (which are themselves non-conclusive separately) or by the
arrival of epidemic information. On the other hand, if evidence can strengthen a diagnosis,
it can also do the opposite: the absence of a particular symptom can create an hesitation in
the doctor’s mind regarding the conclusion towards which the present symptoms would direct
them. It may also happen that some evidence may make other evidence lose its importance. For
a mechanic who is about to check the oil level in a car engine, the indication of the warning
on the dashboard is devoid of interest. The availability of direct information on the variable we
are concerned with – the state of the engine for the mechanic –may therefore make indirect
information pointless.

Chapter written by Jean-Yves JAFFRAY.
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A Bayesian network (BN) provides, by means of a graph, precise information on the exis-
tence of direct and indirect dependence relations among a set of variables. This graph is com-
pleted by numerical data which inform us about the nature andthe intensity of these links. More
precisely, a BN is a probabilistic model; its graph expresses the validity of conditional indepen-
dence relations between random variables. Its data tables bring numerical accuracy, in the form
of conditional probability distributions, about the degrees of dependence between variables.

Example 13.1. On a car dashboard, the brake warning LED can be lit or not. If it is lit, it means
that either the brake fluid is leaking or the disk is damaged. Aleak may or may not create a fluid
puddle under the car. Figure 13.1 represents this knowledgethrough an oriented graph. Each
node is associated with a binary variable:L ∈ L = {leak, no leak},D ∈ D = {damage, no
damage},F ∈ F = {puddle, no puddle} andV ∈ V = {lit, not lit}. The presence of an arc
joining two nodes and its direction express, in a precise way, permanent knowledge. From the
structure of the whole network, important conclusions can then be inferred. For instance, the
existence of a chain connecting nodesF andD through arcs directed as indicated is consistent
with the following rule: when the brake warning is on, the presence of a puddle should suggest
that the brake dysfunction is due to a fluid leak rather than todisk damage. The presence of
a puddle therefore makes disk damage less plausible: it ‘explains away’ that potential cause.
However, probabilistic data, which always come with the graph in a BN, are required to validate
for definite the preceding statement. They allow us to compute the probability that the disk be
damaged, knowing both that the warning is on and that there isa puddle under the car, and to
compare it with the probability of disk damage knowing only that the warning is on.

Leak Disk

WarningFluid puddle

Figure 13.1.The car example

The construction of a BN is based on expert knowledge and relevant numerical data. This
construction can be partly or completely automated. Efficient algorithms are then available for
the propagation of information throughout the network. They provide diagnoses or prognoses in
the form of the posterior probability, conditional to the information, that the variable of interest
takes a certain value.

Influence diagrams (ID) complement BNs by adding decision nodes and indicating anteri-
ority relations between decisions and data collections. AnID graphically represents a sequential
decision problem in a more compact way than a classical decision tree does. With both repre-
sentations, the determination of an optimal strategy with respect to the expected utility criterion
is made by dynamic programming; however IDs inherit from BNsthe ability to drastically sim-
plify the probabilistic computations involved.
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We present a complete survey, from the theoretical foundations to the practical implemen-
tation, of the powerful tools for analysis and decision aiding formed by the BNs and the IDs.

13.2. Definitions and notation

13.2.1. Joint and marginal probabilities

A BN is a probabilistic model defined by:

1) a finite algebra of events, with elementary events of the form

X1 = x1 . . . AND Xk = xk . . . AND Xn = xn

where(x1, . . . , xk, . . . , xn) ∈ X1 × . . .×Xk × . . .×Xn, is a finite set;

2) a probability distributionP on this algebra, which is determined by the values of the
probabilities of the elementary events.

We notep(x1, . . . , xk, . . . , xn) =def P (X1 = x1 . . . AND Xk = xk . . . AND Xn =
xn).

This implies that eachXk(k = 1, . . . , n) is a discrete finite random variable (RV) with sup-
portXk and distribution characterized by probabilitiesp(xk) =def P (Xk = xk), xk ∈ Xk.
Similarly, thejoint distributionof pair(X1,X2) is fully determined by probabilitiesp(x1, x2) =def

P (X1 = x1 AND X2 = x2), (x1, x2) ∈ X1×X2. The joint distribution of triple(X1,X2,X3)
is fully determined by probabilitiesp(x1, x2, x3) =def P (X1 = x1 AND X2 = x2 AND X3 =
x3), (x1, x2, x3) ∈ X1 ×X2 ×X3; etc.

Since P is additive, these probabilities are linked by

p(x1, x2) =
∑

x3

p(x1, x2, x3); p(x1) =
∑

x2

p(x1, x2); p(x2) =
∑

x1

p(x1, x2).

The distribution of(X1, X2) is a marginal (distribution) of that of(X1,X2,X3) and the
distributions ofX1 andX2 are marginals of those of(X1,X2) and(X1,X2,X3). These terms
refer to their possible representations ascontingency tables. For example, the contingency table
(Table 13.1) with elementsp(x1, x2) in the main part has elementsp(x1) and p(x2) in the
margins.

. . . . . . . . . . . .

. . . p(x1, x2) . . . p(x1)

. . . . . . . . . . . .

. . . p(x2) . . . . . .

Table 13.1.Contingency table
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More generally, given a sequence ofn random variables, also called ann-dimensionalran-
dom vector variable(RVV.) (X1, . . . ,Xk, . . . ,Xn), the distribution of part of these variables,
XJ = (Xj , j ∈ J), is a marginal of the distribution ofX and its elementary probabilities are
obtained by summing thep(x1, . . . , xk, . . . , xn) over all the values of the variables which are
not inXJ .

Remark13.1. BNs can also be associated with random variables with an infinite support, in
particular with real RVs. This presentation is voluntarilylimited to variables with a finite sup-
port.

Remark13.2. From a purely theoretical point of view, properties of vector RV do not differ from
those of one-dimensional RV. In fact, any vector RV(X1, . . . ,Xk, . . . ,Xn) can be considered
as a unique RVZ with support

Z = {z = (x1, . . . , xk, . . . , xn) ∈ X1 × . . .×Xk × . . .×Xn},

the set of all possible configurations of values of thesen RVs.

13.2.2. Independence

Two RVsX andY are independent, which is denoted byX⊥⊥Y , when

p(x, y) = p(x)× p(y)∀x, y ∈ X×Y.

The independence relation⊥⊥ is symmetric since

p(x, y) = p(y, x) andp(x)× p(y) = p(y)× p(x), ∀x ∈ X.

According to this definition,X⊥⊥Y when the contingency table of pair(X,Y ) is the
product of its margins; in that case, all the lines of the table are pairwise proportional as are its
columns. Each of these properties can be used to provide a simple characterization of indepen-
dence, which is best expressed as a property of conditional independence. We first recall the
definition of this notion.

13.2.3. Conditional probabilities

Given two eventsA andB, withP (B) > 0, the conditional probability ofA givenB is the
quantity

P (A/B) =def P (A AND B)/P (B).

Using that definition, given a RVX and an eventY = y such thatp(y) = P (Y = y) > 0,
we can now define the conditional distribution ofX givenY = y, which is the distribution
generated by elementary probabilities

p(x/y) = P (X = x/Y = y) =def P (X = x AND Y = y)/P (Y = y) = p(x, y)/p(y),

∀y ∈ Y . The following two properties are straightforward:

X⊥⊥Y ⇔ p(x/y) = p(x)∀x ∈ X, y ∈ Y such thatp(y) > 0,
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X⊥⊥Y ⇔ p(y/x) = p(y)∀y ∈ Y, x ∈ X such thatp(x) > 0, ∀x ∈ X.

The properties on the right-hand side can be interpreted as follows. Observing the value
taken byY does not bring any information aboutX, in the sense that it will not change our
beliefs aboutX (these are imprecise beliefs, which take the form of a probability distribution).
Similarly, observing the value taken byX does yield any information aboutY .

By remark 13.2, the above definition and properties also holdwhenX andY are vector
random variables. We have already noted that independence relation⊥⊥ has property

SYMMETRY: X⊥⊥Y ⇔ Y⊥⊥X.

A simple summation overz in equalitiesp(y, z/x) = p(y, z) demonstrates that it also
satisfies

DECOMPOSITION:X⊥⊥(Y,Z)⇒ X⊥⊥Y and alsoX⊥⊥Z.

This is interpreted as observing that ifX does not yield any information about(Y,Z) then
it does yield any information aboutY alone. Similarly, if observing(Y,Z) does not yield any
information aboutX, then observing onlyY is of no benefit either.

13.2.4. Conditional independence

Two RVsX andY are independent conditionally on a third RVZ, denotedX⊥⊥Y |Z,
when

p(x, y/z) = p(x/z)× p(y/z),∀(x, y) ∈ X × Y,∀z ∈ Z such thatP (Z = z) > 0

This amounts to applying the independence relation⊥⊥ to pair(X,Y ) for each conditional
distributionP (., ./z).

Successive conditionings byY = y andZ = z lead to the same probabilities, namely
p(x/y, z), as a direct conditioning by(Y,Z) = (y, z). The following characterizations are
therefore straightforward:

X⊥⊥Y |Z ⇔ p(x/y, z) = p(x/z),

∀x ∈ X,∀(y, z) ∈ Y × Z such thatp(y, z) > 0

and
X⊥⊥Y |Z ⇔ p(y/x, z) = p(y/z),

∀y ∈ Y,∀(x, z) ∈ X× Z such thatp(x, z) > 0.

The properties on the right-hand side can be interpreted as follows. When the value ofZ
has already been observed, further observation of the valueof Y cannot bring any additional
information onX, i.e. will not change our present beliefs aboutX (beliefs which have been
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updated after the observation ofZ). In the same way, observing the value taken byX cannot
bring additional information onY when the value ofZ is already known. We say that RVZ
contains all the information onX possessed by(Y,Z) and also contains all the information on
Y possessed by(X,Z).

Note that forZ = ∅, conditional independence reduces to independence:

X⊥⊥Y |∅⇔ X⊥⊥Y.

The above definition and properties also hold for vector random variablesX, Y andZ, by
remark 13.2. It can easily be shown that the following properties hold for conditional indepen-
dence relation⊥⊥|:

SYMMETRY : X⊥⊥Y |Z ⇔ Y⊥⊥X|Z,
DECOMPOSITION: X⊥⊥(Y, T )|Z ⇒ X⊥⊥T |Z,

WEAK UNION : X⊥⊥(Y, T )|Z ⇒ X⊥⊥Y |(T, Z),

and
CONTRACTION : X⊥⊥T |Z andX⊥⊥Y |(T,Z)⇒ X⊥⊥(Y, T )|Z.

These properties identify relation⊥⊥| as a semigraphoïd [PEA 88].CONTRACTION is a
very intuitive property since it basically states that if successive observations do not change
beliefs at any moment, beliefs would not have changed if these observations had been simulta-
neous.

On the other hand,WEAK UNION andDECOMPOSITION, which together form the reciprocal
of CONTRACTION, state that there cannot not exist pairs of RVs such that observing one cancels
out the effect of observing the other; this property is not soobvious.

13.2.5. Bayesian network

The joint distribution of a vector RVX = (X1, . . . ,Xk, . . . ,Xn) can always be factorized
as

p(x) = p(x1, . . . , xk, . . . , xn)

= p(x1)× p(x2, . . . , xk, . . . , xn/x1)

= p(x1)× p(x2/x1)× p(x3, . . . , xk, . . . , xn/x1, x2)

= p(x1)× p(x2/x1)× p(x3/x1, x2)× . . .× p(xk/x1, x2, . . . , xk−1)× . . .
×p(xn/x1, . . . , xk, . . . , xn−1)∀x ∈ X

These factors can be simplified by taking advantage of existing conditional probabilities.
We can always find a partition of(X1, . . . ,Xk−1) into two subsets(XPAk,XNPAk) satisfying
Xk⊥⊥XNPAk|XPAk (with perhapsXNPAk = ∅), hence

p(xk/x1, x2, . . . , xk−1) = p(xk/xPAk)
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and therefore

p(x1, . . . , xk, . . . , xn) = Πk=1,...,n p(xk/xPAk)∀x ∈ X.

Smaller setsPAk make simpler factors; in general, there is no smallest setPAk such that
Xk⊥⊥XNPAk|XPAk but only minimal such sets. Note also that the decompositiondepends
on the arbitrarily chosen order in which RVX1, . . . ,Xk, . . . ,Xn are indexed.

To each decomposition of the joint distribution one can associate a directed graphG, in
which then nodes are identified with then RVsXk(k = 1, . . . , n) and where an arc (directed
edge)XjXk exists if and only ifj ∈ PAk; thusXPAk is the set of the parents ofXk in G.
We say thatP is decomposable according toG. By construction,G is acyclic (has no directed
cycle).

A Bayesian network (BN) consists of the pair formed by a directed acyclic graph (DAG)G
and a probability distributionP which is minimally decomposable according toG (i.e. is such
thatP is not decomposable according to a graph resulting from the suppression of any of the
arcs ofG).

When then factorsp(xk/xPAk) (multi-dimensional tables) are known, the joint distribu-
tionP (.) is determined. Note that any enumeration ordering of the variables which is consistent
with graphG, i.e. which is a completion of the partial ordering generated by the arcsG, would
have resulted in the same decomposition up to a permutation of the factors. There is at least one
ordering in which all the non-descendants ofXk in G (except itself), are enumerated before
Xk; therefore, for everyk,Xk⊥⊥XNPAk|XPAk.

More generally, valid conditional independence relationswhich have not been used for fac-
torizing P (.) and constructing the graph can be found by using the deductive system with
relationsXk⊥⊥XNPAk|XPAk as the axiom set and the general properties of semi-graphoids
as the inference rules. They can also be detected, as we shallsee later, using a purely graphical
criterion: d-separation.

Let us first give an example showing the limits of the expressive power of BNs.

Example 13.2. RV X ∈ X = {0, 1} represents the quality of a certain car part, which can
be either defective(X = 0) or good(X = 1). Values of RVZ ∈ Z = {0, 1} correspond
to two different models for that piece. RVY ∈ Y = {1, 2, 3} indicates the factory which the
piece comes from. The joint distribution of(X,Y,Z) is given by thep(x, y, z) × 216 table
(Table 13.2).

Note thatX⊥⊥Z|Y ; moreover, marginal tablesp(x, z)×216, p(x, y)×216 andp(z, y)×
216 (Table 13.3) show thatX⊥⊥Z but that NOTX⊥⊥Y and NOTY⊥⊥Z. By SYMMETRY,
Z⊥⊥X|Y andZ⊥⊥X. It can be checked that these are the only conditional or unconditional
independence properties of(X,Y,Z).

Depending on the variable enumeration ordering chosen, four different graphs can be ob-
tained:
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Y = 1
Z = 0 Z = 1

X = 0 2 2
X = 1 6 6

Y = 2
Z = 0 Z = 1

X = 0 2 9
X = 1 24 108

Y = 3
Z = 0 Z = 1

X = 0 2 1
X = 1 36 18

Table 13.2.Probability law for(X,Y,Z)

X,Z

Z = 0 Z = 1

X = 0 6 12

X = 1 66 132

X,Y

Y = 1 Y = 2 Y = 3

X = 0 4 11 3

X = 1 12 132 54

Z, Y

Y = 1 Y = 2 Y = 3

Z = 0 8 26 38

Z = 1 8 117 19

Table 13.3.Probability laws for(X,Z), (X,Y ) and(Z, Y )

1) X,Y,Z : X → Y → Z;

2) Z, Y,X : Z → Y → X;

3) Y,X, Z andY,Z,X : Z ← Y → X;

4) X,Z, Y andZ,X, Y : Z → Y ← X.

The three first graphs express thatZ⊥⊥X|Y (or X⊥⊥Z|Y ) by the absence of arcXZ
(or ZX), but not thatX⊥⊥Z (nor Z⊥⊥X). They allow us to believe, erroneously, that the
quality of the piece may depend on its model. On the contrary,the last graph expresses indeed
thatX⊥⊥Z (or Z⊥⊥X), also by the absence of arcXZ (or ZX), but not thatX⊥⊥Z|Y
(norZ⊥⊥X|Y ). It suggests that the quality of the piece may depend on its model, possibly in
a different way to depending on the place where it is produced, which does not happen to be the
case.

Example 13.2 shows that the graph of a BN cannot in general express all the conditional
independence relations satisfied by a set of RVs. On the otherhand, as we shall now see, it is
possible to identify all the relations which are implicitlyexpressed by this graph.

13.2.6. Graphical conditional independence criterion in BNs: d-separation

The presence/absence of arcs in the graph of a BN is directly linked to the validity of certain
conditional independence assertions for the joint distribution of its RV. We can therefore think
that there should exist a purely graphic criterion allowingus to recognize the validity of other
assertions, in particular those assertions which can be inferred from the initial ones. An example
will help us to build such a criterion.

Example 13.3. Returning to the car example (example 13.1), let us add a variable (and node)
S ∈ S = {sand, no sand} and an arcSD. This is the graph that would be obtained by enumerat-
ing the variables asSDLV F and making the following assumptions:L⊥⊥(S,D), V⊥⊥S|(L,D)
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Sand

Leak Disk

WarningFluid puddle

Figure 13.2.The car example (cont.)

andF⊥⊥(S,D, V ). From the general properties of relation⊥⊥|: L⊥⊥D (no link between
the two causes of failure);V⊥⊥S|D (the ability of the disk sensor in detecting the existence
of damage does not depend on the cause of the damage) andF⊥⊥V |L (the existence of a fluid
puddle is closely linked to the importance of the leak, but its detection is not). On the other
hand, one can easily construct a probability distribution which is decomposable according to
this graph and such that: NOTL⊥⊥D|V (the existence of a reason for the warning being lit
makes the other explanation less probable); NOTV⊥⊥S (the presence of sand increases the
probability of a disk damage, hence also that of a lit warning); and NOTF⊥⊥V (the presence
of a fluid puddle and the warning lighting are both correlatedwith the existence of a leak).

Let us first see whether or not this criterion can be expressedthrough a classical separation
criterion. Is it true that ‘given three disjoint sets of nodes (RV)X,Y andZ, X⊥⊥Z|Y if and
only if X andZ are separated byY ?’ (i.e. if and only ifX andZ belong to different connected
components of the subgraph resulting, in the suppression ofY ).

It is only necessary to examine the triple of RVL, V,D in the above example to see that
this criterion cannot be valid. In structureL → V ← D,L andD are not separated, whereas
L⊥⊥D andV separatesL fromD. However, we have NOTL⊥⊥D|V .

We can however remark that the separation criterion would provide the correct conclusions
for triplesV, S,D andF, V, L. In fact, in structureS → D → V , S andV are not separated
and indeed NOTV⊥⊥S. Similarly,D separatesS fromV whileV⊥⊥S|D. We have the same
agreement for structureF ← L → V , sinceF andV are not separated and NOTF⊥⊥S and
sinceL separatesF andV andF⊥⊥V |L.

All this suggests that all we need to do, to obtain a valid criterion, is to amend the separation
criterion by taking into account the specificity of triples with two converging arcs, also known
as CV-structures. For the particular case of CV-structureswhere the origins of the arcs are not
directly linked by a third arc, we shall use the term V-structures. A CV-structure can indicate
the existence of dependence between two variables conditionally to a third variable which has
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the same effect asL,D andV above, but also conditionally on a variable on which they have a
joint effect, as in the following example.

Example 13.4. Two cyclists, Mr X and Mr Y, come face to face on a narrow bike path. They
try to avoid bumping into one another by immediately fallingback instinctively, randomly and
independently, either to their right or to their left. Thesemovements are described by RVX
and Y , with values to the left or to the right which satisfyX⊥⊥Y . If both move to their
right or both to their left, the probability of a collision (event Z = yes) is very small; it is
very high otherwise. Thus,Z depends onX andY , which correspond to a CV-structure and
more specifically to a V-structureX → Z ← Y . If a collision occurs, when Mr X has fallen
back on his right (respectively, left), it becomes highly probable that Mr Y has fallen back on
his left (respectively, right): i.e. NOTX⊥⊥Y |Z. Let us note that, ifZ itself is not observed
but one of its effects is, for instance RVB (with values {casualties, no casualties}), andB is
correlated withZ (link Z → U ), the same conclusions can be drawn. Hence, we also have NOT
X⊥⊥Y |B.

Pearl [PEA 88] introduces the following property.

13.2.6.1.d-separation

1) Given three disjoints sets of nodes (RV)X,Y andZ, we say that a chain (non-directed
path)C linking X to Y is active relative toZ when, for any pair of arcs ofC forming a CV-
structure, their common node (or one of its descendants) belongs toZ and, for any pair of
consecutive arcs ofC forming another structure, the common node does not belong toZ.

2) We say thatX andY ared-separatedby Z when no chain betweenX andY is active
relative toZ.

Example 13.5. Let us return to the car example.F is d-separated fromS by ∅ (i.e. in the
absence of any information). It is not d-separated fromS by V , but by (V,L) as well as by
(V,D). Proposition 13.1 below will allow one to conclude that:

F⊥⊥S, NOTF⊥⊥S|V, F⊥⊥S|(V,L) AND F⊥⊥S|(V,D).

Proposition 13.1. Given disjoint sets of nodes (RV)X, Y andZ, the following properties are
equivalent:

– X andY are d-separated byZ;

– X⊥⊥Y |Z is a logical implication of relationsXk⊥⊥XNPAk|XPAk, which have been
used for constructing the graph, and of the general properties of conditional independence;

– X⊥⊥Y |Z is true for almost all probability distributions which are decomposable ac-
cording to the graph.

There is no hope that a graphical criterion would be able to reveal properties which have not
been expressed, either directly or indirectly, in the graph. The d-separation criterion therefore
cannot be surpassed. Similarly the deductive system, usingall the properties of conditional
independence as inference rules, is complete in the sense that it can produce all the conditional
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independence statements which are necessarily valid for every probability distribution which is
decomposable according to the graph.

On the other hand, it must be remembered that the strength of these results is somewhat
weakened by the fact that the graph of a BN is in general not able to express all the conditional
independence relations valid for a given probability distribution.

The major interest of the d-separation criterion is that, while its visual nature makes it easy
to use (no computations involved), it can give extremely useful indications. For instance, in
the medical domain, it may allow us to identify a minimal exhaustive set of risk factors for a
given disease, or to determine which additional examinations are likely to make the diagnosis
of another disease more reliable.

13.3. Evidential data processing in a BN

The initial joint distribution (prior distribution) describes in general the relations between
various characteristics in a given population (the inhabitants of a region, a fleet of vehicles, etc.).
In applications such as medical diagnosis problems, the goal is the determination of the fre-
quencies of some characteristics (diseases) among given subpopulations (an age group, people
presenting certain symptoms, etc.). Technically, this amounts to determining the posterior prob-
abilities of certain variables conditional to the available evidence concerning other variables.
This is an easy task as long as there are only a few variables, but it may involve computations of
prohibitive length with more variables if these computations are performed without care. Com-
puting the marginal distribution of an RV given the joint distribution of 100 RVs may require
99 summations.

Pearl [PEA 88] was the first to realize that it was possible to take advantage of the decompo-
sition of the joint distribution to progressively and efficiently compute a posterior distribution.
The idea is that each step of the computation only involves a small part of the permanent and
evidential data.

In Pearl’s method, every nodeXk in graphG:

– is endowed with factor[p(xk/xPAk)] (a |PAk|+ 1-dimensional table);

– receives data from the neighboring nodesG in the form of numerical messages;

– makes the computations required for updating the local data; and

– sends itself messages to its neighbors.

Although the validity of this method is limited to the case whereG is acyclic, the same
principle applies to the general case as we shall see later. This is achieved by replacingG by
the correspondingjunction tree, the nodes of which graph are the cliques ofG.

A very simple example is all that is needed for highlighting the main features of Pearl’s
method.



506 Decision Making

13.3.1. Pearl’s method

The joint distribution of triple(X,Y,Z), whereZ⊥⊥X|Y , can be factorized as

p(x, y, z) = p(x)× p(y/x)× p(z/y).

When these three factors are stored at nodesX, Y andZ, [p(x)], marginal prior distribution
ofX, can be read directly inX. As soon as a message fromX toY with content[p(x)] has been
received byY , the marginal ofY will itself be computable inY by the total probability formula:
p(y) =

∑
x p(x) × p(y/x). Y will then itself be able to send a message toZ with content

[p(y)], which will allow the computation inZ of its marginalp(z) =
∑

y p(y) × p(z/y).
These messages and computations constitute the initialization phase (Figure 13.3).

Z

[p(z|y)]

comput. of
[p(z)]

comput. of
[p(y)]

[p(y|x)]
Y

[p(y)][p(x)]
[p(x)]

X

Figure 13.3. Initialization phase

Suppose now that it becomes known thatX = xi (Figure 13.4).X will pass this infor-
mation toY by sending its marginal posterior distribution, which is the certain distribution
[p(x/xi)] = [0, . . . , 1, . . . , 0] (where the 1 is theith component).Y will compute its new (pos-
terior) marginal[p(y/xi)] (which is theith line of matrix[p(y/x)]) and send it in a message to
Z, which will then be able to compute its own posterior byp(z/xi) =

∑
x p(y/xi)× p(z/y),

a formula that takes into account the fact that

Z⊥⊥X|Y ⇒ p(z/xi, y) = p(z/y).

comput. of
[p(y|xi)]

[p(y|x)]
Y

[0,..,1,..,0]
[p(x|xi)] =

[p(y|xi)]
Z

[p(z|y)]

comput. of
[p(z|xi)]

[p(x)]

X

Figure 13.4.Propagation of information downstream

Let us now suppose that the evidence concernsZ (Figure 13.5). If it becomes known that
Z = zk, the posterior distribution ofZ [p(z/zk)] = [0, . . . , 1, . . . , 0] (where the 1 is thekth
component) will be certain andZ will have to send toY the message[p(zk/y)] (thekth column
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of matrix [p(z/y)]).Y will therefore be able to compute its own posterior distribution [p(y/zk)]
by Bayes’ formulap(y/zk) ∝ p(y) ∝ p(zk/y). Proportionality symbol∝ indicates equality
modulo a multiplication by a constant (which can always be determined by using the fact that
[p(y/zk)] is a probability vector). Note that[p(y)] is not available inY unless the initialization
phase has been performed previously.

[p(x)]

[p(zk|x)]

[p(y|x)]
Y

comput. of
[p(y)],

[p(y|zk)],
[p(zk|x)]

[p(x)]

X
comput. of
[p(x|zk)]

[p(zk|y)]

[p(z|y)]
Z

comput. of
[p(z|zk)] =

[p(zk|y)]
[0, .., 1, .., 0],

Figure 13.5.Propagation of information upstream

It still remains to compute vector[p(zk/x)] in Y by the formulap(zk/x) =
∑

y p(y/x)×
p(zk/y) and to send it toX, the posterior distribution[p(x/zk)] of which can be computed
from formulap(x/zk) =

∑
x p(x)× p(zk/x).

It is not any more difficult to propagate noised evidenceeY on a variableY provided
the noise is characterized by conditional probabilitiesp(eY /y) (‘probability of observingeY

whenY = y’). Everything happens as ifeY was the observation of the value of a fictitious
RV, with a unique parentY (the same asZ in the graph Figure 13.5) which must there-
fore receive message[p(eY /y)] to compute its updated distribution[p(y/eY )] by formula
p(y/eY ) ∝ p(y) × p(eY /y) and then, possibly, pass the information to a parentX through
message[p(eY /x)] computed by formulap(eY /x) =

∑
y p(y/x)× p(eY /y), etc.

The possibility of computing the posterior probability of any variable, by propagating the
evidence throughout the graph by the means of messages that transmit vectors, exists for any
BN with an acyclic graph. In order that every node receives all the information it requires for a
correct probability update, all that is needed is:

1) part of the messages transmit all the evidence received bythe nodes along the network
edges to a center: an arbitrarily selected node (COLLECT phase); and

2) that the center transmits to each node along the network edges all the information it is
not aware of yet (DISTRIBUTE phase).

The content of the messages between two adjacent nodes is thefollowing (Figure 13.6). The
parent nodeX transmits to the child nodeY all the evidencee+XY received on its side (i.e. by
nodes which are closer toX than toY ) through a message containing its posterior distribution
given that information[p(x/e+XY )]. Correlatively,Y transmits toX the evidence received on its
sidee−XY in the form of a likelihood vector[p(e−XY /x)], which is all thatX needs to compute
its posterior distribution given all the evidence:

p(x/e+XY , e
−
XY ) ∝ p(x/e+XY )× p(e−XY /x).



508 Decision Making

YX

[p(x|e+XY )]

[p(e−XY |x)]

information information
e+XY e−XY

Figure 13.6. Information exchange between adjacent nodes

Let us observe the algorithm at work on the car, with the query‘the warning is lit, there is
a fluid puddle under the car, what is the probability of a disk damage?’ The evidence(eF , eW )
consists of two elements:eF = ‘presence of a fluid puddle’ andeW = ‘the warning is lit’. There
may be noise, expressed by a probability of error for each observation, on each of these elements
corresponding to a fictitious node in Figure 13.7, which illustrates the COLLECT PHASE with
(arbitrary) centerL. The content of the messages sent by the various nodes is indicated. The only
constraint on the timing of the messages is that a node cannotsend an outgoing message before
it has received all the incoming messages. In Figure 13.8, which illustrates the DISTRIBUTE
phase, only messages which are required to be answered have been represented.

As soon as there exists cycles in graphG, splitting the evidence in two with respect to arcs
XY no longer makes any sense and the principle on which Pearl’s method relies does not apply
anymore, as illustrated by the following variant of the car example.S andL are now directly
linked (a piece of gravel in the sand can make a hole in the fluidcircuit) thus creating a cycle
(S,L,W,D) (Figure 13.9). The corresponding decomposition of the joint distribution is:

p(s, l, d, f, w) = p(s)× p(l/s)× p(d/s)× p(f/l)× p(v/l, d).

If the standard algorithm is applied blindly, identical messages[p(s)] are sent fromS to
L andD, allowing the computation of[p(l)] in L by p(l) =

∑
s p(s) × p(l/s) and of[p(d)]

in D by p(d) =
∑

s p(s) × p(d/s). Messages[p(l)] and[p(d)] are then sent fromL andD,
respectively, toW . Unfortunately, the correct expression for the marginal distribution ofW is

p(w) =
∑

ld

p(l, d)× p(w/l, d) 6=
∑

ld

p(l)× p(d)× p(w/l, d)

since RVL andD are not independent. Pearl’s messages are therefore not appropriate for the
computation of this distribution.

What can be done to solve this difficulty? A first solution, proposed by Pearl, consists of
cutting the cycle by suppressingS then computing (by the standard method) the conditional
probabilities of the other variables givenS = s for each possible value ofs ∈ S. The prior
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Figure 13.7.COLLECT phase (car example)

(unconditional) probabilities are then recovered by the total probability formula. For example,
for W , messages[p(l/s)] and[p(d/s)] fromL andD toW allow one to compute[p(w/s)] by

p(w/s) =
∑

l,d

p(w/l, d)× p(l/s)× p(d/s),

a formula justified by the fact thatp(v/s, l, d) = p(v/l, d) and thatp(l/s, d) = p(l/s). Finally,
[p(w)] is calculated byp(w) =

∑
s p(w/s)× p(s).

Another way to look at this method is to consider that there isonly one message propa-
gation process, but that it involves bi-dimensional messages transmitting matrices[p(l/s)] and
[p(d/s)].

This ‘cut-cycle’ principle applies to any BN. However, ifn cuts are made, the messages
are(n + 1)-dimensional, which can make computations unfeasible in practice. It is however
possible to reduce the amount of computation by limiting theeffect of a cut on the dimension
of the messages inside the cycle which has been cut i.e. the local cut-cycle method [FAY 00].
In the above example, all that is needed is a one-dimensionalmessage fromL toF (which does
not depend upon the value ofS).

As a matter of fact, it is another solution by Jensenet al. [JEN 90] which has prevailed. A
variantion of propositions was made by Lauritzen and Spiegelhalter [LAU 88] and Shafer and
Shenoy [SHA 90]. Getting rid of the cycles in a network by regrouping some of its nodes is a
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Figure 13.8.DISTRIBUTE phase (car example)
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Figure 13.9. Irrelevant message propagation in a cycle

standard trick. Here, the natural groupings are those appearing in the factorization of the joint
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distribution. In our example where

p(s, l, d, f, w) = p(s)× p(l/s)× p(d/s)× p(f/l)× p(w/l, d)
= f(s, l)× g(s, d)× h(l, f)× k(l, d,w),

these areSL, SD,LF andLDW .

In order to remain close to Pearl’s algorithm, we would like to construct a graph with these
groups for its nodes. The graph would be a tree and such that itwould only be necessary to enter
the evidence concerning a given variable once, at one of the nodes to which it belongs, to be
passed by messages later to the others. This requires that a variable belonging to two different
groups (nodes) should also belong to all groups (nodes) along the chain which links them; this
is known as therunning intersection propertyand a tree with this property is ajunction tree.
Such a tree does not exist in our example. The reason is that (1) SL andSD and (2)SD and
LDV would have to be linked directly. This would only leave the option of linking LF either
to SL or to LDV (and this would not be a junction tree), or to link it to both (ensuring the
running intersection property is maintained, but in a graphwhich is not a tree).

However, there exists a procedure described below which transforms the graph of any BN
in such a way that the cliques of the resulting graph can be linked to form a junction tree. In our
example, one would obtain the tree of Figures 13.10 and 13.11. The rectangles on the edges in
Figure 13.11, which display the variables common to the neighboring cliques, are called(clique)
separators; it is clear that this tree has the running intersection property. We shall now see how
a junction tree can be constructed in the general case and howinformation is transmitted in it.
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2 3

45
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L D
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C2 = LDW

C3 = LF

C1 = SLD

Junction treeMoral graphBayesian network

Figure 13.10.Construction of a junction tree (1st example)

13.3.2. The junction tree method

13.3.2.1.Construction of the junction tree

From the factorization of the joint distribution of the RV inthe BN

p(x1, . . . , xk, . . . , xn) = Πk=1,...,np(xk, xPAk),
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Figure 13.11.Construction of a junction tree (2nd example)

SLD LD LDW L LF

Figure 13.12.Cliques and clique separators (1st example)

we only determine that each factorp(xk/xPAk) is a functionfk(xk, xPAk):

p(x1, . . . , xk, . . . , xn) = Πk=1,...,nfk(xk, xPAk).

This factorization is graphically represented by the non-directed graphGM resulting from the
graph G of the BN by:

– linking by edges all the parents of a same node ofG; and

– deleting the directions of the arcs ofG.

GM is themoral graphassociated with graphG. Its cliques (maximal complete subgraphs)
are setsXk ∪XPAk

, k = 1, . . . , n.

The existence of a junction tree, the nodes of which are thesecliques, is not ascertained
unlessGM is triangulated, i.e. unless all its cycles of length greater than three haveat least one
chord.

We therefore proceed to the triangulation ofGM , i.e. we add new edges one by one until
we obtain a triangulated graphGT ; the success is certain if we use the following algorithm due
to Tarjan and Yannakakis [TAR 84]:

– Label the nodes in increasing order from 1 ton by following the maximal cardinality
search rule, which simply requires that the next node labeled should have a maximal number of
neighbors among the nodes which have already be labeled.
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– For each successive nodek in decreasing order fromk = n to k = 1, link by an edge
every pair of neighbors ofk which have labels smaller thank and are not adjacent (in the graph
containing the edges already added).

A simple procedure then produces a junction tree, in which the nodes are the cliques ofGT :

– Rank the cliques ofGT from 1 tom so that their rank increases with the label of their
highest label node:C1, . . . , Ci, . . . , Cm.

– Link every cliqueCi by an edge with the cliques (or one of them)Cj , j < i with which
it has the greatest number of elements in common.

Finding a ‘good’ triangulation which minimizes the size of the data tables associated with
the junction tree is a NP-complete problem. Kjaerulff [KJA 92] compares various graph algo-
rithms (for more results, see [COW 99, NAI 04]).

13.3.2.2.Evidential data processing in a junction tree

Let us return to our example. The joint distribution

p(s, l, d, f, w) = p(s)× p(l/s)× p(d/s)× p(f/l)× p(w/l, d)

can also be written as

p(s, l, d, f, w) = [p(s, l, d))× p(l, d, w)× p(f, l)]/[p(l, d)× p(l)],

hence is of the form

p(s, l, d, f, w) = [g(s, l, d)× h(l, d, w)× k(f, l]/[r(l, d)× t(l)]

with
r(l, d) =

∑

s

g(s, l, d) =
∑

v

h(l, d, w)

and

t(l) =
∑

s,d

g(s, l, d) =
∑

d,v

h(l, d, w) =
∑

f

k(f, l). (13.1)

Functionsg, h andk are calledclique potentials(and associated with cliquesSLD, LDV
andFL), while functionsr andt are called(clique) separator potentials(and associated with
separatorsLD andL).

We say thatconsistencyholds in the junction tree when clique and separator potentials
satisfy relations in condition (13.1) up to a multiplicative constant. The marginal probability
distributions of the cliques and of the separators are therefore consistent. It can be shown that the
converse is also true: if the potentials of the cliques and ofthe separators are consistent, then they
are none other than their probability distributions (up to amultiplicative constant). Furthermore,
local consistencybetween the potentials of each separator and those of the twoadjacent cliques
is sufficient for ensuring full consistency. This means herethat relationt(l) =

∑
s,d g(s, l, d)

is in fact implied by the other relations.
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The preceding properties apply to any probability distribution, in particular to a posterior
distribution (the conditional of the prior distribution given some evidence). Suppose, for exam-
ple, the existence of evidence(eS, eF ) on RVsS andF and that the existing noise only depends
on the corresponding variable, i.e.

p(s, l, d, f, w/eS , eF ) ∝ p(s, l, d, f, w)× p(eS/s) × p(eF/f)

= [G(s, l, d)× h(l, d, w)×K(f, l)]/[r(l, d)× t(l)]

with
G(s, l, d) = g(s, l, d)× p(eS/s) andK(f, l) = k(f, l)× p(eF/f).

Since these new potentials are no longer consistent, they are not equal to the marginal con-
ditional distributions of the cliques and separators. However, we can try to make them consistent
by modifying them, while conserving the value of the ratios which should remain equal (up to
a constant) top(s, l, d, f, w/eS , eF ).

The modifications required can be performed progressively by a procedure of message pass-
ing and computations which are similar to those used for the acyclic BN, and also involve the
choice of center, COLLECT and DISTRIBUTE phases. Each phasewill establish a different
part of the consistency relations required (Figures 13.13 and 13.14).

[g(s, l, d)]

SLD

and[R(l, d)]
[G(s, l, d)]
comput. of

[r(l, d)]

LD
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comput. of

[H(l, d, w)]

LDW

[h(l, d, w)]

comput. of

[t(l)]

L

[T ′(l)]
comput. of

[k(f, l)]

FL

and[T (l)]
[K(f, l)]

comput. of

[R(l, d)]

[R′(l, d)] [T ′(l, d)]

[T (l)]

[p(eF |f)][p(eS |s)]

Figure 13.13.COLLECT phase (1st example)
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Figure 13.14.DISTRIBUTE phase (1st example)

In our example whereLDW is chosen as the center,SLD computes and sends matrix
[R(l, d)] to LD, whereR(l, d) =

∑
s G(s, l, d). This will change potential[r(l, d)], which

amounts to multiplying each elementr(l, d) by R′(l, d) = R(l, d)/r(l, d). For the quotient
of the product of the clique potentials by the product of the separator potentials to remain
unchanged, we only need to send matrix[R′(l, d)] toLDV and operate the same transformation
on its potential[h(l, d, v)], thus replacing eachh(l, d, v) byh(l, d, v)×R′(l, d). However, since
for its partFL computes and sends vector[T (l)] toL whereT (l) =

∑
f K(f, l), and sinceL

multiplies the elements of its potential byT ′(l) = T (l)/t(l), elements of the potential ofLDV
will finally be replaced byH(l, d, v) = h(l, d, v)×R′(l, d)×T ′(l). This ends the COLLECT
phase. Potentials are now consistent (1) betweenSLD andLD and (2) betweenFL andL.

The DISTRIBUTE phase will secure the other consistency relations without affecting the
former.LDV will compute and send matrix[r′′(l, d)] toLD, wherer′′(l, d) = vH(l, d, v). It
will substitute it by its present potential[R(l, d)], which amounts to multiplying each element
R(l, d) byR′′(l, d) = r′′(l, d)/R(l, d). Message[R′′(l, d)], sent fromLD to SLD, allows us
to perform the same transformation on potential[G(s, l, d)] which becomes[G′′(s, l, d)]. Si-
multaneously,LDV will compute and send vector[t′′(l)] toL, wheret′′(l) =

∑
d,v H(l, d, v).

It is then substituted by[T (l)] by multiplying each of its elements byT ′′(l) = t′′(l)/T (l). Mes-
sage[T ′′(l)] sent fromL to FL will perform the same transformation on potential[K(f, l)],
which becomes[K′′(f, l)].

According to the previously mentioned result, the new potentials (which are consistent) are
equal (up to a multiplicative constant) to the marginal distributions of conditional distributions
p(s, l, d, f, v/eS, eF ).
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13.4. Constructing a BN

In applications, the construction of a BN is made partly by processing available data and
partly on the basis of expert knowledge. This construction presents two distinct aspects:

1) the determination of the structure of the graph; and

2) the estimation of the conditional probability distributions which appear in the factoriza-
tion of the joint distribution.

It is not clear that these two problems should be solved separately. The most usual methods
do however, and treat them in the order above. For phase (2), amixture of standard statistical
techniques applied to the available numerical data and of subjective evaluations performed by
experts is generally used. Phase (1), on the other hand, has required the introduction of original
methods [JOR 98]. They can be grouped into two main families.

13.4.1. Score-based methods

In these methods, an evaluation function or score is used to measure the ability of a BN to
represent the joint probability distribution. This is generally known through data in an imprecise,
noised and incomplete way. The search space, which may oftenbe the space of all BNs with
the same set of nodes, is enormous. There is therefore no attempt to find the maximal score BN,
but only to propose a heuristic producing an ‘acceptable’ solution. Such heuristics use standard
search strategies which explore structures which are closeto the strategy presently considered,
i.e. strategies which can be derived from it by admissible transformations. In order to keep the
score computations simple, the evaluation function is generally decomposable into a sum of
factors associated with the nodes. The value of a factor remains unchanged unless the set of
parents of the corresponding node is modified in the transformation considered.

The best-known evaluation function is the minimum description length (MDL) score which
attempts to minimize the length of the message encoding the description of both the graph
and the data. The latter takes the compressed form resultingfrom the decomposition of the
distribution according to the graph [FRI 96].

A Bayesian approach, in which the best structure maximizes the posterior distribution, leads
(under some assumptions) to the BDe (discrete evaluation) score [HEC 94] which is also de-
composable. In that family, the best known algorithms are probably K2 of Cooper and Her-
skovitz [COO 92] and the Buntine algorithm [BUN 94].

An inefficiency factor in these methods is the existence of multiple BNs satisfying the
same set of independence relations, which creates numerouslocal optima. The methods of sec-
tion 13.4.3 try to overcome this difficulty.

13.4.2. Conditional independence based methods

These methods (inductive causation or IC/IC* [PEA 91], fastcausal inference or FCI [SPI 00])
progressively determine the structure of the BN graph depending on the results of conditional
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independence tests. Some of the algorithms start from a completely undirected graph, suppress
edges one by one, and finally give a direction to the remainingones. Others work the oppo-
site way, and progressively add some arcs or edges. In both cases, the number of tests to be
performed increases exponentially with the number of variables, making these algorithms inef-
ficient in large-scale problems.

Moreover, changing the conclusion of some of the tests may result in deep modifications
of the structure of the graph built. This is unfortunate, since tests involving many variables will
not be significant unless the database is huge. This creates an important limitation to the use of
methods of this type.

On the other hand, some of these methods such as IC* have the advantage of being able to
detect and express the influence of hidden variables.

13.4.3. Search among Markov equivalence classes

All these methods can be considerably improved by taking into account the following. The
tests are not able to make a distinction between two structures which are Markov equivalent,
i.e. which explicitly or implicitly express the same conditional independence relations. A result
of the d-separation criterion is that two BN graphs are Markov-equivalent when they have:

1) the same underlying undirected graph; and

2) the same V-structures.

Each equivalence class can therefore be represented by the corresponding essential graph, i.e.
the semi-oriented graph which is obtained by suppressing all the arc directions which are not
involved in any V-structure.

In the independence-based methods, it is natural to first construct an essential graph and,
when needed, to transform it into a directed graph. Regarding the score methods, we can take
the set of the essential graphs as the search space [CHI 96]. It is only required that the score
function depend on the equivalence classes. The gain can be substantial. An algorithm based on
these ideas is EQ (equivalence classes) [MUN 01].

13.4.4. Causality

We have not yet introduced causality and have only mentionedthe presence or absence
of stochastic correlations between the variables. The dominant position among statisticians is
indeed that the direct observation of variables can only reveal correlations and that one must
have recourse to experiments, in which some of the variablesare controlled, to become able to
detect cause and effect relations.

However, when data concerning a triple of RVsX,Y andZ show thatX⊥⊥Y but at the
same time NOTX⊥⊥Z, NOT Y⊥⊥Z and NOTX⊥⊥Y |Z, which is expressed graphically
by V-structureX → Z ← Y , it is tempting to conclude thatX andY are independent causes
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having a joint effect onZ. Prior to drawing such a conclusion, however, we must eliminate the
possibility thatX andZ are correlated because they have a common hidden cause (as opposed
to one being a cause of the other).

Starting from this remark and extending it to the general case, Pearl [PEA 00] proposes
criteria allowing us to recognize if a variable is the potential cause of another i.e. if it is a
genuine cause or if there is in fact a spurious association between them. VariableX, when
linked with variableZ, is a potential cause of it if there exists a third variableY such that
triple X,Y,Z necessarily forms a V-structureX → Z ← Y . It is in fact a genuine cause
of Z if the link betweenX andZ by a common cause can be discarded. It is the nature of the
links betweenX,Y andZ in certain contexts, i.e. conditional to the observation ofcertain other
variables, which may make the discrimination possible. Similarly, we can conclude the presence
of a spurious association betweenX andY when there exist two contexts which respectively
disqualifyX as a potential cause ofY , andY as a potential cause ofX.

These are of course just definitions, and we may have doubts about their relevance for
capturing causality. We should nonetheless note that the existence of discriminating contexts
amounts to the existence of databases which are sufficientlyrich to contain all the information
that a controlled experience would have provided. Pearl’s theory of causality is perhaps not that
far from the classical point of view.

In the graphs constructed by algorithms IC and IC* of Pearl and Verma [PEA 91], only the
latter allows for the existence of hidden variables. The directions of the arcs are consistent with
an interpretation in terms of causality as defined above; forthis reason they are called causal
graphs.

13.4.5. Conditioning by intervention in causal graphs

Consider the following example. The medical observation ofa subpopulation has shown
that there is a link between the presence/absence of some symptom (variableS) and the de-
velopment of a certain disease (variableM ). The reception of a treatment (variableT ) is
also linked with the value ofS. Finally, the ensuing good or bad health of people (variable
E) depends simultaneously onS,M andT . These dependences are expressed by graphG
in Figure 13.15. Accordingly, the decomposition of the joint distribution isp(s, t,m, e) =
p(s)× p(t/s)× p(m/s)× p(e/s, t,m).

The probability thatE = good health knowing thatM = yes andT = yes in the subpop-
ulation can be computed using Jensen’s algorithm. What we really want to know, however,
is the efficiency of the treatment i.e. the probability that in the entire population, a person
which is ill and treated recovers a good health. This probability is in general different from
the preceding one. It may be, for example, that this symptom only appears in the most se-
rious forms of the disease and that only people presenting the symptom have been treated,
so that the first probability is smaller than the true probability. This latter probability would
be correctly evaluated in the BN of the graphG′ of Figure 13.16, which is derived fromG
by suppressing the parents (here, the unique parent)S of T . It corresponds to the decompo-
sition p(s, t,m, e/T = yes) = p(s) × p(m/s) × p(e/s, t,m) knowing thatt = yes and
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Figure 13.15.Conditioning by intervention graph

p(s, t,m, e/T = yes) = 0 otherwise. The reason for this modification is clear in a causal
graph: ifT = yes is enforced,T looses all connections with its causes but its joint influence
with other causes on a given variable remains unchanged.

Pearl [PEA 00] asks the following general question: given the data which have been used
to construct the BN and no other information, can we correctly predict the effect on certain
variables of actions performed on others, when there existsa third group of variables which
interact with the first two groups (confounding variables)?

The standard answer of statisticians is negative; they claim that it is necessary to have re-
course to additional experiments in which the confounding variables are controlled (i.e. have
fixed values).

What Pearl is able to show, by developing a general theory of conditioning by intervention,
is that the answer is subtle. If certain graphical conditions are satisfied (back-door and front-
door criteria) then the data already contain all the information which a controlled experiment
would provided.

The potential practical interest of these results is clear:controlling the experiment is of-
ten impossible, and when feasible often extremely costly. Causal graphs therefore constitute a
powerful tool, not only for the analysis of situations (diagnostics and prognostics) but also for
guiding the action.

13.5. BNs and influence diagrams

We shall now see the contribution of BNs to the representation and resolution of sequential
decision making problems under uncertainty.

13.5.1. Dynamic decision making under uncertainty

A decision problem is the formal representation of a situation where the decision maker
must choose between various alternatives which can have desirable consequences (e.g. finan-
cial). Decision making under uncertainty is concerned withproblems where, at the time of
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choice, the decision maker cannot perfectly anticipate theoutcomes of their choices. In a dy-
namical problem, the decision maker does not have a single decision to make but a sequence of
decisions. If uncertainty prevails, the decision maker canuse the received information to make
decisions depend on the information already possessed at the moment of decision. A (decision)
strategy (i.e. a sequence of conditional decisions) then has to be selected.

Classically, the progressive arrival of information is presented as the result of successive
choices of a fictitious agent, nature (N). Being probabilistic models, BNs can only be useful for
modeling decision problems if the assumption that the decison maker’s predictions concerning
the future actions of N take the form of a probability distribution on the relevant events (for the
problem considered) every time. We make that assumption, which places us in the framework
of decision making under risk. We moreover assume that the decision maker never forgets what
they have learned and that they update their probabilistic beliefs according to Bayes’ rule.

In any given problem, the decision maker has to look for the (or a) best strategy according
to its decision criterion under risk. We assume here that it is the classical criterion of expected
utility maximization (EU criterion). The choice of a strategy by the decision maker determines
the results that will be obtained depending on the events. Since events have probabilities, a prob-
ability distribution on the space of the consequences can beassociated to each strategy. Since
the criterion only depends on consequences through their utilities, the criterion value for a strat-
egy that offers consequenceci with probabilitypi is

∑
i pi × u(ci), whereu(.) is the decision

maker’s von Neumann–Morgenstern utility function. The shape of functionu(.) depends on
the attitude of the decision maker with respect to risk. In the example below, consequences are
monetary outcomes and, for the sake of simplicity, the utility function is the identity function
u(.) = Id(.) (risk neutrality). The decision maker wants to maximize expected gain or, as in
our example, to minimize expected cost.

13.5.1.1.An example of dynamic decision problem under risk

Consider the following example. The decision maker, whose car is in bad condition, has to
keep it one more year. They can decide immediately whether ornot to replace the car engine by
a new one (decisionsR andNotR); they can also (decisionG) make their decision based upon
the opinion (good or bad) (eventsB andBc) given by an expert (a mechanic) after testing the
engine. The prior probability that the present engine will cease to function before the end of the
year (eventA, complementary eventAc) is p, whereas it is onlyq(<< p) for a new engine. The
expert is not fully trustworthy and probabilitiesP (B/A) andP (Bc/Ac) that his prognostic is
wrong are known to the decision maker. The cost of replacing the old engine by a new onecR,
the cost of an engine testcG and the cost of no longer having a carcA are all known.

13.5.1.2.Decision tree of the problem

Such a problem is traditionally represented through a decision tree, which is in fact a di-
rected tree, since all the arc directions are the same (from the left to the right) they are not
indicated. Two kinds of nodes represented by squares and circles alternate: the squares (deci-
sion nodes) are associated with times of choice for the decision maker and the circles (chance
nodes) correspond to N’s choices, i.e. at times where new information is received. The decision
maker gains the knowledge (in addition to what is already known) that one of the events of a
specific partition of the sure event is true. The tree also contains probabilistic data and, for each
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of its leaves, the resulting outcome in the case where the strategic choice of the decision maker
combined with N’s choices lead to that node. In our example, we obtain the tree depicted in
Figure 13.16.
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Figure 13.16.Decision tree for the engine example

13.5.1.3.Optimization by dynamic programming

The form of the EU criterion makes it additively separable. More precisely, an EU like
any expectation can be expressed as an expectation of conditional expectations. This property
implies the validity of Bellman’s principle [BEL 57]. Substrategies of optimal strategies are
themselves optimal (except those substrategies which could only be played with zero probabil-
ity).

An optimal strategy can therefore be found by the dynamic programming algorithm, which
operates by rolling back the decision tree and determining,at each decision node met, the best
immediate decision. The subsequent decisions are fixed (andalready optimized). Since any de-
cision is followed by a choice of N, which randomly picks up a decision subtree, it is necessary
to compute the probabilities of N’s various feasible choices. This allows us to evaluate the EU
criterion at that decision node, which is just the weighted mean (these probabilities being the
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weights) of the values of the EU criterion at the roots of the subtrees. In other terms, computa-
tions only require the alternative use of operators MAX (maximization) and EXP (expectation).

In our example, it is necessary to compute the probability that the expert gives a favorable
opinionr = P (B) = P (B/A) × P (A) + P (B/Ac) × P (Ac) as well as conditional proba-
bilities pB = P (A/B) = P (B/A) × P (A)/r in N ′

2 andpBc = P (A/Bc) = P (Bc/A) ×
P (A)/(1− r) in N ′′

2 .

An optimal strategy can then be determined as follows. InD1, the values of the criterion for
the first two strategies, which are simple decisionsR andNotR, are equal to the corresponding
expected costs. These values must be compared with the best strategy that begins with the
expert’s consultation (decisionG). If in nodeD′

2 for example, the (conditional) expected cost
is smaller than that resulting from decisionNotR and, simultaneously, thatD′′

2 is smaller than
that resulting from decisionR, the best strategy will be[G;NotR if B;R if Bc]; its value is
the weighted mean (with weightsr and(1− r)) of the minimal expected costs inD′

2 andD′′
2 .

13.5.1.4.Limits of the classical method

The decision tree technique presents two major drawbacks:

– The representation of most real-life problems requires huge decision trees, which are not
easily constructed and are not likely to be displayed at a single instance.

– The evaluations of the substrategies generally require numerous computations of condi-
tional probabilities involving multiple applications of Bayes’ rule. Since these computations are
performed brutally, without taking advantage of the simplifications allowed by the presence of
conditional independences, they are often untractable.

13.5.2. Influence diagrams

13.5.2.1.Origin of the influence diagrams

Influence diagrams (IDs), also called decision graphs, wereinitially proposed by Howard
and Matheson [HOW 81] as a tool for constructing decision trees more easily. Their basic point
was that decision situations are often repetitive – although their contexts may differ – which
graphically implies the presence of subtrees with identical structures in the decision tree. This
fact can be used to achieve a more compact representation of the problem.

For example, the car engine problem can be represented by theID of Figure 13.17.

13.5.2.2.Semantics of IDs

An ID consists of a directed graph and numerical data. A (decision or chance) node of an
ID represents a set of nodes of the original decision tree. For a decision node, an incoming arc
indicates that the decision may depend on the value of the node at the origin of the arc. The
arcs linking chance nodes indicate a probabilistic link. A chance node contains data: its condi-
tional probability distribution given all its parents. Thelozenge U is the unique evaluation node.
Its incoming arcs indicate which variables influence the result. It also lists the consequences
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Figure 13.17.Influence diagram for the car engine example

(gains/costs) as functions of these variables (these are the consequences associated with the
leaves of the decision tree).

In the example, it is clear thatD′
2 andD′′

2 can be grouped as nodeD2 and that arcN0D2

indicates that the decision inD2 can depend on the event,B orBc, which is true inN0. Arcs
N0N andD2N indicate, for their part, that the probabilities of eventsA andAc vary from one
subtree to the next. As a matter of fact, it has been possible to group branchesR andNotR with
the others. This is because arcD1D2 allowsD2 to be informed by the fact that, ifR orNotR,
D2 takes the particular value ‘no action’. In that case, arcD2N informsN that it should not
modify the priors ofA andAc.

13.5.2.3.The methods of Shachter and Shenoy

Shachter [SHA 86] was the first to determine an optimal decision strategy by working di-
rectly on the ID representing the problem studied. The underlying algorithm is still the dynamic
programming algorithm. At each step of the computation performed when rolling back, the de-
cision tree corresponds to a transformation of the ID. The suppression of a decision node is
related to MAX operations. The suppression of a chance node is related to EXP operations.
Reversing the direction of the arc joining two chance nodes corresponds to probability transfor-
mations operated by Bayes’ rule.

Shenoy [SHE 92] has proposed an elegant variant, the valuation networks method, which
relies on the remark that the computations involved in the resolution of a decision problem
require only two kinds of operations: COMBINATION and MARGINALIZATION. A remark-
able achievement of Shenoy is his perfectly symmetric treatment of the two kinds of variables
(decision and chance variables) and of the various operations (MAX, EXP and probability trans-
formations). Another of his contributions has been to show that we can benefit from a possible
decomposition of the utility function u(.) by introducing several evaluation nodes in the ID.

13.5.2.4.The junction tree method

Inspired by the model and observations of Shenoy, Jensenet al. [JEN 94] have shown that
the junction tree method of the BN could be extended to the ID.The fact that information ar-
rivals and decisions are distributed in time creates new constraints in the construction of the
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junction tree. Starting from the ID (but without its evaluation node(s)), we construct its trian-
gulated moral graph, with the additional rule that the labeling of the nodes which takes place
during the triangulation phase respects their temporal ordering. The ordering of the cliques of
the junction tree has then the following property. There exists a rootR such that, for any pair of
adjacent cliquesC1, C2, whereC1 is closer toR thanC2, all the variables in separatorC1∩C2

have ranks smaller than those of the variables inC2/C1. This characterizes a strong junction
tree (see Figure 13.18). The preceding property is requiredto make the algorithm of dynamic
programming consistent with the standard computations of the junction tree method.

D1N0D2 N0D2 N0D2N

Figure 13.18.Strong junction tree for the car engine problem

This method achieves its main goal: the probabilistic computations are simplified in the
same way as in the case of BNs.

13.6. Conclusion

Decision aiding has become considerably richer with Bayesian networks and influence di-
agrams. These new tools are extremely ambitious and attemptto solve analysis and decision
problems of a considerably larger size than those tackled bythe classical methods. Forging such
tools takes much time. The evidence propagation algorithmsand the optimal strategy determi-
nation methods already seem to be close to their final form. Onthe contrary, the construction of
a BN that optimally represents the stochastic interactionsbetween the variables of a database is
a problem which is still the object of active research. The final place of BNs and IDs in statis-
tics, operations research and artificial intelligence willcertainly be important, but cannot yet be
perfectly defined.

13.7. Software

Bayesian networks and influence diagrams software is available at the following locations:

– ADA Inc.: http://www.adainc.com/software/

– Bayesian network repository: http://www.cs.huji.ac.il/labs/compbio/Repository/

– Bayesware discoverer: http://www.bayesware.com

– B-Course: http://b-course.hiit.fi/

– BN Power Constructor: http://www.cs.ualberta.ca/ jcheng/bnpc.htm

– IDIS AI resources: http://excalibur.brc.uconn.edu/ baynet/

– Tetrad: http://www.phil.cmu.edu/tetrad/

– HUGIN: http://www.hugin.com/

– NETICA: http://www.norsys.com/
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Chapter 14

Planning under Uncertainty with Markov
Decision Processes

14.1. Introduction

The decision-theoretic approach to planning under uncertainty has taken an important place
in artificial intelligence (AI) in the past ten years. The main contribution of decision theory to
the classic paradigm of planning in AI is linked to its ability to explicitly model uncertainty
and preferences over the effects of actions, for example through the use of probabilities and
utility functions. This allows for a more flexible search forplans (or decision rules) than in
classical planning: a plan whichmaximizesa given criterion is looked for, rather than one that
reaches some fixed goalfor sure. Typically, the criterion to optimize will be the expectation of
a random variable representing the accumulation of rewardsobtained successively in a problem
of sequential decision under uncertainty. In the last part of this chapter we will also see that
other criteria, based on non-classical decision theories,have also been considered.

Most recent works in AI on decision-theoretic planning use the framework ofMarkov de-
cision processes(MDP) [PUT 94], initially proposed by the operations research community.
These works [e.g. BAR 95, BOU 99, BOU 00, KAE 96, KAE 98] have applied, adapted or ex-
tended the MDP framework to various fields of planning in AI: planning under uncertainty in
completely or partially observable environments, learning and structured planning problems.

In this chapter we will present various approaches to planning under uncertainty in artifi-
cial intelligence, based on the Markov decision processes framework. First, we will describe
the MDP framework (section 14.2) which grounds the decision-theoretic approach to planning
under uncertainty. We will then describe the framework ofpartially observed MDP(POMDP)
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which extends the MDP framework, allowing us to take into account incomplete information
and noisy observations in planning under uncertainty.

The learning community in AI is also linked to the planning under uncertainty community.
Reinforcement learning (RL) represents a set of methods, often based on the MDP framework,
issued from the cross-fertilization of both communities. Some RL methods will be described
in section 14.4. The planning domain is also close to anothercentral domain in AI, concerned
with knowledge representation.

It was therefore natural that decision-theoretic approaches to planning under uncertainty
would borrow several ideas and approaches from the knowledge representation community,
in order to enrich the MDP framework. Indeed, the MDP framework capabilities as a repre-
sentation language are as poor as its computational capabilities are rich. Several authors have
therefore tried to enrich the MDP framework with representational languages such as those
traditionally used in AI planning (section 14.5).

In the knowledge representation domain in AI, several non-probabilistic approaches to un-
certainty modeling have been explored, some of which have been extended in order to form
non-classical decision theories. In section 14.6, we will describe a qualitative counterpart to
MDP which is based on such a non-classical decision theory:possibilistic Markov decision
processes.

14.2. Markov decision processes

14.2.1. Problem formulation

In its classical formulation [PUT 94], an MDP is described bya four-tuple< S,A, p, r >
whereS is a set of possible states of the world,A is a set of allowed actions,p is a transition
probability function between states andr is an immediate reward function.

14.2.1.1.States, actions, transitions and policies

In the case where the set of states is finite (see [PUT 94] for the infinite case),S =
{s1, . . . , sn} is the set of states that can be reached by the system at any moment in time.
Sometimes, the system is only partially observed, in which case the current state of the world is
not known precisely but rather is described by a belief stateb, which is a probability distribution
overS. This case will be described in section 14.3.A = {a1, . . . , am} is the set of applica-
ble actions at any time, the application of which will cause the state of the world to change
(non-deterministically).

The stochastic process describing the evolution in time of the state of the world is also de-
scribed by the transition probability function which governs it. In an MDP, the state of the world
st at time-stept will transition to statest+1 at time-stept+ 1 under the effect of actionat ap-
plied at this time-step. This transition is in general stochastic. Furthermore, the process is called
Markovian when the transition probability fromst tost+1 only depends on the actionat applied
and not on the past of the system, described by the trajectory< s0, a0, s1, . . . , st−1, at−1 >
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followed so far. Transition probabilities are denotedpt(st+1|st, at). When the transition prob-
abilities do not depend on the current time-step (in which case the subscriptt is omitted), the
process is stationary. The setH ⊆ N of time-steps of the process is called the horizon of the
process and can be finite or infinite. When the horizon is infinite, the process is usually station-
ary.

In the next section we will show that solving an MDP amounts tofinding an ‘optimal’ action
for any state of the world encountered, with respect to some optimization criterion. A function
δ : S ×H → A assigning an action to any possible state at any time-step iscalled a decision
rule or policy. A policy is stationary when it does not dependon the current time-step.

14.2.1.2.Reward, criterion, value function, optimal policy

In an MDP, an immediate reward functionrt : S×A×S → R is defined in addition to the
transition model.rt(s, a, s

′) is the reward obtained when actiona has been performed in state
s and the state has changed tos′.

The notion of immediate reward function can be extended overtrajectories. The reward
V (τ ) associated with a trajectoryτ is defined as:

τ =< s0, a0, s1, . . . , st, at, . . . >, t ∈ H : V (τ ) =
∑

t∈H

rt(st, at, st+1).

WhenH is infinite, the above-defined sum may not converge. The following γ-discounted
sum is therefore often used:

V (τ ) =
∑

t∈H

γtrt(st, at, st+1).

Theγ-discounted sum surely converges when0 ≤ γ < 1 and whenrt is bounded. When ap-
plied to the Markov chain associated with a policyδ in an MDP, this criterion becomes stochas-
tic:

Vδ(s0) = E
[∑

t∈H

γtrt(st, δ(st), st+1)|s0, δ
]
. (14.1)

The expectation is computed over all possible trajectoriesτ that can be followed, applying
policy δ starting from initial states0. The problem of finding an optimal policy can be stated as:

Findδ∗, S ×H → A, Vδ∗(s) ≥ Vδ(s),∀s ∈ S,∀δ ∈ AS×H (14.2)

This problem can be efficiently solved, using classical stochastic dynamic programming
methods [BEL 57, BER 87, PUT 94]. The backwards induction algorithm, policy iteration al-
gorithm or value iteration algorithm are the most often usedalgorithms. We will describe them
in the next section.
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14.2.2. Classical solution algorithms for MDP

14.2.2.1.Finite horizon: backwards induction

WhenH = {0, . . . , N} is finite, the value of a policyδ in any state and at any time-step is
described by a time dependent value functionVδ,t which can be computed from the following
set of equations:

Vδ,t(s) =
∑

s′∈S

pt(s
′|s, δ(s)) ·

(
rt(s, δ(s), s

′) + γ · Vδ,t+1(s
′)
)
, t < N, s ∈ S,

Vδ,N (s) = 0,∀s ∈ S. (14.3)

Vδ,t(s) is then computed iteratively,backwards, for all s, t. An optimal policyδ∗ can also be
computed backwards:

δ∗(s, t) = arg max
a∈A

∑

s′∈S

pt(s
′|s, a) ·

(
rt(s, a, s

′) + γ · V ∗
t+1(s

′)
)
,

V ∗
t (s) = max

a∈A

∑

s′∈S

pt(s
′|s, a) ·

(
rt(s, a, s

′) + γ · V ∗
t+1(s

′)
)
,

V ∗
N(s) = 0,∀s. (14.4)

14.2.2.2.Infinite horizon: value iteration and policy iteration

When the horizon becomes infinite and when the MDP is stationary, it can be shown that
the value functionVδ of a stationary policyδ does not depend on time. Furthermore, it can be
computed from the following system of linear equations [HOW60]:

Vδ(s) =
∑

s′∈S

p(s′|s, δ(s)) ·
(
r(s, δ(s), s′) + γ · Vδ(s

′)
)
,∀s. (14.5)

This system can be solved by a simplex algorithm or by an iterative successive approxima-
tions algorithm [PUT 94]:

V 0
δ (s) = 0, ∀s,

V n
δ (s) =

∑

s′∈S

p(s′|s, δ(s)) ·
(
r(s, δ(s), s′) + γ · V n−1

δ (s′)
)
,∀s. (14.6)

Whenn→∞, V n
δ → Vδ with bounded convergence speed and error [PUT 94].



Markov Decision Processes 531

14.2.2.2.1. Value iteration algorithm

The value iteration algorithm [BEL 57] uses updates which are close to those in equa-
tion (14.6) in order to compute an optimal policy. More precisely, it builds a sequence of ap-
proximate value functions(V n):

V 0(s) = 0, ∀s,

V n(s) = max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V n−1(s′)

)
,∀s. (14.7)

The sequence(V n) converges (as soon as0 ≤ γ < 1) and its limit function,V ∗, is exactly
the optimal value function of the MDP, from which the optimalpolicy δ∗ can be computed
greedily:

δ∗(s) = arg max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V ∗(s′)

)
,∀s. (14.8)

In practice, there exists a lower valuen∗ of n, from which the actions maximizing the right-
hand side of equation (14.7) form an optimal policy. [PUT 94]gives a set of stopping criteria
for the value iteration algorithm.

14.2.2.2.2. Policy iteration algorithm

The policy iteration algorithm [HOW 60] is also based on the updates in equation (14.6). It
consists of alternating steps of evaluation and improvement of a current policy. The evaluation
step uses equations (14.5) or (14.6) to compute the value of the current policy. The improvement
phase transforms the current policyδ into a ‘better’ policyδ′ (Vδ′(s) ≥ Vδ(s),∀s):

δ′(s) = arg max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · Vδ(s

′)
)
,∀s. (14.9)

The stopping criterion for the policy iteration algorithm is the equality of the value functions
of two successive policiesδ andδ′. Usually, this algorithm stops after very few improvement
steps, but each iteration is costly since it requires a set oflinear equations to be solved.

The modified policy iteration algorithm [PUT 94] improves the policy iteration algorithm
by applying only a small number of updates in the evaluation step equation (14.6). In practice,
the modified policy iteration algorithm is far more efficient, providing that a good choice is
made for the upper bound on the number of updates. Note that inthe extreme case where only
one update is performed at any evaluation step, the modified policy iteration algorithm becomes
equivalent to the value iteration algorithm.
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Figure 14.1.Race track example

14.2.3. Example: car race

In order to illustrate the framework of MDP, let us present anexample slightly modified
from that proposed by [BAR 95]. It is a game of car race simulation, usually played on a sheet
of paper where a race track is drawn on a grid. Figure 14.1 shows such a race track.

At any time-stept, the statest of a car is described by its position coordinates(xt, yt)
and its current speed coordinates(ẋt, ẏt). The available actions consist of modifying the current
speed vector by choosing an acceleration vector(axt, ayt) ∈ {−1, 0, 1} × {−1, 0, 1}.

The following equations govern the state dynamics of the car:

xt+1 = xt + ẋt + axt,

yt+1 = yt + ẏt + ayt,

ẋt+1 = ẋt + axt,

ẏt+1 = ẏt + ayt. (14.10)

In order to introduce some randomness into the problem it is possible that, with probability
p, the acceleration is not transmitted to the car in which case(axt, ayt) = (0, 0). The state
vector of the car comprises a fifth variablent, counting the number of ‘accidents’.nt models
the number of times the car trajectory has reached a boundaryof the circuit. Whenever this
happens,nt is incremented and the car is stopped, i.e.
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xt+1 = xt,

yt+1 = yt,

ẋt+1 = 0,

ẏt+1 = 0,

nt+1 = nt + 1.

When the car crosses the finish line, or when the number of accidents reaches an upper
limit Nacc, the system reaches an absorbing state. (Note that an absorbing state in an MDP is
simply a state from which the probability of getting out, using any action, is zero and which has
a zero-valued reward attached to its self-transition.)

Of course, the goal of this game is to cross the finish line as fast as possible, starting from
any position on the start line. This goal is modeled through the reward functionrt(st, at, st+1),
where:

– rt(st, at, st+1) = ∆T if the current transition does not cross the circuit border or the
finish line;

– rt(st, at, st+1) = Tacc if the current transition crosses the circuit border;

– rt(st, at, st+1) = T∞ if the current transition crosses the circuit border and hasalready
done so at leastNacc times; and

– rt(st, at, st+1) = α ·∆T if the current transition crosses the finish line.

α is the proportion of the current move vector that the car has to reach before crossing the
finish line.

The criterion to minimize is the total reward criterion
∑∞

t=1 rt(st, at, st+1), representing
the time needed to complete the race. (Note, however, that the problem is easily transformed
into a classical maximization MDP problem.) Even although the car race example can be easily
modeled as an MDP, the obtained problem has thousands of states. The computational limits of
the classical stochastic dynamic programming algorithms are therefore easily reached by such
factored problems.

Later in this chapter we will present two kinds of approacheswhich allow us to overcome
such computational limits:reinforcement learning algorithmsandfactored MDP algorithms.

14.2.4. Recent advances in Markov decision processes

The Markov decision processes framework has been widely used for modeling problems
of planning under uncertainty in artificial intelligence inrecent years. However, the following
limitations of this framework have been acknowledged:
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– The assumption of complete observability of the state of the world at any time-step is
often unrealistic.

– The assumption of perfect knowledge of the MDP model (transitions, rewards) is also
unrealistic. Often, the model is only observed indirectly,using simulations or experiments. Also,
only ‘qualitative’ evaluations of preferences or transition likelihoods are sometimes available.

– Finally, usual MDP algorithms use ‘flat’ representations of states and actions. However,
planning problems in AI often usefactored representationsof states and actions. These factored
representations allow us to model very large problems, which cannot be solved using standard
algorithms.

In order to overcome these limitations, several approacheshave been proposed. We will
describe some of them in the remainder of this chapter:

– partially observed MDPs;

– real-time dynamic programming and reinforcement learning;

– factored MDPs; and

– qualitative MDPs.

14.3. Partially observed MDPs

So far, we have made the assumption that we have perfect knowledge of the current state
of the system at any time-step. This assumption has allowed us to define policies modeling the
behavior of an agent, of the formδ : S → A. However, it may be that the agent does not
precisely observe the current states of the system, but instead observes the valueω ∈ Ω of
some observation variable, indirectly linked tos.

In this case, a possible approach would be to define a policy asa functionδ : Ω → A, as-
signing an action to each possible observation, and to solvean MDP over the set of observations.
However, such policies do not allow us to distinguish statesleading to the same observation. In
some cases, this approach allows us to compute useful policies but it can also lead to disastrous
policies. For example, [LIT 94] shows some car race example problems in which the computed
policies generate endless loops.

If the current observation alone does not allow a good differentiation between possible states
of the system, using past observations may lead to a better differentiation. Indeed, POMDP al-
gorithms usually considerbelief states(probability distributions overS) instead of states them-
selves, and define policies as functionsδ : P(S) → A. Observations are used, together with
actions, to update the current belief state.

We will see that a POMDP can be transformed into a perfectly observed MDPover the set
of belief statesP(S). Unfortunately, the new state space is continuous and the obtained problem
is far more complex to solve than a usual MDP. Specific solution algorithms for POMDP will
be briefly described in this section.
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14.3.1. POMDP model, continuous-MDP transformation

A partially observed Markov decision process is defined by the tuple< S,A, p, r,Ω, o >,
where< S,A, p, r > defines a classical MDP,Ω is a set of possible observations ando :
S × A × Ω → [0, 1] is anobservation function. o(s′, a, ω) is the probability of observingω
when actiona allows states′ (

∑
ω∈Ω o(s

′, a, ω) = 1) to be reached.

The imperfect knowledge of the state of the world is modeled through abelief stateb ∈
P(S). b(s) represents the probability that the current state of the world is s. This belief state is
modified by the combined effect of the successive actions andobservations:

b′(s′) = Pr(s′|b, a, ω)

=
o(s′, a, ω) ·∑s∈S p(s

′|s, a)b(s)
Pr(ω|a, b)

=
o(s′, a, ω) ·∑s∈S p(s

′|s, a)b(s)∑
s,s′∈S o(s

′, a, ω)p(s′|s, a)b(s) (14.11)

b′ = T (b, a, ω) is the resulting belief state when actiona has been applied in belief state
b and observationω resulted.T is calledstate estimator function. Transition probabilities over
belief states can be defined fromT :

Pr(b′|b, a) =
∑

ω∈Ω

Pr(b′|b, a, ω)Pr(ω|a, b)

Pr(b′|b, a, ω) = 1 if b′ = T (b, a, ω) and 0 else. (14.12)

In the same way, the reward functionr can be extended to belief states:

ρ(b, a, b′) =
∑

s,s′∈S

b(s) · b′(s′) · Pr(b′|b, a) · r(s, a, s′)

=
∑

s∈S

b(s) · Pr(b′|b, a) ·
( ∑

s′∈S

b′(s′) · r(s, a, s′)
)
. (14.13)

< P(S), A,Pr, ρ > is a model of MDP over a continuous state space. A solution to this
continuous MDP, coupled with the state estimatorT allows is to optimally control the initial
POMDP [AKS 65, SON 78].
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14.3.2. Computing optimal policies in a POMDP

Even although we have just seen that a POMDP can be translatedinto an MDP, its continu-
ous state space prevents it from being solved by the usual algorithms presented in section 14.2.
However, we will describe in this section a value iteration-like POMDP solution algorithm, ex-
ploiting in particular thepiecewise linear and convexform of the value functionV : P(S)→ R
of an optimal policy. This algorithm uses a tree structure inorder to represent a policy and its
value function, and defines an iterative method for computing successive approximations of the
optimal policy.

14.3.2.1.t-policy tree

We have seen that in a POMDP a policy could be defined as a function δ : P(S) →
A. However, this ‘memoryless’ definition cannot be directly exploited by POMDP solution
algorithms, since such a function cannot be efficiently stored. In general, it is easier to represent
finite-horizon policies as trees of finite deptht, wheret is the horizon of the problem.

This t-policy tree(Figure 14.2), denotedδt, comprises vertices indexed by actions and edges
indexed by observations. A branchτ =< a1, ω1, ..., at, ωt > represents a sequence of past
alternate actions and observations. Of course, several different sequences of MDP states may
result in the same actions/observations sequence. However, we can attach a unique belief state
to each vertex of the tree, computed from the initial belief stateb0, using equations (14.11).
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Figure 14.2. t-policy tree

Indeed, following a branch transforms the initial belief stateb0 into a sequence of belief
statesτ =< b0, b1, ..., bt >, wherebi+1 = T (bi, ai, ωi). The ‘value’ of a branch (in terms
of MDP) can then be defined as the expected value of all the trajectories compatible with the
corresponding actions/observations sequence:v(τ ) =

∑
i=1...,t γ

i−1ρ(bi−1, ai, bi).
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We can now compute the value of a policy treeδt in b0 by computing the expectation of the
values of all its branches:

Vδt(b0) = Eτ

[ ∑

i=1,...,t

γi−1ρ(bi−1, ai, bi)|b0, δt

]
. (14.14)

This value is exactly the expectation of the sum of the immediate rewards that can be ob-
tained when following the policy defined byδt over t time-steps, when the initial state of the
world is b0.

It is now time to describe more precisely the correspondencebetween the two possible
descriptions (stationary and t-tree) of a policy. The stationary policyδ : P(S) → A defines
the current action for all possible belief states andVδ is the (infinite horizon) value function of
policy δ. As in the classical MDP case, knowing the optimal value function V ∗ allows us to
compute the optimal policyδ∗, using the formula:

δ∗(b) = arg max
a∈A

∑

ω∈Ω

Pr(b′|b, a) ·
(
ρ(b, a, b′) + γV ∗(b′)

)
,

whereb′ = T (b, a, ω).

The t-policy trees can now be used to build a concise representation of approximations of
the optimal value function. To see this, let us start by considering the value of a 1-policy treeδ,
in a perfectly observed belief states:

Vδ(s) =
∑

s′∈S

p(s′|s, δ(s)).r(s, δ(s), s′),

whereδ(s) = a1
1 (= δ(ωs), in fact, whereωs is the Dirac probability distribution overS such

thatωs(s) = 1) is the action specified at the root of the policy tree.

More generally, for at-policy tree and an initial states,

Vδ(s) =
∑

s′∈S

p(s′|s, δ(s)).
(
r(s, δ(s), s′) + γ

∑

ω∈Ω

Pr(ω|s, δ(s), s′)Vδ|ω(s′)

)

=
∑

s′∈S

p(s′|s, δ(s))
(
r(s, δ(s), s′) + γ

∑

ω∈Ω

o(s′, δ(s), ω)Vδ|ω(s′)

)
(14.15)

Vδ|ω denotes the value function of the(t− 1)-policy tree obtained fromδ by taking the subtree
which root is the action vertex linked to the root vertexδ(s) of thet-policy tree by edgeω.
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Stated differently, the value of at-policy tree in a perfectly observed states can be computed
recursively from the values of the(t − 1)-policy trees attached to the children nodes of the
root, resulting from the possible observations. This allows a recursive computation of the value
function of at-policy tree in a given belief stateb, since we have:

Vδ(b) =
∑

s∈S

b(s).Vδ(s).

14.3.2.2.Value iteration algorithm for POMDP

In order to compute an optimal policy for a POMDP, the value iteration algorithm has to be
adapted. It can use, as for usual MDP, updates similar to those in equations (14.15). However,
the value function domain is continuous. In order to overcome this problem, we can observe
that the value function can be expressed in a more concise way. Indeed, it can be shown by a
recursion proof that the value functionVδ of any t-policy tree can be computed from a finite
set ofn-dimensions vectors (wheren = |S|) [SON 71, WHI 91]. This property can be used to
design a value iteration algorithm for POMDP, maintaining setsVt of n-dimension vectors at
each time-step to represent the current value function approximation [CHE 88, KAE 98]. Note,
however, that the size of the setsVt can grow exponentially witht.

14.3.3. POMDP example [CAS 94]

Assume that an agent is in the environment shown in Figure 14.3. There are four possible
states here, one of them being a goal state. At any time-step the agent is in one of the four
squares and can decide to move either one square left (l) or right (r) (the squares at each end
are dead ends). Whenever it moves to the goal square, the agent receives a reward of one unit
and is randomly moved to any of the three non-goal squares (with probability1/3). The agent
never observes its precise position, except when it is on thegoal square.

2 GOAL 41

Figure 14.3.Partially observable environment

This really simple example (three non-goal states, deterministic actions) can be solved ex-
actly. First, note that only five belief states can be encountered, when the agent starts in belief
stateb0 =< 1/3, 1/3, 0, 1/3 >. For instance, after ar move inb0, if the agent does not ob-
serve the goal, its belief state isb1 =< 0, 1/2, 0, 1/2 >. After a newr move, if it still does not
observe the goal, its belief state isb2 =< 0, 0, 0, 1 >: the agent knows it is in the rightmost
square. If at any time the agent observes the goal, it receives an immediate reward and goes back
to belief stateb0. It is easy to check that only two additional belief states can ever be reached:
b3 =< 1, 0, 0, 0 > andb4 =< 0, 1, 0, 0 >.

The belief states transition functions attached to actionsr andl are as listed in Table 14.1.

The four first steps of the value iteration algorithm yield the results listed in Table 14.2.
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l r
b0 b1 b2 b3 b4 b0 b1 b2 b3 b4

b0 1/3 0 0 2/3 0 1/3 2/3 0 0 0
b1 1/2 0 0 1/2 0 1/2 1/2 0 0 0
b2 1 0 0 0 0 0 0 1 0 0
b3 0 0 0 1 0 0 0 0 0 1
b4 0 0 0 1 0 1 0 0 0 0

Table 14.1.Belief states transition probabilities

vt(bi) t = 1 t = 2 t = 3 t = 4
b0 1, {l, r} 4/3, {l, r} 16/3, {r} 23/9, {r}
b1 0, {l, r} 1/2, {l, r} 7/6, {r} 10/3, {r}
b2 0, {l, r} 1, {l} 4/3, {l} 16/3, {l}
b3 0, {l, r} 0, {l, r} 1, {r} 4/3, {r}
b4 0, {l, r} 1, {r} 4/3, {r} 16/3, {r}

Table 14.2.Belief states values

The optimal infinite horizon policy is represented in Figure14.4.

b , r1 b , l2

b , r0

Figure 14.4.Optimal infinite horizon policy

14.3.4. Concluding remarks

Partially observed MDPs form an extension of MDPs allowing us to take into account im-
perfect observations in planning under uncertainty. Considering imperfect observations makes
the planning problem far more difficult to solve. Much research in AI has therefore been devoted
to designing methods for efficiently solving larger and larger problems.

Among the methods proposed for solving large POMDP, some (based on simulations and
learning) are also useful for solving completely observed MDP. We will describe succinctly
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these simulation-based methods in the following section, limiting ourselves to the completely
observed case.

14.4. Real-time dynamic programming and reinforcement learning

14.4.1. Introduction

The Markov decision processes framework allows us to represent and solve problems of
planning under uncertainty. Efficient dynamic programmingalgorithms allow us to cope with
the complexity induced by the sequential aspects of these problems. In the previous section,
we have shown that it is possible to extend the MDP framework to the case of partially ob-
served environments. Sometimes, a different kind of partial observability is encountered in the
MDP framework, even although the current state of the world is perfectly observed. This is
the case where the model of the MDP is unknown. In this case, the functionsp andr of the
model< S,A, p, r > area priori unknown, and can only be accessed through experiments or
simulations.

Reinforcement learning (RL) methods, which we are going to describe, aim to solve such
problems. These methods also have the ability to tackle problems of a larger size than usual dy-
namic programming methods, since they do not require an explicit storage of the size|S|2|A|
transition function. Reinforcement learning methods combine the advantages of learning ap-
proaches (a priori unknown model) and of the real-time dynamic programming approach, which
is a version of the value iteration algorithm which saves time by avoiding updating all states in
the state space at each time-step.

14.4.2. Real-time dynamic programming

14.4.2.1.Gauss–Seidel algorithm

Let us recall the form of the value iteration updates (equations (14.7)):

V 0(s) = 0, ∀s,

V t(s) = max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V t−1(s′)

)
,∀s,∀t ≥ 1. (14.16)

Clearly, the value iteration algorithm requires the value functionV t(s) of all states inS to be
updated at each time-step. One first remark, leading to theGauss–Seidelvariant of the value
iteration algorithm [BER 89] is that in these updates, the computation ofV t(s) only uses the
values computed at timet − 1 (based onV t−1). This means that even if some of these val-
ues have already been recomputed at timet, they are not used in the present computation.
The Gauss–Seidel variant of the value iteration algorithm simply uses the current values when
available, in order to computeV t(s). It has been observed that, in practice, the Gauss–Seidel
algorithm converges faster (fewer updates) than the value iteration algorithm.
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Furthermore, since the Gauss–Seidel algorithm only takes the most recently computed val-
ues ofV into account, it is useless to maintain two different value functionsV t andV t−1.

V (s) = 0,∀s,

V (s) ← max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V (s′)

)
,∀s. (14.17)

14.4.2.2.Asynchronous dynamic programming

At any time-step of the Gauss–Seidel algorithm, the value ofall states inS are updated.
This may lead to lots of useless computations, as can be seen in robot navigation problems or in
the car race problem, for example. In the latter example, it would be more useful to improve the
value function of states in which the car position is close tothe finish line, and then progressively
update the values of states corresponding to positions closer to the start line.

The asynchronous dynamic programming algorithm generalises the Gauss–Seidel algorithm
by allowing the state values to update to be updated in an asynchronous way. Its principle is to
maintain only one value function (as in Gauss–Seidel algorithm) but, unlike it, all state values
do not have to be updated in sequence, following the same cycle overS. Instead, the method
allows us to focus updates on an area which is likely to provide the most interesting updates of
V , temporarily forgetting to update the other states. The asynchronous dynamic programming
algorithm will eventually converge to the optimal value function, provided that all states are
updated sufficiently often.

The principle (and the efficiency) of the method can be illustrated on the car race example.
In this example, the value function represents, for all states, the expectation of the time needed
to cross the finish line, applying the best policy. If the value function is uniformly initialized to
zero, it is clear that it is initially more interesting to update the values of the states from which it
is possible to cross the line. Indeed, for such states, the exact optimal value can be computed by
a single application of update equation (14.17). On the other hand, the value of states which are
further from the finish line should only be updated when the values of states which are closer
have been computed.

The asynchronous dynamic programming algorithm is formally described as:

V (s) = 0,∀s ∈ S,

V (s) = max
a∈A

∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V (s′)

)
,∀s ∈ St,∀t = 1, . . .

(14.18)

In equation (14.18),S1, . . . , St, . . . are subsets ofS. [BER 89] have shown that, provided
that all states are visited infinitely (belong to an infinite number of subsetsSt), equation (14.18)
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converges toward the optimal value functionV ∗. Note that, of course, the speed of convergence
of equation (14.18) heavily depends on the choice ofSt. It is therefore important to look for
good heuristics to choose them. Finally, note that the Gauss–Seidel algorithm is a particular
case of the asynchronous dynamic programming algorithm, inwhich St = {st mod |S|} is a
singleton, for anyt.

14.4.2.3.Real-time dynamic programming

The real-time dynamic programming method consists of applying in alternation updates
of the value function through asynchronous dynamic programming and process control. The
method can be applied on-line (the control being actually applied), but also off-line, as an alter-
native to the asynchronous dynamic programming method.

More precisely, the main difference with the previous method is that the subsetsSt of states
to update are chosen in real time, given the current statest of the system and the bestmyopic
actionat. The steps of the algorithm are as follows:

– If the current state of the system isst, V is updated overSt = f(st) (f is an arbitrary
function assigning a subset of statesSs = f(s) to any states ∈ S).

– The best myopic actionat is that which maximizes the expectation of the current value
function:

at = arg max
a

∑

st+1∈S

p(st+1|st, a) ·
(
r(st, at, st+1) + γ · V (st+1)

)
.

– The successor statest+1 of (st, at) is determined either by experiment or by simulation
(this is the ‘real-time’ part of the optimization process).

If the assumptions of asynchronous dynamic programming areverified (in particular the
insurance that all states may be visited infinitely often), the real-time dynamic programming
method allows us to find an optimal policy. One simple way to enforce the satisfaction of
the assumptions is to chosest+1 uniformly at random, from time to time, and to ensure that
∪f(st) = S.

14.4.3. Reinforcement learning

The real-time dynamic programming techniques aim to solve large MDP by avoiding up-
dating the values of all states at each step of the DP algorithm. A further difficulty may occur
when solving an MDP. It may be that the model(p, r) of the MDP is not directly available, but
accessible only through experiments/simulations. In thiscase, the objective is not only to solve
the MDP, but also to learn its model. Reinforcement learninggroups methods which allow this
double objective to be reached.

More specifically, there are two families of reinforcement learning methods:indirect meth-
ods anddirect methods. Indirect methods first learn the model(p, r) of the MDP, then solve it
using classical dynamic programming algorithms. The two phases (learning and optimization)
can be interleaved in the real-time dynamic programming way, by focusing the learning on the
area of theS × A space which is the most ‘promising’ in terms of policy optimization.
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Direct methods try to avoid the explicit learning of the model (p, r), by learning directly
the value functionV (TDλ algorithm) of a given policy, or a function which allows a direct
computation of the optimal policy (Q-learning algorithm).

14.4.3.1.Indirect reinforcement learning

14.4.3.1.1. Certainty equivalent

The most simple (and least efficient) indirect reinforcement learning method is the certainty
equivalent method [KUM 86]. This method simply consists of randomly exploring the space
S × A (by simulations or experiments) and building estimatorsp̂ andr̂ of p andr.

However, this method has several problems:

– It separates arbitrarily the learning and optimization phases, and cannot be really qualified
as ‘real-time’.

– In the learning phase, the exploration ofS×A is not guided and it is quite likely that lots
of useless effort will be spent for exploring ‘uninteresting’ parts of this space.

These two problems are likely to slow down the search for an optimal policy.

The method can be improved by alternating simulation and optimization and integrating
some dynamic programming features, in order to focus learning on really useful parts ofS×A.

14.4.3.1.2. Dyna

The Dyna algorithm [SUT 91] progressively builds (as with the certainty equivalent method)
a model(p̂, r̂) by simulations/experiments. However, Dyna also progressively builds a function
Q̂ : S × A→ R, which is an estimator of the functionQ:

Q(s, a) =
∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ · V (s′)

)
, (14.19)

whereV is the optimal value function of the MDP(S,A, p, r).

The interest of estimatingQ is that both the value functionV and the optimal policyδ can
be directly computed fromQ:

V (s) = max
a∈A

Q(s, a),∀s ∈ S,

δ(s) = arg max
a∈A

Q(s, a),∀s ∈ S.

In the Dyna algorithm, whenever a transition< s, a, s′, r > is experienced/simulated the
following operations are performed:

1) The model (̂p,r̂) is updated.
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2) Q̂:

Q̂(s, a)←
∑

s′∈S

p̂(s′|s, a) ·
(
r̂(s, a, s′) + γ ·maxa′∈AQ̂(s′, a′)

)

is updated.

3) Some additional updates of̂Q are performed, by propagating the updated values (through
dynamic programming updates).

4) The action to apply ins′ is chosen randomly, but the actions which have goodQ̂-values
in s′ have a higher probability to be chosen.

Dyna is far more efficient than the certainty equivalent method in practice. However, the
‘additional updates’ phase has been improved, by guiding the choice of state values to update, to
gain more efficiency (leading to the algorithmsQueue-Dyna[PEN 93] andPrioritized Sweeping
[MOO 93]).

14.4.3.2.Direct reinforcement learning

The indirect reinforcement learning methods we have just described may have a serious
drawback for solving really large MDP. They need to store theestimatorŝp andr̂, which require
a storage space inO(|S|2|A|). The Q-learning algorithm [WAT 92] allows the storage ofp̂ and
r̂ to be replaced with the storage ofQ̂, leading to a factor|S| gain.

The principle of the Q-learning algorithm is to progressively approximate the exactQ-value
function, from which an optimal policy can be derived. Note that the exactQ-value function is
the solution of the following system of fixed-point equations:

Q(s, a) =
∑

s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γ ·max

a′∈A
Q(s′, a′)

)
. (14.20)

The solution of this system is progressively obtained by repeating basic updates of the form

Q̂(s, a)← Q̂(s, a) + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)
(14.21)

whenever a transition< s, a, s′, r > is observed.α is a ‘learning rate’ of the algorithm, which
decreases to zero when the number of updates increases. The more updates performed, the more
confident we are with the current estimatorQ̂, and the less further experiments should modify
it.

Under some simple ‘visiting all states/actions’ conditions, [WAT 89] has shown that the
Q-learning algorithm converges to the exactQ-value function.
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14.4.4. Concluding remarks

In this section, we have given a very brief and partial glimpse of the real-time dynamic
programming methods and the reinforcement learning methods. In particular, we have not de-
scribed theTDλ method [SUT 88], the real-time Q-learning methods, or the important meth-
ods of parameterized reinforcement learning, which are useful for solving (approximately) even
larger problems.

The Q-learning algorithm allows storage space to be saved compared to the Dyna algo-
rithm. On the other hand, since no estimator of the model is maintained, the additional dynamic
programming updates of the Dyna family algorithms are no more possible, leading to a need
for more simulations/experiments. This means that the choice of a direct or an indirect method
should always be guided by the compromise between simulation/experiments time and storage
space.

[KAE 96] have compared experimentally Dyna, Prioritized Sweeping and Q-learning, and
have shown that Q-learning uses twice as fewer updates as Prioritized Sweeping to converge.
However, since Q-learning performs only one update by transition observed, unlike the other
methods, it needs twenty times more simulations to converge. This underlines the importance
of the compromise between simulations cost and space for thechoice between the two types of
methods.

14.5. Factored Markov decision processes

Until now, we have assumed aflat representation of states and actions in the MDP frame-
work, since the classical MDP solution algorithms are explicitly based on an exhaustive enu-
meration of the state and action spaces. However, in AI, several languages have been studied
for concisely representing states and actions in planning under uncertainty problems.

Generally, these concise representations describe the state of the world by a set offeature
values rather than by identifying it individually. In the car race example, we have already used
such a concise description of the system state, by describing the statest of the car through a
tuple of values~Xt = {xt, yt, ẋt, ẏt, nacct}. in the same way, actions were represented by a
vector ~At = {axt, ayt}.

This concise representation has two advantages: (1) it is more natural and easy for a decision
maker to model a planning problem in this way and (2) as we willsee later, such representations
also allow space to be saved in the MDP model description. However, the corresponding draw-
back is an increased complexity of the obtained optimization problems, which require specific
exact or approximate solution methods.

14.5.1. State space factorization, stationary homogeneous Bayesian networks

Let us first consider the factorization of transition probabilities in a Markovian stochas-
tic process. Let us assume, for example, that the state is described through binary features:
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s = {x1, . . . , xm}; then obviously|S| = 2m. For any given action, the explicit representa-
tion of transition probabilities by matrices therefore requires space ofO(22m), which becomes
prohibitive when the number of features is large.

A Bayesian network [PEA 88] (see also Chapter 13) allows suchprobabilities to be con-
cisely represented in the factored case. A stationary homogeneous Bayesian network (SHBN)
is a particular BN adapted to the representation of transition probabilities in a Markov chain
[DEA 89].

More precisely, a SHBN is made of:

– a graphical model, expressing the dependencies between variables values at two consec-
utive time-steps; and

– a quantitative model representing explicitly the conditional probabilities between interde-
pendent variables only in a tabular form or, more efficiently, in a tree-structured form.

The dynamics of the car race example can be modeled graphically by the SHBN of Fig-
ure 14.5. The quantitative model associated with the SHBN has to specify the following condi-
tional probabilities:Pr(xt+1|xt, yt, ẋt), Pr(ẋt+1|xt, yt, ẋt), Pr(yt+1|xt, yt, ẏt), Pr(ẏt+1|
xt, yt, ẏt) andPr(nt+1|nt, xt, yt).

xt

xt
.

yt

yt
.

nt

xt+1

xt+1
.

yt+1

yt+1
.

nt+1

Figure 14.5.SHBN of the car race example, when the chosen action is~At = (0, 0)

Obviously, we have:

Pr( ~Xt+1| ~Xt) = Pr(xt+1|xt, yt, ẋt) · Pr(ẋt+1|xt, yt, ẋt) · Pr(yt+1|xt, yt, ẏt)·

Pr(ẏt+1|xt, yt, ẏt) · Pr(nt+1|nt, xt, yt).

If, for example, the sizes of the domains of the variablesxt, ẋt, yt, ẏt are all equal toK, and
the size of the domain ofnt is equal toN for all t, the factored representation of the conditional
probabilities requires a storage size of4 × K4 + N2 × K2, instead ofK8 × N2 for a flat
representation.
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Using a SHBN representation with a tabular representation of the conditional probabilities
for interdependent variables allows space to be saved when representing transition probabili-
ties. However, further gains are possible. Let us consider,for example,Pr(ẋt+1|xt, yt, ẋt) and
Pr(ẏt+1|xt, yt, ẏt), representing the car speed evolution. When the car crossesthe track bor-
der, causing an accident, the car stops (ẋt+1 = ẏt+1 = 0). For a large range of(xt, yt) values
(out of the track), the conditional probabilitiesPr(ẋt+1|ẋt) therefore become unconditional
(and can be represented in constant space:ẋt+1 = 0).

This kind of reasoning motivates a representation of conditional probabilities under the form
of a tree, instead of a table. [BOU 00], for example, proposeda tree-structured representation
of conditional probabilities, built from an arbitrary order between the variables of a probability
table.

14.5.2. Factored representation of actions

The above factored representation of transition probabilities requires one SHBN to be built
for each possible action. This can be difficult to build, especially when actions themselves are
represented by the values of several variables.

However, the above method can be extended by integrating action nodes directly in the
SHBN. The extended SHBN in the car race example is shown in Figure 14.6. Note that the edges
leaving action nodes allow the dependencies in the conditional probabilities of the factored
MDP to be represented.
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Figure 14.6.SHBN extended by the addition of action nodes for the car raceexample
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14.5.3. Factored representation of rewards

The rewards of the factored MDP can also be included as nodes in the SHBN. Each reward
node represents a local value function, and the incoming edges represent the variables on which
the local functions depend. The global reward function of the MDP is then the sum of the local
rewards. In the car race example, the ‘reward’ (which is negative here) is the sum of the time
spent on the race track and the time spent in accidents. A SHBNcomprising state, action and
reward nodes is called stationary homogeneous influence diagram (SHID) (see Figure 14.7).
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Figure 14.7.Stationary homogeneous influence diagram (SHID) for the carrace example

14.5.4. Factored representation of value functions and policies and computation of
optimal policies

It would be interesting to compute factored policies and value functions which have the
same structure as the factored MDP itself. However, there isno guarantee that the value function
associated with any arbitrary policy (be it factored) can befactored as compactly as the MDP
itself. Furthermore, there are also no guarantees that an optimal policy for the MDP exists,
which has a concise factored expression.

Still, [BOU 00] have proposedstructureddynamic programming algorithms for computing
tree-structured value functions and optimal policies. These algorithms are based on the principle
of the value iteration and policy iteration algorithms, butmanipulate value functions or policies
which are tree-structured.
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14.5.5. Concluding remarks

Factored MDP have attracted quite a lot of attention in the past years. We have briefly men-
tioned in this section the structured versions of the classical dynamic programming algorithms.
However, several other approaches have also been proposed.

For example, a method based on thestochastic bisimilarityprinciple has been suggested
[GIV 03], which solves a factored MDP approximately throughan automated reduction of the
state space. In this approach, a partition of the state spaceis generated, such that all transitions
from one subset to another have similar probabilities and attached rewards.

Another approach to factored MDP resolution has been proposed by [DIE 95, KEA 99]
and [KOL 00]. This approach is based on a parameterized, linear approximation of the value
function of a factored MDP. In addition, the two latter papers use simulation-based solution
methods for solving the obtained optimization problem.

Along this line of work, [GUE 03] has definedcollaborative multi-agent factored MDP
and dedicated approximation algorithms. Close to that framework,graph-based MDP[FOR 06,
PEY 06] form a framework which proposes fast approximate solution algorithms for factored
MDP which have a specific graph structure.

14.6. Possibilistic Markov decision processes

Transition probabilities for representing the effects of actions in MDP are not always avail-
able, especially in AI applications where uncertainty is often ordinal and qualitative. The same
remark applies to utilities: it is often more adequate to represent preference over states simply
with an ordering relation rather than with additive utilities.

Several authors have advocated a qualitative view of decision making and have proposed
qualitative versions of decision theory, together with suitable logical languages for expressing
preferences [BOU 94, DUB 95, TAN 94]. A qualitative utility theory based on possibility the-
ory has been proposed [DUB 95], where preferences and uncertainty are both qualitative (see
also Chapter 11). This work was extended to sequential decision making [FAR 98, SAB 01a]
and possibilistic counterparts of the well-known Bellman’s equations were proposed [BEL 57].
This gave rise to the definition of the possibilistic MPDs framework, which was extended to
infinite-horizon and partial observability [SAB 99]. Later, this work was extended to structured
qualitative decision problems in finite horizon, giving rise to the definition of possibilistic influ-
ence diagrams [GAR 08]. In this section we will give a brief overview of these works.

14.6.1. Background on qualitative possibility theory

A possibility distributionπ on a set of possible worlds or statesS is a mapping fromS to a
bounded, linearly ordered valuation set(L,>). This ordered set is supposed to be equipped with
an order-reversing map denoted byn, that is, a bijection of L onto itself such that ifα > β ∈ L,
thenn(β) > n(α). Let 1L and0L denote the top and bottom elements ofL, respectively. Then
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n(0L) = 1L andn(1L) = 0L. In the numerical setting,L = [0, 1], and functionn is generally
taken as1−·. Here, it is only assumed thatL is a finite chain, andn simply setsL upside down.

A possibility distribution describes knowledge of the unknown value taken by one or several
attributes used to describe states of affairs. For instanceit may refer to the age of a man, the
size of a building, the temperature of a room, etc. Here it will refer to the unknown consequence
of a decision. A possibility distribution can represent a state of knowledge (about the state of
affairs) distinguishing what is plausible from what is lessplausible, what is the normal course
of actions from what is not and what is surprising from what isexpected.

The functionπ : S → L represents a flexible restriction on the actual state of affairs, with
the following conventions:π(s) = 0L means that states is rejected as impossible;π(s) = 1L

means thats is totally possible (plausible). Distinct states may simultaneously have a degree of
possibility equal to1L. Flexibility in this description is modeled by settingπ(s) between0L and
1L for some statess. The quantityπ(s) therefore represents the degree of possibility of the state
s, some states being more plausible than others. Clearly, ifS is the complete range of states, at
least one of the elements ofS should be fully possible so that∃s, π(s) = 1L (normalization).

In the above, a possibility distribution encodes impreciseknowledge about a situation; in
that case, no choice is at stake, i.e. the actual situation iswhat it is andπ encodes plausible
guesses about it. However, there exists a different understanding of a possibility distribution:
possibility distributions can also express the states in which an agentwould like to be, under the
form of a flexible constraint on the state space. In this case,possibility is interpreted in terms
of graded preference or subjective feasibility and necessity degrees are interpreted as priority
levels. Note that when interpreted in terms of preference, possibility distributions need not be
normalized: it may be that no state of the world is fully satisfactory. Using the two types of
possibility distributions conjointly leads to qualitative possibilistic utility theory.

14.6.2. Possibilistic counterparts of expected utility

An ordinal counterpart was proposed [DUB 95], based on possibility theory, of the expected
utility theory for one-stage decision making. In this framework, S andX are the (finite) sets
of possible states of the world and consequences of actions,respectively. It makes sense, if
information is qualitative, to represent not only the incomplete knowledge of the state by a
possibility distributionπ onS with values in a plausibility scaleL but also the decision maker’s
preference onX by means of another possibility distributionµ with values on a preference
scaleU . Here, we assume that uncertainty and preferences are commensurate, that isU can
be identified toL, which is a finite totally ordered (qualitative) scale. The lowest and greatest
elements of this scale are denoted0L and1L, respectively.

The uncertainty of the agent about the effect of an actiona taken in states is represented
by a possibility distributionπ(·|s, a) : X → L. π(x|s, a) measures to what extentx is a
plausible consequence ofa in s; π(x|s, a) = 1L means thatx is completely plausible, whereas
π(x|s, a) = 0L means that it is completely impossible.

In the same way, consequences are ordered in terms of level ofsatisfaction by a qualitative
utility function µ : X → L. µ(x) = 1L means thatx is completely satisfactory, whereas
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if µ(x) = 0L it is totally unsatisfactory. Notice thatπ is normalized (there is at least one
completely possible state of the world), butµ may not be (it can be that no consequence is
totally satisfactory). The two following qualitative decision criteria were proposed [DUB 95]:

u∗(s0, a) = max
x∈X

min{π(x|s0, a), µ(x)}

u∗(s0, a) = min
x∈X

max{n(π(x|s0, a)), µ(x)}

wheren is the order reversing map ofL.

u∗ can be seen as an extension of themaximax criterion which assigns the utility of its
best possible consequence to an action. On the other hand,u∗ is an extension of themaximin
criterion which corresponds to the utility of the worst possible consequence.u∗ measures to
what extent every plausible consequence is satisfactory.u∗ corresponds to a very adventurous
(optimistic) attitude in the face of uncertainty, whereasu∗ is conservative (cautious).

Example 14.1. Consider the omelette example of Savage [SAV 54, p. 13]. The problem is to
make a six-egg omelette. Five eggs have already been broken into the pan. The sixth egg may
be fresh or rotten. There are three feasible acts: break the egg into the omelette (BIO); break
it apart in a cup (BAC) or throw it away (TA). Assume that utilities and degrees of certainty
belong to the same totally ordered scale. HereL = {0, a, b, c, d, 1} where0 < a < b < c <
d < 1, equipped with its involutive order-reversing mapn. The set of consequences is given in
Table 14.3.

Act/State Fresh egg (F) Rotten egg (R)
BIO 6-egg omelette (1) nothing to eat (0)
BAC 6-egg omelette, cup to wash (d) 5-egg omelette, cup to wash (b)
TA 5-egg omelette, a spoiled egg (a) 5-egg omelette (c)

Table 14.3.States, acts and consequences in Savage’s omelette example

Grades between parentheses indicate a reasonable encodingof the utility ordering of conse-
quences. The reader can easily check that they agree with this ordering. Only two states (fresh
F, rotten R) are present. The utilities of the three acts in the egg example are given as functions
of π(F ) andπ(R):

u∗(BIO) = min(max(n(π(F )), 1),max(n(π(R)), 0)) = n(π(R)),

u∗(BIO) = max(min(π(F ), 1),min(π(R), 0)) = π(F ),

u∗(BAC) = min(max(n(π(F )), d),max(n(π(R)), b)) = min(d,max(n(π(R)), b)),

u∗(BAC) = max(min(π(F ), d),min(π(R), b)) = max(b,min(π(F ), d)),

u∗(TA) = min(max(n(π(F )), a),max(n(π(R)), c)) = min(c,max(n(π(F )), a)),

u∗(TA) = max(min(π(F ), a),min(π(R), c)) = max(a,min(π(R), c)).
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The criterionu∗ recommends act BAC in case of relative ignorance on the egg state, i.e.
whenmin(π(F ), π(R)) is not low enough (more thanc). On the other hand,u∗ is more ad-
venturous and recommendsBIO as soon asπ(F ) = 1. See [DUB 01] or Chapter 11 for a
discussion on the foundations of possibilistic decision criteria.

14.6.3. Possibilistic Markov decision processes

14.6.3.1.Finite horizon

The possibilistic qualitative decision theory was extended to finite-horizon, multistage de-
cision making [FAR 98]. In this framework, the qualitative pessimistic utility of a policyδ =
{d0, . . . , dN} in states0 is defined by the qualitativeminmax expectation of theminimum
of the degrees of satisfaction of the states of the possible trajectories, and the optimistic utility
as themaxmin expectation of the same :

u∗(s0, δ) = min
τ

max{π(τ |s0, δ), µ(τ, δ)}

u∗(s0, δ) = max
τ

min{π(τ |s0, δ), µ(τ, δ)}

where, ifτ = {s0, . . . , sN},

µ(τ, δ) = ∗i∈0...Nµ(si, δ(si))

and
π(τ |s0, δ) = min

i∈0...N−1
π(si+1|si, di(si)).

∗ is an operator which aggregates the preference degrees associated with the successive transi-
tions. In practice, we will use either∗i∈0...Nµ(si, di(si)) = mini∈0...N µ(si) or ∗i∈0...Nµ(si,
δ(si)) = µ(sN ) in the finite horizon case.

In order to obtain an intuitive idea of these sequential decision criteria, let us consider the
following simple cases:

1) Assume that the transition possibilities only take values 0L or 1L. Furthermore, assume
that similar binary utilities are attached to goal states only. Then, the best ‘pessimistic’ policies
will be those which can only generate trajectories leading to goal states. The best ‘optimistic’
policies, on the other hand, will generate at least one such trajectory.

2) Assume now that binary preference degrees are also associated to transitions. Then, the
best pessimistic policies will have to generate only trajectories leading to goal states and for
which all transitions are satisfying. The best optimistic policies will have to generate at least
one such trajectory leading to a goal state and only with satisfying transitions.

3) Assume the same case as before, except that preferences can take any value inL. Then,
the pessimistic utility of a policy will be that of the worst possible trajectory (minimum of
the end state utility and of the transition possibility degrees). The optimistic utility of a policy,
instead, will be that of the best possible trajectory.
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The possibilistic counterparts of the Bellman equations inthe pessimistic case and opti-
mistic case (for∗ ≡ min) are the following:

– In the pessimistic case:

ut
∗(s) = max

a∈As

min
s′∈St+1

min
{
µ(s, a, s′),max{n(π(s′|s, a)), ut+1

∗ (s′)}
}

uN
∗ (s) = µ(s). (14.22)

– In the optimistic case:

u∗t(s) = max
a∈As

max
s′∈St+1

min
{
µ(s, a, s′), π(s′|s, a), u∗t+1(s′)

}

u∗N(s) = µ(s). (14.23)

It has been shown that any policy computed backwards by successive applications of equa-
tion (14.22) (respectively, equation (14.23)) is optimal according tou∗ (respectively,u∗) [FAR 98].

Note that because of the idempotency of theminimum operator, there are optimal policies
that may not be found by such an algorithm, unlike in the stochastic case. However, every policy
returned by the algorithm is optimal and has the property that any subpolicy applied from stage
t toN (the horizon) is optimal [FAR 98].

14.6.3.2.Possibilistic value iteration

Let us now change slightly the data of the problem, in order torecover one that admits
stationary optimal policies in the infinite horizon case. First of all, suppose that the state space,
the available actions and the transition functions do not depend on the stage of the problem.
Suppose also that a utility functionµ onS is given, that expresses the preferences of the agent
on the states that the system shall reach and stay in. We finally assume the existence of an
actionstay that keeps the system in the same state (or equivalently, an actiondo− nothing if
we assume that the system does not evolve by itself, without any action applied). Under these
assumptions, we are able to define a possibilistic counterpart of the value iterationalgorithm
that computes optimal policies from iterated modificationsof a possibilistic value function.

First, we have to define the possibilistic counterpart ofQ-functions. As in the stochastic
case,Q̃∗(s, a) (respectively,Q̃∗(s, a)) evaluates the ‘utility’ (either pessimistic or optimistic) of
performinga in s. We have a similar property as in the stochastic case, which is that the optimal
possibilistic strategy can be obtained from the solution ofdynamic programming equations. We
can therefore define a possibilistic version of the value iteration algorithm that computes̃Q∗ or
Q̃∗: the possibilistic value iteration algorithm [SAB 01a].

– Pessimistic case:

Q̃∗t+1(s, a) = min
s′∈S

min
{
µ(s, a, s′),max{n(π(s′|s, a)), u∗t(s

′)}
}
, (14.24)

whereu∗t(s) = maxa Q̃∗t(s, a) andQ̃∗t(s, do− nothing) = µ(s).

– Optimistic case:

Q̃∗
t+1(s, a) = max

s′∈S
min

{
µ(s, a, s′), π(s′|s, a), u∗

t (s
′)
}
, (14.25)

whereu∗
t (s) = maxa Q̃

∗
t (s, a) andQ̃∗

t (s, do− nothing) = µ(s).
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This algorithm converges to the actual value ofQ̃∗ (respectively,Q̃∗) in a finite number of
steps. Note that unlike in the stochastic value iteration algorithm, the initialization ofu∗ (or u∗)
is not arbitrary.

Example 14.2. A robot is located somewhere in a room shown in Figure 14.8. The black
cells represent obstacles. The point is to define a policy which is able to bring it to the lower-
right square of the room. The objective will be partially satisfied if the robot ends in one of
the neighbor squares. The state space and the utility function µ on the objective states (taking
its values in a finite subset of the interval[0, 1]) are depicted in Figure 14.8.µ(s33) = 1,
µ(s23) = µ(s32) = 0.5 andµ(s) = 0 for the other states.
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Figure 14.8.State space and utility function

The available actions are to move (T)op, (D)own, (L)eft, (R)ight or to (S)tay in place. If the
robot chooses to stay, it willcertainlyremain in the same square. If it moves T, D, L or R it will
possibly reach the desired square (π = 1) if it is free but it will be possible that it reaches a
neighbor square, as depicted in Figure 14.9 for action R.
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Figure 14.9.Transition possibilities for moving right

If the destination cell is an obstacle then the robot will remain in the same cell, as if it had
chosen action S. The other transition possibility functions are of course symmetric to these.
Let us now compute the optimal (pessimistic) actions after one iteration of the value iteration
algorithm.

For any actiona and states, we have

Q̃1(s, a) = mins′∈Smax(n(π(s′|s, a)), µ(s′))

u1
∗(s) = maxa∈{T,D,L,R,S}Q̃

1(s, a). (14.26)

Figure 14.10 shows the utility of each state after one iteration, as well as an action that is
optimal if the problem is assumed to be solved in one iteration only, for each state with a non-
null pessimistic utility. The optimal action is unique, except for states33 for whichD andR
would be optimal actions as well.
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Figure 14.10.Optimal policy, computed at iteration 1

Now we can iterate the process and get an optimal policy. The iterated process is described
in Figure 14.11. Note that after 4 iterations, the utility ofeach state and the associated optimal
action no longer change.
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Figure 14.11.Pessimistic optimal policy computation

Note that the computation of an optimistic optimal policy would lead in this case to the
same policy (but with different utilities), as depicted in Figure 14.12.
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Figure 14.12.Optimistic optimal policy

14.6.3.3.Policy iteration algorithm

A policy iteration algorithm can also be designed, that alternates the evaluation and im-
provement phases, as for its stochastic counterpart. In thepessimistic case, it gives:
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– Evaluation:
Repeat, until convergence ofuδ

∗:

∀s ∈ S, uδ
∗(s) = min

s′∈S
max{n(π(s′|s, δ(s))), uδ

∗(s
′)}. (14.27)

– Improvement:

∀s ∈ S, δ(s)← argmaxa∈A min
s′∈S

max{n(π(s′|s, a)), uδ
∗(s

′)}. (14.28)

Regarding the value iteration algorithm, initializationsof the value function and of the pol-
icy cannot be arbitrary. An optimistic counterpart of the algorithm can easily be designed by the
use of optimistic utility evaluation, instead of the pessimistic case.

14.6.4. Concluding remarks

In this section, we have exemplified non-stochastic approaches to planning under uncer-
tainty, by presenting the possibilistic Markov decision processes framework. For sake of brevity,
we have only presented the fully observable ‘flat’ case, but the possibilistic MDP framework
has been extended to handle partially observed environments [SAB 99].

Some results have also been obtained on indirect reinforcement learning methods for possi-
bilistic MDP [SAB 01b]. However, these results are rather preliminary, since possibility theory
lacks the statistical ground that would allow possibility distributions to be built from sample
observed trajectories in planning under uncertainty problems. Recent results on expected utility
refinements of the possibilistic decision criteria [FAR 05]may give new tools for the search for
direct reinforcement learning methods.

Finally, structured possibilistic MDPs have also been studied recently, leading to the defini-
tion of apossibilistic influence diagramframework for the finite horizon case [GAR 08].

14.7. Conclusion

In this chapter, we have proposed a short and non-exhaustivereview of recent research in
AI on planning under uncertainty based on Markov decision processes. The AI community has
adopted the (completely and partially observed) Markov decision processes framework, initially
developed in the operations research community, in order touse it as a modeling tool for prob-
lems of planning under uncertainty. New, exact or approximate solution algorithms have been
proposed in order to tackle the main features of planning under uncertainty problems. In partic-
ular, structured representation languages (traditionally developed in AI) have been incorporated
to the MDP/POMDP framework, in order to improve its expression power.

The AI community has also proposed some alternative decision criteria for the expected
utility criterion. In particular, qualitative criteria are often more adapted to decision problems
where a strong interaction with human decision makers is needed. It was therefore natural to
extend these criteria in order to provide a framework for planning under uncertainty. We have
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exemplified this area of work by presenting a qualitative MDPframework based on possibility
theory.

The overview proposed in this chapter is obviously too brief, but interested readers are
invited to refer to the literature cited on the various subjects that have been briefly described
here. The main motivation for writing this chapter was to provide a guide to the literature.
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Chapter 15

Multiattribute Utility Theory

15.1. Introduction

Important decisions for both individuals and organizations often take into account multiple
objectives. From the purchase of a family car to the choice ofthe most appropriate localization
of a nuclear plant, decision makers’ choices depend on many different objectives. Most often,
the multiobjective nature of important decisions is revealed by assertions such as ‘we are will-
ing to pay a little bit more to gain the comfort or prestige of brand A instead of that of brand B’
in the case of a car purchase; or ‘we agree to increase a littlethe access time to the airport if,
in return, the possibilities of its future extension are also increased, or if this can reduce noise
pollution for residents’ in the case of the localization of anew airport. These statements in-
volve tradeoffsbetween different objectives of the decision maker. These tradeoffs result either
from an introspective consideration performed by the decision maker themself or from an ex-
plicit decision aiding process in which the decision maker expresses their will to makecoherent
tradeoffsin order to make the ‘best’ possible decision.

The first attempts at multiple objective decision aiding date back to the 1960s with the works
by, e.g. Raiffa and Edwards [EDW 71, RAI 69], which gave birthto Decision Analysis. In these
works, the decision maker’s preferences are represented numerically on the set of all possible
choices using a numerical function called autility function (or ‘utility’ for short). The key idea
of this approach lies in the fact that, after a utility function has been elicited (i.e. constructed)
in a simple decision context, it can be used to assign ‘scores’ or utilities to all potential actions
(i.e. the possible choices) that the decision maker faces. These scores can therefore be used to
rank the actions from the least desirable to the most desirable one (and conversely).

However, the very fact that such scores can be constructed requires two different kinds of
conditions to hold. The first one concerns coherence conditions that must be satisfied by the
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decision maker’s preferences for the latter to be numerically representable by a utility function.
The second condition concerns other constraints that must be satisfied in order for the initial
multiobjective utility function to be decomposable as a simple combination of mono-objective
utility functions (these are also calledmultiattributeandsingle-attributeutility functions, re-
spectively).

The limited cognitive abilities of decision makers make it necessary to use such decompo-
sitions for constructing their utility functions. Indeed,as each individual has their own prefer-
ences, each decision maker has their own utility function. To elicit utility, the analyst usually
asks the decision maker a series of simple choice questions.The presence of more than two
attributes is, however, cognitively more demanding (Andersenet al. [AND 86] provide an ex-
ample in which alternatives are represented by 25 attributes). When multiattribute utilities can
be decomposed into simple combinations of single-attribute utility functions, the tradeoffs used
for their elicitation only needs to involve a small set of differing attributes and, therefore, they
remain cognitively easy to assess.

The aim of this chapter is to study the most commonly used decompositions. More pre-
cisely, we will address in sections 15.3 and 15.4 the additive decomposition of utility functions,
the difference between these two sections being in the information available to the decision
maker when they actually make their decision. In section 15.3, they knows precisely which
consequence results from each possible choice. On the otherhand, in section 15.4 when the
decision maker makes their decisions, they do not yet know with certainty the precise conse-
quence resulting from their choice. Finally, section 15.5 will address the very construction of
multiattribute utility functions and the most recent techniques on this matter will be presented.

15.2. Introduction to utility theory

15.2.1. Utility functions

From a mathematical point of view, modeling preferences is atrivial task. As an example,
assume a decision maker has some preferences over a set of choicesX = {eat some lamb, eat
some duck, eat an apple pie, eat some carpaccio}. That is, for each pair of elementsx, y of
X, they can either (i) judge these elements incomparable (forinstance, it may be difficult to
express a definite preference for duck against the apple pie as one is a main course and the other
is a dessert); or (ii) assess a preference for one over the other, or an indifference between both
mealsx andy. Mathematically, this amounts to representing the decision maker’s preferences
by a binary relation% defined onX × X. x % y then simply means that ‘either the decision
maker prefersx to y or they are indifferent between both elements’. Thus, two elements being
incomparable translates into Not(x % y) and Not(y % x). The decision maker preferringx at
least as much asy corresponds tox % y, and a strict preference forx overy can be expressed
asx % y and Not(y % x), which is generally denoted byx � y. Finally, when the decision
maker is indifferent betweenx andy, i.e. when they likex as much asy and conversely, then
we have(x % y) and(y % x), which is usually denoted byx ∼ y.

However, in practice, directly manipulating relation% for decision aiding tasks is often
neither easy nor efficient. For instance, storing in extension the setS of all pairs(x, y) such that
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x % ymay be impossible in complex situations due to the huge number of such pairs. Moreover,
searchingS, e.g. for determining the most preferred elements, can be very time consuming,
unless some structure intrinsic toS is exploited. This explains why in practice instead of using
directly % for decision aiding, preferences are often first represented numerically through so-
calledutility functionsand the latter are used for decision aiding. The idea underlying utility
functions is quite simple: these are functionsu : X 7→ R attaching a real number to each
object ofX such that the higher the preference the more preferred the object. More formally,
this amounts to:

for all x, y ∈ X, x % y ⇔ u(x) ≥ u(y). (15.1)

15.2.2. Decision under certainty, uncertainty and risk

In general, it is acknowledged that the decision maker’s preferences on the set of possible
alternatives is related to their preferences on the possible consequences of their choices. As
an illustration, Savage presents the following example [SAV 54, p. 14]: your are cooking an
omelette. You have already broken five eggs in a plate. There remains a sixth egg to be broken
and you must decide what you should do with it: (i) break the egg into the plate already contain-
ing the other five eggs; (ii) break this additional egg into another plate to check it before mixing
it with the other eggs; (iii) do not use this egg. How should you decide which of these options
is the best one? This can be resolved simply by analyzing the consequences of each decision.
Thus, if the egg is safe to eat, option (i) will result in a bigger omelette, but if it is unfit for
consumption, the other five eggs will be wasted. Choosing option (ii), if the egg is OK, then you
will unnecessarily dirty a plate, and so on. By analyzing theconsequences of each alternative,
it is therefore possible to estimate the best option.

As shown in the above example, each alternative can have several consequences, depending
on the state of the egg. In decision theory’s technical jargon, these uncertain factors (here the
state of the egg) are calledeventsand, as in probability theory, elementary events play a very
special role and are calledstates of nature. For each state of nature (e.g. good egg or bad egg)
the choice of any alternative (options (i), (ii) or (iii)) results in one and only one consequence.
Thus, alternatives can be described as sets of pairs (state of nature, consequence). This is what
is usually called anact in decision theory. More formally, letA be the set of all possible alter-
natives, letX be the set of all possible consequences andE be the set of the states of nature.
Then, an act is a functionE 7→ X which, to any state of naturee ∈ E, assigns a unique con-
sequence inX. Thus, actf corresponding to the choice of option (i) is such thatf (good egg) =
‘big omelette’ andf (bad egg) = ‘five eggs wasted’.

Let us return to utility functions. We have already seen thatsuch functions represent the de-
cision maker’s preferences. Since, from a cognitive point of view, alternatives can be described
by acts, a preference relation over acts corresponds to the decision maker’s preference relation
over alternatives (see Savage [SAV 54] and von Neumann and Morgenstern [VON 44] for a
deeper technical discussion on this matter). Hence, letA denote the set of acts and%A be the
preference relation over the set of acts. A utility functionrepresenting%A is therefore some
functionU : A 7→ R such that act1 %A act2 ⇔ U(act1) ≥ U(act2).

Of course, the decision maker’s preferences over acts reveal both their preferences over con-
sequences (they would probably prefer a big omelette ratherthan wasting five eggs) and their



564 Decision Making

belief in the plausibility of occurrence of the events. Thus, if thedecision maker is obsessed by
use-by dates, then the pair (bad egg, five wasted eggs) will probably only be marginally taken
into account in the evaluation of option (i), whereas it willbe of greater importance if the deci-
sion maker is often inattentive. Utility functionU must therefore not only take into account the
decision maker’s preferences on consequences, but also theplausibility of the possible events.
This is possible only by taking into account the decision maker’s knowledge about these events.
Different decision models forU will correspond to different types of knowledge. The three most
important ones are certainly:

1) Decision making under certainty: whatever the state of nature that is obtained, an act
always results in the same consequence. This can be the case,for instance, when a decision
maker chooses a given menu rather than another one in a restaurant: here, the consequences are
entirely determined by the chosen menu.

Let %A denote the preference relation over acts and% be that over the consequences. As-
sume that%A and % are represented by utility functionsU : A 7→ R andu : X 7→ R,
respectively. We refer toxact as the consequence of a given act. Then, choice under certainty
amounts to asserting that: for all acts∈ A, U(act) = u(xact).

2) Decision making under risk: here, the alternatives can have several consequences, de-
pending on which event actually occurs. Moreover, it is assumed that there exists an ‘objective’
probability distribution over the events. This is the case,for instance, when a decision maker
chooses whether or not to play games such as a national lottery: the probabilities of winning as
well as the resulting gain are known in advance.

The expected utility model described below is the standard tool for decision making under
risk. It was axiomatized by von Neumann and Morgenstern [VON44]. Since a probability and
a consequence are assigned to each event, there exists an objective probability of obtaining a
given consequence. Acts can therefore be represented as finite sets of pairs (probability of a
consequence, consequence). These sets are calledlotteries. Assume that an act corresponds to
lottery (x1, p1; . . . ;x

n, pn), that is, this act has consequencex1 with probability p1, x2 with
probability p2, and so on. Then von Neumann–Morgenstern axiomatics implies the existence
of a functionU such thatU(act) =

∑n
i=1 piu(x

i), whereu is the restriction ofU to the set of
consequences.

3) Decision making under uncertainty: this is a situation quite similar to the preceding
one. However, in this case, the existence of a probability distribution over the events is not
assumed but rather is derived from a set of axioms defining therationality of the decision
maker [SAV 54]. This applies to situations, e.g. where you decide whether or not to bet on
soccer games: the result of the games are not known at the timethe decision is made. Moreover,
the objectivist approach to probabilities cannot be applied since no infinite sequence of soccer
games is available to estimate the probabilities of the possible events. Hence, in decision making
under uncertainty, probabilities are subjective, i.e. they are estimated by the decision maker.

In this model, the decision maker assigns a (subjective) probability pi of occurrence to
each state of nature. The utility of a given act is, as in von Neumann–Morgenstern’s model,
U(act) =

∑n
i=1 piu(x

i).

In the remainder of this chapter, we will consider various situations in which one or the
other of these models can be applied. We will focus our attention on the utility functions over
the consequences i.e.u.
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15.2.3. Multiattribute utility functions

In practical situations, decision makers have multiple contradictory objectives in mind when
making their decisions. This leads to describing the possible consequences using variousat-
tributes, that is, the set of consequences is a multidimensional space. Thus, a decision maker
wishing to buy a new car may have as a choice setX = {Opel Corsa, Renault Clio, Peu-
geot 206}, but if thechoice criteria(the attributes) are, among others, the engine size, the brand
and the price of the car, then setX can also be described asX = {(1.2L; Opel; 11400e),
(1.2L; Renault; 11150e), (1.1L; Peugeot;11600e)}. Any utility function over this set there-
fore satisfies the equation:

for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ X, x % y ⇔ u(x1, x2, x3) ≥ u(y1, y2, y3).

This is precisely what is called amultiattributeutility function.

Of course, the meaning of the attributes of relation% heavily depends on the domain of ap-
plication. For instance, Wakker [WAK 89, p. 28] and Bleichrodt [WAK 89] cite, among others,
the following domains:

– In consumer theory, the attributes represent the amount ofsome commodity and, for any
x, y ∈ X, x % y means that, from the decision maker’s point of view, commodity bundlex is
at least as good asy.

– In producer theory,x ∈ X is a vector of inputs andx % y means thatx provides at least
as much output asy. The utility function is then called a ‘production function’.

– In welfare theory,x is an allocation or a social situation. Each attribute represents the
wealth of an agent or a player, andx % y means that the wealth of groupx is greater than or
equal to that of groupy.

– In medical decision making, especially in QALYs theory (Quality Adjusted Life Years),
the first attribute represents the level of quality of life that can be expected after undergoing
some medical treatment, and the second one corresponds to the expected number of years living
at this level of quality of life.

Of course this list is not exhaustive and, to each new situation, there exists an appropriate set of
attributes. Keeney and Raiffa [KEE 93] show how these attributes can be exhibited in practice
(the so-called ‘structuring of objectives’).

15.2.4. Decompositions of utility functions

When the utility function over the consequencesu is known, it is very easy to exploit it using
a computer: it is sufficient to apply the formulas given by vonNeumann–Morgenstern or Savage.
Simple optimization software can then determine the best actions that the decision maker should
take. However, in practice, the effective construction of functionu raises numerous problems.
Indeed, although the construction of single-attribute utility functions is generally quite easy, that
of multiattribute utility functions is usually very hard toperform due to the cognitive limitations
of decision makers. Hence, we have the usual requirement that u be decomposable as a simple
combination of single-attribute (more easily constructed) utility functions.
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Consider for instance the case of someone wishing to buy a desktop computer. The attributes
of interest are the brand of the computer, its processor, thestorage capacity of its hard drive, the
size of its LCD display, its memory amount and, of course, itsprice. One can easily understand
why the decision maker should not have too much trouble comparing tuples (Dell; core duo
2GHz; 120GO; 17”; 2GO; 700e) and (Apple; core duo 2GHz; 120GO; 17”; 2GO; 700e) as
these computers differ only by their brand. On the contrary,from a cognitive point of view, it is
much more difficult to compare (Dell; 3GHz; 120GO; 24”; 1GO; 800e) with (Apple; core duo
1.8GHz; 200GO; 19”; 2GO; 600e) as these computers have very different features.

This explains why it is usually not possible to directly construct a utility function represent-
ing the decision maker’s preferences. Rather, it is more efficient to construct a special form of
this function, the construction of which will be cognitively more ‘feasible’.

Several such forms have been studied in the literature, the main ones being described be-
low. In this list,Xi denotes the set of possible values for theith attribute and it is assumed
thatX ⊆ ∏n

i=1Xi. The axiomatizations guaranteeing the existence of these various forms
differ depending on whether the decision problem is one of decision under certainty or decision
under risk/uncertainty with an expected utility (EU) criterion U(·) =

∑
j pju(x

j) (as in von
Neumann–Morgenstern’s and Savage’s models). Hence, for each item of the list, the context of
application is explicitly mentioned.

1) The additive decomposition: there exist some functionsui : Xi 7→ R such that
u(x1, . . . , xn) =

∑n
i=1 ui(xi). For decision making under certainty, see [DEB 60] [FIS 70,

chapters 4 and 5], [KEE 93, chapter 3], [KRA 71, chapter 6], [LUC 64] and [WAK 89, chapter
3]. For the EU context, see [FIS 70, chapter 11] and [KEE 93, chapters 5 and 6].

2) The multiplicative decomposition: there exist some functionsui : Xi 7→ R such that
u(x1, . . . , xn) =

∏n
i=1 ui(xi). This decomposition is closely related to the preceding oneas

it can be derived from it using a logarithmic transformation(assuming theui’s are such that
ui > 0).

3) The multilinear decomposition (it is also called polynomial or multiplicative-additive):
there exist functionsui : Xi 7→ R and, for everyj ∈ J , whereJ is the set of subsets of
{1, . . . , n}, there exist someπj ∈ R such thatu(x1, . . . , xn) =

∑
j∈J πj

∏
k∈j uk(xk). This

decomposition is described in [BEL 87, FIS 75, FUH 91] and [KRA 71, chapter 7] for decision
making under certainty; and in [FAR 81] and [KEE 93, chapters5 and 6] for the EU situations.

4) The decomposable structure: there exist functionsui : Xi 7→ R and some function
F : Rn 7→ R such thatu(x1, . . . , xn) = F (u1(x1), . . . , un(xn)). This representation under
certainty is examined in [BOU 02] and [KRA 71, chapter 7]. This structure is more general than
the preceding ones but it has a major drawback: the uniqueness of both theui’s andF cannot
be guaranteed. As we shall see, this can raise some problems during the construction phase of
the utility functions.

5) The additive non-transitive decomposition: there existfunctionsvi : Xi × Xi 7→ R
such thatx % y ⇔ ∑n

i=1 vi(xi, yi) ≥ 0. See [BOU 02, BOU 04, FIS 91] for decision mak-
ing under certainty and [NAK 90] for cases in which a generalization of the EU criterion is
applied. Among the additive non-transitive functions liesthe special case of the additive differ-
ence model: there exist functionsui : Xi 7→ R and some functionsFi : R 7→ R such that
x % y ⇔∑n

i=1 Fi(ui(xi)− ui(yi)) ≥ 0 See [BOU 02, FIS 92, TVE 69] for decision making
under certainty.
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In the remainder of this chapter, we will concentrate on models (1) (decomposition under
certainty) and (3) (decomposition under risk/uncertainty). Let us now see the price to pay for
guaranteeing that such decompositions actually representthe decision maker’s preferences.

15.3. Decomposition under certainty

In this section, we consider situations in which every act has precisely one consequence,
which is furthermore independent of the state of nature obtained. In addition, we assume that
the set of consequencesX is the Cartesian product of the attributesXi’s. In other words,X =∏n

i=1Xi. For instance, in the car example mentioned in the introduction, we would haveX1 =
{1.1L; 1.2L},X2 = {Opel,Renault,Peugeot},X3 = {11400e, 11150e, 11600e} andX =
X1 ×X2 ×X3. Note that this implies that, from a cognitive point of view,we do not preclude
the existence of cars such as (1.1L; Opel; 11600e), even if such cars do not actually exist.
We will see later how to relax, at least partially, this restriction. Note however that it is not
possible to cope with arbitrary subsets of Cartesian product

∏n
i=1Xi: this is the price of having

decomposable utility functions.

The rest of this section is devoted to the additive decomposability of function u. In the
first subsection, such decomposability is studied in the case whereX = X1 × X2. Then, we
consider the case where the set of consequencesX is a Cartesian product of more than two
attributes and, finally, special cases whereX (

∏n
i=1Xi. For each case, our aim is to present

some conditions that must be satisfied by the decision maker’s preference relation% over the
set of consequences in order to prove the existence of some functionsui : Xi 7→ R such that:

(a) ∀ x, y ∈
n∏

i=1

Xi, x % y ⇔ u(x) ≥ u(y) and

(b) ∀ (x1, . . . , xn) ∈
n∏

i=1

Xi, u(x1, . . . , xn) =
n∑

i=1

ui(xi).

Of special interest, we will see that functionsui’s are unique up to very particular transforma-
tions. This will prove useful for constructing theui’s (the so-calledelicitationprocess).

15.3.1. Additive decomposition in two-dimensional spaces

In this section, we consider decision problems in which the possible consequences of every
act can be described by two attributes, i.e.X = X1×X2. First, let us examine some necessary
conditions for the existence of functionsu1 andu2 such that:

for all x, y ∈ X1 ×X2, x % y ⇔ u1(x1) + u2(x2) ≥ u1(y1) + u2(y2). (15.2)

The most obvious necessary condition for equation (15.2) tohold is that% can be repre-
sented by a utility function (not necessarily additive)u : X1 × X2 7→ R. Debreu [DEB 54]
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gave some necessary and sufficient conditions to ensure this. Among them is the completeness
of %, that is, for every pair of consequencesx andy, eitherx % y or y % x. Indeed, if% is
representable by a utility functionu, thenu(x) andu(y) are real numbers and, consequently,
eitheru(x) ≥ u(y) oru(y) ≥ u(x). By equation (15.1) this implies that eitherx % y or y % x.
Similarly,≥ being a transitive relation,% must also be transitive, i.e. ifx % y andy % z then
x % z. As a conclusion, in order to be representable by a utility function,% must be a weak
order (this is of course a necessary condition, but it is not actually sufficient, see [DEB 54]).

Definition 15.1. Weak ordering
A weak order% is a binary relation that is transitive([x % y andy % z] ⇒ x % z) and
complete(for all x, y ∈ X, eitherx % y or y % x).

Let us now see some properties specific to additive utilities. Assume there existsu = u1 +
u2 representing%. Then, for everyx1, y1 ∈ X1 andx2, y2 ∈ X2,

(x1, x2) % (y1, x2)⇔ u1(x1) + u2(x2) ≥ u1(y1) + u2(x2)
⇔ u1(x1) ≥ u1(y1)
⇔ u1(x1) + u2(y2) ≥ u1(y1) + u2(y2)
⇔ (x1, y2) % (y1, y2).

This property expresses some independence among the attributes. In their preferences, the de-
cision maker takes into account the attributes separately i.e. there is no synergy effect between
them. This leads to the following axiom.

Axiom 15.1. Independence
For all x1, y1 ∈ X1 and for allx2, y2 ∈ X2,

(x1, x2) % (y1, x2)⇔ (x1, y2) % (y1, y2),

(x1, x2) % (x1, y2)⇔ (y1, x2) % (y1, y2).

Let us represent%’s indifference curves in the outcome spaceX1 × X2, that is, curves
the points of which are all judged indifferent. IfX1 = X2 = R then the independence axiom
simply states that if a point (an outcome), sayA, is preferred to another one on the same vertical
line, sayC, then for all pairs of points(B,D) such thatABCD is a rectangle (see Figure 15.1),
B must also be preferred toD. Similarly, if B is preferred toA, then for all pairs(C,D) such
thatABCD is a rectangle,D must be preferred toC.

The independence axiom is of utmost importance for the additive decomposability. To grab
a strong understanding of this axiom, it may be worth workingin a space slightly different from
X1 × X2: let u(x1, x2) = u1(x1) + u2(x2) be an additive utility function representing%.
After assigning a given valuex2 toX2, u only depends onX1. Denoting this function fromX1

to R by u[x2], we haveu[x2](x1) = u(x1, x2) for all x1 ∈ X1. We can now representu[x2] in
the classical spaceX1 × R (see Figure 15.2).u’s additive decomposition implies that:

for all x1 ∈ X1, for all x2, y2 ∈ X2, u(x1, x2)− u(x1, y2) = u2(x2)− u2(y2).
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Figure 15.2.Additive utilities in two-dimensional spaces

Note that this value does not depend onx1. This translates on Figure 15.2 as: the graph of
any functionu[x2], x2 ∈ X2, can be deduced from that of anyu[y2], y2 ∈ X2, by a vertical
translation. Conversely, if the graphs of functionsu[x2], x2 ∈ X2 can be deduced from one
another by vertical translation,u is additively decomposable. Indeed, assume that the graph of
u[x2] is derived by a vertical translation from that ofu[x0

2], for a given valuex0
2 ∈ X2. Then, for

all x1 ∈ X1, u(x1, x2) = u(x1, x
0
2)+ constanth(x2). However, asx0

2 is fixed,u(x1, x
0
2) only

depends onx1. u(x1, x2) is therefore the sum of a function ofx1, i.e.u(x1, x
0
2), and a function

of x2, i.e.h(x2). The following proposition summarizes the above discussion.

Proposition 15.1. Additive decomposability
Let % be a preference relation onX1 × X2 representable by a utility functionu. Thenu is
additive if and only if, for allx2, y2 ∈ X2, the graph of functionu[x2] in spaceX1 × R can be
deduced from that ofu[y2] by a vertical translation.

Now, let us return to the independence axiom:(x1, x2) % (x1, y2) ⇔ (y1, x2) % (y1, y2)
can be translated in terms of utility functions asu[x2](x1) ≥ u[y2](x1) ⇔ u[x2](y1) ≥
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u[y2](y1). This simply means that if the graph ofu[x2] is ‘above’ that ofu[y2] for a given
point x1 ∈ X1, then the same holds for all the other points ofX1. However, if the graphs of
theu[·] are sufficiently close to each other, any slight variation ofheight between two graphs
(which would rule outu’s additive decomposition) would inevitably result in the intersection of
at least two graphs, which would violate the independence axiom.

Under some structural conditions, it can be shown that when the outcome setX has at
least three attributes, theu[x2] graphs are always sufficiently close to each other such that the
independence axiom is almost sufficient by itself to induce the additive decomposability ofu.
Unfortunately, this is not the case whenX = X1 ×X2 and other necessary conditions such as
the Thomsen condition are needed: assume again thatu is additive. Then, for allx1, y1, z1 ∈ X1

and for allx2, y2, z2 ∈ X2,

(x1, z2) ∼ (z1, y2)⇔ u1(x1) + u2(z2) = u1(z1) + u2(y2)
(z1, x2) ∼ (y1, z2)⇔ u1(z1) + u2(x2) = u1(y1) + u2(z2)

Summing both equalities on the right hand side of⇔, we obtain:

u1(x1) + u2(z2) + u1(z1) + u2(x2) = u1(z1) + u2(y2) + u1(y1) + u2(z2).

Canceling out the terms belonging to both sides of the equality, we obtainu1(x1) + u2(x2) =
u1(y1) + u2(y2) and, consequently,(x1, x2) ∼ (y1, y2) sinceu is a utility function. We there-
fore have the following necessary condition for the additive decomposability.

Axiom 15.2. Thomsen condition
For all x1, y1, z1 ∈ X1, for all x2, y2, z2 ∈ X2,

[(x1, z2) ∼ (z1, y2) and(z1, x2) ∼ (y1, z2)]⇒ (x1, x2) ∼ (y1, y2).

When we can exhibit sufficiently many indifferent (∼) elements inX, the combination
of independence and the Thomsen condition (Figure 15.3) is sufficiently strong to imply that
the vertical distances between any twou[·] graphs are constant, hence thatu is additive. The
Thomsen condition can be illustrated graphically using indifference curves: it simply states that
if A ∼ B andC ∼ D thenE ∼ F .

There still remains one important problem to fix in order to guarantee the additive decom-
posability: % must not have many more indifference curves than there are real numbers, or
else it cannot be represented by a utility function. Indeed,by definition, all the points lying on
the same indifference curve are indifferent among each other and, consequently, they have the
same utility, i.e. the same real number is assigned to all of them. But if there exist much more
indifference curves than there exist real numbers, how can we assign a different real number to
each indifference curve? The following Archimedean axiom will prevent this kind of situation
from occuring. Assume that% is representable by an additive utility functionu. Let (x0

1, x
0
2)

and(x0
1, x

1
2) be two arbitrary elements ofX such that:

(x0
1, x

0
2) ≺ (x0

1, x
1
2).
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Figure 15.3.Thomsen condition

If there existsx1
1 ∈ X1 such that(x1

1, x
0
2) ∼ (x0

1, x
1
2) then, in terms of utility functions, this

indifference is equivalent to:

u1(x
1
1) = u1(x

0
1) + (u2(x

1
2)− u2(x

0
2)).

Let α = u2(x
1
2) − u2(x

0
2). Sinceu represents%, we must haveα > 0. Moreover, as by hy-

pothesisu is additive, we know that the independence axiom holds. Hence, asX is a Cartesian
product,(x1

1, x
1
2) belongs toX and satisfies:

(x1
1, x

0
2) ≺ (x1

1, x
1
2).

We can then iterate this process: if there existsx2
1 ∈ X1 such that(x2

1, x
0
2) ∼ (x1

1, x
1
2) then:

u1(x
2
1) = u1(x

1
1) + α = u1(x

0
1) + 2α.

By induction, this creates a sequence{x0
1, x

1
1, . . . , x

k
1} called astandard sequencesuch that

u1(x
k
1) = u1(x

0
1) + kα. So, asα > 0, whenk tends toward+∞, u1(x

k
1) must also tend

toward+∞. Hence, if there existedz ∈ X such that, for anyk, (xk
1 , x

0
2) ≺ z, the utility of z

would be equal to+∞, which is of course impossible. As a consequence, the following axiom
is necessary for the additive decomposability.

Definition 15.2. Standard sequence with respect to the first attribute
For any setN of consecutive integers (no restriction is imposed onN ; it may be finite or infinite
and its integers may be positive or negative), a set{xk

1 ∈ X1, k ∈ N} is a standard sequence
with respect to the the first attribute if and only if Not(x0

1, x
0
2) ∼ (x0

1, x
1
2) and (xk

1 , x
1
2) ∼

(xk+1
1 , x0

2) for all k, k+1 ∈ N . {x0
2;x

1
2} is called the mesh of the sequence. A similar definition

holds for standard sequences with respect to the other attributes.

Axiom 15.3. Archimedean
Any bounded standard sequence is finite: if(xk

1) is a standard sequence of mesh{x0
2;x

1
2} such

that there existy, z ∈ X such thatz - (xk
1 , x

0
2) - y for all k ∈ N , then sequence(xk

1) is
finite.
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Figure 15.4 shows the graphical interpretation of this property: the construction of the stan-
dard sequence starts at the point on the lower left corner of the figure. Moving vertically from
that point, when we reach the horizontal dotted line we have increased the utility byα > 0.
Moving down along the indifference curves (represented by solid curves on the figure) does not
change the value of the utility. Consequently, the sequenceof actions (vertical move, move along
indifference curves) defines a sequence of points(xk

1), the utility of which always increases by
α. This is a standard sequence.

......

yx2
1x1

1 xn1

X1

x0
1 xn+1

1

X2

x0
2

x1
2

x3
1

Figure 15.4.The Archimedean condition

Of course, the Archimedean axiom is useful only if standard sequences can be constructed.
One consequence is that there must exist some points such that x1

2 � x0
2 andx1

1 � x0
1. Hence

the following axiom must be used in conjunction with the Archimedean axiom.

Axiom 15.4. Essentiality
X1 is essential if and only if there exista1, b1 ∈ X1 andx2 ∈ X2 such that(a1, x2) � (b1, x2).
A similar axiom holds for the other attributes.

The Archimedean axiom and the Thomsen condition are very powerful for structuring the
consequence space. However, they have a major drawback: to be useful, they require indif-
ferences between many points ofX. When such indifferences do not exist, these axioms be-
come useless and the additive decomposability cannot be proven to hold. For instance, when
X = R× {0, 2, 4, 6} and% is representable onX by the utility function:

u(x1, x2) =

{
x1 + x2 if x2 ≤ 4
0, 5(x1 mod 2)2 + bx1/2c+ 6, 5 if x2 = 6,

there are not enough indifferences inX. Although the independence axiom holds, it can be
shown that the Thomsen condition does not. Similarly, ifX = [0, 2]× N and if% satisfies the
properties:

% is representable byu(x1, x2) = x1 + 2x2 on [0, 2]× N∗,
% is representable byu(x1, x2) = x1 on [0, 1]× {0},
(x1, 0) � (y1, y2) for all x1, y1 ∈ [0, 2] and for ally2 6= 0,

then the Archimedean axiom is utterly useless as it is impossible to construct standard sequences
with more than two elements. In this very example, it can be shown that there exists no additive
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utility representing%. To enable the Archimedean axiom and the Thomsen condition to strongly
structure the outcome space, the following additional axiom is therefore traditionally required
in the literature. It will induce the existence of a huge amount of indifferences within setX.

Axiom 15.5. (Restricted) solvability with respect to the first attribute
For all y0

1 , y
1
1 ∈ X1, for all y2 ∈ X2 and for allx ∈ X, if (y0

1 , y2) - x - (y1
1 , y2), then there

existsz1 ∈ X1 such thatx ∼ (z1, y2). A similar axiom holds for the other attributes.

In two-dimensional spacesX1 × X2, the graphical interpretation of restricted solvability
is quite simple, as shown on Figure 15.5. If points(y0

1 , y2) and(y1
1 , y2) lie on each side of the

indifference containing pointx, then the horizontal line passing through(y0
1 , y2) and(y1

1 , y2)
intersects the indifference curve (of course this intersection belongs toX).

y1
1

z1
X1

X2

y2

x

increasing preferences
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1in
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Figure 15.5.Restricted solvability

The combination of all the axioms presented so far is sufficient to ensure the additive rep-
resentability of relation%, as is shown by the following proposition [KRA 71, chapter 6].

Proposition 15.2. Existence and unicity of additive utilities
LetX = X1 × X2 be an outcome set, and let% be a binary relation onX × X satisfying
restricted solvability and essentiality with respect toX1 andX2. Then, the following statements
are equivalent:

1) % is a weak order satisfying the Thomsen condition and, for each attribute, the indepen-
dence axiom and the Archimedean axiom.

2) There exists an additive utilityu = u1 + u2 representing%. Moreover, this utility is
unique up to scale and location. In other words, if there exists another additive utilityv =
v1 + v2 representing%, then there existα > 0 andβ1, β2 ∈ R such thatv1(·) = αu1(·) + β1

andv2(·) = αu2(·) + β2.

Assertion (2) implying assertion (1) has been shown previously. As for (1) ⇒ (2), the
intuition of the proposition can explained using Figure 15.6. Start from an arbitrary point
x0 = (x0

1, x
0
2) ∈ X. Assign utility value 0 to this point. By essentiality, there existsx1

2 � x0
2.

Without loss of generality, assign utility value 1 to(x0
1, x

1
2). Using restricted solvability and
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Figure 15.6. Intuitions behind proposition 15.2

the Archimedean axiom, construct standard sequence(xk
1) and assignu1(x

k
1) = k. Similarly,

construct a vertical standard sequence of mesh{x0
1;x

1
1}, say(xr

2), and assignu2(x
r
2) = r.

The Thomsen condition guarantees that what has just been constructed is actually coherent
since, if the decision maker is indifferent betweenA andB and betweenC andD, then they
must also be indifferent betweenE andF . Fortunately, the utility assignment process used so
far guarantees that the same values have been assigned to both E andF . More generally, the
construction process ensures that the values assigned to all the points on the grid{(xk

1 , x
r
2)}

actually form a utility function representing%. Either this grid corresponds to the whole setX
and we just constructed an additive utility function onX, or there exist points inX that do not
belong to this grid.

In the latter case, the model can be refined by doubling the setof points on the grid. Gener-
ally, the idea is to find a point(x1/2

1 , x
1/2
2 ) such that, in standard sequences of mesh{x0

2;x
1/2
2 }

and{x0
1;x

1/2
1 }, every other element corresponds to an element of(xk

1) and(xr
2) defined above.

It is then obvious thatu1(x
1/2
1 ) = u2(x

1/2
2 ) = 1/2. The process is iterated until a utility

function is defined on the whole spaceX. This technique is used in particular in [WAK 89].

15.3.2. Extension to more general outcome sets

In this section, we will briefly examine two extensions of theadditive decomposability
results presented so far. First, we will consider outcome sets that are still Cartesian products but
are described by more than two attributes. Then, we will briefly address the case of subsets of
Cartesian products.

Additive decomposability forn-dimensional Cartesian products,n ≥ 3, is not fundamen-
tally different from that of 2D spaces. The main difference lies in the fact that the graphs of



Multiattribute Utility Theory 575

functionsu[·], which were not necessarily very close to each other in 2D, are now very close
due to the combined effects of independence and restricted solvability in n-dimensional spaces.
As a consequence the Thomsen condition, which was primarilyused to ensure that the vertical
distances between pairs ofu[·] graphs could not vary significantly, is no longer needed. The
other axioms seen so far are still used and just require slight modifications to be adapted to the
higher dimension ofX. Only the independence axiom can be extended in several ways.

Axiom 15.6. Independence (also know as coordinate independence)
For all i, for all zi, ti ∈ Xi and for allxj , yj ∈ Xj , j 6= i,

(x1, . . . , xi−1, zi, xi+1, . . . , xn) % (y1, . . . , yi−1, zi, yi+1, . . . , yn)

⇔ (x1, . . . , xi−1, ti, xi+1, . . . , xn) % (y1, . . . , yi−1, ti, yi+1, . . . , yn).

Axiom 15.7. Weak separability
For all i, for all zi, ti ∈ Xi and for allxj , yj ∈ Xj , j 6= i,

(x1, . . . , xi−1, zi, xi+1, . . . , xn) % (x1, . . . , xi−1, ti, xi+1, . . . , xn)

⇔ (y1, . . . , yi−1, zi, yi+1, . . . , yn) % (y1, . . . , yi−1, ti, yi+1, . . . , yn).

Axiom 15.6 obviously implies axiom 15.7. On the other hand, the converse is false and
axiom 15.7 is too weak to induce by itself the existence of additive utilities. Hence, we should
rather extend the independence axiom of the preceding subsection by axiom 15.6. As we shall
see later, weak separability can nevertheless also be used in some representation theorems.

In the context ofn-dimensional spaces, we shall introduce new notation to simplify the
formulae we need to manipulate. LetXJ denote the set of attributes with indices which belong
to J ⊂ N = {1, . . . , n}. Let xJy denote the consequence inX with attributes’ valuesxj for
j ∈ J andyk for k ∈ N − J . Abusing notation, whenJ = {j} we will write xjy instead of
xJy. Coordinate independence can therefore be stated as in axiom 15.8.

Axiom 15.8. Independence

For all i, for all zi, ti ∈ Xi and for allx, y ∈ X, zix % ziy ⇔ tix % tiy.

Proposition 15.2 of the preceding section can now be extended ton-dimensional spaces by
the following proposition.

Proposition 15.3. Existence and unicity of additive utilities
LetX =

∏n
i=1Xi, n ≥ 3, be an outcome set and let% be a binary relation onX × X sat-

isfying essentiality and restricted solvability with respect to every attribute. Then the following
statements are equivalent:

1) % is a weak order satisfying, for every attribute, independence (Axiom 15.8) and the
Archimedean axiom.
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2) There exists an additive utility functionu =
∑n

i=1 ui representing% onX. Moreover,
this utility is unique up to scale and location. In other words, if there exists another additive
utility v =

∑n
i=1 vi representing%, then there existα > 0 andβi ∈ R, i ∈ {1, . . . , n}, such

thatvi(·) = αui(·) + βi for all i ∈ {1, . . . , n}.

This proposition, the proof of which can be found in [KRA 71, chapter 6], is restrictive in
two respects. First, the assumption that restricted solvability holds with respect to every attribute
may be questionable in some practical situations. This is the case, for instance, when some at-
tributes are naturally defined over continuums (e.g. money or time) while others are defined only
over discrete sets (e.g. the number of rooms in a flat or some qualitative attributes like the job
of a human being). For such cases, there exist some extensions of the above proposition requir-
ing restricted solvability only with respect to a small number of attributes [GON 00, GON 03]
or even substituting restricted solvability by ‘lighter’ axioms requiring some density proper-
ties [NAK 02]. Note, however, that these extensions are moredifficult to use in practice than
the above proposition. This is the price to pay to have theorems not requiring much structural
conditions.

The second restriction imposed by proposition 15.3 is the fact thatX must necessarily be
the Cartesian product of theXis. WhenX is only a subset of this Cartesian product, the axioms
used so far can be significantly less powerful and can therefore be unable to ensure the additive
representability. For instance, without solvability, we already saw that the Archimedean axiom
can become utterly useless ifX does not contain sufficiently many pairs of indifferent elements
to ensure that lengthy standard sequences can be constructed. WhenX is only a subset of a
Cartesian product, it can have an ‘exotic’ shape that prevents the existence of any long standard
sequences, even when restricted solvability holds. Such a case is mentioned in [WAK 93] where
X has the shape of an Eiffel tower lying at a 45◦ angle. Hence, whenX is a subset of a Cartesian
product, additive decomposability requires additional structural conditions on(X,%).

There are very few articles on this matter. This is first because we can often think ofX as a
Cartesian product even if, in reality, this is not preciselythe case. Indeed,X corresponds to the
very set of outcomes that the decision maker can imagine, notto the set of outcomes that are
actually possible. The decision maker can also cognitivelyimagine outcomes that may be far
from possible in the real world. Secondly, the additive decomposability on subsets of Cartesian
products requires axioms that are much harder to use and to test than those presented so far. In
addition, these axioms often have no real meaning in terms ofpreferences but rather are techni-
cal axioms only needed to complete mathematical proofs. Seefor instance proposition 15.4, due
to Chateauneuf and Wakker [CHA 93]. Before providing it, however, we need a final additional
notion. By the independence axiom (axiom 15.8), or even by weak separability (axiom 15.7),
for everyi,

(x1, . . . , xi−1, xi, xi+1, . . . , xn) % (x1, . . . , xi−1, yi, xi+1, . . . , xn)
⇔ (y1, . . . , yi−1, xi, yi+1, . . . , yn) % (y1, . . . , yi−1, yi, yi+1, . . . , yn).

Since this preference should be satisfied for whateverxj , yj ∈ Xj , j 6= i, this means that, when
the decision maker compares two outcomes, they only use the attributes that differ between
outcomes. Hence, we can define for everyi a new preference relation%i such thatxi %i yi is
equivalent to the above preference.
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Proposition 15.4. Additive representability on open spaces
LetX ⊂ ∏n

i=1Xi. Let % be a weak order onX. Assume that theXis are endowed with the
order topology with respect to%i. Assume thatX is endowed with the product topology and
that it is open. Moreover, assume that% is continuous overX and that the following sets are
connected:

1) int(X), the interior ofX;

2) all the sets of the form{x ∈ int(X) : xi = si} for all i, si; and

3) all the equivalence classes of int(X) with respect to∼.

Then, if% is representable by an additive utility function on any Cartesian product included in
X, then% is also representable by an additive utility onX.

As we can see, the interpretation in terms of preferences of the hypotheses of this propo-
sition is not easy. The key idea behind this proposition is toconstruct an additive utility on
a ‘small’ Cartesian product, to extend this construction onanother Cartesian product in the
neighborhood of the first one and to iterate this process. int(X) connexity hypothesis ensures
for instance that this iterative construction process willresult in an additive utility function
defined over the whole ofX.

Chateauneufet al.and Segal [CHA 93, SEG 94] propose other representation theorems on
even more general subsets. Here again, the axioms used in these theorems are rather techni-
cal and are not prone to a simple interpretation in terms of preferences. Nevertheless, there
exist some subsets of Cartesian products in which the existence of additive utilities can be
simply derived from that on full Cartesian products. This isthe case, for instance, of rank de-
pendent ordered sets, i.e. sets in which tuples(x1, . . . , xn) have the following property: all
their attributes belong to the same setX1 and there exists a weak order%′ overX1 such that
x1 %′ x2 %′ . . . %′ xn [WAK 91].

15.4. Decompositions under uncertainty

The preceding section concerned situations where each act had a unique consequence,
known with certainty. In this section, we address uncertainsituations where each act hasm >
1 possible consequences depending on the state of nature thatobtains. Thus, the act hav-
ing consequencexi when eventEi occurs is now denoted by(x1, E1; . . . ;x

m, Em), where
{E1, . . . , Em} is a partition of the set of states of nature considered by thedecision maker.
Recall that the expected utility criterion for decision under risk (see von Neumann and Morgen-
stern [VON 44]) assumes that the probabilities of the eventsare known (objectively) whereas
Savage’s subjective expected utility criterion [SAV 54] allows a subjective probability that re-
flects the decision maker’s beliefs to be assigned to each event. When the set of the states
of nature is endowed with a probability measure, act(x1, E1; . . . ;x

m, Em) induces a lottery
(x1, p1; . . . ;x

m, pm), wherepi denotes the probability of eventEi. Note that in Savage’s ax-
iomatics, acts can also have infinite support. Finally, in both of these expected utility axiomatics,
consequences can be qualitative but also quantitative and unidimensional but also multidimen-
sional.
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In the remainder of this section, we will consider that the set of consequencesX is equal
to the Cartesian product

∏n
i=1Xi, as in section 15.2. The set of lotteries(x1, p1; . . . ;x

m, pm)
overX is now denoted byP and is assumed to be endowed with the usual preference relation%.
Indifference relation∼ and the strict preference relation� are defined as before. The expected
utility criterion requires the existence of a utility function u : X→ R, defined up to scale and
location, such that:

for all P,Q ∈ P, P % Q⇐⇒ E(u, P ) ≥ E(u,Q)

whereE(u, P ) andE(u,Q) denote the mathematical expectations of the utilities of lotteriesP
andQ, respectively.

Similarly to the certain case, in practice, the construction of multiattribute utility function
u raises numerous problems. For instance, consider the case of a decision maker having to
make a decision involvingh possible consequencesx1, . . . , xh. In theory, using the expected
utility criterion, each consequence may be assigned a utility value as follows: assume thatx0

andx∗ represent the least and most preferred consequences, respectively. Asu is defined up to
scale and location we can, without loss of generality, setu(x0) = 0 andu(x∗) = 1. Now, for
each consequencexi putting a simple question to the decision maker, it is possible to determine
probabilitypi such that they are indifferent between receiving (1) a gain of xi with certainty and
(2) obtaining the lottery ticket providing consequencex∗ with probabilitypi and consequence
x0 with probability1− pi. According to the expected utility criterion, this indifference implies
thatu(xi) = pi for everyi = 1, . . . , h.

Due to the cognitive limitations of decision makers, it is clearly impossible to use this kind
of elicitation method when the number of attributes is high.Moreover, even when the latter stays
relatively small, the combinatorial nature ofX can induce a large set of consequences which,
again, renders the above elicitation method unusable. Hence, in practice, analysts need to be able
to decomposeu in single-attribute utility functions, which are much easier and more intuitive
to elicit [e.g. KEE 68, KEE 93, POL 67, VON 93]. Of course, as inthe certain case, under
uncertainty, utility functionu being additively decomposable requires that additional constraints
on the decision maker’s preferences be satisfied. In this direction, Miyamoto and Wakker have
proposed a decomposition approach based on models generalizing the classical expected utility
model [MIY 96].

15.4.1. Decomposition in two-dimensional spaces

The additivity of von Neumann–Morgenstern utility function requires a more general inde-
pendence notion than in the certain case. Indeed, assuming preferences can be modeled using
the expected utility criterion, ifu = u1 + u2, with ui : Xi 7→ R for i = 1, 2, then, for any
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x1, x
′
1, y1, y

′
1 ∈ X1, x2, z2 ∈ X2,

((x1, x2),
1

2
; (x′
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1

2
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1

2
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1

2
)

m
1

2
u(x1, x2) +

1

2
u(x′

1, x2) ≥ 1

2
u(y1, x2) +

1

2
u(y′1, x2)

m
1

2
u(x1, z2) +

1

2
u(x′

1, z2) ≥
1

2
u(y1, z2) +

1

2
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2
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The above equivalences show that preferences over lotteries differing only on attributeX1 do
not depend on their common level on attributeX2. In such a case, attributeX1 is said to be
utility independentfrom attributeX2. A similar reasoning implies that, for everyx1, z1 ∈ X1,
x2, x

′
2, y2, y

′
2 ∈ X2,

((x1, x2),
1

2
; (x1, x

′
2),

1

2
) % ((x1, y2),

1

2
; (x1, y

′
2),

1

2
)

m

((z1, x2),
1

2
; (z1, x

′
2),

1

2
) % ((z1, y2),

1

2
; (z1, y

′
2),

1

2
).

In this case, attributeX2 is said to be utility independent from attributeX1. WhenX1 is in addi-
tion utility independent fromX2, both attributes are said to satisfymutual utility independence.
Note that the independence axiom under certainty (axiom 15.1) is a special case of mutual utility
independence in which probability 1/2 is substituted by probability 1.

Under expected utility, utility independence of attributeX1 from attributeX2 implies that,
for any twox2, x

′
2 ∈ X2, utility functionsu(., x2) andu(., x′

2) represent the same preferences
overX1. They are therefore identical up to scale and location. In other words,u(., x2) =
αu(., x′

2) + β, whereα > 0 andβ ∈ R depend only on the given consequencesx2 andx′
2.

Assuming thatx2 varies and thatx′
2 is fixed at a given levelx0

2, we can state more specifically:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = α(x2)u(x1, x
0
2) + β(x2) (15.3)

whereα(.) > 0 andβ(.) ∈ R depend implicitly on consequence levelx0
2. Similarly, if attribute

X2 is utility independent from attributeX1 then, for any consequence levelx0
1, we have that:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = γ(x1)u(x
0
1, x2) + δ(x1) (15.4)

whereγ(.) > 0 andδ(.) ∈ R depend implicitly on consequence levelx0
1.

Assume now thatu(x0
1, x

0
2) = 0. By equations (15.3) and (15.4),β(x2) = u(x0

1, x2),
δ(x1) = u(x1, x

0
2) and

u(x1, x
0
2)[α(x2)− 1] = u(x0

1, x2)[γ(x1)− 1].
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This equation obviously holds whenx1 = x0
1 or whenx2 = x0

2. Otherwise, i.e. when both
x1 6= x0

1 andx2 6= x0
2, we obtain the equality:

α(x2)− 1

u(x0
1, x2)

=
γ(x1)− 1

u(x1, x0
2)

= k

wherek is a constant which is independent of variablesx1 andx2. Hence, it can be deduced
thatα(x2) = ku(x0

1, x2) + 1. Substituting into equation (15.3), we obtain:

∀(x1, x2) ∈ X1×X2, u(x1, x2) = u(x1, x
0
2)+u(x0

1, x2)+ku(x1, x
0
2)u(x

0
1, x2) (15.5)

whereu(·, x0
2) andu(x0

1, ·) are single-attribute utility functions. Constantk represents a factor
of interaction between attributesX1 andX2. The sign of this constant identifies explicitly the
nature of this interaction [KEE 93, p. 240]. Thus, whenu(·, x0

2) andu(x0
1, ·) are increasing in

x1 andx2 respectively, a positive (respectively, negative)k means that attributesX1 andX2

are complementary (respectively, substitutable).

The following proposition introduces the above multilinear decomposition in a slightly dif-
ferent manner substitutingu(x1, x

0
2) andu(x0

1, x2) by k1u1(x1) andk2u2(x2), respectively.
k1 andk2 arescaling constantsdepending implicitly on the consequences used for normalizing
functionsui(.), i = 1, 2 [FIS 65, KEE 93].

Proposition 15.5. Assume thatX1 andX2 are mutually utility independent. Utility functionu
can then be decomposed using the following multilinear form:

∀(x1, x2) ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2) + kk1k2u1(x1)u2(x2)

where

– ui(.) is a single-attribute utility function normalized byui(x
0
i ) = 0 andui(x

∗
i ) = 1,

i = 1, 2, for x∗
1 andx∗

2 such that(x∗
1, x

0
2) � (x0

1, x
0
2) and(x0

1, x
∗
2) � (x0

1, x
0
2); and

– k1 = u(x∗
1, x

0
2) > 0, k2 = u(x0

1, x
∗
2) > 0 andk1 + k2 + kk1k2 = 1.

As shown above, mutual utility independence is not sufficient to induce the additive decom-
position ofu. The latter actually requires in addition that constantk be equal to 0. Let us now
see a sufficient condition which, when combined with mutual utility independence, results in
the additive decomposability ofu. Assume that thereexistsome consequencesx1, x

′
1 ∈ X1

andx2, x
′
2 ∈ X2 such that:

(
(x1, x2),

1

2
; (x′

1, x
′
2),

1

2

)
∼
(

(x1, x
′
2),

1

2
; (x′

1, x2),
1

2

)
. (15.6)

Translating this indifference in terms of expected utilities, and canceling out the terms appearing
on both sides of the resulting equality, we obtain:

k[u(x1, x
0
2)− u(x′

1, x
0
2)][u(x

0
1, x2)− u(x0

1, x
′
2)] = 0.

If Not[(x1, x
0
2) ∼ (x′

1, x
0
2)] and Not[(x0

1, x2) ∼ (x0
1, x

′
2)], thenk should be constrained to be

equal to 0. Whenk 6= 0, the multilinear decomposition equation (15.5) can be rewritten as:

v(x1, x2) = v(x1, x
0
2)v(x

0
1, x2)
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wherev(x1, x2) = 1 + ku(x1, x2). This shows that mutual utility independence actually in-
duces amultiplicativedecomposition of utility functionu.

Using scaling constantski as in proposition 15.5, this model can also be written as:

1 + ku(x1, x2) =

2∏

i=1

[1 + kkiui(xi)].

Now, since scaling constantsk1 andk2 belong to the unit interval and since1+k1 =
∏2

i=1[1+
kki], constantk = [1 − (k1 + k2)]/k1k2 lies necessarily between−1 and0 for k1 + k2 > 1
and is greater than0 for k1 + k2 < 1.

An extension of the cases in which indifference equation (15.6) holds induces a new con-
dition calledadditive independence. This new condition is sufficient to guarantee the additive
decomposition of utility functionu.

Definition 15.3. AttributesX1 andX2 are said to be additively independent if indifference
equation (15.6) holds for any consequencesx1, x

′
1 ∈ X1 andx2, x

′
2 ∈ X2.

Substituting consequence(x′
1, x

′
2) by the reference level consequence(x0

1, x
0
2) in indiffer-

ence equation (15.6), we obtain the following indifference:
(

(x1, x2),
1

2
; (x0

1, x
0
2),

1

2

)
∼
(

(x1, x
0
2),

1

2
; (x0

1, x2),
1

2

)
.

Setu(x0
1, x

0
2) = 0. The translation of the above indifference in terms of expected utilities then

results in the equality:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = u(x1, x
0
2) + u(x0

1, x2) (15.7)

The following proposition simply rewrites equation (15.7)in a more additive manner by intro-
ducing scaling constants.

Proposition 15.6. Assume that attributesX1 andX2 are additively independent. Then utility
functionu can be written as:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2),

where:

– ui(.) is a single-attribute utility function normalized byui(x
0
i ) = 0 andui(x

∗
i ) = 1,

i = 1, 2, for x∗
1 andx∗

2 such that(x∗
1, x

0
2) � (x0

1, x
0
2) and(x0

1, x
∗
2) � (x0

1, x
0
2).

– k1 = u(x∗
1, x

0
2) > 0, k2 = u(x0

1, x
∗
2) > 0 andk1 + k2 = 1.

As can be seen above, the very fact that in a decision problem the consequences are de-
scribed by several attributes raises the problem of choosing the appropriate decomposition of
the utility function. Most often, the analyst must check with the decision maker whether mutual
utility independence holds among the attributes. For this purpose, a simple approach consists of
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verifying whether the certainty equivalent, with respect to a given attributeXi of a lottery with
two equiprobable consequences having the same value ofXi, depends on the common level
assigned to attributeXi. More precisely, assume thatXi = [x0

i , x
∗
i ] for i = 1, 2. In order to

check whether attributeX1 is utility independent from attributeX2, it is sufficient to choose
three equidistant levelsx2, x

′
2, x

′′
2 in [x0

2, x
∗
2] and to determine the certainty equivalents of lotter-

ies ((x∗
1, a),

1
2
; (x1

1, a),
1
2
), a = x2, x

′
2, x

′′
2 . Identical certainty equivalents (within reasonable

error) lead to the assumption that attributeX1 is actually utility independent from attributeX2.
Utility independence ofX2 with respect toX1 can be tested using a similar approach in which
the roles of both attributes are exchanged.

In situations where it is reasonable to assume that the appropriate model is additively de-
composable, it is possible to directly check additive independence. To do so, it is sufficient to
fix three or four equidistant consequences in each of the intervalsXi = [x0

i , x
∗
i ], i = 1, 2, and

to check condition (15.6) for the elements of the resulting Cartesian product.

15.4.2. Extension of the two-dimensional decomposition

The decompositions of the von Neumann–Morgenstern utilityfunctions with more than
two attributes result from quite simple extensions of the concepts and tools developed for the
2D case. We simply need to introduce some convenient notation to address then-dimensional
case.

Let us first recall that, ifJ ⊂ N = {1, . . . , n}, xJy represents the consequence inX
having coordinatesxj for j ∈ J and coordinatesyj for j ∈ N − J . Moreover, whenJ = {j},
to simplify the notation, we writexjy instead ofxJy. In addition,xixjy means that theith and
jth coordinates ofy have been substituted byxi andxj , respectively. Finally,xJ denotes the
(sub) consequence constituted only by coordinatesxj , with j ∈ J .

Definition 15.4. The set of attributesXJ , J ⊂ N , is said to beutility independentif for all
x, x′, y, y′, t, z ∈ X

(xJt,
1

2
; yJ t,

1

2
) % (x′

Jt,
1

2
; y′Jt,

1

2
)⇔ (xJz,

1

2
; yJz,

1

2
) % (x′

Jz,
1

2
; y′Jz,

1

2
). (15.8)

There is mutual utility independence in the attributes ofX if XJ is utility independent for every
J ⊂ N .

Under certainty, the independence axiom (axiom 15.8) is a particular case of utility inde-
pendence in which equivalence (15.8) above becomesxJt % x′

Jt ⇐⇒ xJz % x′
Jz. Note that

it is easy to show that, whenu is additively decomposable, equivalence (15.8) holds for every
J ⊂ N .

Under expected utility, for a givenJ , utility independence ofXJ implies that, for any two
distinct consequencest andz ofX, utility functionsu(., t−J) andu(., z−J) represent the same
preferences. As in the two-attribute case, it can be deducedthat these utilities are identical up to
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scale and location. Assuming thatt−J varies and thatz−J is set to a given reference levelx0
−J ,

we can write:

for all x ∈ X, u(x) = αJ (x−J)u(xJx
0) + βJ (x−J)

whereαJ (.) > 0 andβJ (.) ∈ R depend implicitly on the reference level consequencex0
−J .

In cases where mutual utility independence holds, a similarreasoning to that of the two-
attribute case leads to the decomposition:

for all x ∈ X, u(x) = u(x1x
0) +

∑n
j=2

∏j−1
i=1 [ku(xix

0) + 1]u(xjx
0) (15.9)

wherek is a constant playing a role similar to that in equation (15.5). When this constant is
equal to 0, the above equation results in an additive decomposition:

for all x ∈ X, u(x) =
∑n

j=1u(xjx
0).

As in the two-attribute case, whenk 6= 0 (
∑

i ki 6= 1), equation (15.9) can be rewritten:

v(x) =
∏n

j=1v(xjx
0)

wherev(xjy) = 1 + ku(xjy) for every xj ∈ Xj , j = 1, . . . , n, and y ∈ X. Scaling
constantsk1, . . . , kn can also be emphasized by substitutingu(xjx

0) by kjuj(xj) for every
j = 1, . . . , n. Hence the (equivalent) multiplicative decomposition:

ku(x) + 1 =
∏n

j=1[kkjuj(xj) + 1] (15.10)

whereuj(x
0
j) = 0 anduj(x

∗
j ) = 1, j = 1, . . . , n.

As an illustration, in the three-attribute caseX1,X2,X3, the decomposition of the utility
function implied by equation (15.10) reduces to the equality:

u(x1, x2, x3) = k1u1(x1) + k2u2(x2) + k3u3(x3) + kk1k2u1(x1)u2(x2)

+ kk1k3u1(x1)u3(x3) + kk2k3u2(x2)u3(x3)

+ k2k1k2k3u1(x1)u2(x2)u3(x3)

where, as in the two-attribute case,u1, u2 andu3 are single-attribute utility functions andk1 +
k2 + k3 + kk1k2k3 + k2k1k2k3 = 1. When mutual independence is substituted by utility
independence ofXJ , for J = {1}, {2}, {3}, the resulting decomposition of the utility function
is much richer. It can actually be shown that coefficientk, which represents the interaction
between the attributes, is substituted by some specific interaction coefficientsk12, k13, k23 and
k123:

u(x1, x2, x3) = k1u1(x1) + k2u2(x2) + k3u3(x3) + k12k1k2u1(x1)u2(x2)

+ k13k1k3u1(x1)u3(x3) + k23k2k3u2(x2)u3(x3)

+ k123k1k2k3u1(x1)u2(x2)u3(x3).

The relative complexity of the above decomposition justifies why Keeney and Raiffa [KEE 93,
p. 298] and other authors suggest limiting the set of admissible decompositions to the mul-
tiplicative and additive forms whenn ≥ 4. The following proposition generalizes proposi-
tion 15.5 [FIS 65].



584 Decision Making

Proposition 15.7. Assume mutual utility independence. Utility functionu can then be decom-
posed as in equation (15.9).

When mutual utility independence holds, determining an additive utility function form > 2
attributes requires checking a condition similar to that given by indifference equation (15.6).
Indeed, it can be shown that if there exist some consequencesy ∈ X, xi, x

′
i ∈ Xi andxj , x

′
j ∈

Xj with i 6= j such that:

(xixjy,
1

2
;x′

ix
′
jy,

1

2
) ∼ (xix

′
jy,

1

2
;x′

ixjy,
1

2
),

utility function u must therefore be additively decomposable [KEE 93].

Without mutual utility independence, the additive decomposability of functionu requires a
generalization of the additive independence condition introduced for the two-attribute case. At-
tributesX1, . . . ,Xn are said to be additively independent if, for any consequencesx, x′, y, y′ ∈
X and anyJ ⊂ N ,

(xJy,
1

2
;x′

Jy
′,

1

2
) ∼ (xJy

′,
1

2
;x′

Jy,
1

2
).

Pollak [POL 67] proposes a slightly different condition which is both necessary and sufficient
for the additive decomposability.

As in the case of two-attribute decision problems, choosingbetween the multiplicative and
the additive models for more than two attributes requires checking whether the corresponding
conditions are approximately satisfied by the decision maker’s preferences. This task is however
slightly more complicated as it requests from the decision maker a deeper cognitive effort.
Finally, note that Keeney and Raiffa in [KEE 93, p. 292] provide another set of conditions that
enable utility independence to be checked while being more economical than those resulting
directly from the definition given in this subsection.

15.5. Elicitation of utility functions

The aim of elicitation of multiattribute utility functionsis to assign scores or utilities to the
possible actions that can be chosen by the decision maker. These scores can then be used to rank
the actions from the least desirable to the most desirable, and conversely. However, the very fact
that such scores can be constructed from single-attribute utility functions requires some specific
independence conditions to hold. In this section, we will only address the problem of eliciting
utility functions in the two-attribute case. Similar methods can be used in situations where there
are more than two attributes.

15.5.1. Elicitation under certainty

Assume that the decision maker faces a decision problem involving two attributes, and that
their preferences can be represented by the additive model given by:

for all x, y ∈ X1 ×X2, x % y ⇐⇒ u1(x1) + u2(x2) ≥ u1(y1) + u2(y2).
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It is now well known that if there exist some additional functionsv1 andv2 satisfying the above
equivalence in place ofu1 andu2, respectively, then there existα > 0 andβ1, β2 ∈ R such
thatvi(.) = αui(.) + βi for i = 1, 2. As a consequence, the origins ofu1 andu2 (which can
be distinct) can be set as we wish, as well as a common unit for the scales of bothu1 andu2.
Assume thatx0

i denote the smallest consequence of setXi, for i = 1, 2.

x0
2

X2

R2

x0
1 x2

1 x4
1x1

1 x3
1 x5

1

x0
1 x2

1 x4
1x1

1 x3
1 x5

1

X1

X1

1

0

2

3

4

5

u1(.)

Figure 15.7.Elicitation of functionu1(.)

The first step in the elicitations ofu1 andu2 consists of setting the origins of their utility
scales as follows:

u(x0
1, x

0
2) = u1(x

0
1) = u2(x

0
2) = 0. (15.11)

Eliciting single-attribute utility functionu1 now requires a new consequenceR2 to be chosen
such thatR2 � x0

2 and determining consequencex1
1 such that:

(x1
1, x

0
2) ∼ (x0

1, R2). (15.12)
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Intuitively, the closer tox0
2 (in terms of preferences) the consequenceR2, the closer tox0

1 the
consequencex1

1. The next step in the elicitation ofu1 consists of determining a new conse-
quencex2

1 such that:

(x2
1, x

0
2) ∼ (x1

1, R2). (15.13)

Translating indifference equations (15.12) and (15.13) into the additive utilities model and sub-
tracting the resulting equations leads to the equality:

u1(x
1
1)− u1(x

0
1) = u1(x

2
1)− u1(x

1
1). (15.14)

To summarize, the elicitation ofu1 amounts to constructing a standard sequence of conse-
quencesx0

1, x
1
1, . . . , x

s1
1 which ‘covers’X1 using indifferences:

(xi
1, x

0
2) ∼ (xi−1

1 , R2), i = 1, . . . , s1.

Finally, settingu1(x
1
1) = 1, we obtainu1(x

i
1) = i, i = 2, . . . , s1. Figure 15.7 illustrates the

elicitation process described.

Similarly, eliciting functionu2 begins by choosing a consequenceR1 such thatR1 � x0
1

and determining consequencex1
2 such that:

(x0
1, x

1
2) ∼ (R1, x

0
2). (15.15)

After the construction of the initial indifference equation (15.15), the elicitation process
continues with the construction of a standard sequence of consequencesx0

2, x
1
2, . . . , x

s2
2 ‘cov-

ering’X2 and determined using the indifferences:

(x0
1, x

i
2) ∼ (R1, x

i−1
2 ), i = 1, . . . , s2.

Figure 15.8 graphically illustrates the process.

By indifference equations (15.12) and (15.15), choosingR1 = x1
1 leads necessarily to

R2 = x1
2. This choice therefore results inu2(x

i
2) = i, i = 1, . . . , s2.

The value chosen forR1 can also be different fromx1
1. This results inevitably inx1

2 6= R2.
In this case, the additive model:

for all x ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2) (15.16)

is to be used, wherek1 > 0 andk2 > 0 arescaling constantssuch thatk1 +k2 = 1. These con-
stants introduce an additional degree of freedom that allows us to assign tou2 a utility unit in-
dependent from that resulting fromu1(x

1
1) = 1 and, therefore, to setu2(x

1
2) = 1. Determining

the scaling constants requires the use of (or construction of) an additional indifference. Thus,
translating indifference equation (15.15) in terms of the model described in equation (15.16)
results in the equality:

k2

k1
=
u1(R1)− u1(x

0
1)

u2(x1
2)− u2(x0

2)
= u1(R1).

Knowningu1(R1) andk1+k2 = 1, scaling constants can therefore be determined. These allow
the utility scales of bothu1 andu2 to be linked appropriately.



Multiattribute Utility Theory 587

x0
1

X1

R1

x0
2 x5

2x4
2x3

2x2
2x1

2

x0
2 x5

2x4
2x3

2x2
2x1

2

X2

X2

1

0

2

3

4

5

u2(.)

Figure 15.8.Elicitation of functionu2(.)

15.5.2. Elicitation under uncertainty

The essential hypothesis underlying the expected utility-based decision model is that the
decision maker’s preferences are sufficiently stable that they can be observed through very
simple risky choices. These preferences are revealed through their utility function by the analyst.
The latter can then use them to infer the decision maker’s preferences over the set of all the
possibles actions. Being able to perform this inference is essential: if we are unable to elicit the
appropriate utility function, it may happen that we proposeto the decision maker some ranking
of the possible actions that is utterly unrelated to their own preferences.

In the rest of this section, we assume thatXi = [x0
i , x

∗
i ] for i = 1, . . . , n. In addition, all

the utility functions are considered to be normalized as follows: ui(x
0
i ) = 0 andui(x

∗
i ) = 1,

i = 1, . . . , n. Of course, these normalizations require some scaling constants, as in the certain
case.
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The most popular method for eliciting single-attribute utility functions is called thefractile
method. The key idea is to choose a probabilityp, called a reference probability, and to ask the
decision maker to state for which consequencex1

i in the interval[x0
i , x

∗
i ] they are indifferent.

The choice is betweenx1
i with certainty (hence a degenerated lottery) and lottery(x∗

i , p;x
0
i , 1−

p), denoted from this point on by(x∗
i , p;x

0
i ).

Using the expected utility criterion, we immediately obtain ui(x
1
i ) = p. Applying a sim-

ilar process to intervals
[
x0

i , x
1
i

]
and

[
x1

i , x
∗
i

]
, two other points of the utility function can be

obtained: indifferencex2
i ∼ (x1

i , p;x
0
i ) implies thatui(x

2
i ) = p2 and indifferencex′2

i ∼
(x∗

i , p;x
1
i ) implies thatui(x

′2
i ) = 2p − p2. Iterating this process, we obtain as many points

(xj
i , ui(x

j
i)) as needed for determining utility functionui over interval[x0

i , x
∗
i ]. Figure 15.9

represents one such iterative utility construction process with reference probabilityp = 1/2
(E1 = px∗

i + (1− p)x0
i , E

′
2 = px∗

i + (1− p)x1
i , E2 = px1

i + (1− p)x0
i ).

E′
2E1E20 Xi

1/2

1/4

3/4

1
ui(.)

x1
i x∗ix0

i x2
i x′2i

Figure 15.9.Elicitation ofui(.) using the fractile method

The increasing number of experimental results against expected utility has attracted the
attention of many researchers interested in applications of this theory in decision aid. MacCord
and de Neufville [MCC 83] demonstrated that there was a direct connection between violations
of expected utility and the systematic inconsistencies observed during the elicitation process
of the single-attribute utility functions as early as the 1980s. Among these inconsistencies, it
was observed that there exists a systematic dependence between the utility functions and the
reference probabilities used for their elicitation. The higher this probability, the more concave
the utility function elicited.
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Numerous experimental results, dating back to the end of the1940s [PRE 48], show a sys-
tematic trend from the decision makers facing simple risky choices to subjectively transform
probabilities. Nowadays, this phenomenon is taken into account in many models of decision
making under risk using a probability transformation function (weighting) in addition to the
utility function (which actually can be thought of as a consequence transformation function).
In both rank dependent utility models [QUI 82, TVE 92] and in Gul’s model [GUL 91], lottery
P = (x, p; y) with x � y is therefore evaluated by the utility defined:

V (P ) = w(p)u(x) + (1− w(p))u(y) (15.17)

where probability weighting functionw is an increasing function from[0, 1] into [0, 1], with
w(0) = 0 andw(1) = 1. Whenw(p) = p for everyp ∈ [0, 1], we obtainV (P ) = E(u, P ).
As compared with the expected utility model, in this new model probabilitiesp and1 − p are
substituted bydecision weightsw(p) and(1−w(p)), respectively. Knowing thatx � y, it can
easily be seen that the weight assigned to a given consequence actually depends on its rank.

Note however that rank dependent utility model (15.17) cannot be used to elicit functionu
using the fractile method or a similar method without prior knowledge of transformation func-
tion w. Only the tradeoff (TO) method, initially proposed by Wakker and Deneffe [WAK 96],
can avoid this problem.

Eliciting a utility function by the tradeoff method TO essentially consists of constructing
a standard sequence of consequences. A standard sequence ofpositive monetary consequences
(gains) is usually constructed as follows. The process starts by the determination of consequence
x1 for which the decision maker is indifferent between lotteries(x0, p;R) and(x1, p; r), with
0 ≤ r < R < x0 < x1 andp ∈]0, 1[, r,R, x0 being fixed beforehand. As shown in Fig-
ure 15.10, the gain induced by substitutingx0 by x1 on thep axis outweights the loss induced
by substituting consequenceR by r on the(1− p) axis.

Next, consequencex2
i is determined such that the decision maker is indifferent between

(x1
i , p;R) and(x2

i , p; r). Using general model (15.17), both indifferences constructed induce
the equations:

w(p)ui(x
0
i ) + (1− w(p))ui(R) = w(p)ui(x

1
i ) + (1−w(p))ui(r) (15.18)

w(p)ui(x
1
i ) + (1− w(p))ui(R) = w(p)ui(x

2
i ) + (1−w(p))ui(r). (15.19)

Combining these equations and canceling out terms appearing on both sides of the equalities,
we obtain the equality:

ui(x
1
i )− ui(x

0
i ) = ui(x

2
i )− ui(x

1
i ). (15.20)

It results from equation (15.20) that consequencex1
i is exactly halfway in terms of utilities

between consequencesx0
i andx2

i . Consequencesx0
i , x1

i , x2
i therefore build up a standard se-

quence. This conclusion clearly also holds under the expected utility hypothesis. Constructing a
standard sequence of consequencesx0

i , . . . , x
q
i therefore requires the construction ofq indiffer-

ences(xj−1
i , p;R) ∼ (xj

i , p; r), j = 1, . . . , q. Settingui(x
0
i ) = 0 andui(x

q
i ) = 1, we obtain

ui(x
j
i) = j/q, j = 1, . . . , q.
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Figure 15.10.Elicitation of functionui(.)

Miyamoto and Wakker [MIY 96] show that the propositions thatenable the decomposition
of the von Neumann–Morgenstern utilities still hold even when probabilities are subjectively
transformed. This justifies the combination of the new TO utility elicitation method with some
classical techniques used for eliciting scaling constants.

Determining scaling constants can be performed in two different ways, often used in com-
bination by the analysts. These two methods can be easily illustrated in the 2D multiattribute
case(n = 2). Assume that mutual utility independence holds. Accordingto the preceding
discussion, we then obtain:

U(x1, x2) = k1u1(x1) + k2u2(x2) + kk1k2u1(x1)u2(x2)
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with Xi = [x0
i , x

∗
i ], ui(x

0
i ) = 0, ui(x

∗
i ) = 1 for i = 1, 2 andk1 + k2 + kk1k2 = 1. Constant

k can be interpreted as an interaction factor among attributesX1 andX2.

Indeed, three scaling constants require three equations tobe unambiguously determined. As
we already know thatk1 +k2 +kk1k2 = 1, we just need two additional independent equations
and therefore two additional indifferences under certainty and/or uncertainty.

Assume that(x0
1, x

∗
2) � (x∗

1, x
0
2), i.e. thatk2 > k1. By monotonicity,(x0

1, x
0
2) ≺ (x∗

1, x
0
2).

It is therefore possible to find a consequencex↓
2 (< x∗

2) such that(x0
1, x

↓
2) ∼ (x∗

1, x
0
2). Trans-

lating into the above multilinear form, we obtain:

k2u2(x
↓
2) = k1. (15.21)

A second equation, independent from the first, can be obtained by substitutingx0
2 (in (x0

1, x
∗
2) �

(x∗
1, x

0
2)) by x↑

2 (> x0
2) such that(x0

1, x
∗
2) ∼ (x∗

1, x
↑
2). In general, this results in the equation:

k2 = k1 + k2u2(x
↑
2) + kk1k2u2(x

↑
2). (15.22)

Combined with equalityk1 + k2 + kk1k2 = 1, the last two equations enable the determination
of the scaling constants.

In the uncertain case,k1 andk2 can also be determined by finding probabilitiesp1 andp2

such that:

(x∗
1, x

0
2) ∼ ((x∗

1, x
∗
2), p1; (x

0
1, x

0
2), 1− p1),

(x0
1, x

∗
2) ∼ ((x∗

1, x
∗
2), p2; (x

0
1, x

0
2), 1− p2).

Translating these indifferences in terms of expected utilities, we obtain:

ki = pi, i = 1, 2. (15.23)

When probabilities are subjectively transformed, we getki = w(pi), which requires the addi-
tional elicitation of functionw [ABD 00].

When there are more than two attributes in the decision problem, the necessity of having
independent and compatible equations for evaluating the scaling constants makes their determi-
nation all the more complicated. Keeney and Raiffa [KEE 93, p. 301] describe for the additive
and multiplicative models several procedures avoiding both redundancy and incompatibilities
(of these equations).

15.6. Conclusion

The overview of multiattribute utility theory presented inthis chapter is an introduction to
a literature with a profusion of results covering a wide domain. We have attempted to present
it in the most homogeneous way possible. We suggest that readers interested in applications of
the various techniques described in the chapter read [KEE 93, chapters 7 and 8] and [CLE 96,
chapters 15 and 16]. [VON 93, chapter 12] also contains some valuable material.
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Chapter 16

Conjoint Measurement Models for Preference
Relations

16.1. Introduction

Conjoint measurement [KRA 71, WAK 89] is concerned with the study of binary relations
defined on Cartesian products of sets. Such relations are central in many disciplines, for exam-
ple:

– multicriteria or multiattribute decision making, in which the preference of the decision
maker is a relation that encodes, for each pair of alternatives, the preferred option taking into
account all criteria [BEL 01, KEE 76, WIN 86];

– decision under uncertainty, where the preference relation compares alternatives evaluated
on several states of nature [FIS 88, GUL 92, SHA 79, WAK 84, WAK89];

– consumer theory, dealing with preference relations that compare bundles of goods
[DEB 59];

– inter-temporal decision making, that uses preference relations for comparing alternatives
evaluated at various instants in time [KOO 60, KOO 72, KEE 76]; and

– inequality measurement, that compares distributions of wealth across individuals
[ATK 70, BEN 94, BEN 97].

Let % denote a binary relation on a product setX = X1 × X2 × · · · × Xn. Conjoint
measurement searches for conditions that allow numerical representations of% to be built and
possibly guarantee the uniqueness of such representations. The interest of numerical represen-
tations is obvious. They not only facilitate the manipulation of preference relations but also, in
many cases, the proofs that such representations exist are constructive (or at least provide useful
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indications on how to build them). Very often, the conditions for the existence of a representa-
tion can be empirically tested [KRA 71]. All these reasons justify the interest for this theory in
many research domains.

16.1.1. Brief overview of conjoint measurement models

In most classical models of conjoint measurement, the relation is assumed to becomplete
andtransitive. The central model is theadditive utilitymodel in which we have:

x % y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi), (16.1)

whereui denotes a real-valued function defined on the setXi, for all i = 1, . . . , n. x andy de-
note n-dimensional elements of the product setX i.e.x = (x1, . . . , xn) andy = (y1, . . . , yn).

The axiomatic analysis of this model is now well establishedand additive utility (also called
additive value function) is at the root of many techniques used in decision analysis [FRE 93,
KEE 76, WIN 86, WAK 89, POM 00].

This model has two main difficulties, however. The axiomaticanalysis of equation (16.1)
raises technical questions that are rather subtle yet important. Many systems of axioms have
been proposed in order to guarantee the existence of a representation as described by equa-
tion (16.1) [KRA 71, WAK 89]. Two cases can be distinguished:

– If X is finite and no upper bound is fixeda priori on the number of its elements, Scott
and Suppes [SCO 64] have shown that the system of axioms needed consists of an infinite
(countable) set ofcancellationconditions, which guarantee (via the use of the theorem of the
alternative) that a system of (finitely many) linear equations possesses at least one solution (see
also [KRA 71, chapter 9] and, for more recent contributions,[FIS 96, FIS 97]). These conditions
are hardly interpretable or testable.

– The case in whichX is infinite is quite different but raises other problems. Non-necessary
conditions are usually imposed onX in order to guarantee that the structure ofX is ‘close’ to
that of the real numbers and that% behaves consistently with this structure. In one approach,
an archimedean axiom is imposed together with solvability conditions [KRA 71, chapter 6].
In another approach, it is assumed thatX is a topological space and that% is continuous
[DEB 60, WAK 89]. Using such ‘structural’ assumptions, it ispossible to characterize model
equation (16.1) by means of a finite number of cancelation conditions (for recent contributions
see [GON 96, GON 00, KAR 98]; for an alternative approach extending the technique used in
the finite case to the infinite one, see [JAF 74]). In these axiomatic systems, the necessary prop-
erties interact with structural, unnecessary assumptionsimposed onX [KRA 71, chapter 6],
which obscures the understanding of the model and does not allow for completely satisfac-
tory empirical tests [KRA 71, chapter 9]. In addition, the analysis of the two-dimensional case
(n = 2) differs totally from that of the cases wheren is greater than or equal to3.

As we shall see, it is possible to avoid imposing unnecessaryhypotheses (structural as-
sumptions) provided the requirement of an additive representation is abandoned; this is the idea
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followed by the authors of [KRA 71, chapter 7] when introducing the followingdecomposable
model:

x % y ⇔ U(u1(x1), u2(x2), . . . , un(xn)) ≥ U(u1(y1), u2(y2), . . . , un(yn)) (16.2)

whereU is an increasing function of all its arguments.

There is another type of difficulty with the additive model (16.1) of a more fundamental
nature: this model excludes all preference relations that fail to be transitive or complete from
consideration. Several authors have now forcefully arguedin favor of models tolerating intran-
sitive or incomplete preferences [MAY 54, TVE 69] and there are multiple criteria decision
analysis methods that do not exclude such relations [ROY 85,ROY 93].

Theadditive differencemodel proposed in [TVE 69] is among the first that does not assume
transitive preferences; the preference% is supposed to satisfy:

x % y ⇔
n∑

i=1

Φi(ui(xi)− ui(yi)) ≥ 0 (16.3)

whereΦi are increasing and odd functions (which implies that the preference% is complete).
An axiomatic characterization of this model has been proposed by Fishburn [FIS 92]. Due to the
additive form of the representation, Fishburn could not avoid imposing unnecessary structural
conditions in his characterization of model (16.3).

More recently, more general additive non-transitive models have been proposed (allowing
in particular for incomplete preferences) [BOU 86, FIS 90a,FIS 90b, FIS 91, FIS 92, VIN 91].
They are of the type:

x % y ⇔
n∑

i=1

pi(xi, yi) ≥ 0 (16.4)

wherepi are real-valued functions defined onX2
i ; they may enjoy additional properties (e.g.

pi(xi, xi) = 0 ∀i ∈ {1, 2, . . . , n} and for allxi ∈ Xi).

In the spirit of the decomposable model (16.2) that avoids the difficulties of the axiomatiza-
tion of the additive models, Goldstein [GOL 91] has proposeda generalization of model (16.4)
in which the sum has been substituted by a functionG, increasing in its arguments. The under-
lying model is therefore:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0. (16.5)

In decision analysis, methods that may lead to intransitiveand/or incomplete preference re-
lations have been used for a long time [ROY 68, ROY 73]. They are known asoutrankingmeth-
ods [ROY 91, ROY 93], and are inspired by social choice procedures, especially the Condorcet
voting rule. In a basic version of the ELECTRE method [ROY 68, ROY 73], the outranking
relation is obtained as follows:

x % y ⇔
∑

{i:xiSiyi}

wi ≥ λ (16.6)
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wherewi are weights associated with the criteria,xi andyi represent the performance of alter-
nativesx andy on criterioni,Si is a binary relation that orders the levels on the scale of criterion
i andλ is a majority threshold (calledconcordance threshold), generally assigned a value larger
than 50% of the sum of the weights. Clearly, binary relationsobtained in this way may fail to
be transitive or complete. Consider for instance the case wheren = 3, p1 = p2 = p3 = 1

3
,

x = (3, 2, 1), y = (2, 1, 3), z = (1, 3, 2), Si is the usual order≥ on the set of the real numbers
andλ = 60%. Denoting by� the asymmetric part of% (a � b if a % b and notb % a)
and applying rule (16.6) yieldsx � y, y � z, but notx � z: i.e. relation� is not transitive.
Moreover, sincez � x, it has cycles. This is a version of the Condorcet paradox, appearing
in a multiple criteria decision making context. In the same perspective, consideringn = 2,
p1 = p2 = 1

2
, x = (2, 1), y = (1, 2) andλ = 60%, we have that neitherx % y nory % x: the

relation% is not complete.

As is easily verified, note that outranking relations obtained through equation (16.6) are
representable in the additive non-transitive model (16.4), letting:

pi(xi, yi) =





wi − λ
n

if xiSiyi

− λ
n

otherwise.
(16.7)

16.1.2. Chapter contents

Our goal is to propose a general framework as well as quite general analytical tools that
allow the study of binary relations defined on a Cartesian product in a conjoint measurement
perspective. Our framework encompasses most methods that have been proposed in multiple
criteria decision analysis to construct a global preference relation.

We consider two main families of models of relations on a product set. To support the
reader’s intuition, consider the various manners of comparing objects characterized by their
description on a set ofn attributes. Letx = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn) be
two alternatives described byn-dimensional vectors. In a first approach, in view of deciding
whether ‘x is at least as good asy’, we may try to assess the ‘value’ of either alternative on each
attribute and then combine these values in appropriate fashion. It is important to emphasize what
we mean by ‘value’; the ‘value’ of alternativex on criterioni is not simply the label describing
this alternative on attributei (which is denoted byxi) but an assessment that reflects the way
this label is perceived by a decision maker in a given decisional context, taking into account
their objectives and preferences. Abandoning for the moment classical requirements such as
transitivity or completeness, we may consider a model in which:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn), u1(y1), u2(y2), . . . , un(yn)) ≥ 0, (16.8)

whereui are real-valued functions onXi andF is a real-valued function on the product set∏n
i=1 ui(Xi)

2.

Another strategy relies on the idea of ‘measuring’differences of preferencebetweenx andy
on each attribute separately and then combining these differences in order to determine whether
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the balance of these is in favor ofx or y. This suggests a model in which:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (16.9)

wherepi are real-valued functions onX2
i andG is a real-valued function on

∏n
i=1 pi(X

2
i ).

Of course, the strategies just outlined are not incompatible. It can reasonably be expected
that the differences of preference on each criterion can be expressed in terms of values assigned
to the alternatives on each criterion. In the model that thissuggests, we have:

x % y ⇔ H(ϕ1(u1(x1), u1(y1)), ϕ2(u2(x2), u2(y2)), . . . , ϕn(un(xn), un(yn))) ≥ 0

(16.10)

whereui are real-valued functions onXi, ϕi are real-valued functions onui(Xi)
2 andH is a

real-valued function on
∏n

i=1 ϕi(ui(Xi)
2).

As long as no additional property is imposed to the various functions that intervene in the
above three models, these models are exceedingly general inthe sense that any relation onX
(provided thatX is finite or denumerable) can be represented in all three models. If X is not
denumerable, the generality of the models is only restricted by technical conditions (that are
necessary and sufficient).

Consequently, to make these models interesting, we shall impose additional properties on
the involved functions. For instance:

– in model (16.8), we shall impose thatF is non-decreasing in its firstn arguments and
non-increasing in its lastn arguments;

– in model (16.9), we shall require thatG is an odd function or that it is non-decreasing in
itsn arguments or thatpi is antisymmetric;

– in model (16.10), we shall consider the cases in whichH is an odd function or is non-
decreasing in itsn arguments or the cases in whichϕi are odd functions or functions that are
non-decreasing in their first argument and non-increasing in their second one.

By adding such requirements, a large variety of models can bedefined. A selection of them
will be studied in the sequel. In particular, certain variants are rather close to classical models
alluded to in section 16.1.1. Note, however, that our goal isnot to characterize exactly classical
models but instead to establish general frameworks in whichsuch a characterization could be
elaborated. The advantage of general frameworks is to allowfor a better understanding of what
is common to classical models and what distinguishes them.

Note that the frameworks (16.8), (16.9) and (16.10) rely on fundamental objects that pos-
sess nice interpretations in terms of preference and permitthe analysis of preference relations
on a product set. For understanding of the classical additive value function model,marginal
preferenceis the crucial notion. This relation, defined on each factorXi of the product setX as
a projection (in a certain sense) of the global preference% on each attribute, is the relation that
is numerically represented by theui functions in model (16.1). The process of ‘elicitation’ of
an additive value function model, relies in an essential manner on marginal preferences.
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In models (16.8) and (16.9), the central role is no longer played by marginal preferences
since these relations do not enjoy, in these models, the properties that facilitate their interpreta-
tion in the additive value function model (16.1). In general, they are not transitive or complete.
They are ‘too rough’ to allow for a sufficiently detailed analysis of the global preference, as we
shall see in the following.

In our three frameworks (16.8), (16.9) and (16.10), the maintool for analyzing the prefer-
ence relation is thetrace, a notion that admits different variants. In model (16.8), we shall use
themarginal traceof the preference on each componentXi; this relation provides an ordering
of the labels of the scaleXi of each attributei. In model (16.9), we shall be concerned with
traces on each Cartesian productX2

i of each attribute scale with itself; here the trace rank-orders
the differences of preference between two alternatives on attributei. Finally, in model (16.10),
both types of traces appear and interact.

The contents of this chapter are the following. In section 16.2, we introduce the main tools
for analyzing preference relations: marginal traces on levels and marginal traces on differences.
We discuss the position of the more classical marginal preferences w.r.t. these traces. We then
show how any preference relation can be represented in any ofthe three general models intro-
duced above.

We briefly describe various specializations of model (16.8)and their axiomatic characteri-
zations. We shall see in section 16.2 that some of these axioms indeed express a fundamental
requirement of aggregation procedures, namely that the relation obtained through aggregation
should contain the dominance relation. The rest of the section shows how the marginal traces
on levels tend to become increasingly similar to marginal preference relations while additional
requirements are imposed on the model, driving it closer to the additive value function model.

Section 16.4 studies model (16.9). Much as in the previous section, we characterize several
variants of the model. We show that the numerical representations of type (16.9) are well-suited
to understand outranking methods.

In section 16.5, we consider the relations that can be described within model (16.10). We
characterize some of their variants and analyze the position of some well-known models such
as the model of additive differences (16.3) and some outranking methods in this framework.

A brief conclusion summarizes the main advantages of the newconcepts for analyzing
relations on a product set. Various applications are discussed.

All our results have elementary proofs. We present some which we feel useful for under-
standing the new concepts. The reader interested in more details is invited to refer to a series
of articles in which all proofs are given: [BOU 02b, BOU 04b, BOU 05a, BOU 05b, BOU 09].
These articles contain a complete study of the general, non-denumerable case as well as the
proof that our axioms are independent. We shall pay little attention to the latter aspects in this
chapter.
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16.2. Fundamental relations and trivial models

16.2.1. Binary relations on a product set

As far as binary relations are concerned, we adopt the terminology and definitions used
in Chapter 2. Hence, we shall use notions such as reflexive, irreflexive, complete, symmetric,
asymmetric, transitive, Ferrers and semi-transitive relation with the same meaning. We also
assume that the definitions of (complete) weak order, interval order and semiorder are familiar
to the reader (see also Chapter 2 for these definitions).

We generally work with binary relations on a product setX = X1 ×X2 × . . .×Xn. The
setsXi, i = 1, 2, . . . , n, may be sets of arbitrary cardinality andn is assumed to be at least
equal to2. The elements ofX aren-dimensional vectors:x ∈ X with x = (x1, x2, . . . , xn).
We interpret them as alternatives described by their valuesonn attributes.

A binary relation on the setX will usually be denoted by%, its asymmetric part by� and
its symmetric part by∼. A similar convention holds for the asymmetric and symmetric parts
of a relation when the symbol% is subscripted or superscripted. Relation% is interpreted as a
preference relation anda % b reads: ‘a is at least as good asb’.

For any subsetI of the set of attributes{1, 2, . . . , n}, we denote byXI (respectively,X−I )
the product set

∏
i∈I Xi (respectively,

∏
i/∈I Xi). We denote by(xI , a−I) the vectorw ∈ X

such thatwi = xi if i ∈ I andwi = ai otherwise. IfI is a singleton{i}, we simply writeX−i

and(xi, a−i), abusing notation.

16.2.2. Independence and marginal preferences

A preference relation% on a product setX induces relations calledmarginal preferences
on the subspacesXI , for any subset of attributesI . The marginal preference%I induced by%
onXI is defined for allxI , yI by:

xI %I yI ⇔ (xI , z−I) % (yI , z−I), for all z−I ∈ X−I . (16.11)

We do not assume in general that preferences have special properties such as completeness
or transitivity. Even if% is complete, this property is not necessarily inherited by its marginal
preferences%I . Let us define two properties that confer some regularity to marginal prefer-
ences.

Definition 16.1. Let % be a preference relation on a product setX and letI be a subset of
attributes.

– We say that% is independent forI if, for all xI , yI ∈ XI ,

[(xI , z−I) % (yI , z−I), for somez−I ∈ X−I ]
⇒ [(xI , w−I) % (yI , w−I), for all w−I ∈ X−I ].
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– We say that% is separable forI if, for all xI , yI ∈ XI ,

[(xI , z−I) � (yI , z−I), for somez−I ∈ X−I ]
⇒ Not[ (yI , w−I) � (xI , w−I) ] , for all w−I ∈ X−I .

– If % is independent (respectively, separable) for all subset ofattributesI , we say that
% is independent (respectively, separable). If% is independent (respectively, separable) for
all subsets consisting of a single attribute, we say that% is weakly independent (respectively,
weakly separable).

Independence is a classical notion in measurement theory. Intuitively, it means that common
values on a subset of attributes do not influence preference.It is well known that independence
implies weak independence, but not the converse [WAK 89]. Similarly, independence implies
separability but the converse is false. Separability is a weakening of the independence property.
It is an interesting property since aggregation models based on themax or min operator yield
preferences that are separable but not independent. Separability prohibits strict reversal of the
preferences while letting common values on some attributesvary. Separability entails weak
separability but the converse is not true.

Independence and separability are of course related to completeness of marginal prefer-
ences. The following results are either well known or obvious.

Proposition 16.1. Let% be a binary relation onX.

– If % is complete and independent for attributei, %i is complete;

– %i is complete if and only if% is weakly separable and satisfies the following condition:
for all xi, yi ∈ Xi and for alla−i ∈ X−i,

(xi, a−i) % (yi, a−i) or (yi, a−i) % (xi, a−i). (16.12)

Marginal preferences on each attributei express the results of the pairwise comparison of
levelsxi andyi when these levels are adjoined common levels on all other attributes (ceteris
paribusreasoning). We shall see in the next section that marginal preferences%i do not exploit
all the information contained in% relatively to attributei, contrary to marginal traces on levels.

16.2.3. Marginal traces on levels

Various kinds of marginal traces (%+
i ,%

−
i and%±

i ) onXi are defined as follows.

Definition 16.2. For allxi, yi ∈ Xi, for all a−i ∈ X−i, for all z ∈ X,

xi %+
i yi⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z],

xi %−
i yi⇔ [z % (xi, a−i)⇒ z % (yi, a−i)],

xi %±
i yi ⇔





(yi, a−i) % z ⇒ (xi, a−i) % z,
and
z % (xi, a−i)⇒ z % (yi, a−i).
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These definitions clarify the difference between marginal preferences and marginal traces.
Marginal traces use all the information available in% in order to comparexi with yi. These two
levels inXi are adjoined the same evaluations onX−i and one observes how such alternatives
compare with all other alternatives. In contrast, marginalpreference results from the comparison
of alternatives, evaluated by levelxi on attributei, with alternatives that are evaluated by level
yi. Both alternatives are adjoined the same evaluations onX−i (ceteris paribuscomparison).
The latter mode of comparison does not take into account the behavior of such alternatives with
respect to others. Under a very weak hypothesis, namely reflexivity of %, we have indeed that
xi %+

i yi (or xi %−
i yi) entailsxi %i yi. This is readily verified starting e.g. from(yi, a−i) %

(yi, a−i). Applying the definition of%+
i , we obtain(xi, a−i) % (yi, a−i). Similarly, starting

from (xi, a−i) % (xi, a−i) and using the definition of%−
i , we obtain the other entailment.

Using their definitions, it is not difficult to see that%+
i ,%

−
i and %±

i are reflexive and
transitive relations.

According to our conventions, we denote the asymmetric (respectively, symmetric) part of
%+

i by�+
i (respectively,∼+

i ) and similarly for%−
i and%±

i . In the following lemma we note a
few links between marginal traces and the preference relation %. These properties, which will
be used in the sequel, describe the ‘responsiveness’ of the preference with respect to the traces.
The proof of this lemma is left to the reader.

Lemma 16.1. For all i ∈ {1, . . . , n} andx, y, z, w ∈ X:

1) [x % y, zi %+
i xi]⇒ (zi, x−i) % y,

2) [x % y, yi %−
i wi]⇒ x % (wi, y−i),

3) [zi %±
i xi, yi %±

i wi]⇒





x % y ⇒ (zi, x−i) % (wi, y−i),

and

x � y ⇒ (zi, x−i) � (wi, y−i),

4) [zi ∼±
i xi, yi ∼±

i wi, ∀ i ∈ {1, . . . , n}]⇒





x % y ⇔ z % w,
and
x � y ⇔ z � w.

Marginal traces are not necessarily complete relations. When this is the case, this has im-
portant consequences as we shall see in section 16.3.

16.2.4. Marginal traces on differences

Wakker [WAK 88, WAK 89] has demonstrated the importance of traces on differences for
understanding conjoint measurement models. We introduce two relations on preference differ-
ences%∗

i and%∗∗
i for each attributei. These relations compare pairs of levels; they are subsets

of X2
i ×X2

i .

Definition 16.3. For allxi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) if and only if

∀ a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i)⇒ (xi, a−i) % (yi, b−i);
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(xi, yi) %∗∗
i (zi, wi) if and only if [(xi, yi) %∗

i (zi, wi) and(wi, zi) %∗
i (yi, xi)].

Intuitively, we interpret(xi, yi) %∗
i (zi, wi) as stating that the difference of preference

between levelsxi andyi is at least as large as that betweenzi andwi. By definition,%∗
i is

reflexive and transitive while, in contrast, there is no necessary link between(xi, yi) and the
‘opposite’ difference(yi, xi); that is why we introduce relation%∗∗

i .

As for marginal traces on levels, the preference relation% is monotone with respect to
marginal traces on differences. Moreover, traces on levelsand traces on differences are not
unrelated. The following lemmas describe the former and thelatter links; their elementary proof
is left to the reader.

Lemma 16.2. For all x, y ∈ X and allzi, wi ∈ Xi,

1) % is independent if and only if(xi, xi) ∼∗
i (yi, yi), ∀ i ∈ {1, . . . , n},

2) [x % y and(zi, wi) %∗
i (xi, yi)]⇒ (zi, x−i) % (wi, y−i),

3) [(zi, wi) ∼∗
i (xi, yi), ∀ i ∈ {1, . . . , n}]⇒ [x % y ⇔ z % w],

4) [x � y and(zi, wi) %∗∗
i (xi, yi)]⇒ (zi, x−i) � (wi, y−i),

5) [(zi, wi) ∼∗∗
i (xi, yi), ∀ i ∈ {1, . . . , n}]⇒





[x % y ⇔ z % w]

and

[x � y ⇔ z � w],

Lemma 16.3. For all i ∈ {1, . . . , n} and allxi, yi ∈ Xi,

1) xi %+
i yi ⇔ [(xi, wi) %∗

i (yi, wi), ∀wi ∈ Xi],

2) xi %−
i yi ⇔ [(wi, yi) %∗

i (wi, xi), ∀wi ∈ Xi],

3) xi %±
i yi ⇔ [(xi, wi) %∗∗

i (yi, wi), ∀wi ∈ Xi],

4) [`i %+
i xi and(xi, yi) %∗

i (zi, wi)]⇒ (`i, yi) %∗
i (zi, wi),

5) [yi %−
i `i and(xi, yi) %∗

i (zi, wi)]⇒ (xi, `i) %∗
i (zi, wi),

6) [zi %+
i `i and(xi, yi) %∗

i (zi, wi)]⇒ (xi, yi) %∗
i (`i, wi),

7) [`i %−
i wi and(xi, yi) %∗

i (zi, wi)]⇒ (xi, yi) %∗
i (zi, `i),

8) [xi ∼+
i zi andyi ∼−

i wi]⇒ (xi, yi) ∼∗
i (zi, wi),

9) [xi ∼±
i zi andyi ∼±

i wi]⇒ (xi, yi) ∼∗∗
i (zi, wi).

Marginal traces on differences are not generally complete.When they are, this has interest-
ing consequences that will be studied in section 16.4.

16.2.5. Three models for general relations on a Cartesian product

Provided the cardinal ofX is not larger than that of the set of real numbers, every binary
relation onX can be represented in the three models described by equations (16.8–16.10).
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As we shall see in the proof of the following proposition, marginal traces on levels play a
fundamental role for representation (16.8). Marginal traces on differences play a similar role in
representation (16.9) and both types of traces are important for model (16.10). The importance
of this role will be strengthened when we impose the completeness of the traces in the following
three sections.

We use the notation[ui(xi)] to denote then-components vector(u1(x1), . . . , un(xn)).

Proposition 16.2. Trivial representations on product sets
Let% be a binary relation on the setX =

∏n
i=1Xi, the cardinal of which is at most that ofR.

1) There are real-valued functionsui on Xi and a real-valued functionF defined on
[
∏n

i=1 ui(Xi)]
2 such that, for allx, y ∈ X,

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0. (L0)

2) There are real-valued functionspi on X2
i and a real-valued functionG defined on∏n

i=1 pi(X
2
i ) such that, for allx, y ∈ X,

x % y ⇔ G([pi(xi, yi)]) ≥ 0. (D0)

3) There exist real-valued functionsui onXi, real-valued functionsϕi onui(Xi)
2 and a

real-valued functionH defined on
∏n

i=1 ϕi(ui(Xi)
2) such that, for allx, y ∈ X,

x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0. (L0D0)

Proof. Part (1). Leti ∈ {1, . . . , n}. By construction,∼±
i is an equivalence relation since it

is reflexive, symmetric and transitive. SinceXi has at most the cardinality ofR, there exists a
functionui fromXi to R such that for allxi, yi ∈ Xi:

xi ∼±
i yi ⇔ ui(xi) = ui(yi). (16.13)

For all i ∈ {1, . . . , n}, let ui be a function that satisfies equation (16.13). We defineF from
[
∏n

i=1 ui(Xi)]
2 to R by:

F ([ui(xi)]; [ui(yi)]) =

{
+1 if x % y,
−1 otherwise.

(16.14)

Lemma 16.1(4) guarantees thatF is well defined.

Part (2). Since∼∗∗
i is an equivalence relation and in view of the cardinality ofXi, for all

i there is a functionpi fromX2
i to R that separates the equivalence classes of∼∗∗

i , i.e. that is
such that for allxi, yi, zi, wi ∈ Xi:

(xi, yi) ∼∗∗
i (zi, wi)⇔ pi(xi, yi) = pi(zi, wi). (16.15)

Using lemma 16.2(5), the following functionG is well defined:

G([pi(xi, yi)]) =

{
+1 if x % y,
−1 otherwise.

(16.16)
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Part (3). Let us consider, for alli, a functionui that satisfies equation (16.13) and a function
pi that satisfies equation 16.15. We defineϕi onui(Xi)

2 by:

ϕi(ui(xi), ui(yi)) = pi(xi, yi) (16.17)

for all xi, yi ∈ Xi. Let us show thatϕi is welldefined i.e. thatui(xi) = ui(zi) andui(yi) =
ui(wi) imply pi(xi, yi) = pi(zi, wi). By construction, we havexi ∼±

i zi andyi ∼±
i wi;

lemma 16.3(9) yields(xi, yi) ∼∗∗
i (zi, wi), hencepi(xi, yi) = pi(zi, wi).

Finally, we defineH on
∏n

i=1 ϕi(ui(Xi), ui(Xi)) by:

H([ϕi(ui(xi), ui(yi))]) =

{
+1 if x % y,
−1 otherwise.

(16.18)

Using lemma 16.2(3), we see thatH is well defined.�
Remark16.1. The limitation on the cardinality ofX imposed in proposition 16.2 is not a
necessary condition. This condition can be weakened in the following way. For model (L0), it
is sufficient that the number of equivalence classes of the relations∼±

i is not larger than the
cardinal ofR; in the same way, for model (D0), it is necessary and sufficient to impose the
same restriction on the number of equivalence classes of relations∼∗∗

i . For model (L0D0), the
two previous restrictions are required.

16.3. Models using marginal traces on levels

16.3.1. Definition of the models

In model (L0), the role ofui consists only of associating a numerical ‘label’ to each equiv-
alence class of relation%±

i . The role ofF is only to determine whether the profiles[(ui(xi))],
[(ui(yi))] correspond to a preference (see definition ofF in equation (16.14)) or not. Things be-
come more interesting when additional properties are imposed onF . We consider the following
models:

– model (L1), obtained by imposingF ([ui(xi)]; [ui(xi)]) ≥ 0 on model (L0); and

– model (L2), obtained by imposingF ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]) on
model (L1).

Moreover, in each of the models (L0), (L1) and (L2), we consider the consequences of im-
posing thatF is non-decreasing (respectively, increasing) in its firstn arguments and non-
increasing (respectively, decreasing) in its lastn arguments. The resulting eight new models are
defined in Table 16.1.

A number of implications between these models result immediately from their definitions.
We do not detail them here. We note in the following proposition a number of consequences of
the properties ofF introduced to define models (L1) and (L2).

Proposition 16.3. A binary relation% on a product setX =
∏n

i=1Xi, the cardinal of which
is bounded by that ofR, can be represented in



Conjoint Measurement and preferences 607

(L0) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0
(L1) (L0) with F ([ui(xi)]; [ui(xi)]) ≥ 0
(L2) (L0) with F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L3) (L0) with F non-decreasing, non-increasing,
(L4) (L0) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L5) (L1) with F non-decreasing, non-increasing,
(L6) (L1) with F increasing, decreasing,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
(L7) (L2) with F non-decreasing, non-increasing,
(L8) (L2) with F increasing, decreasing,

Table 16.1.Models using traces on levels

1) model (L1) if and only if% is reflexive;

2) model (L2) if and only if% is complete.

Proof. Reflexivity and completeness of% are clear consequences of models (L1) and (L2),
respectively. Reflexivity of% is evidently sufficient for model (L1). It remains to be shown that
completeness is a sufficient condition for model (L2). This is readily done by reconsidering the
construction of the representation of% in the proof of proposition 16.2; we simply change the
definition ofF , equation (16.14), to:

F ([ui(xi)]; [ui(yi)]) =





+1 if x � y,
0 if x ∼ y,
−1 otherwise.

(16.19)

Using the completeness of%, we readily verify thatF is still well defined and satisfies

F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]).

�

In the next section, we introduce properties that are intimately connected to the monotonic-
ity of F . Interestingly, the same properties ensure the completeness of marginal traces.

16.3.2. Completeness of marginal traces and monotonicity ofF

We introduce the following three axioms for each dimensioni.

Definition 16.4. ConditionsAC1,AC2 andAC3
Let % be a binary relation onX =

∏n
i=1Xi. For i ∈ {1, . . . , n}, we say that relation%



608 Decision Making

satisfies:AC1i if

x % y
and

z % w



 ⇒





(zi, x−i) % y
or
(xi, z−i) % w,

AC2i if

x % y
and

z % w



 ⇒





x % (wi, y−i)
or
z % (yi, w−i),

andAC3i if

z % (xi, a−i)
and

(xi, b−i) % y



⇒





z % (wi, a−i)
or
(wi, b−i) % y,

for all x, y, z, w ∈ X, for all a−i, b−i ∈ X−i and for allxi, wi ∈ Xi.

We say also that% satisfiesAC1 (respectively,AC2, AC3) if it satisfiesAC1i (respec-
tively, AC2i, AC3i) for all i ∈ {1, . . . , n}. We useAC123 as short-hand for the conjunction
of propertiesAC1,AC2 andAC3.

These three conditions are calledcancelation conditions, which is classical terminology in
conjoint measurement theory. The denomination of the axioms comes from the fact that these
axioms express ‘intrA-Criterion’ cancelation conditions(in contrast to axioms RC – ‘inteR-
Criterion’ cancelation conditions; see section 16.4). Conditions AC1, AC2 andAC3 were
initially introduced in [BOU 99, BOU 97] and then used in [GRE02].

ConditionAC1i suggests that the elements ofXi can be ordered taking into account ‘up-
ward dominance’: ‘xi upward dominateszi’ means that if(zi, c−i) % w, then(xi, c−i) % w.
ConditionAC2i has a similar interpretation taking into account ‘downwarddominance’: ‘yi

downward dominateswi’ if x % (yi, c−i) entailsx % (wi, c−i). ConditionAC3i ensures that
it is possible to rank-order the elements ofXi taking into account both upward and downward
dominance; these are not incompatible. It can be shown [BOU 04b, appendix A] thatAC1,
AC2 andAC3 are logically independent axioms.

ConditionsAC1, AC2, AC3 have consequences on marginal traces. We describe them in
the following proposition.

Lemma 16.4. Completeness of marginal traces
Let% be a binary relation onX. We have:

1) %+
i is complete if and only if% verifiesAC1i;

2) %−
i is complete if and only if% verifiesAC2i;

3) [ Notxi %+
i yi ⇒ yi %−

i xi] if and only if% verifiesAC3i;

4) %±
i is complete if and only if% verifiesAC1i, AC2i andAC3i.
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Proof. To prove part (1), it is sufficient to observe that the negation of AC1i is equivalent to
the negation of the completeness of%+

i . Part (2) is proven in a similar way.

Part (3). Assume that Notxi %+
i yi; then there existz ∈ X anda−i ∈ X−i such that

(yi, a−i) % z and Not(xi, a−i) % z. If w % (yi, b−i), thenAC3i entails(xi, a−i) % z or
w % (xi, b−i). Since by hypothesis, Not(xi, a−i) % z, we must havew % (xi, b−i) hence
%−

i xi. The converse implication results from the fact that the negation ofAC3i is equivalent
to the existence ofxi, yi ∈ Xi such that Notyi %+

i xi and Notxi %−
i yi.

Part (4) is a direct consequence of the first three parts.�

ConditionsAC1,AC2 andAC3 together imply that the marginal traces%±
i induced by%

are (complete) weak orders. We can expect that these axioms have consequences on marginal
preferences%i. Note, however, that marginal preferences and marginal traces on levels do not
generally coincide, even under conditionsAC123. The following results are given without
proofs (these can be found in [BOU 04b, proposition 3]).

Proposition 16.4. Properties of marginal preferences
We have:

1) If % is reflexive and verifiesAC1i or AC2i for all i ∈ {1, . . . , n}, then% is weakly
separable and satisfies condition (16.12).

2) If % is reflexive and verifiesAC1i or AC2i then%i is an interval order.

3) If, in addition,% satisfiesAC3i, then%i is a semiorder.

From part (1), using proposition 16.1, we infer that%i is complete as soon as% is reflexive
and verifiesAC1i orAC2i.

We know that if% is reflexive and satisfiesAC123, the marginal traces%±
i are weak orders

(lemma 16.4(4)). Under the same conditions, part (3) of the previous proposition tells us that
marginal preferences%i are semiorders. This suggests that marginal traces and preferences
are distinct relations, which is confirmed by examples in [BOU 04b]; we shall see conditions
ensuring that these relations are identical below. If they are distinct, we have seen thatxi %±

i yi

entailsxi %i yi as soon as% is reflexive. Since underAC123, %±
i and%i are complete, this

means that under these conditions%±
i is more discriminant than%i (in the sense that∼±

i ⊆∼i:
more pairs are indifferent with respect to marginal preference than to marginal trace).

AxiomsAC123 are not only related to the completeness of marginal traces but also to the
monotonicity properties of the functionF that appears in models of type (16.8). In the next
proposition, we establish a characterization of models (L5) and (L6). We prove the result only
for the case whereX is a countable set.

Proposition 16.5. Characterization of (L5) and (L6)
Let % be a binary relation on the countable setX =

∏n
i=1Xi. We have that% verifies model

(L6) if and only if% is reflexive and satisfiesAC1,AC2 andAC3. Models (L5) and (L6) are
equivalent.
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Proof. Model (L5) is a particular case of model (L1); hence in that model the preference re-
lation % is reflexive (proposition 16.3(1)). It is easily checked that any relation representable
in model (L5) verifiesAC123. Conversely, if% is reflexive and verifiesAC123, we can con-
struct a numerical representation that follows model (L6). As functionui, we select a numerical
representation of the weak order%±

i , i.e.∀xi, yi ∈ Xi, we have:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (16.20)

Such a representation does exist since we have assumed thatX is a countable set. We then
defineF on [

∏n
i=1 ui(Xi)]

2 by setting:

F ([ui(xi)]; [ui(yi)]) =

{
+exp(

∑n
i=1 (ui(xi)− ui(yi))) if x % y,

− exp(
∑n

i=1 (ui(yi)− ui(xi))) otherwise.
(16.21)

ThatF is well defined results from lemma 16.1(4). The fact thatF is increasing in its firstn
arguments and decreasing in its lastn arguments is a consequence of the definition ofF and of
lemma 16.1(3).�

The case in whichX is not denumerable does not raise serious difficulties. A necessary and
sufficient condition for its representability is that the marginal traces of% are representable on
the real numbers, which is equivalent to imposing an ‘order-density’ condition. We say that%±

i

satisfies the ‘order-density’ conditionOD±
i if there is a denumerable subsetYi ⊆ Xi such that

∀xi, zi ∈ Xi,

xi �±
i zi ⇒ ∃ yi ∈ Yi such thatxi %±

i yi %±
i zi. (16.22)

Conditional to this additional condition imposed on% for all i ∈ {1, . . . , n} is that the charac-
terization of the above models remains valid.

Note also that the slightly more general case of models (L3) and (L4) is dealt with very
similarly. These models are equivalent and the preferencesthat can be represented in these
models are those that verifyAC1,AC2 andAC3 (they need not be reflexive).

16.3.3. Model (L8) and strict monotonicity w.r.t. traces

In order to obtain a characterization of the more constrained model in Table 16.1, we intro-
duce two new axioms that are effective only when the preference relation is complete. These
axioms follow the scheme of the classical ‘triple cancelation’ axioms that are used in the char-
acterization of additive value function models. That is thereason why we denote them by the
acronymTAC (Triple intrA-Criteria annulation).

Definition 16.5. ConditionsTAC1, TAC2
We say that% satisfies

TAC1i if
(xi, a−i) % y

and
y % (zi, a−i)

and
(zi, b−i) % w




⇒ (xi, b−i) % w,
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andTAC2i if
(xi, a−i) % y

and
y % (z−i, a−i)

and
w % (xi, b−i)




⇒ w % (zi, b−i),

for all xi, zi ∈ Xi, for all a−i, b−i ∈ X−i and for ally,w ∈ X.

We say that% satisfiesTAC1 (respectively,TAC2) if it satisfiesTAC1i (respectively,
TAC2i) for all i ∈ {1, . . . , n}. We use alsoTAC12 as short-hand forTAC1 andTAC2.

The first two conditions in the premise ofTAC1i andTAC2i suggest that levelxi is not
lower than levelzi. TAC1i (respectively,TAC2i) entail thatxi should then upward (respec-
tively, downward) dominatezi.

We give without proof a few consequences ofTAC1 andTAC2. These axioms will only
be imposed to complete relations; without this hypothesis,they have rather limited power.

Lemma 16.5. Strictly positive responsiveness to the traces on levels
If % is a complete binary relation onX =

∏n
i=1Xi then:

1) TAC1i ⇒ [AC1i andAC3i]

2) TAC2i ⇒ [AC2i andAC3i]

3) TAC1i is equivalent to the completeness of relation%±
i together with the condition:

[x % y andzi �+
i xi]⇒ (zi, x−i) � y. (16.23)

4) TAC2i is equivalent to the completeness of relation%±
i together with the condition:

[x % y andyi �−
i wi]⇒ x � (wi, y−i). (16.24)

5) If TAC1i or TAC2i, then% is independent for{i} and%i is a weak order. Moreover,
if we haveTAC12 then%i = %±

i .

As we can see, as soon as% is complete, the conjunction ofTAC1i andTAC2i guarantees
that% responds in a strictly increasing manner to the marginal trace�±

i . These properties also
imply that % is weakly independent on criterion{i} and that the marginal preference%i is
a weak order and identical to the marginal trace%±

i . We do not examine in detail here the
relationship betweenTAC1i, TAC2i on the one hand andAC1i, AC2i, AC3i on the other.
We shall return to this in section 16.3.6. It can be shown [BOU04b, appendix A] that for a
complete relation,TAC1 andTAC2 are logically independent properties.

Note that the above system of axioms does not imply that the preference% has strong
properties such as transitivity or even semi-transitivityor the Ferrers property. In these models
(even in the more constrained i.e. model (L8)), the preference cannot even be supposed to be
an interval order. The previous results lead directly to thecharacterization of model (L8).
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Proposition 16.6. Characterization of (L8)
Let% be a binary relation on the denumerable setX =

∏n
i=1Xi. The relation% verifies model

(L8) if and only if% is complete and satisfiesTAC1 andTAC2.

Proof. The proof follows exactly the same scheme as that of proposition 16.5. The only differ-
ence lies in the definition of functionF which has to be altered in order to take into account the
completeness of%. We defineF on [

∏n
i=1 ui(Xi)]

2, substituting equation (16.21) by:

F ([ui(xi)]; [ui(yi)]) =





+ exp(
∑n

i=1 (ui(xi)− ui(yi))) if x % y,
0 if x ∼ y,
− exp(

∑n
i=1 (ui(yi)− ui(xi))) otherwise.

(16.25)

Parts (3) and (4) of lemma 16.5 entail thatF is strictly increasing (respectively, decreasing) in
its first (respectively, last)n arguments since, in this construction, theui have been chosen to
be numerical representations of the weak orders%±

i . �

16.3.4. Complete characterization of the models on levels

To be complete, we give without proof [see BOU 04b] a characterization of all the models
on levels described in Table 16.1. We limit ourselves to the case in which the setX is denumer-
able. The non-denumerable case can be dealt with without major difficulty by imposing order
density conditions on the traces, starting from model (L4).

Theorem 16.1. Models based on traces on levels
Let % be a binary relation on the denumerable setX =

∏n
i=1Xi. This relation can be repre-

sented in

1) model (L1) if and only if% is reflexive;

2) model (L2) if and only if% is complete;

3) model (L4) if and only if% verifiesAC1, AC2 andAC3; models (L3) and (L4) are
equivalent;

4) model (L6) if and only if% is reflexive and verifiesAC1,AC2 andAC3; models (L5)
and (L6) are equivalent;

5) model (L7) if and only if% is complete and verifiesAC1,AC2 andAC3;

6) model (L8) if and only if% is complete and verifiesTAC1 andTAC2.

Let us observe that increasing or non-decreasing (respectively, decreasing or non-increasing)
do not make a difference in our models unless functionF is also supposed to be antisymmetric
(i.e.F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)])). In this case, the value ‘0’ plays a special
role, which is to represent indifference. This is what led usto differentiate the increasing case
from the non-decreasing one.
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16.3.4.1.Uniqueness and regular representations

All these models have obviously rather poor properties regarding uniqueness of numerical
representation. A large variety of functions can of course be used forF as well as for the
ui. Nevertheless, it is not difficult to determine necessary and sufficient conditions that these
functions must fulfill. Let us consider, for instance, model(L6). Our proof of proposition 16.5
shows that it is always possible to use functionsui that verify:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (16.26)

Let us refer to a representation in which the functionsui verify equation (16.26) asregular.
According to our proof, any strictly increasing transformation of a functionui verifying this
condition can also be used and yields another valid representation. Other choices can be made,
however. It is easy to see that any functionui that satisfies

xi �±
i yi ⇒ ui(xi) > ui(yi) (16.27)

can be used in a representation of% in model (L6).

Regarding functionF , we can substitute the exponential of the sum of the differences of
the2n arguments, that appears in equation (16.21), by any real-valued positive function defined
onR2n (or at least on the subset[

∏n
i=1 ui(Xi)]

2) that is increasing in its firstn arguments and
decreasing in its lastn ones. It is also clear that only such functions can be used.

The representations described above are the only possible ones for model (L6). It is easy to
adapt the reasoning that we have just used to cover all the models considered here [BOU 04b].

16.3.5. Relations compatible with dominance

Why should we be particularly interested in models (L5), (L6) and (L8)? The major reason
is related to the application of conjoint measurement models to multiple criteria decision anal-
ysis. In this field of application the preference is usually constructed; it is not knowna priori.
The process of constructing the preference relies upon data(that are the evaluations of the alter-
natives on the various attributes recognized as relevant for the decision) and their interpretation
in terms of preference on each criterion.

We emphasize that we have not assumed anya priori structure on the setsXi. We did not
suppose that they are sets of numbers; they may be ordered sets or even nominal scales. The
interpretation of the evaluations of the alternatives in terms of preference requires at least the
definition of an ordering of the elements ofXi, an order that would correspond to the direction
of increasing preference of the decision maker on the viewpoint attached to that attribute. The
setXi endowed with this interpretation is what we call acriterion [ROY 93].

We expect of course the existence of certain logical connections between the criteria and
global preference.Respect of dominanceis such a natural connection [ROY 85, ROY 93] and
[VIN 89]. (This notion of dominance must not be confused withthat introduced just after def-
inition 16.4. The latter only deals with the relative positions of the levels on the scale of a
single attribute. We called it ‘upward dominance’ and ‘downward dominance’ due to the lack
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of a more appropriate term.) In conjoint measurement theory, no order isa priori postulated on
the setsXi. Would it exist, such an order should be compatible with global preference. We can
therefore formulate the principle of the respect of dominance in a conjoint measurement context
as follows.

Definition 16.6. A reflexive binary relation% on a setX =
∏n

i=1Xi is compatible with a
dominance relationif for all i ∈ {1, . . . , n}, there is a weak orderSi onXi such that for all
x, y ∈ X and allzi, wi ∈ Xi,

[x % y, ziSixi andyiSiwi for all i ∈ {1, . . . , n}]⇒ z % w. (16.28)

We say that this compatibility isstrict if the conclusion of condition (16.28) is modified inz �
w as soon as, for somej ∈ {1, . . . , n}, zjPjxj or yjPjwj (wherePj denotes the asymmetric
part ofSj).

This definition requires a comment. It could be thought that areasonable definition of the
compatibility with a dominance relation would require the fulfillment of the following condition
instead of condition (16.28):

[xiSiyi for all i ∈ {1, . . . , n}]⇒ x % y. (16.29)

The reader will easily be convinced that defining compatibility in this way would make this
notion too weak in case the preference relation cannot be supposed transitive. Indeed, if% has
cycles in its asymmetric part, it is possible that this relation verifies condition (16.28) while
there exist alternativesx, y, z ∈ X such thatx∆y, y � z andz � x (where the dominance
relationx∆y is defined by[xiSiyi for all i ∈ {1, . . . , n}]). In such a case, the non-dominated
alternatives (w.r.t. relation∆) need not always be considered as good choices in a multiple
criteria choice decision problem sincex could be non-dominated while there would exist an
alternativez such thatz � x.

Definition 16.6 avoids this drawback since, using condition(16.28),x∆y andy � z imply
x % z, which contradictsz � x.

In view of the results in section 16.3.2, establishing a linkbetween relations%±
i and the

monotonicity ofF , we can expect that when a preference% is compatible with a dominance
relation, the relationsSi in definition 16.6 are related to the marginal traces%±

i . It is indeed
the case as shown in the next proposition (in which we limit ourselves to reflexive preference
relations; the case of asymmetric relations could be treated similarly).

Proposition 16.7. Compatibility with dominance
A reflexive binary relation% on a setX =

∏n
i=1Xi is compatiblewith a dominance relation

if and only if it satisfiesAC1,AC2 andAC3. In such a case,Si is compatible with%±
i in the

following sense:

xi �±
i yi ⇒ NotyiSixi. (16.30)
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Proof. The necessity ofAC1,AC2 andAC3 is almost immediate. Consider the case ofAC1,
the cases of the other axioms being similar. Assume that(xi, a−i) % y and(zi, b−i) % w.
RelationSi being complete, we have eitherxiSizi or ziSixi. If we haveziSixi then, using the
definition of compatibility with dominance,(xi, a−i) % y entails(zi, a−i) % y. If we have
xiSizi, then(zi, b−i) % w entails(xi, b−i) % w. As a consequence,AC1 is verified.

The fact thatAC1, AC2 andAC3 are sufficient conditions is clear. We can indeed take
Si =%±

i for all i ∈ {1, . . . , n}. UnderAC123, the relations%±
i are complete weak orders

(lemma 16.4(4)) and, using lemma 16.1(3), we get equation (16.28).

To show equation (16.30), let us suppose on the contrary thatthere existxi, yi ∈ Xi with
xi �±

i yi andyiSixi. From the former relation we deduce that there exist eithera−i ∈ X−i

and z ∈ X such that(xi, a−i) % z and Not(yi, a−i) % z, or b−i ∈ X−i andw ∈ X
such thatw % (yi, b−i) and Notw % (xi, b−i). In both cases, usingyiSixi and applying
equation (16.28) leads to a contradiction.�

From this result we deduce, when the preference% is compatible with a dominance relation,
that%±

i cannot be finer thanSi. In other words,Si ⊆%±
i . From a practical point of view, if

we consider that a global preference% compatible with a dominance relation is the result of
the aggregation of relationsSi defining the criteria, we understand that% cannot induce a
trace onXi that would contradictSi; % cannot even create a preference whereSi only sees
indifference. Even although, for a reflexive preference satisfyingAC123, we cannot guarantee
the uniqueness of the relationsSi, we see that such relations are strongly constrained:Si can
only be a weak order included in%±

i .

With the previous proposition, model (L6) (or the equivalent model (L5)) can be seen as
a natural framework for describing preferences compatiblewith a dominance relation. This
prompts the question of a similar framework for preferencesthat arestrictly compatible with a
dominance relation. Surprisingly, the natural framework for such preferences is not model (L8).
This model imposes complete preferences which is not, as we shall see, a necessary condition
for strict dominance.

16.3.6. Strict compatibility with dominance

Strict compatibility with dominance requires, of course, stronger axioms thanAC1, AC2, AC3.
We refer to the following strengthening ofAC3 asAC4.

Definition 16.7. ConditionAC4
We say that% satisfiesAC4i if % verifiesAC3i and if, whenever one of the consequences in
AC3i is false, then the other consequence is strictly satisfied, i.e. with� instead of%. We say
that% satisfiesAC4 if it satisfiesAC4i for all i ∈ {1, . . . , n}.

The following lemma that we state without proof [see BOU 04b]collects a few conse-
quences ofAC4.

Lemma 16.6. Consequences ofAC4
If % is a relation onX, we have:
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1) If % is reflexive,AC4i is equivalent to the completeness of%±
i and the conjunction of

the following two conditions:

[x % y andzi �±
i xi]⇒ (zi, x−i) � y, (16.31)

[x % y andyi �±
i wi]⇒ x � (wi, y−i). (16.32)

2) If % is reflexive and satisfiesAC4i then
- % is independent for{i},
- %i is a weak order and
- %i = %±

i .

3) If % is complete,[TAC1i andTAC2i]⇔ AC4i.

As soon as% is reflexive, conditionAC4 (which, by definition, is stronger thanAC3) also
entailsAC1 andAC2 since it implies the completeness of relations%±

i (lemmas 16.6(1) and
16.4(4)). If % is complete,AC4 is equivalent toTAC1 andTAC2, which also provides (see
proposition 16.6) an alternative characterization of model (L8): % satisfies (L8) if and only if
% is complete and verifiesAC4.

AC4 has the advantage overTAC1 andTAC2 that it implies a strictly positive response
to marginal traces even when% is incomplete. It is the condition that we look for in view of
obtaining a characterization of strict compatibility withdominance.

Proposition 16.8. Strict compatibility with dominance
A reflexive binary relation% on a setX =

∏n
i=1Xi is strictly compatiblewith a dominance

relation if and only if it satisfiesAC4. In such a case, the relationsSi are uniquely determined
andSi =%±

i , for all i.

The proof of this proposition is similar to that of proposition 16.7; [see BOU 04b].

Let us observe that the conditions ensuring strict compatibility with a dominance relation do
not, however, guarantee that% possesses ‘nice’ properties such as completeness or transitivity.
It is straightforward, using examples inspired by Condorcet’s paradox [e.g. SEN 86], to build
a binary relation% that is strictly compatible with a dominance relation and has circuits in its
asymmetric part (building for example% via the majority rule applied to relationsSi).

16.3.7. The case of weak orders

Visiting more classical models of preferences, i.e. modelsin which the preference is a weak
order, we examine how this hypothesis combines with our axioms. When% is a weak order,
the marginal trace%±

i is identical to the marginal preference%i. We give the following results
without proof [see BOU 04b].

Lemma 16.7. Case of a weak order
If % is a weak order on the setX =

∏n
i=1Xi, we have:
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1) [% is weakly separable] ⇔ [% satisfiesAC1] ⇔ [% satisfiesAC2] ⇔ [% satisfies
AC3]; and

2) [% is weakly independent] ⇔ [% satisfiesAC4]⇔ [% satisfiesTAC1 andTAC2].

In the case of weakly independent weak orders, we can neglectconsidering marginal traces;
we do not need tools more refined than marginal preferences for analyzing preferences when
these are weakly independent weak orders. Note that the caseof weak orders is highly spe-
cific: see [BOU 04b, appendix A] for examples of weakly separable (even weakly independent)
semiorders which violateAC1, AC2 andAC3. In this slightly less constrained case, weak
separability is not equivalent toAC1,AC2 orAC3.

Using these observations, it is easy to prove the following proposition.

Proposition 16.9. Let % be a weak order on a denumerable setX =
∏n

i=1Xi. There exist
real-valued functionsui defined onXi and a real-valued functionU on

∏n
i=1 ui(Xi) such that

for all x, y ∈ X,

x % y ⇔ U(u1(x1), . . . , un(xn)) ≥ U(u1(y1), . . . , un(yn)) ≥ 0. (16.33)

FunctionU in equation (16.33) can be chosen to be:

1) non-decreasingin all its arguments if and only if% is weakly separable; and

2) increasingin all its arguments if and only if% is weakly independent.

Proof. We start with applying Cantor’s classical result [CAN 95]: any weak order% on a denu-
merable setX admits a numerical representation, i.e. there exists a function f : X → R such
thatx % y ⇔ f(x) ≥ f(y). In the general case, a factorization off asU(u1(x1), . . . , un(xn))
obtains, as in the proof of proposition 16.2(1), the following. We choose functionsui that sep-
arate the equivalence classes of%±

i (see condition (16.13):xi ∼±
i yi ⇔ u(xi) = ui(yi))

and we defineU settingf(x) = U(u1(x1), . . . , un(xn)). In the weakly separable and weakly
independent cases,ui will be a numerical representation of the marginal preference, the weak
order%i or the marginal trace%±

i which is equivalent here. We defineU as before. Combin-
ing the results of lemmas 16.4, 16.6 and 16.7 we show thatU is non-decreasing (respectively,
increasing) in each of its arguments.�

The non-denumerable case requires the adjunction of the usual hypothesis limiting the car-
dinality ofX and guaranteeing the existence of numerical representations for the weak orders
% and%i (order-density condition).

While the case of a representation with an increasing functionU is well known in the liter-
ature [KRA 71, theorem 7.1], the result in the case of non-decreasingU generalizes a theorem
obtained by [BLA 78] under the hypothesis thatX ⊆ Rn.
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16.3.8. Examples

Models (16.1), (16.3) and (16.6) enter into the framework ofour models using traces on
levels. Among them, the additive value function model (16.1) is the only one in which the
preference is a weak order. However, all three models have marginal traces%±

i that are weak
orders.

In contrast, in the additive non-transitive model (16.4), the marginal traces of the preference
relation are not necessarily complete. Postulating the latter condition in this model drives us
closer to Tversky’s additive differences model (16.3).

Let us briefly review the three models cited above, for the aimof illustration.

The additive value function model (16.1) belongs to model (L8), the more constrained of
our models based on levels. In addition, the preferences representable by an additive value
function are weak orders. In view of lemma 16.6, marginal traces and marginal preferences are
identical and are weak orders. The functionsui that appear in (16.1) are numerical representa-
tions of the marginal preferences (or traces). The preference reacts in a strictly positive way to
any progress of an alternative on any marginal trace.

Tversky’s additive differences model (16.3) tolerates intransitive preferences. Like the addi-
tive value function it belongs to the more constrained classof models (L8). Lemma 16.6 applies
also to this model, in which marginal traces and preferencesare identical; the functionsui that
appear in (16.3) are numerical representations of these marginal preferences (or traces). We
shall turn again to this model in section 16.5.2 since it is also based on the traces of differences
(represented by the functionsΦi).

Although the models based on levels are not the most adequatefor describing relations
obtained by outranking methods (a basic version of which is described by condition (16.6)),
such relations nevertheless possess marginal traces that are weak orders. The preference rela-
tions representable in model (16.6) belong to class (L5) or (L6). The asymmetric part of their
marginal preferences�i is usually empty. Indeed, the marginal preference on dimension j does
not discriminate at all between levels unless the weightpj of criterion j is ‘dominant’, i.e. if∑n

i=1 wi ≥ λ, while
∑

i;i6=j wi < λ.

At this stage, it may come as a surprise to see that the additive value function model and the
additive differences model belong to the same class (L8) of models on the levels. In particular,
for those models, there is no distinction between marginal preferences and traces. Does this
mean that the only interesting class of models on the levels is (L8), if we except the models
inspired by the majoritarian methods in Social Choice (suchas the ELECTREmethods)? If the
answer were positive, the more refined analysis made here (which consists of carefully distin-
guishing marginal traces from marginal preferences) wouldlose a great deal of its interest. As
well as the fact that our approach allows us to understand important issues such as the respect of
a dominance relation (section 16.3.5), there exist models that are both genuinely interesting and
cannot be described satisfactorily in terms of marginal preferences. Let us consider for instance
a preference% which is representable in an additive value function model with a threshold:

x � y ⇔ ∑n
i=1 ui(xi) ≥

∑n
i=1 ui(yi) + ε

x ∼ y ⇔
∣∣∑n

i=1 ui(xi)−
∑n

i=1 ui(yi)
∣∣ ≤ ε, (16.34)



Conjoint Measurement and preferences 619

whereε is a positive number representing a threshold above which a difference of preference
becomes noticeable; differences that do not reach this threshold escape perception and lead to
an indifference judgement (∼). The preferences% that can be described by such a model are
not weak orders but semiorders. The asymmetric part� of the preference is transitive, while
indifference∼ is not [LUC 56, PIR 97]. Such a model can be used e.g. for describing a statistical
test for the comparison of means (taking into account that, in this context, relation% should not
be interpreted as a preference but rather as a comparative judgement on two quantities). It is
impossible to analyze such a relation in terms of marginal preferences. Indeed, the latter can be
represented by

xi %i yi ⇔ ui(xi) ≥ ui(yi)− ε,

which implies that each marginal preference relation%i is a semiorder. Generally, marginal
traces are more discriminant. They are weak orders; if the set of alternatives is sufficiently rich
(it is the case, for instance, when the image setsui(Xi) are intervals of the real line), they
can be represented by the functionsui (i.e. xi %±

i yi ⇔ ui(xi) ≥ ui(yi)). In this model,
preference% is complete and its marginal traces are complete; hence it belongs to model (L7).
It is likely that the reason why such models have received little attention is related to the fact that
the dominant additive value function model does not requiretools more refined than marginal
preferences for its analysis. In the next section, we are interested in another fundamental tool
for analyzing preferences: traces on differences.

Before closing this section, there is a final issue to be discussed. In the last part of this
section, devoted to preferences that are weak orders (section 16.3.7), we distinguished weakly
separable and weakly independent weak orders. The reader may wonder if there are interesting
preference relations that are weak orders, weakly separable but not weakly independent. The
answer is definitely positive. Consider for instance the additive value function model (16.1) and
substitute the sum by a ‘minimum’ or a ‘maximum’ operator. Wethen obtain a weak order
that is weakly separable but not independent. Indeed, let(Xi) = [0, 10] andui(xi) = xi for
i = 1, 2. Preference% compares the alternatives only taking into consideration their ‘weak
point’, that isx % y if and only if min xi ≥ min yi. Clearly, marginal traces and marginal
preferences are identical and correspond to the usual orderof the real numbers of the interval
[0, 10]. Letx = (3, 5) andy = (7, 3); we havex ∼ y, but preference% does not strictly react
if e.g. we raise the level ofx on the second dimension. Even if we setx2 to 10, we still have
(3, 10) indifferent to(7, 3).

Other decision rules of practical importance, such as ‘LexiMin’ or ‘LexiMax’, the Choquet
integral, the Sugeno integral (see section 17.5) lead in general to weak orders that are weakly
separable but not weakly independent.

16.4. Models using marginal traces on differences

In this section we study preference models obtained in a similar manner to those in the pre-
vious section; we simply substitute marginal traces on levels by marginal traces on differences.
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16.4.1. Models definition

We start from the trivial model (D0) based on marginal traces and introduced in sec-
tion 16.2.5, in which:

x % y ⇔ G([pi(xi, yi)]) ≥ 0.

We define the following variants:

– model (D1), by imposing thatpi(xi, xi) = 0 on (D0);

– model (D2), by imposing that eachpi is antisymmetric, i.e.pi(xi, yi) = −pi(yi, xi), on
(D1); and

– model (D3), by imposing thatG is odd, i.e.G(x) = −G(−x), on (D2).

In the same way as in section 16.3, we also consider the modelsobtained by assuming in
each variant (D0), (D1), (D2) and (D3), thatG is non-decreasing or increasing in each of its
n arguments which yields twelve models as defined in Table 16.2.

(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0
(D1) (D0) with pi(xi, xi) = 0
(D2) (D1) with pi(xi, yi) = −pi(yi, xi)
(D3) (D2) with G odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D4) (D0) with G non-decreasing
(D8) (D0) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D5) (D1) with G non-decreasing
(D9) (D1) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D6) (D2) with G non-decreasing
(D10) (D2) with G increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(D7) (D3) with G non-decreasing
(D11) (D3) with G increasing

Table 16.2.Models using traces on differences

There are obvious implications linking these models; we do not detail them. As well as
these implications, the properties ofG in models (D1), (D2) and (D3) entail simple properties
of the relations representable in these models. We shall lean on these properties to characterize
the models.

Proposition 16.10. Characterization of (D1), (D2) and (D3)
A binary relation% on a product setX =

∏n
i=1Xi having at most the cardinality ofR can be

represented in
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1) model (D1) or model (D2) if and only if% is independent; and

2) model (D3) if and only if% is independent and complete.

Proof. Part (1). We havepi(xi, xi) = 0 in model (D1), which implies that(xi, a−i) %
(xi, b−i) ⇔ G(0, (pj(aj , bj))j 6=i) ≥ 0 ⇔ (yi, a−i) % (yi, b−i). As a consequence,% is
independent as soon as% is representable in model (D1).

Assume conversely that% is independent and let us construct a representation of% in model
(D2). We reconsider the construction of a representation described in the proof of part (2) of
proposition 16.2, and slightly modify it. The alteration isrelated to the specification of func-
tions pi. These functions separate the equivalence classes of∼∗∗

i : (xi, yi) ∼∗∗
i (zi, wi) ⇔

pi(xi, yi) = pi(zi, wi). Nothing prevents us from imposing onpi the verification ofpi(xi, xi) =
0 for a certainxi ∈ Xi. Since% is independent,(xi, xi) ∼∗∗

i (yi, yi) for all yi ∈ Xi

and hencepi(yi, yi) = 0 for all yi ∈ Xi. We can also impose onpi the verification of
pi(xi, yi) = −pi(yi, xi). Finally,G can be defined by equation (16.16) in the same way as
for the trivial model, i.e.

G([pi(xi, yi)]) =

{
+1 if x % y,
−1 otherwise.

Clearly,G is well-defined and yields a representation of% in model (D2).

Part (2). The completeness of% is a direct consequence of the definition of model (D3);
since model (D3) implies model (D1), % is independent. Reciprocally, let us assume that% is
independent and complete. If this is the case, we use the samefunctionspi as in part (1), but we
change the definition ofG as follows:

G([pi(xi, yi)]) =





+1 if x � y,
0 if x ∼ y,
−1 otherwise.

(16.35)

We show, using independence of% thatG is well defined. Since% is complete, functionG is
odd.�

The monotonicity properties ofG are linked with specific axioms, rather similar to those
defined in section 16.3.2. We introduce them in the next section.

16.4.2. Completeness of marginal traces on differences and monotonicity of G

There are two axioms for each attributei. As with AC1, AC2 andAC3, these axioms
appear as cancelation conditions. Their denomination,RC1,RC2 recalls the fact that they are
‘inteR-Criteria’ cancelation conditions.
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Definition 16.8. ConditionsRC1 andRC2
Let % be a binary relation on the setX =

∏n
i=1Xi. We say that this relation satisfies axiom:

RC1i if
(xi, a−i) % (yi, b−i)

and
(zi, c−i) % (wi, d−i)



 ⇒





(xi, c−i) % (yi, d−i)
or
(zi, a−i) % (wi, b−i),

andRC2i if
(xi, a−i) % (yi, b−i)

and
(yi, c−i) % (xi, d−i)



 ⇒





(zi, a−i) % (wi, b−i)
or
(wi, c−i) % (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and for alla−i, b−i, c−i, d−i ∈ X−i. We say that% satisfiesRC1
(respectively,RC2) if it satisfiesRC1i (respectively,RC2i) for all i ∈ {1, . . . , n}. We shall
sometimes useRC12 for the conjunction of conditionsRC1 andRC2.

ConditionRC1i suggests that(xi, yi) corresponds to a difference of preference at least
as large as(zi, wi) or vice versa. It is easily seen that assuming both Not(xi, yi) %∗

i (zi, wi)
and Not(zi, wi) %∗

i (xi, yi) leads to a violation ofRC1i. From this we can see thatRC1i is
equivalent to the completeness of%∗

i . The second axiom,RC2i, suggests that the ‘opposite’
differences(xi, yi) and(yi, xi) are linked. In terms of the marginal trace on differences%∗

i ,
this axiom tells us if the preference difference betweenxi andyi is not at least as large as that
betweenzi andwi, then the difference betweenyi andxi is at least as large as that betweenwi

andzi.

These observations are collected in the next lemma whose proof immediately results from
the definitions and is omitted.

Lemma 16.8. Completeness of the traces on differences
We have:

1) [%∗
i is complete] if and only ifRC1i;

2) RC2i if and only if[for all xi, yi, zi, wi ∈ Xi, Not (xi, yi) %∗
i (zi, wi)⇒ (yi, xi) %∗

i

(wi, zi)]; and

3) [%∗∗
i is complete] if and only if[RC1i andRC2i].

ConditionRC1 has been introduced in [BOU 86] under the nameweak cancelation. The
extension of conditionRC1 to subsets of attributes (instead of singletons) is of fundamental
importance in [VIN 91] where this condition receives the name of independence. Condition
RC2 was first proposed in [BOU 99, BOU 97, BOU 09].

We note below two easy yet important consequences ofRC1 andRC2 [BOU 05b].

Lemma 16.9. Consequences ofRC1 andRC2
We have the following:

1) if % satisfiesRC1i then% is weakly separable fori; and

2) if % satisfiesRC2 then% is independent and either reflexive or irreflexive.
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AxiomsRC1 andRC2 allow us to analyze all the remaining models with the exception of
the more constrained model (D11). We observe that the properties of non-decreasingness and
increasingness with respect to the traces on differences donot lead to different models except
in the more constrained case (models (D7) and (D11)).

Proposition 16.11. Characterization of models (D4) to (D10)
A binary relation% on a denumerable setX =

∏n
i=1Xi can be represented in

1) model (D4) or model (D8) if and only if% satisfiesRC1;

2) model (D5) or model (D9) if and only if% is independent and satisfiesRC1;

3) model (D6) or model (D10) if and only if% satisfiesRC1 andRC2;

4) model (D7) if and only if% is complete and satisfiesRC1 andRC2.

Proof. Part (1). Model (D4) verifiesRC1. Assume that(xi, a−i) % (yi, b−i) and(zi, c−i) %
(wi, d−i). Using model (D4) we have:

G(pi(xi, yi), (pj(aj , bj))j 6=i) ≥ 0 and

G(pi(zi, wi), (pj(cj , dj))j 6=i) ≥ 0.

If pi(xi, yi) ≥ pi(zi, wi) then, using the non-decreasingness ofG, we obtainG(pi(xi, yi),
(pj(cj , dj))j 6=i) ≥ 0, hence(xi, c−i) % (yi, d−i). If pi(zi, wi) > pi(xi, yi), we have
G(pi(zi, wi), (pj(aj , bj))j 6=i) ≥ 0, hence(zi, a−i) % (wi, b−i). Consequently,RC1 is veri-
fied.

The second part of the proof constructs a representation in model (D8) of a relation% pro-
vided it verifiesRC1. UsingRC1, we know that%∗

i is a weak order. As functionpi, we choose
a numerical representation of%∗

i (which exists sinceXi has been supposed to be denumerable):
(xi, yi) %∗

i (zi, wi)⇔ pi(xi, yi) ≥ pi(zi, wi).We then defineG onpi(X
2
i ) as follows:

G([pi(xi, yi)]) =

{
+ exp(

∑n
i=1 pi(xi, yi)) if x % y,

− exp(−∑n
i=1 pi(xi, yi)) otherwise.

(16.36)

We see thatG is well defined using lemma 16.2(3) and the definition of thepi. To show that
G is increasing, let us assume thatpi(zi, wi) > pi(x,i , yi), i.e. that(zi, wi) �∗

i (xi, yi). If
x % y, lemma 16.2(2) implies that(zi, x−i) % (wi, y−i) and the conclusion follows from
the definition ofG. If Not x % y, we have either Not(zi, x−i) % (wi, y−i) or (zi, x−i) %
(wi, y−i). In both cases the conclusion follows from the definition ofG.

Part (2). Since model (D5) implies models (D1) and (D4), the necessity of the indepen-
dence condition and ofRC1 is straightforward. Under these hypotheses, we can build a repre-
sentation of% in model (D9), as in part (1), with the exception that we require thatpi verifies
pi(xi, xi) = 0 (which is made possible as a consequence of the independenceproperty; see
lemma 16.2(1)).

Part (3). We readily check that if% is representable in model (D6), it satisfiesRC1 and
RC2. ForRC1, it is a consequence of the fact that model (D6) implies model (D4). ForRC2,
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we can proceed as for part (1) forRC1. The necessity of conditionsRC1 andRC2 is thus
proven.

Under the hypothesis that% satisfiesRC1 andRC2, we can construct a representation of
% in model (D10) as follows. By lemma 16.8(3), we know that relations%∗

i and%∗∗
i are weak

orders. Since setsXi are supposed to be denumerable, there exist functionsqi : Xi → R that
represent%∗

i ; we choose one such function for eachi and we definepi throughpi(xi, yi) =
qi(xi, yi) − qi(yi, xi). It is clear that these functionspi are antisymmetric and provide nu-
merical representations of relations%∗∗

i . Using these functionspi, we defineG through equa-
tion (16.36). Lemma 16.2(5) shows that this definition makessense. To show thatG is increas-
ing, let us assume thatpi(zi, wi) > pi(xi, yi), i.e. that(zi, wi) �∗∗

i (xi, yi). This construction
implies that(zi, wi) %∗

i (xi, yi). The increasingness ofG can then be proven as in part (1).

Part (4). The necessity of the completeness of% results from proposition 16.10(2) and from
the fact that model (D7) implies model (D3). The necessity ofRC1 andRC2 is a consequence
of the fact that model (D7) implies model (D6) and of part (3). Making these hypotheses on%,
a representation of% in model (D7) is obtained as for model (D10). The only difference lies
in the definition of functionG. We defineG as follows:

G([pi(xi, yi)]) =





+exp(
∑n

i=1 pi(xi, yi)) if x � y,
0 if x ∼ y,
− exp(−∑n

i=1 pi(xi, yi)) otherwise.

(16.37)

Since% is complete,G is odd;G is well defined as a consequence of the definition of thepi

and of lemma 16.2(5). It is non-decreasing due to lemma 16.2,parts (2) and (4).�

16.4.3. Characterization of model (D11)

Distinguishing between models (D7) and (D11) requires the introduction of a new axiom.
It is similar to axiomsTAC1 andTAC2, introduced in section 16.3.2, for studying the models
based on traces on levels. Here, axiomTC will only deliver its full power for complete prefer-
ences. It is useful for characterizing the model in which increasingness with respect to marginal
traces on differences is distinguished from non-decreasingness.

Definition 16.9. ConditionTC
Let % be a binary relation on the setX =

∏n
i=1Xi. We say that this relation satisfies axiom:

TCi if
(xi, a−i) % (yi, b−i)

and
(zi, b−i) % (wi, a−i)

and
(wi, c−i) % (zi, d−i)




⇒ (xi, c−i) % (yi, d−i),

for all xi, yi, zi, wi ∈ Xi and for alla−i, b−i, c−i, d−i ∈ X−i. We say that% satisfiesTC if
it satisfiesTCi for all i ∈ {1, . . . , n}.

ConditionTCi (Triple Cancelation) is a classical cancelation condition that has often been
used [KRA 71, WAK 89] in the analysis of the additive value function model (16.1) or the
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additive utility model. In the next lemma, we state without proof two properties involvingTC.
See [WAK 88, WAK 89] for a detailed analysis of this axiom, including its interpretation in
terms of differences of preference.

Lemma 16.10. Strict monotonicity with respect to traces on differences

1) If % is complete,TCi impliesRC1i andRC2i.

2) If % is complete and verifiesTCi, we have:[x % y and(zi, wi) �∗∗
i (xi, yi)] ⇒

(zi, x−i) � (wi, y−i).

The second of the above properties clearly underlines thatTC is related to the strict mono-
tonicity of % with respect to its traces%∗∗

i (as soon as% is complete). It shows thatTC is the
missing link that will allow us to characterize model (D11).

Proposition 16.12. Characterization of model (D11)
A binary relation% on a denumerable product setX =

∏n
i=1Xi is representable in model

(D11) if and only if% is complete and satisfiesTC.

Proof. The necessity of these conditions is straightforward. Assuming that% is complete and
verifiesTC, we obtain by lemma 16.10(1) that% verifiesRC1 andRC2. We thus definepi

andG as in the proof of part (4) of proposition 16.11. The increasingness ofG is a consequence
of lemma 16.10(2).�

For the reader’s convenience, we summarize the characterization of all the models based on
marginal traces on differences in Table 16.3.

16.4.4. Remarks

16.4.4.1.Goldstein’s model

Models (D8) and (D4) were introduced by Goldstein [GOL 91] as particular cases of his
‘decomposable model with thresholds’; the equivalence of models (D8) and (D4) had been
noticed.

16.4.4.2.Marginal preferences

Which role is played by marginal preferences%i in the models based on traces on differ-
ences? They certainly do not play a central role but some monotonicity properties linking them
to the global preference% can nevertheless be established. We present some of them, without
proof, in the next proposition.

Proposition 16.13. Properties of models using differences

1) If % is representable in model (D5) then: [xi �i yi for all i]⇒ Noty % x.

2) If % is representable in model (D6) then:
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Model Definition Conditions
(D0) x % y ⇔ G([pi(xi, yi)]) ≥ 0 ∅

. . . . . . . . . . . . . . . . . . . . . . . . . .
(D1) (D0) with pi(xi, xi) = 0
m independent
(D2) (D0) with pi antisymmetric

. . . . . . . . . . . . . . . . . . . . . . . . . .
(D3) (D0) with pi antisymmetric complete, independent

andG odd
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D8)⇔ (D4) (D0) with G(↗↗) RC1
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D9)⇔ (D5) (D1) with G(↗↗) RC1, independent
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D10)⇔ (D6) (D2) with G(↗↗) RC12
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D7) (D3) with G(↗) complete,RC12
. . . . . . . . . . . . . . . . . . . . . . . . . .

(D11) (D3) with G(↗↗) complete,TC

Table 16.3.Characterization of the models using traces on differences(↗: non-decreasing,
↗↗: increasing)

- %i is complete; and
- [xi �i yi for all i]⇒ [x % y].

3) If % is representable in model (D11) then:
- [xi %i yi for all i]⇒ [x % y]; and
- [xi %i yi for all i and there existsj ∈ {1, . . . , n} such thatxj �j yj ]⇒ [x � y].

The reader might feel somewhat disappointed while looking at the monotonicity proper-
ties of our models, except for model (D11). One must however keep in mind that we address
preferences that are not necessarily transitive or complete. In such a framework, properties that
could be seen as natural requirements for preferences couldsimply be undesirable. For example,
when the marginal indifference relations∼i are not transitive, it may be inadequate to require a
property such as:

[xi ∼i yi for all i]⇒ [x ∼ y].

Were such a property verified, it would forbid that tiny but actual differences on several criteria,
none of which yield a preference when taken separately, could interact or ‘cooperate ’ and
yield global preference. Let us consider, for example, comparing tripletsx = (x1, x2, x3)
of numbersxi belonging to the[0, 1] interval. We decide to compare these triplets using the
following majoritarian method:x % y if and only if xi ≥ yi for at least 2 values of indexi
out of 3. We clearly have, on each dimensioni, that%i=∼i i.e. that there is no strict marginal
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preference, all pairs of levels being indifferent. Indeed,(xi, z−i) ∼ (yi, z−i) for all xi, yi and
z−i. However, the global preference relation% is not reduced to indifference between all pairs
of triplets (for example,1 %i 0 for all i = 1, 2, 3, but(1, 1, 1) � (0, 0, 0)).

For broader views on this topic, see [GIL 95] or [PIR 97]. As emphasized in section 16.3,
marginal preferences are not a sufficiently refined tool to analyze preferences that are not nec-
essarily transitive or complete; we have to use the marginaltraces%±

i instead. In the example
introduced above, the traces%±

i are, on each dimensioni, the natural order on the[0, 1] inter-
val. The monotonicity properties of the preference with respect to marginal traces have been
described in lemmas 16.1 and 16.5(4).

16.4.4.3.Uniqueness of the representation

Regarding the models on levels, the uniqueness properties of the representations described
in propositions 16.11 and 16.12 are quite weak. In model (D8), for instance, we may always
take any numerical representation of the weak order%∗

i (at least, in the finite or countable case)
for pi(xi, yi). Regarding the models on levels, we shall call a representation in whichpi is a
numerical representation of%∗

i , for all i, regular. Other choices can be made, but it is necessary
(and sufficient) thatpi satisfies the condition:

(xi, yi) �∗
i (zi, wi)⇒ pi(xi, yi) > pi(zi, wi). (16.38)

In other terms, the chosen numerical representation must beat least as discriminant as re-
lation�∗

i . In more constrained models such as (D7) or (D10), a similar condition, involving
�∗∗

i instead of�∗
i , is needed. For more details, see [BOU 05b, lemma 5.5].

16.4.5. Examples

Among all the models described in the introduction, the onlyone that does not use traces
on differences is the decomposable model (16.2), since thismodel aggregates the levels of each
alternative independently of other alternatives. We briefly review the other models.

Let us start with the additive non-transitive preference model (16.4), which we recall here:

x % y ⇔
n∑

i=1

pi(xi, yi) ≥ 0.

If we do not assume any property of functionspi, the appropriate model is (D8) (equivalent
to (D4)); thepi functions represent the traces%∗

i that are weak orders; and functionG, which
reduces to addition of itsn components, is strictly increasing. Assuming additional properties
of functionspi, such aspi(xi, xi) = 0 or antisymmetry, leads us to models (D9) (equivalent to
(D5)) and (D11), respectively. In the latter model,pi represents the weak order%∗∗

i instead of
representing%∗

i (functionG is odd).

Tversky’s model of additive differences (16.3) is a particular case of the latter model. Func-
tionspi reduce to algebraic differencesui(xi)− ui(yi) of marginal value functions that repre-
sentant the traces on levels. This is therefore a model whichis based both on traces on differ-
ences and on traces on levels. Such models will be investigated in the next section.
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Rewriting the additive value function model (16.1) as

x % y ⇔
n∑

i=1

(ui(xi)− ui(yi)) ≥ 0,

we observe that it is a particular case of the additive differences model, in which functionsΦi

reduce to identity. The differences of marginal value functions(ui(xi)− ui(yi)) represent the
traces%∗∗

i .

The additive value function model sharply differentiates differences of preference since
each value of the difference(ui(xi) − ui(yi)) corresponds to a specific equivalence class of
relation%∗∗

i . In contrast, outranking methods obtained by means of condition (16.6) distinguish
differences of preference in a very rough manner. In the caseof the majoritarian model (16.6),
pi represents%∗

i and distinguishes only two classes of differences of preference, as shown
by equation (16.7). Either difference(xi, yi) is ‘positive’, in which case the whole weight of
criterioni is assigned to this difference (diminished by a fraction of the majority threshold), or
else this difference is ‘negative’ in which case it counts for nothing. Notice that equation (16.7)
provides a representation of the preference obtained by themajoritarian method in model (D8)
while the properties of such a preference would allow it to berepresented in model (D10).
Relations%∗∗

i have three equivalence classes and can be represented by function:

pi(xi, yi) =





wi if xi > yi

0 if xi = yi

−wi if xi < yi.
(16.39)

We then defineG as:

G(p1, . . . , pn) = 1−
∑

i:pi<0

pi − λ. (16.40)

Using this representation, we obtain the same relation as that defined by condition (16.6). In-
deed, assuming normalized weights (

∑
wi = 1), we see thatG computes (in a somewhat

bizarre way) the sum of the weights of the criteria in which difference(xi, yi) is ‘positive’,
diminished by thresholdλ.

These elementary observations open the way to a characterization of majoritarian methods
within the framework of model (D10). These methods are characterized by traces on differences
%∗∗

i that distinguish no more than three classes of differences of preference [BOU 01, BOU 05a,
BOU 07].

The ELECTREmethods, as they appear in literature [ROY 68, ROY 73, ROY 91,ROY 93],
involve an additional element with respect to pure majoritarian methods. In order to decide
whetherx is preferred toy (x ‘outranks’ y), we ‘weigh’ the arguments in favor ofx which
corresponds to the majoritarian model (16.6). If this weight is large enough, we then verify that
no ‘strong argument’ opposes the statement thatx is preferred toy. By ‘strong argument’, we
mean a difference(xi, yi) on some criterioni that is ‘very negative’, in disfavor ofx. If xi and
yi represent numerical assessments of alternatives on criterion i, a ‘very negative difference’
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may for instance result from trespassing a thresholdνi, calledveto threshold; we cannot state
thatx is preferred toy if, on at least one criterioni, we have:

xi < yi − νi.

We observe that the idea of a ‘very negative difference’ introduced a third class of preference
differences in%∗

i , corresponding to a ‘veto’. Relations%∗
i can therefore be represented by

pi(xi, yi) =





wi if xi ≥ yi

0 if yi − νi ≤ xi < yi

−M if xi < yi − νi,
(16.41)

whereM is a large positive number. We defineG as:

G(p1, . . . , pn) =
∑

i

pi − λ. (16.42)

We easily verify thatx % y if and only if the sum of the weights of the criteria on whichx is
at least as good asy passesλ and there is no criterion on which the level ofx goes beyond that
of y by more than the veto threshold (the value assigned to−M is such that it prevents theλ
threshold being reached as soon as it appears in any of the termspi).

A relation% obtained through the above-definedmajoritarian rule with vetocan be repre-
sented in model (D10). Relations%∗

i distinguish at most three classes of preference differences;
relations%∗∗

i at most five. Such preference relations can be fully characterized within model
(D10) [BOU 08, GRE 01a].

These examples show that models using traces on differencesare well suited for describing
and understanding outranking methods. We shall return to these models at the end of the follow-
ing section where we shall show how relations obtained by comparing differences can generally
be related to the description of the alternatives by levels on attributes. (We have assumed above
that theXi are sets of real numbers endowed with their natural order which was supposed to be
compatible with the decision maker’s preferences).

16.5. Models using both marginal traces on levels and on differences

After studying models based on marginal traces on levels andthose based on marginal traces
on differences in the previous sections, it is quite naturalto discuss models based on both types
of traces. This is done by expressing the differences of preference in terms of the traces on the
levels.

We recall the definition of the general model (L0D0) presented in section 16.1.1; in this
model, the preference relation% is defined as follows:

x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0. (L0D0)
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This model can be seen as a particular case of model (D0), in which functionspi(xi, yi)
have been substituted by functionsϕi(ui(xi), ui(yi)). It is also possible to view it as a gener-
alization of the additive differences model (16.3) in whichthe simple addition and subtraction
operations have been substituted by general, appropriately monotonic, functions.

A model in whichpi(xi, yi) is substituted byϕi(ui(xi), ui(yi)) corresponds to each of the
twelve models (D0) to (D11) studied in section 16.3, without imposing any additional property.

This allows us to define models (L0D0) to (L0D11). These ‘new’ models have in fact very
little interest since they are equivalent (if the cardinality of the set of alternativesX is not larger
than that of the real numbers) to the corresponding models based on traces on differences (D0)
to (D11). They simply provide another representation of the same models. Indeed, starting with
a given functionpi(xi, yi) defined onXi ×Xi, it is always possible to factorize it by means of
a real-valued functionui defined onXi. The only condition thatui must fulfill is to separate the
elements ofXi that belong to different equivalence classes of the marginal trace%±

i . Notice
that we do not assume the completeness of the traces on levels%±

i (at the moment). More
formally, the functionsui must verify the following condition:

ui(xi) = ui(yi) ⇒ xi ∼±
i yi.

For any functionui satisfying this basic requirement and for any given function pi, we define
unambiguously the functionϕi on subsetui(Xi)× ui(Xi) of R2 by setting:

pi(xi, yi) = ϕi(ui(xi), ui(yi)).

Consequently, starting from any representationG([pi(xi, yi)]) of a relation% in one of
the models based on traces on differences, we automaticallyobtain a representation of this
relation in the corresponding model based on traces on differences and levels. This is done by
substitutingpi(xi, yi) by the functionϕi(ui(xi), ui(yi)) we have just defined. Let us note that
functionH is identical toG. Notice also that this substitution can be done without problem
only when the cardinality ofX does not exceed that ofR, and if no additional requirement is
imposed onϕi. At this stage, we do not even assume thatϕi is monotonic in its two arguments.

To makeϕi more similar to subtraction, we consider two variants of each of the twelve
models (L0D0) to (L0D11). In the first variant we impose thatϕi is non-decreasing in its first
argument and non-increasing in its second argument. This leads to models (L1D0) to (L1D11).
In the other variant, we impose that functionsϕi must be increasing in their first argument and
decreasing in their second argument. This yields models (L2D0) to (L2D11).

In summary, we have now defined3 × 12 = 36 new models (see Table 16.4) using both
marginal traces on levels and marginal traces on differences. Skipping the first twelve models
that are not interesting as already mentioned, we study the others in the rest of this section after
discussing the relationships between traces on differences and traces on levels.
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(L0D0) x % y ⇔ H([ϕi(ui(xi), ui(yi))]) ≥ 0
(L0D1) (L0D0) with ϕi(u(xi), ui(xi)) = 0
(L0D2) (L0D1) with ϕi antisymmetric
(L0D3) (L0D2) with H odd

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D4) (L0D0) with H non-decreasing
(L0D5) (L0D0) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D6) (L0D1) with H non-decreasing
(L0D7) (L0D1) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D8) (L0D2) with H non-decreasing
(L0D9) (L0D2) with H increasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(L0D10) (L0D3) with H non-decreasing
(L0D11) (L0D3) with H increasing

Table 16.4.Models based both on traces on levels and on differences. Models (L1Dx)
correspond to models (N0Dx) whereϕi(↗,↘); models (L2Dx) correspond to models

(L0Dx) whereϕi(↗↗,↘↘)

16.5.1. Relationships between traces on differences and on levels

The traces on differences%∗
i and%∗∗

i are binary relations on the product setXi ×Xi. We
may define their own traces on levels in the usual way. For%∗

i , we denote

– the left (respectively, right, left-right) trace on the first dimension by(%∗
i )

+
1 (respectively,

(%∗
i )

−
1 , (%∗

i )
±
1 );

– the left (respectively, right, left-right) trace on the second dimension by(%∗
i )

+
2 (respec-

tively, (%∗
i )

−
2 , (%∗

i )
±
2 ).

Their definition is a straightforward transposition of definition 16.3 applied to%∗
i instead of%

as follows.

Definition 16.10. Left and right traces of the traces on differences
Let % be a preference relation on the product setX and%∗

i its trace on differences relative to
theith dimension. The traces of%∗

i are defined as follows. For allxi, yi ∈ Xi,

1) xi (%∗
i )

+
1 yi if ∀si, ti, zi ∈ Xi, (yi, si) %∗

i (zi, ti)⇒ (xi, si) %∗
i (zi, ti);

2) xi (%∗
i )

−
1 yi if ∀si, ti, zi ∈ Xi, (zi, ti) %∗

i (xi, si) ⇒ (zi, ti) %∗
i (yi, si);

3) xi (%∗
i )

+
2 yi if ∀si, ti, zi ∈ Xi, (si, yi) %∗

i (ti, zi) ⇒ (si, xi) %∗
i (ti, zi);

4) xi (%∗
i )

−
2 yi if ∀si, ti, zi ∈ Xi, (ti, zi) %∗

i (si, xi) ⇒ (ti, zi) %∗
i (si, yi).

The traces of%∗∗
i are defined similarly.
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Are there relationships between these traces and the traceson levels of%? The answer is
positive as suggested by lemma 16.3. Referring to definitions 16.2 and 16.3 of%+

i ,%
−
i and%∗

i ,
it is easy to see that the traces on levels%+

i and%−
i can be defined in terms of%∗

i as follows:

xi %+
i yi if and only if ∀zi ∈ Xi, (xi, zi) %∗

i (yi, zi)
xi %−

i yi if and only if ∀wi ∈ Xi, (wi, yi) %∗
i (wi, xi).

(16.43)

This means that%+
i and the inverse of relation%−

i , (%−
i )−1, can be interpreted as the

marginal relations of relation%∗
i defined onXi ×Xi: they play the same role with respect to

%∗
i as that played by the marginal preferences%i with respect to%.

The following result can easily be proven using lemma 16.3(5–8).

Proposition 16.14. For all i ∈ N , for all xi, yi ∈ Xi we have:

1) xi %+
i yi if and only if xi (%∗

i )
+
1 yi if and only if xi (%∗

i )
−
1 yi if and only if

xi (%∗
i )

±
1 yi; and

2) xi %−
i yi if and only ifyi (%∗

i )
+
2 xi if and only ifyi (%∗

i )
−
2 xi if and only ifyi (%∗

i )
±
2 xi.

As a consequence,%±
i =%+

i ∩ %−
i is the intersection of the (left-right trace) of%∗

i on the
first dimension,(%∗

i )
±
1 , and the inverse of the (left-right) trace of%∗

i on the second dimension
(%∗

i )
±
2 :

xi %±
i yi if and only if xi (%∗

i )
±
1 yi andyi (%∗

i )
±
2 xi. (16.44)

Regarding%∗∗
i , it is not difficult to see that its left-right trace on the first dimension is

identical to%±
i , while its left-right trace on the second dimension is the inverse of%±

i , (%
±
i )−1.

We emphasize that these observations are true without making any hypothesis on traces;
in particular, they are true even if traces are incomplete. In the case where%∗

i is a weak order
(hence, when% satisfies axiomRC1i), we may apply proposition 16.9 to%∗

i . This relation
therefore admits a numerical representation of the type

(xi, yi) %∗
i (zi, wi) if and only ifϕi(ui(xi), ui(yi)) ≥ ϕi(ui(zi), ui(wi)),

whereui is a function that separates the equivalence classes of the traces of%∗
i . In view of

equation (16.44) we can take a function that separates the equivalence classes of%±
i for ui.

The fact that%∗
i is a weak order on the product setXi × Xi, i.e. a product of a set by itself,

allows us to use the same functionui on both dimensions.

Assume that%∗
i is weakly separable (since the product set on which%∗

i is defined has
only two dimensions, ‘weakly separable’ is equivalent to ‘separable’ and ‘weakly independent’
is equivalent to ‘independent’). Using the rest of proposition 16.9, we can build a numerical
representation of%∗

i by a functionψi(vi1(xi), vi2(yi)), wherevi1 is a numerical representation
of the trace(%∗

i )
±
1 , vi2 is a numerical representation of the trace(%∗

i )
±
2 andψi is a function of

two variables that is non-decreasing in both variables.
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Since%+
i = (%∗

i )
±
1 and%−

i = ((%∗
i )

±
2 )−1, we can alternatively represent%∗

i byφi(ui1(xi),
ui2(yi)), whereui1 is a numerical representation of%+

i , ui2 is a numerical representation of
%−

i andφi is a function of two variables that is non-decreasing in its first variable and non-
increasing in the second. (We can take, for instance,ui1 = vi1, ui2 = −vi2 andφi = ψi.)
The latter opens the door to a representation of%∗

i by a functionϕi(ui(xi), ui(yi)), with the
same functionui on both dimensions. Indeed, as soon as%+

i and%−
i are not incompatible, i.e.

as soon as%±
i is a weak order, we can use forui a numerical representation of the weak order

%±
i .

The case of%∗∗
i is simpler. As above, its trace on the first dimension is%±

i and on the
second dimension is(%±

i )−1. Hence, as soon as%∗∗
i is a weakly separable weak order and%+

i

a weak order, we can build a representation of%∗∗
i of the typeϕi(ui(xi), ui(yi)), whereui is

a numerical representation of the weak order%±
i andϕi is non-decreasing in its first argument

and non-increasing in its second one.

In the framework of our models, it is on% that we have to determine conditions which
guarantee the separability or the independence of%∗

i or%∗∗
i . Separability conditions for%∗

i and
%∗∗

i are stated in the following proposition. In contrast (and this may sound strange initially)
the independence of%∗∗

i is a consequence of none of our models, even the more constrained
model (L2D11). We shall discuss this issue after we prove proposition 16.15 below.

Proposition 16.15. If Xi is denumerable and% verifiesAC123i andRC1i, then%∗
i is a

separable weak order onX2
i and any numerical representationpi(xi, yi) of %∗

i factorizes into

pi(xi, yi) = ϕi(ui(xi), ui(yi)), (16.45)

whereui is a numerical representation of weak order%±
i and ϕi is a function defined on

ui((Xi)
2), non-decreasing in its first argument and non-increasing inits second one.

If, in addition,% satisfiesRC2i, the same can be said of relation%∗∗
i and of its numerical

representations.

Proof. We know that% verifiesRC1i if and only if %∗
i is a complete weak order onX2

i . This
weak order is separable if, for allxi, yi, zi, wi in Xi, neither of the following conjunctions
occurs:

1) (xi, zi) �∗
i (yi, zi) and(yi, wi) �∗

i (xi, wi)

2) (zi, xi) �∗
i (zi, yi) and(wi, yi) �∗

i (wi, xi).

Since%∗
i is a complete relation, forbidding conjunction (1) is equivalent to ensuring that:

(xi, zi) %∗
i (yi, zi)

and
(yi, wi) %∗

i (xi, wi)



⇒





(yi, zi) %∗
i (xi, zi)

or
(xi, wi) %∗

i (yi, wi).

We know that%±
i is the intersection of the first trace(%∗

i )
±
1 of %∗

i and of the inverse of its
second trace(%∗

i )
±
2 . Since% verifiesAC123i, %±

i is a weak order. As a consequence, either
xi %±

i yi or yi %±
i xi. In the former case, starting from(yi, wi) %∗

i (yi, wi) and using
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definition (16.43), we obtain(xi, wi) %∗
i (yi, wi). In the latter case, starting from(xi, zi) %∗

i

(xi, zi), we obtain(yi, wi) %∗
i (xi, wi).

We can show that conjunction (2) is also false in a similar way.

Let pi(xi, yi) andui(xi) be any numerical representation of the weak orders%∗
i and%±

i ,
respectively. Using the above conclusions, we verify directly that setting

ϕi(ui(xi), ui(yi)) = pi(xi, yi)

defines unambiguously a functionϕi onui(Xi)
2 and that this function is non-decreasing in its

first argument and non-increasing in its second one.

Regarding%∗∗
i , the same considerations apply as soon as%∗∗

i is a weak order, which is
ensured byRC2i. �

Let us now consider model (L2D11). It is straightforward that any preference% repre-
sentable in this model is complete and satisfiesTAC12 andTC. Hence, using lemmas 16.5(3),
16.5(4) and 16.10(2), we know that such a preference reacts in a strictly positive manner both
to the traces on levels and to the traces on differences, i.e.if (yi, a−i) % (zi, b−i), then

xi �+
i yi ⇒ (xi, a−i) � (zi, b−i),

zi �−
i wi ⇒ (yi, a−i) � (wi, b−i)

and (xi, zi) �∗
i (yi, zi) ⇒ (xi, a−i) � (zi, b−i).

We cannot deduce from this, however, thatxi �+
i yi ⇒ (xi, si) �∗

i (yi, si) for all levels
si or thatzi �−

i wi ⇒ (ti, wi) �∗
i (ti, zi) for all levelsti. In the former case (the other case

being similar), for some levelssi, it may indeed occur that comparing the difference(xi, si)
to the difference(yi, si) does not reveal thatxi is at a higher level thanyi. One situation in
which the higher level ofxi is certainly revealed is the following. If there exista−i, b−i ∈
X−i, such that(yi, a−i) ∼ (si, b−i) then, using the strict monotonicity of% with respect
to %+

i , we have(xi, a−i) � (si, b−i) hence(xi, si) �∗
i (yi, si). If such a situation never

occurs, it may happen that for alla−i, b−i ∈ X−i we always have either(yi, a−i) � (si, b−i)
and (xi, a−i) � (si, b−i) or Not[(yi, a−i) % (si, b−i)] and Not[(xi, a−i) % (si, b−i)]. In
such a case,(xi, si) ∼∗

i (yi, si) while this is not in contradiction withxi �+
i yi [BOU 04a,

example 17].

Conditionxi �±
i yi ⇒ (xi, wi) �∗

i (yi, wi) is, however, necessary for the independence
of %∗∗

i . Indeed,%∗∗
i is independent if and only if for allxi, yi, zi, wi in Xi, (xi, zi) %∗∗

i

(yi, zi) ⇔ (xi, wi) %∗∗
i (yi, wi) and (zi, xi) %∗∗

i (zi, yi) ⇔ (wi, xi) %∗∗
i (wi, yi). But

xi �±
i yi implies xi �+

i yi or xi �−
i yi (or both). In the former case, there exist levels

a−i and an alternativew such that(xi, a−i) % w and Not(yi, a−i) % w. Hence, we have
(xi, wi) �∗

i (yi, wi). The latter case entails a similar conclusion. Hence, the independence of
%∗∗

i implies that for allzi, (xi, zi) �∗
i (yi, zi).

Although we are unable to characterize the independence of%∗∗
i in terms of relation%

and the previously introduced axioms (or the independence of %∗
i ), this will have no influence
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ModelsE ModelsL0Dx, L1Dx andL2Dx Conditions
(D0) ⇔ (L0D0)⇔ (L1D0)⇔ (L2D0) ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
(D1) ⇔ (L0D1)⇔ (L1D1)⇔ (L2D1)
m m independent

(D2) ⇔ (L0D2)⇔ (L1D2)⇔ (L2D2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

(D3) ⇔ (L0D3)⇔ (L1D3)⇔ (L2D3) complete, independent

Table 16.5.Models equivalent to (D0), (D1), (D2) and (D3)

on the characterization of our models as we shall see. The only consequence is that we cannot
guarantee the existence ofregular representations for model (L2D11) (i.e. of representations
in whichui represents%±

i andϕi(ui(xi), ui(yi)) represents%∗∗
i ).

16.5.2. Study of models (L1D0) to (L1D11) and (L2D0) to (L2D11)

In this section, we assume thatX is at most denumerable. The difficulties of the general case
are mainly technical; they are fully dealt with in [BOU 04a].Let us start with the study of the
models whereH is not supposed to be monotonic, i.e. models (L1D0) to (L1D3) and (L2D0)
to (L2D3). It is easily understood that these models contribute nothing new with respect to the
corresponding models on differences, that is models (D0), (D1) (which is equivalent to (D2))
and (D3). Indeed, the monotonicity of functionsϕi does not impose any additional constraint,
since we do not require that functionH reacts monotonically to the variations of functionsϕi.
We can easily build the new representations on the basis of those of the models on differences by
substitutingϕi(ui(xi), ui(yi)) to pi(xi, yi). The models equivalences are noted in Table 16.5;
the equivalences with models (L0D0), (L0D1), (L0D2) and (L0D3) are also noted as well as
the models characterizations.

As soon as we assume thatH is non-decreasing, variations ofϕi are transmitted and addi-
tional constraints appear and impact on the characterization of the preference relations. Model
(L1D4) is the first interesting one; it is equivalent to models (L1D8), (L2D4) and (L2D8).
We verify immediately that a preference representable in model (L1D4) satisfiesAC123 and
these conditions, together withRC1, are necessary and sufficient for this model. To obtain a
representation of a relation satisfyingRC1 andAC123 in model (L1D8), let us start with the
representation in model (D8) obtained through equation (16.36), i.e.

G([pi(xi, yi)]) =

{
+ exp(

∑n
i=1 pi(xi, yi)) if x % y,

− exp(−∑n
i=1 pi(xi, yi)) otherwise

wherepi is a numerical representation of%∗
i for all i.

Using proposition 16.15, we can decomposepi(xi, yi), which is any numerical represen-
tation of %∗

i , into ϕi(ui(xi), ui(yi)) in which ui represents weak order%±
i andϕi is non-

decreasing in its first argument and non-increasing in its second one. This shows that model
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(L1D8) is not more constrained than model (L1D4). We can show, starting from the just con-
structed representation, that it is possible to change functionsϕi into functions that are increas-
ing in their first argument and decreasing in their second one. This is possible without making
any additional hypothesis on relation% [BOU 04a]. Note that this modified function will no
longer, in general, be a numerical representation of%∗

i . This proves that model (L2D8) is not
more constrained than model (L1D4) and thus establishes the announced equivalence of the
four models as well as their characterization.

Passing to model (L1D5) and the equivalent models (L1D9), (L2D5) and (L2D9), we
first observe that independence of% is a necessary condition, in addition toRC1 andAC123.
Assuming that these conditions are fulfilled, we then construct a representation of% in model
(L1D9) as in the previous paragraph. The only difference is thatpi(xi, yi) is no longer any
numerical representation of%∗

i : the chosen representation satisfies an additional property, that
is pi(xi, xi) = 0. Using proposition 16.15, we decomposethis numerical representation of%∗

i

intoϕi(ui(xi), ui(yi)) whereui represents weak order%±
i andϕi is non-decreasing in its first

argument and non-increasing in its second one. We have in addition thatϕi(ui(xi), ui(xi)) =
0. As before,ϕi(ui(xi), ui(yi)) can be modified into a function that is increasing in its first
argument and decreasing in its second one, while preservingthe additional propertyφi(ui(xi),
ui(xi)) = 0. A representation of% in model (L2D9) is therefore obtained.

Model (L1D6) impliesRC12 andAC123. The independence of% is a consequence of
RC12 (as in model (D6) of which it is a specialization). The procedure used with the previous
models also applies here to characterize models (L1D6), (L1D10), (L2D6) and (L2D10) and
show that they are equivalent. Let us start with equation (16.37). Here, functionpi is a represen-
tation of%∗∗

i ; it is antisymmetric. The antisymmetry ofpi is transferred toϕi(ui(xi), ui(yi))
(as a consequence of proposition 16.15).

The last four models are not all equivalent. We distinguish three classes among them:
(L1D7) and (L2D7) are equivalent; the last two are distinct models. Notice first that all these
models correspond to complete relations. Models (L1D7) and (L2D7) correspond exactly to
the complete relations% that fulfill conditionsRC12 andAC123. A numerical representation
can be constructed as before, starting from a representation in model (D7).

For a preference% representable in model (L1D11), it is clear thatTC and AC123 are nec-
essary since (L1D11) is a special case of models (L1D10) and (D11). Under these hypotheses,
the construction process used for model (L1D7) leads to a representation in model (L1D11).

Finally, for model (L2D11), TC andTAC12 are necessary conditions. The construction
of a representation starts as for model (L1D7); we then transform functionϕi into a function
non-decreasing in its first argument and non-increasing in its second one, which no longer is, in
general, a numerical representation of%∗∗

i .

Table 16.6 summarizes all characterization and equivalence results relative to models (L1D4)
to (L1D11) and (L2D4) to (L2D11).
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ModelsL1Dx ModelsL2Dx Conditions
(L1D4)⇔ (L1D8) ⇔ (L2D4)⇔ (L2D8) RC1,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D5)⇔ (L1D9) ⇔ (L2D5)⇔ (L2D9) independent,RC1,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D6)⇔ (L1D10) ⇔ (L2D6)⇔ (L2D10) RC12,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D7) ⇔ (L2D7) complete,RC12,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
(L1D11) complete,TC,AC123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .

(L2D11) complete,TC, TAC12

Table 16.6.Equivalences and characterization of models (L1D4) to (L1D11) and (L2D4) to
(L2D11)

16.5.3. Examples

Tversky’s additive differences model (16.3) and the additive value function model (16.1)
both use marginal traces on levels and on differences. They both verify, as we have seen in
sections 16.3.8 and 16.4.5, the hypotheses of the more constrained models (L8) and (D11).
As a result they belong to category (L1D11) in the models using both traces on levels and on
differences.

The additive differences model can be viewed as a particularcase of model (16.4); functions
pi(xi, yi) that occur in the latter factorize into algebraic differences:pi(xi, yi) = Φi(ui(xi)−
ui(yi)) where functionsui represent the marginal traces%±

i that are identical (in this case) to
marginal preferences%i.

In the versions of outranking methods described in literature, differences of preference are
generally expressed in terms of the levels. In the simple versions that we have presented, the ma-
joritarian method without veto (condition (16.6)) or with veto (equations (16.41) and (16.42)),
we have assumed that preference differences can be expressed directly in terms of the alterna-
tive description on the relevant attributes, i.e. as a difference between corresponding coordinates
of vectorsx andy. In other words, it has been assumed implicitly thatui(xi) = xi. It is easy of
course to adapt the descriptions of the outranking methods in order to show explicitly a coding
of the descriptions (i.e. of the elements ofXi) by functionsui. These transform the possibly un-
structured setsXi into subsets of the real numbersui(Xi). To do this, we simply substitutexi

andyi by ui(xi) andui(yi), respectively, in expressions (16.6), (16.41) and (16.42). Through
this, we obtain models on the levels and on the differences oftype (L1D10) or, equivalently,
of type (L2D10). Note that the representations in models as constrained aspossible are not al-
ways the most natural or the most useful ones, as already observed with models on differences.
(Compare equations (16.39) and (16.40) to (16.6)).
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16.6. Conclusion

In this chapter, we have presented a general approach for describing binary relations on a
product set. This approach is based on conjoint measurementmodels that do not exclude in-
transitive or incomplete preferences. The main tools for analyzing such preferences are simple:
we use two types of marginal traces induced on each dimensionby the global preference. These
tools are powerful: they permit a complete analysis of a rather large variety of models as we
have shown, limiting ourselves to the case whereX is denumerable.

Our project was to discover how far it is possible to go, in terms of numerical representations
of relations, by using only a small number of cancelation conditions and without imposing
transitivity conditions to the relations or unnecessary structural properties on the set of objects
X. Surprisingly, we can go rather far while remaining in the relatively poor setting that we have
chosen. In addition, the cancelation conditions that we areusing (RC1, RC2, independence,
TC, AC1, AC2, AC3, TAC1, TAC2, AC4) are reasonably simple and remain close to the
conditions used in traditional conjoint measurement models.

The framework that has been developed and the results obtained are promising in terms of
applications and further developments. Some of them have been evoked above; let us emphasize
the following in particular:

– The characterization of all relations compatible with a dominance relation: such a char-
acterization has been obtained using the models based on themarginal traces on levels (see
sections 16.3.5 and 16.3.6; see also [BOU 04b]).

– The characterization of preference relations that can be obtained by means of an ‘ordinal
aggregation model’ using marginal traces on differences: such models can be used for analyz-
ing majoritarian methods and outranking relations such as those obtained by methods of the
ELECTRE type. We illustrate how this suggestion can be put into practice in section 16.4.5 (see
also [BOU 01, BOU 05a, BOU 08]). This offers an alternative tothe approach developed in
[DUB 01, DUB 02a, DUB 03b, FAR 01].

– The characterization of ‘ordinal’ models for decision in the uncertain (Chapter 11). The
models described in this chapter adapt to the decision in theuncertain; it is sufficient to suppose
that all componentsXi of the product setX are copies of a single set. Then components of the
vector describing an alternative correspond to the evaluations of this alternative in the various
‘states of Nature’ [BOU 03a, BOU 03b, BOU 04c]. As for ordinalaggregation, models of the
type studied in this chapter offer an alternative to the approach developed in [DUB 97, FAR 99,
DUB 02b, DUB 03a].

– The characterization of some particular functional formsfor F , G or H [BOU 02a]: for
instance, the cases whereF ,G orH are sums, themin operator, etc.

It is of course impossible to develop all these points here. The reader who will have followed
us up to this point will not have any difficulty in imagining the spirit of these results.

Let us summarize in a few words the main message of this chapter:

– Faced with a non-transitive or incomplete relation, it is advisable to work with its marginal
traces on levels and/or on differences.
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– Conjoint measurement techniques can also be used to study non-transitive and incomplete
relations.

– Setting aside the efficiency of elicitation procedures, weobserve that substituting the
additivity hypothesis by simple decomposability requirements often permits the fundamental
features of a model to be captured in a simple way.

– Substituting additivity by a mere decomposability hypothesis amounts to using models
that are intimately linked to rule-based modeling of preferences [GRE 99, GRE 01b, GRE 02].
In this way, one can consider the construction of elicitation procedures, using a machinery of
rules induction issued from artificial intelligence.

The general framework and the results presented also contribute to a general theory of
conjoint measurement. They allow us to outline a broad panorama of conjoint measurement
models (Figure 16.1). The models are grouped according to whether:

– they use the traces on differences, in which case their functional form can be written in
order to be non-decreasing in the functionspi(xi, yi);

– they use the traces on levels, in which case their functional form can be written in order
to be non-decreasing in the functionsui(xi) and non-increasing in the functionsui(yi); or else

– they are transitive.

x % y ⇔
∑n

i=1 ui(xi) ≥
∑n

i=1 ui(yi)
T,L,D

x % y ⇔ U([ui(xi)]) ≥ U([ui(yi)]) x % y ⇔ H([φi(ui(xi), ui(yi))]) ≥ 0

T,L,D T, L,D

x % y ⇔ U(x) ≥ U(y) x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0 x % y ⇔ G([pi(xi, yi)]) ≥ 0

T,L,D T,L, D T,L,D

x % y ⇔ T (x, y) ≥ 0

T,L,D

Figure 16.1.Summary of preference models:T means ‘transitive’;L means ‘uses marginal
traces on levels’;D means ‘uses marginal traces on differences’; and for a property P, P

means ‘NotP’

In Figure 16.1,T denotes a transitive model,L a model that has complete marginal traces
on levels andD a model that has complete marginal traces on differences.

In the family L, all relations are weakly separable but it may happen that they are not
weakly independent (and,a fortiori, not independent either). In contrast, familyD contains
only independent relations as soon as axiomRC2 is imposed. Marginal preference relations of
preferences in familyL tend to enjoy nice properties: they are complete and often semi-orders
(as soon as axiomsAC3 and eitherAC1 orAC2 are in force). The situation is quite different
in family D.
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Note that all combinations ofT, L andD have been studied in literature except for the
combinationT,L,D. This is not surprising since, whenD is in force, most models also use
RC2; hence they are independent. When these properties are joined to transitivity and com-
pleteness of%, %i is a weak order, identical to%±

i . As a consequence, such models necessarily
have complete marginal traces on levels.
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Chapter 17

Aggregation Functions for Decision Making

17.1. Introduction

Aggregation functions are generally defined and used to combine several numerical values
into a single one, so that the final result of the aggregation takes into account all the individual
values in a given manner. Such functions are widely used in many well-known disciplines such
as statistics, economics, finance and computer science. Forgeneral background, see Grabisch
et al. [GRA 09].

For instance, suppose that several individuals form quantifiable judgements either about a
measure of an object (weight, length, area, height, volume,importance or other attributes) or
about a ratio of two such measures (how much heavier, longer,larger, taller, more important,
preferable, more meritorious etc. one object is than another). In order to reach a consensus on
these judgements, classical aggregation functions have been proposed: arithmetic mean, geo-
metric mean, median and many others.

In multicriteria decision making, values to be aggregated are typically preferenceor sat-
isfactiondegrees. A preference degree reveals to what extent an alternativea is preferred to
an alternativeb, and thus is a relative appraisal. By contrast, a satisfaction degree expresses to
what extent a given alternative is satisfactory with respect to a given criterion. It is an absolute
appraisal.

We assume that the values to be aggregated belong to numerical scales, which can be of
ordinal or cardinal type. On an ordinal scale, numbers have no meaning other than defining
an order relation on the scale; distances or differences between values cannot be interpreted.
On a cardinal scale, distances between values are not quite arbitrary. There are actually several
kinds of cardinal scales. On an interval scale, where the position of the zero is a matter of
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convention, values are defined up to a positive linear transformation i.e.φ(x) = rx + s, with
r > 0 ands ∈ R (e.g. temperatures expressed on the Celsius scale). On a ratio scale, where
a true zero exists, values are defined up to a similarity transformation i.e.φ(x) = rx, with
r > 0 (e.g. lengths expressed in inches). We will come back on these measurement aspects in
section 17.2.2.

Once values are defined we can aggregate them and obtain a new value. This can be done in
many different ways according to what is expected from the aggregation function, the nature of
the values to be aggregated and which scale types have been used. Thus, for a given problem,
any aggregation function should not be used. In other terms,the use of a given aggregation
function should always be justified.

To help the practitioner choose an appropriate aggregationfunction in a given problem, it
is useful and even convenient to adopt an axiomatic approach. Such an approach consists of
classifying and choosing aggregation functions accordingto the properties they fulfill. Thus,
a catalog of ‘desirable’ properties is proposed and, whenever possible, a description of the
family of aggregation functions satisfying a given set of properties is provided. This is the very
principle of axiomatization.

Proposing an interesting axiomatic characterization of anaggregation function (or a family
of aggregation functions) is not an easy task. Mostly, aggregation functions can be character-
ized by different sets of conditions. Nevertheless, the various possible characterizations are not
equally important. Some of them involve purely technical conditions with no clear interpreta-
tion and the result becomes useless. Others involve conditions that contain the result explicitly
and the characterization becomes trivial. On the contrary,there are characterizations involving
only natural conditions which are easily interpretable. Infact, this is the only case where the
result should be seen as a significant contribution. It improves our understanding of the function
considered and provides strong arguments to justify (or reject) its use in a given context.

The main aim of this chapter is to present, on an axiomatic basis, the most used families of
aggregation functions in decision making. We shall confine ourselves to aggregation functions
that assign a numerical value to every profile ofn values, which represent objects or alternatives.
We will not deal with utility functions which, in a more general way, make it possible to rank
alternatives without assigning precise values to them. Forinstance, procedures such as ‘leximin’
or ‘discrimin’ are ranking procedures, rather than aggregation functions.

The organization of this chapter is as follows. In section 17.2 we yield the list of the main
properties that we shall use. This list is divided into threeclasses: (1) elementary properties
(continuity, symmetry, etc.); (2) properties related to the scale types used to represent the data;
and (3) certain algebraic properties such as associativity. In section 17.3 we present the concept
of mean and its various definitions. Perhaps the most common definition of means is that of
quasi-arithmetic means with a very natural axiomatizationdue to Kolmogoroff [KOL 30] and
Nagumo [NAG 30].

In section 17.4 we present associative functions, which areat the root of the theory of semi-
groups. These functions were at the root of the concept of fuzzy connectives such as t-norms,
t-conorms, and uninorms. In section 17.5 we present an important branch of the aggregation
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function theory, namely Choquet and Sugeno non-additive integrals. These integrals enable us
to generalize the classical aggregation modes, such as the weighted arithmetic mean and the
median, to functions that take into account the possible interactions among the considered at-
tributes. Finally, in sections 17.6 and 17.7 we present particular functions designed for aggre-
gating interval scales, ratio scales and ordinal scales.

We close this introduction by setting the notation that we will use in this chapter.

In a general manner, we shall denote an aggregation functionwith n variables byA : En →
R whereE is a real interval, bounded or not.E◦ will denote the interior ofE. We shall some-
times consider sequences of functions(A(n) : En → R)n≥1, the superscript(n) being used
only to specify the number of arguments of the functionA(n).

We shall useN to denote the index set{1, . . . , n} and2N to denote the set of its sub-
sets.ΠN will be used to denote the set of permutations onN . Finally, for anyS ⊆ N , the
characteristic vector ofS in {0, 1}n will be denoted1S .

A standard notation for certain aggregation functions exists:

– Thearithmetic meanis defined as

AM(x) =
1

n

n∑

i=1

xi.

– For any weight vectorω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∑

i ωi = 1, theweighted
arithmetic meanand theordered weighted averaging functionare defined as

WAMω(x) =
n∑

i=1

ωixi,

OWAω(x) =
n∑

i=1

ωix(i),

respectively, where(·) represents a permutation onN such thatx(1) ≤ . . . ≤ x(n).

– For anyk ∈ N , theprojectionand theorder statisticassociated with thekth argument
are defined as

Pk(x) = xk,

OSk(x) = x(k),

respectively.

– For anyS ⊆ N , S 6= ∅, thepartial minimumandpartial maximumfunctions associated
with S are defined as

minS(x) = min
i∈S

xi,

maxS(x) = max
i∈S

xi,

respectively.

In this chapter the min and max operations will often be denoted∧ and∨, respectively.
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17.2. Aggregation properties

As mentioned in the introduction, in order to choose a reasonable or satisfactory aggregation
mode, it is useful to adopt an axiomatic approach and impose that the aggregation functions
fulfill some selected properties. Such properties can be dictated by the nature of the values to
be aggregated. For example, in some multicriteria evaluation methods, the aim is to assess a
global absolute score to an alternative given a set of partial scores with respect to different
criteria. Clearly, it would be unnatural to give as a global score a value which is lower than
the lowest partial score, or greater than the highest score,so that only internal aggregation
functions (means) are allowed. Another example concerns the aggregation of opinions in voting
procedures. If, as usual, the voters are anonymous, the aggregation function must be symmetric.

In this section we present some properties that could be desirable or not depending upon
the considered problem. Of course, all these properties arenot required with the same strength,
and do not pertain to the same purpose. Some of them are imperative conditions whose viola-
tion leads to obviously counterintuitive aggregation modes. Others are technical conditions that
simply facilitate the representation or the calculation ofthe aggregation function. There are also
facultative conditions that naturally apply in special circumstances but are not to be universally
accepted.

17.2.1. Elementary mathematical properties

Definition 17.1. A : En → R is symmetricif, for any π ∈ ΠN , we have

A(x1, . . . , xn) = A(xπ(1), . . . , xπ(n)) (x ∈ En).

The symmetry property essentially implies that the indexing (ordering) of the arguments
does not matter. This is required when combining criteria ofequal importance or the opinions
of anonymous experts.

Definition 17.2. A : En → R is continuousif it is continuous in the usual sense.

One of the advantages of a continuous aggregation function is that it does not present any
chaotic reaction to a small change of the arguments.

Definition 17.3. A : En → R is

– non-decreasingif, for anyx, x′ ∈ En, we have

x ≤ x′ ⇒ A(x) ≤ A(x′),

– strictly increasingif it is non-decreasing and if, for anyx, x′ ∈ En, we have

x ≤ x′ andx 6= x′ ⇒ A(x) < A(x′),

– unanimously increasingif it is non-decreasing and if, for anyx, x′ ∈ En, we have

x < x′ ⇒ A(x) < A(x′).



Aggregation Functions for Decision Making 651

An increasing aggregation function presents a non-negative response to any increase of the
arguments. In other terms, increasing a partial value cannot decrease the result. This function
is strictly increasing if, moreover, it presents a positivereaction to any increase of at least one
argument. Finally, a unanimously increasing function is increasing and presents a positive re-
sponse whenever all the arguments strictly increase. For instance we observe that on[0, 1]n,
the maximum functionA(x) = maxxi is unanimously increasing whereas the bounded sum
A(x) = min(

∑n
i=1 xi, 1) is not.

Definition 17.4. A : En → R is idempotentif A(x, . . . , x) = x for all x ∈ E.

Definition 17.5. A : [a, b]n → R is weakly idempotentif A(a, . . . , a) = a andA(b, . . . , b) =
b.

In a variety of applications, it is desirable that the aggregation functions satisfy the idempo-
tency property, i.e. if allxi are identical,A(x1, . . . , xn) restitutes the common value.

Definition 17.6. A : En → R is

– conjunctiveif A(x) ≤ min xi for all x ∈ En,

– disjunctiveif max xi ≤ A(x) for all x ∈ En,

– internal if min xi ≤ A(x) ≤ max xi for all x ∈ En.

Conjunctive functions combine values as if they were related by a logicalAND operator.
That is, the result of aggregation can be high only if all the values are high. t-norms are suitable
functions for doing conjunctive aggregation (see section 17.4.5). At the opposite end, disjunc-
tive functions combine values as anOR operator so that the result of aggregation is high if at
least one value is high. The best known disjunctive functions are t-conorms.

Between these two extreme situations are the internal functions, located between the mini-
mum and the maximum of the arguments. In this kind of functions, a bad (respectively, good)
score on one criterion can be compensated for by a good (respectively, bad) one on another
criterion, so that the result of aggregation will be medium.By definition, means are internal
functions (see section 17.3).

17.2.2. Stability properties related to scale types

Depending on the kind of scale which is used, allowed operations on values are restricted.
For example, aggregation on ordinal scales should be limited to operations involving compar-
isons only, such as medians and order statistics.

A scale of measurementis a mapping which assigns real numbers to objects being measured.
Thetypeof a scale, as defined by Stevens [STE 51, STE 59], is defined by aclass ofadmissible
transformations, transformations that lead from one acceptable scale to another.

For instance, we call a scale aratio scaleif the class of admissible transformations consists
of the similaritiesφ(x) = rx, with r > 0. In this case, the scale value is determined by the
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choice of a unit. Mass is an example of a ratio scale. The transformation from kilograms to
pounds, for example, involves the admissible transformation φ(x) = 2.2x. Length (inches,
centimeters) and time intervals (years, seconds) are two other examples of ratio scales.

We call a scale aninterval scaleif the class of admissible transformations consists of the
positive linear transformationsφ(x) = rx + s, with r > 0 ands ∈ R. The scale value is then
determined by choices of unit and zero point. Temperature (except where there is an absolute
zero) defines an interval scale. Thus, transformation from Centigrade into Fahrenheit involves
the admissible transformationφ(x) = 9x/5 + 32.

We call a scale anordinal scaleif the class of admissible transformations consists of the
strictly increasing bijectionsφ(x). Here the scale value is determined only by order. For ex-
ample, the scale of air quality being used in a number of cities is an ordinal scale. It assigns
a number 1 to unhealthy air, 2 to unsatisfactory air, 3 to acceptable air, 4 to good air and 5 to
excellent air. We could just as well use the numbers 1, 7, 8, 15, 23 or the numbers 1.2, 6.5, 8.7,
205.6, 750 or any numbers that preserve the order. Definitions of other scale types can be found
in the book by Roberts [ROB 79] on measurement theory; see also Roberts [ROB 90, ROB 94].
The reader will find further details on measurement in Chapter 18.

A statement using scales of measurement is said to bemeaningfulif the truth or falsity of the
statement is invariant when every scale is replaced by another acceptable version of it [ROB 79,
p. 59]. For example, a ranking method is meaningful if the ranking of alternatives induced by
the aggregation does not depend on scale transformation.

In 1959, Luce [LUC 59] observed that the general form of a functional relationship between
variables is greatly restricted if we know the scale type of the variables. These restrictions are
discovered by formulating a functional equation from knowledge of the admissible transfor-
mations. Luce’s method is based on the principle of theory construction, which states that an
admissible transformation of the independent variables may lead to an admissible transforma-
tion of the dependent variable. For example, suppose thatf(a) = A(f1(a), . . . , fn(a)), where
f andf1, . . . , fn are all ratio scales, with the units chosen independently. Then, by the principle
of theory construction, we obtain the functional equation

A(r1x1, . . . , rnxr) = R(r1, . . . , rn)A(x1, . . . , xn),

ri > 0, R(r1, . . . , rn) > 0.

Aczél et al. [ACZ 86] showed that the solutions of this equation are givenby

A(x) = a

n∏

i=1

gi(xi), with a > 0, gi > 0,

and
gi(xiyi) = gi(xi)gi(yi).

In this section we present some functional equations related to certain scale types. The
interested reader can find more details in Aczélet al. [ACZ 89b, ACZ 86] and a good survey in
Roberts [ROB 94].
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Definition 17.7. A : Rn → R is

– meaningful for the same input-output ratio scalesif, for any r > 0, we have

A(rx1, . . . , rxn) = rA(x1, . . . , xn) (x ∈ Rn),

– meaningful for the same input ratio scalesif, for any r > 0, there existsRr > 0 such
that

A(rx1, . . . , rxn) = RrA(x1, . . . , xn) (x ∈ Rn),

– meaningful for the same input-output interval scalesif, for any r > 0 ands ∈ R, we
have

A(rx1 + s, . . . , rxn + s) = rA(x1, . . . , xn) + s (x ∈ Rn),

– meaningful for the same input interval scalesif, for any r > 0 ands ∈ R, there exist
Rr,s > 0 andSr,s ∈ R such that

A(rx1 + s, . . . , rxn + s) = Rr,sA(x1, . . . , xn) + Sr,s (x ∈ Rn),

– meaningful for the same input-output ordinal scalesif, for any strictly increasing bijection
φ : R→ R, we have

A(φ(x1), . . . , φ(xn)) = φ(A(x1, . . . , xn)) (x ∈ Rn),

– meaningful for the same input ordinal scalesif, for any strictly increasing bijectionφ :
R→ R, there exists a strictly increasing functionψφ : R→ R such that

A(φ(x1), . . . , φ(xn)) = ψφ(A(x1, . . . , xn)) (x ∈ Rn).

17.2.3. Algebraic properties

The following properties concern the aggregation procedures that can be decomposed into
partial aggregations, that is, procedures for which it is possible to partition the set of attributes
into disjoint subgroups, build the partial aggregation foreach subgroup, and then combine these
partial results to get the global value. This condition may take several forms. Maybe one of the
strongest is associativity. Other weaker formulations will also be presented: decomposability
and bisymmetry.

We first present associativity for two variable functions.

Definition 17.8. A : E2 → E is associativeif, for any x ∈ E3, we have

A(A(x1, x2), x3) = A(x1, A(x2, x3)).

A large number of papers deal with the associativity functional equation. For a list of refer-
ences see Aczél [ACZ 66, section 6.2].

This property can be extended to sequences of functions as follows.
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Definition 17.9. The sequence(A(n) : Rn → R)n≥1 is associativeif A(1)(x) = x for all
x ∈ E and

A(n)(x1, . . . , xk, xk+1, . . . , xn) = A(n)(A(k)(x1, . . . , xk), A(n−k)(xk+1, . . . , xn))

for all x ∈ En and allk, n ∈ N such that1 ≤ k ≤ n.

Implicit in the assumption of associativity is a consistentway of going unambiguously from
the aggregation ofn elements ton+ 1 elements, i.e. if M is associative

A(n+1)(x1, . . . , xn+1) = A(2)(A(n)(x1, . . . , xn), xn+1),

for all n ∈ N \ {0}.

Let us turn to the decomposability property. For this purpose, we introduce the following
notation. For anyk ∈ N \ {0} and anyx ∈ R, we setk · x = x, . . . , x (k times). For example,

A(3 · x, 2 · y) = A(x, x, x, y, y).

Definition 17.10. The sequence(A(n) : Rn → R)n≥1 is decomposableif A(1)(x) = x for all
x ∈ E and

A(n)(x1, . . . , xk, xk+1, . . . , xn) = A(n)(k·A(k)(x1, . . . , xk), (n−k)·A(n−k)(xk+1, . . . , xn))

for all x ∈ En and allk, n ∈ N such that1 ≤ k ≤ n.

Here the definition is the same as for associativity, except that the partial aggregations are
duplicated by the number of aggregated values.

Introduced first in Bemporad [BEM 26, p. 87] in a characterization of the arithmetic mean,
decomposability has been used by Kolmogoroff [KOL 30] and Nagumo [NAG 30] to charac-
terize the quasi-arithmetic means. More recently, Marichal and Roubens [MAR 93] proposed
calling this property ‘decomposability’ in order to avoid confusion with classical associativity.

Thebisymmetryproperty, which extends associativity and symmetry simultaneously, is de-
fined forn-variables functions as follows.

Definition 17.11. A : En → E is bisymmetricif

A(A(x11, . . . , x1n), . . . , A(xn1, . . . , xnn))

= A(A(x11, . . . , xn1), . . . , A(x1n, . . . , xnn))

for all square matrices(xij) ∈ En×n.



Aggregation Functions for Decision Making 655

For two-variable functions, this property has been investigated from the algebraic point of
view by using it mostly in structures without the property ofassociativity; see Aczél [ACZ 66,
section 6.4] and Aczél and Dhombres [ACZ 89a, chapter 17].

For a sequence of functions, this property becomes as described in the following definition.

Definition 17.12. The sequence(A(n) : Rn → R)n≥1 is bisymmetricif A(1)(x) = x for all
x ∈ E and

A(p)(A(n)(x11, . . . , x1n), . . . , A(n)(xn1, . . . , xpn))

= A(n)(A(p)(x11, . . . , xp1), . . . , A
(p)(x1n, . . . , xpn))

for all n, p ∈ N \ {0} and all matrices(xij) ∈ Ep×n.

17.3. Means

It would be very unnatural to propose a chapter on aggregation functions without dealing
somehow withmeans. Already discovered and studied by the ancient Greeks [e.g.ANT 98,
chapter 3] the concept of mean has given rise today to a very wide field of investigation with
a huge variety of applications. Actually, a tremendous amount of literature on the properties
of several means (such as the arithmetic mean, the geometricmean, etc.) has already been
produced, especially since the 19th century, and is still developing today. For a good overview,
see the expository paper by Frosini [FRO 87] and the remarkable monograph by Bullenet al.
[BUL 88].

The first modern definition of mean was probably due to Cauchy [CAU 21] who considered
in 1821 a mean as an internal (definition 17.6) function.

The concept of mean as anumerical equalizeris usually ascribed to Chisini [CHI 29,
p. 108], who provided the following definition.

Let y = g(x1, . . . , xn) be a function ofn independent variablesx1, . . . , xn represent-
ing homogeneous quantities. A mean ofx1, . . . , xn with respect to the functiong is a
numberM such that, if each ofx1, . . . , xn is replaced withM , the function value is
unchanged, that is,

g(M, . . . ,M) = g(x1, . . . , xn).

When g is considered as the sum, the product, the sum of squares, thesum of inverses
or the sum of exponentials, the solution of Chisini’s equation corresponds to the arithmetic
mean, the geometric mean, the quadratic mean, the harmonic mean and the exponential mean,
respectively.

Unfortunately, as noted by de Finetti [FIN 31, p. 378], Chisini’s definition is so general
that it does not even imply that the ‘mean’ (provided there exists a real and unique solution to
Chisini’s equation) fulfills Cauchy’s internality property.

The following quote from Ricci [RIC 15, p. 39] could be considered as another possible
criticism to Chisini’s view.
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. . . when all values become equal, the mean equals any of them too. The inverse propo-
sition is not true. If a function of several variables takes their common value when all
variables coincide, this is not sufficient evidence for calling it a mean. For example, the
function

g(x1, x2, . . . , xn) = xn + (xn − x1) + (xn − x2) + · · ·+ (xn − xn−1)

equalsxn whenx1 = · · · = xn, but it is even greater thanxn as long asxn is greater
than every other variable.

In 1930, Kolmogoroff [KOL 30] and Nagumo [NAG 30] consideredthat the mean should
be more than just a Cauchy mean or a numerical equalizer. Theydefined amean valueto be
a decomposable sequence of continuous, symmetric, strictly increasing (in each variable) and
idempotent real functions

M (1)(x1) = x1,M
(2)(x1, x2), . . . ,M

(n)(x1, . . . , xn), . . . .

They proved, independently of each other, that these conditions are necessary and sufficient for
the quasi-arithmeticity of the mean, that is, for the existence of a continuous strictly monotonic
functionf such thatM (n) may be written in the form

M (n)(x1, . . . , xn) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(17.1)

for all n ∈ N \ {0}.

Thequasi-arithmetic means(17.1) comprise most of the algebraic means of common use
(see Table 17.1). However, some means, such as the median, donot belong to this family.

f(x) M (n)(x1, . . . , xn) Name

x 1
n

n∑
i=1

xi arithmetic

x2
(

1
n

n∑
i=1

x2
i

)1/2

quadratic

log x
( n∏
i=1

xi

)1/n

geometric

x−1 1

1
n

n∑
i=1

1
xi

harmonic

xα (α ∈ R \ {0})
(

1
n

n∑
i=1

xαi

)1/α

root-mean-power

eαx (α ∈ R \ {0}) 1
α ln

(
1
n

n∑
i=1

eαxi

)
exponential

Table 17.1.Examples of quasi-arithmetic means
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The above properties defining a mean value seem to be natural enough. For instance, one
can readily see that, for increasing means, the idempotencyproperty is equivalent to Cauchy’s
internality; both are accepted by all statisticians as requisites for means.

The decomposability property of means is rather natural. Under idempotency, this condition
becomes equivalent to

M (k)(x1, . . . , xk) = M (k)(x′
1, . . . , x

′
k)

⇓
M (n)(x1, . . . , xk, xk+1, . . . , xn) = M (n)(x′

1, . . . , x
′
k, xk+1, . . . , xn)

which states that the mean does not change when altering somevalues without modifying their
partial mean.

The purpose of this section is not to present a state of the artof all the known results
in this vast realm of means. Instead, we just skim the surfaceof the subject by pointing out
characterization results for the most-often used and best-known families of means.

The medians and, more generally, the order statistics (which are particular means designed
to aggregate ordinal values), will be briefly presented in section 17.7.

17.3.1. Quasi-arithmetic means

As mentioned above, quasi-arithmetic means were introduced from a very natural axiomati-
zation. In this section, we investigate those means both asn-variable functions and as sequences
of functions. Results on this class of means can also be foundin Bullen et al. [BUL 88, chap-
ter 4].

It was proven by Aczél [ACZ 48a] (see also [ACZ 66, section 6.4] and [ACZ 89a, chap-
ter 17]) that the quasi-arithmetic means are the only symmetric, continuous, strictly increasing,
idempotent, real functionsM : En → E which satisfy the bisymmetry condition. The state-
ment of this result is formulated as follows.

Theorem 17.1.M : En → E is a symmetric, continuous, strictly increasing, idempotent, and
bisymmetric function if and only if there exists a continuous and strictly monotonic function
f : E → R such that

M(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(x ∈ En). (17.2)

Thequasi-arithmetic means(17.2) are internal aggregation functions and cover a wide spec-
trum of means including arithmetic, quadratic, geometric and harmonic; see Table 17.1.

The functionf occurring in equation (17.2) is called ageneratorof M . It was also proven
thatf is determined up to a linear transformation. Withf(x), every function

g(x) = rf(x) + s (r, s ∈ R, r 6= 0)
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belongs to the sameM , but no other function.

In addition to Aczél’s result, we also recall the results of Kolmogoroff–Nagumo.

Theorem 17.2. The sequence(M (n) : En → E)n≥1 is a decomposable sequence of symmet-
ric, continuous, strictly increasing and idempotent functions if and only if there is a continuous
and strictly monotonic functionf : E → R such that

M (n)(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(x ∈ En).

Nagumo [NAG 30] investigated some subfamilies of the class of quasi-arithmetic means.
He proved the following result (see also [ACZ 87, section 4] and [ACZ 89a, chapter 15]).

Proposition 17.1. AssumeE = ]0,∞[ or a subinterval.

1) M : En → E is a quasi-arithmetic mean that is meaningful for the same input-output
ratio scales if and only if

- eitherM is the geometric mean:

M(x) =
( n∏

i=1

xi

) 1
n

(x ∈ En),

- or M is a root-mean-power: there existsα ∈ R \ {0} such that

M(x) =
( 1

n

n∑

i=1

xα
i

) 1
α

(x ∈ En). (17.3)

2) M : En → E is a quasi-arithmetic mean that is meaningful for the same input-output
interval scales if and only ifM is the arithmetic mean.

Let us denote the root-mean-power equation (17.3) generated byα ∈ R \ {0} byM(α). It
is well known [BEC 65] that ifα1 < α2 thenM(α1)(x) ≤ M(α2)(x) for all x ∈ ]0,+∞[n

(equality if and only if allxi are equal).

The family of root-mean-powers was studied by Dujmović [DUJ 74, DUJ 75] and then by
Dyckhoff and Pedrycz [DYC 84]. It encompasses most of traditionally known means: the arith-
metic meanM(1), the harmonic meanM(−1), the quadratic meanM(2) and three limiting cases:
the geometric meanM(0), the minimumM(−∞) and the maximumM(+∞) e.g. Abramowitz
and Stegun [ABR 64].

Let us return to theorem 17.1. Note that Aczél [ACZ 48a] also investigated the case where
symmetry and idempotency are dropped (see also [ACZ 66, section 6.4] and [ACZ 89a, chap-
ter 17]). He obtained the following result.
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Theorem 17.3. 1) M : En → E is a continuous, strictly increasing, idempotent, and
bisymmetric function if and only if there exists a continuous and strictly monotonic function
f : E → R and real numbersω1, . . . , ωn > 0 fulfilling

∑
i ωi = 1 such that

M(x) = f−1
[ n∑

i=1

ωi f(xi)
]

(x ∈ En). (17.4)

2) M : En → E is a continuous, strictly increasing, and bisymmetric function if and
only if there exists a continuous and strictly monotonic function f : E → R and real numbers
p1, . . . , pn > 0 andq ∈ R such that

M(x) = f−1
[ n∑

i=1

pi f(xi) + q
]

(x ∈ En). (17.5)

Thequasi-linear means(17.4) and thequasi-linear functions(17.5) are weighted aggrega-
tion functions. The question of uniqueness with respect tof is dealt with in detail in [ACZ 66,
section 6.4]. Table 17.2 provides some special cases of quasi-linear means.

f(x) M(x) Name of weighted mean

x
n∑
i=1

ωi xi arithmetic

x2
( n∑
i=1

ωi x
2
i

)1/2

quadratic

log x
n∏
i=1

xωi

i geometric

xα (α ∈ R \ {0})
( n∑
i=1

ωi x
α
i

)1/α

root-mean-power

Table 17.2.Examples of quasi-linear means

17.3.2. Lagrangian and Cauchy means

Let us consider the intermediate pointM in the classical mean value formula

F (y)− F (x) = F ′(M)(y − x) (x, y ∈ E) (17.6)

as a function of the variablesx, y with the conventionM(x, x) = x. F : E → R is a given
continuously differentiable and strictly convex or strictly concave function. Reformulating this
definition in terms of integrals instead of derivatives, we can rewrite equation (17.6) as

M(x, y) =

{
f−1

(
1

y−x

∫ y

x
f(ξ)dξ

)
, if x 6= y,

x, if x = y,
(17.7)
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for x, y ∈ I , wheref : E → R is a continuous strictly monotonic function. This func-
tion M(x, y) is called theLagrangian meanassociated withf . See for example Berrone and
Moro [BER 98] and Bullenet al. [BUL 88, p. 343]. The uniqueness of the generator is the same
as for quasi-arithmetic means, that is, defined up to a lineartransformation; see Berrone and
Moro [BER 98, corollary 7] and Matkowski [MAT 99, theorem 1].

Many classical means are Lagrangian. The arithmetic mean and the geometric means cor-
respond to takingf(x) = x andf(x) = 1/x2, respectively, in equation (17.7). The harmonic
mean, however, is not Lagrangian.

In general, some of the most common means are both quasi-arithmetic and Lagrangian.
However, there are quasi-arithmetic means, such as the harmonic one, which are not Lagrangian.
Conversely, the logarithmic mean

M(x, y) =

{ x−y
log x−log y

, for x, y > 0, x 6= y,

x, for x = y > 0,

is an example of a Lagrangian mean (f(x) = 1/x) that is not quasi-arithmetic.

Let us now consider the Cauchy mean value theorem which asserts that, for any functions
F andg continuous on an interval[x, y] and differentiable on]x, y[, there existsM ∈ ]a, b[
such that

F (y)− F (x)

g(y)− g(x) =
F ′(M)

g′(M)
.

If the functionsg andf := F ′/g′ are strictly monotonic on]x, y[, the mean valueM(x, y) is
unique and can be written as

M(x, y) =

{
f−1

(
1

g(y)−g(x)

∫ y

x
f(ξ)dg(ξ)

)
, if x 6= y,

x, if x = y,

for x, y ∈ E. It is then said to be theCauchy mean associated with the pair(f, g); see Berrone
and Moro [BER 00]. Such a mean is continuous, idempotent, symmetric and strictly increasing.

When g = f (respectively,g is the identity function), we retrieve the quasi-arithmetic
(respectively, the Lagrangian) mean generated byf . Theanti-Lagrangian mean[BER 00] is
obtained whenf is the identity function. For example, the harmonic mean is an anti-Lagrangian
mean generated by the functiong = 1/x2. The generators of the same anti-Lagrangian mean
are defined up to the same non-zero affine transformation.

17.4. Associative aggregation functions

Before dealing with associative functions and their axiomatizations, we introduce some
useful concepts. Asemigroup(E,A) is a setE with an associative operationA : E2 → E
defined on it. As usual, we assume thatE is a real interval, bounded or not.

An elemente ∈ E is (a) anidentity for A if A(e, x) = A(x, e) = x for all x ∈ E, (b) a
zero(or annihilator) for A if A(e, x) = A(x, e) = e for all x ∈ E; or (c) anidempotentfor
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A if A(e, e) = e. For any semigroup(E,A), it is clear that there is at most one identity and at
most one zero forA in E, and both are idempotents.

We also need to introduce the concept ofordinal sum, well known in the theory of semi-
groups e.g. Climescu [CLI 46] and Ling [LIN 65].

Definition 17.13. Let K be a totally ordered set and{(Ek, Ak) | k ∈ K} be a collection of
disjoint semigroups indexed byK. Then theordinal sumof {(Ek, Ak) | k ∈ K} is the set-
theoretic union∪k∈KEk under the following binary operation:

A(x, y) =

{
Ak(x, y), if ∃ k ∈ K such thatx, y ∈ Ek

min(x, y), if ∃ k1, k2 ∈ K, k1 6= k2 such thatx ∈ Ek1 andy ∈ Ek2 .

The ordinal sum is a semigroup under the above-defined operation.

17.4.1. Strictly increasing functions

Aczél [ACZ 48b] investigated the general continuous, strictly increasing, real solutions on
E2 of the associativity functional equation (17.8). He provedthe following result (see also
[ACZ 66, section 6.2]).

Theorem 17.4. LetE be a real interval, bounded or not, which is open on one side.A : E2 →
E is continuous, strictly increasing and associative if and only if there exists a continuous and
strictly monotonic functionf : E → R such that

A(x, y) = f−1[f(x) + f(y)] ((x, y) ∈ E2). (17.8)

It was also proved that the functionf occurring in equation (17.8) is determined up to a
multiplicative constant, that is,f(x) and all functionsg(x) = r f(x) (r ∈ R \ {0}) belong to
the sameA, and only these. Moreover, the functionf is such that ife ∈ E then

A(e, e) = e⇔ f(e) = 0. (17.9)

By equation (17.9) and because of strict monotonicity off , there is at most one idempotent
forA (which is, actually, the identity) and henceA cannot be idempotent. Therefore, there is no
continuous, strictly increasing, idempotent and associative function. However, we can note that
every continuous, strictly increasing and associative function is necessarily symmetric. The sum
(f(x) = x) and the product (f(x) = log x) are well-known examples of continuous, strictly
increasing and associative functions.

According to Ling [LIN 65], any semigroup(E,M) satisfying the hypotheses of theo-
rem 17.4 is calledAczélian.

Recall that each associative sequence(A(n) : En → E)n≥1 of functions is uniquely
determined by its 2-variable function. We therefore have the following result.
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Corollary 17.1. LetE be a real interval, bounded or not, which is open on one side.(A(n) :
En → E)n≥1 is an associative sequence of continuous and strictly increasing functions if and
only if there exists a continuous and strictly monotonic function f : E → R such that, for all
n ∈ N \ {0},

A(n)(x) = f−1
[ n∑

i=1

f(xi)
]

(x ∈ En).

17.4.2. Archimedean semigroups

Some authors attempted to generalize theorem 17.4 by relaxing the strict increasing mono-
tonicity into non-decreasing monotonicity. However, it seems that the class of continuous, non-
decreasing and associative functions has not yet been described. However, under some addi-
tional conditions, results have been obtained.

First, we state a representation theorem attributed very often to Ling [LIN 65]. In fact, her
main theorem can be deduced from previously known results ontopological semigroups; see
Faucett [FAU 55] and Mostert and Shields [MOS 57]. Nevertheless, the advantage of Ling’s
approach is twofold: it treats two different cases in a unified manner and establishes elementary
proofs.

Theorem 17.5. LetE = [a, b].A : E2 → E is continuous, non-decreasing, associative and

A(b, x) = x (x ∈ E) (17.10)

A(x, x) < x (x ∈ E◦) (17.11)

if and only if there exists a continuous strictly decreasingfunctionf : E → [0,+∞], with
f(b) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(a)) ] (x, y ∈ E). (17.12)

The requirement thatE be closed is not really a restriction. IfE is any real interval, finite
or infinite with right endpointb (b can be+∞), we can replace condition (17.10) with

lim
t→b−

A(t, t) = b, lim
t→b−

A(t, x) = x (x ∈ E).

Any functionf solving equation (17.12) is called anadditive generator(or simplygener-
ator) of A. Moreover, we can easily see that any functionA of the form equation (17.12) is
symmetric and conjunctive.

Condition (17.10) expresses thatb is aleft identityforA. It turns out, from equation (17.12),
thatb acts as an identity anda as a zero. Condition (17.11) simply expresses that there areno
idempotents forA in ]a, b[. Indeed, by non-decreasing monotonicity and equation (17.10), we
always haveA(x, x) ≤ A(b, x) = x for all x ∈ [a, b].

Depending on whetherf(a) is finite or infinite (recall thatf(a) ∈ [0,+∞]),A takes a well-
defined form (Fodor and Roubens [FOD 94, section 1.3] and Schweizer and Sklar [SCH 83]):
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– f(a) < +∞ if and only ifA haszero divisors(i.e.∃ x, y ∈ ]a, b[ such thatA(x, y) = a).
In this case, there exists a continuous strictly increasingfunction g : [a, b] → [0, 1], with
g(a) = 0 andg(b) = 1, such that

A(x, y) = g−1[max(g(x) + g(y)− 1, 0)] (x, y ∈ [a, b]). (17.13)

To see this, it is sufficient to setg(x) := 1− f(x)/f(a).
For associative sequences(A(n) : [a, b]n → [a, b])n≥1, equation (17.13) becomes

A(n)(x) = g−1
[
max

( n∑

i=1

g(xi)− n+ 1, 0
)]

(x ∈ [a, b]n, n ∈ N \ {0}).

– limt→a+ f(x) = +∞ if and only ifA is strictly increasing on]a, b[. In this case, there
exists a continuous strictly increasing functiong : [a, b]→ [0, 1], with g(a) = 0 andg(b) = 1,
such that

A(x, y) = g−1[g(x) g(y)] (x, y ∈ [a, b]). (17.14)

To see this, it is sufficient to setg(x) := exp(−f(x)).
For associative sequences(A(n) : [a, b]n → [a, b])n≥1, equation (17.14) becomes

A(n)(x) = g−1
[ n∏

i=1

g(xi)
]

(x ∈ [a, b]n, n ∈ N \ {0}).

Of course, theorem 17.5 can also be written in a dual form as follows.

Theorem 17.6. LetE = [a, b].A : E2 → E is continuous, non-decreasing, associative and

A(a, x) = x (x ∈ E)

A(x, x) > x (x ∈ E◦)

if and only if there exists a continuous strictly increasingfunctionf : E → [0,+∞], with
f(a) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(b)) ] (x, y ∈ E). (17.15)

Again,E can be any real interval, even infinite. FunctionsA of the form equation (17.15)
are symmetric and disjunctive. There are no interior idempotents. The left endpointa acts as an
identity and the right endpointb acts as a zero.

Once more, two mutually exclusive cases can be examined:
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– f(b) < +∞ if and only ifA has zero divisors (i.e.∃ x, y ∈ ]a, b[ such thatA(x, y) = b).
In this case, there exists a continuous strictly increasingfunction g : [a, b] → [0, 1], with
g(a) = 0 andg(b) = 1, such that

A(x, y) = g−1[min(g(x) + g(y), 1)] (x, y ∈ [a, b]). (17.16)

To see this, it is sufficient to setg(x) := f(x)/f(b).
For associative sequences(A(n) : [a, b]n → [a, b])n≥1, equation (17.16) becomes

A(n)(x) = g−1
[
min

( n∑

i=1

g(xi), 1
)]

(x ∈ [a, b]n, n ∈ N \ {0}).

– limt→b− f(x) = +∞ if and only ifA is strictly increasing on]a, b[. In this case, there
exists a continuous strictly increasing functiong : [a, b]→ [0, 1], with g(a) = 0 andg(b) = 1,
such that

A(x, y) = g−1[1− (1− g(x)) (1− g(y))] (x, y ∈ [a, b]), (17.17)

To see this, it is sufficient to setg(x) := 1− exp(−f(x)).
For associative sequences(A(n) : [a, b]n → [a, b])n≥1, equation (17.17) becomes

A(n)(x) = g−1
[
1−

n∏

i=1

(1− g(xi))
]

(x ∈ [a, b]n, n ∈ N \ {0}).

Any semigroup fulfilling the assumptions of theorem 17.5 or 17.6 is calledArchimedean;
see Ling [LIN 65]. In other words, any semigroup(E,A) is said to beArchimedeanif A is
continuous, non-decreasing, associative, one endpoint ofE is an identity forA and there are
no idempotents forA in E◦. We can make a distinction between conjunctive and disjunctive
Archimedean semigroups depending on whether the identity is the right or left endpoint ofE,
respectively. An Archimedean semigroup is calledproperly Archimedeanor Aczélianif every
additive generatorf is unbounded; otherwise it isimproperly Archimedean.

Ling [LIN 65, section 6] proved that every Archimedean semigroup is obtainable as a limit
of Aczélian semigroups.

17.4.3. A class of non-decreasing and associative functions

We now give a description of the class of functionsA : [a, b]2 → [0, 1] that are continuous,
non-decreasing, weakly idempotent and associative. For all θ ∈ [a, b], we defineAa,b,θ as the
set of continuous, non-decreasing, weakly idempotent and associative functionsA : [a, b]2 →
[0, 1] such thatA(a, b) = A(b, a) = θ. The extreme casesAa,b,a andAa,b,b will play an
important role in the sequel [MAR 00c].

Theorem 17.7. A : [a, b]2 → [0, 1] is continuous, non-decreasing, weakly idempotent and
associative if and only if there existα, β ∈ [a, b] and two functionsAa,α∧β,α∧β ∈ Aa,α∧β,α∧β

andAα∨β,b,α∨β ∈ Aα∨β,b,α∨β such that, for allx, y ∈ [a, b],

A(x, y) =





Aa,α∧β,α∧β(x, y), if x, y ∈ [a, α ∧ β]
Aα∨β,b,α∨β(x, y), if x, y ∈ [α ∨ β, b]
(α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y), otherwise.
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Now, let us turn to the description ofAa,b,a. Mostert and Shields [MOS 57, p. 130] proved
the following.

Theorem 17.8.A : [a, b]2 → [a, b] is continuous, associative and is such thata acts as a zero
andb as an identity if and only if either

–
A(x, y) = min(x, y) (x, y ∈ [a, b]),

– there exists a continuous strictly decreasing functionf : [a, b] → [0,+∞], with f(b) =
0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(a)) ] (x, y ∈ [a, b])

(conjunctive Archimedean semigroup) or

– there exist a countable index setK ⊆ N, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family{fk | k ∈ K} of continuous strictly decreasing function
fk : [ak, bk]→ [0,+∞], with fk(bk) = 0, such that, for allx, y ∈ [a, b],

A(x, y) =

{
f−1

k [min(fk(x) + fk(y), fk(ak)) ], if ∃ k ∈ K such thatx, y ∈ [ak, bk]
min(x, y), otherwise.

(ordinal sum of conjunctive Archimedean semigroups and one-point semigroups).

We can show thatAa,b,a is the family of continuous, non-decreasing and associative func-
tionsA : [a, b]2 → [a, b] such thata acts as a zero andb as an identity. Consequently, the
description of the familyAa,b,a is also given by theorem 17.8. Moreover, it turns out that all
functions fulfilling the assumptions of this result are symmetric, non-decreasing and conjunc-
tive.

Theorem 17.8 can also be written in a dual form as follows.

Theorem 17.9. A : [a, b]2 → [a, b] is continuous, associative and is such thata acts as an
identity andb as a zero if and only if either

–
A(x, y) = max(x, y) (x, y ∈ [a, b]),

– there exists a continuous strictly increasing functionf : [a, b] → [0,+∞], with f(a) =
0, such that

A(x, y) = f−1[min(f(x) + f(y), f(b)) ] (x, y ∈ [a, b]).

(disjunctive Archimedean semigroup) or

– there exist a countable index setK ⊆ N, a family of disjoint open subintervals
{]ak, bk[ | k ∈ K} of [a, b] and a family{fk | k ∈ K} of continuous strictly increasing function
fk : [ak, bk]→ [0,+∞], with fk(ak) = 0, such that for allx, y ∈ [a, b],

A(x, y) =

{
f−1

k [min(fk(x) + fk(y), fk(bk)) ], if ∃ k ∈ K such thatx, y ∈ [ak, bk]
max(x, y), otherwise.

(ordinal sum of disjunctive Archimedean semigroups and one-point semigroups).
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As above, we can see thatAa,b,b is the family of continuous, non-decreasing and associative
functionsA : [a, b]2 → [a, b] such thata acts as an identity andb as a zero. The description
of the familyAa,b,b is therefore given by theorem 17.9. Moreover, all functionsfulfilling the
assumptions of this result are symmetric, non-decreasing and disjunctive.

Theorems 17.7, 17.8, and 17.9, taken together, give a complete description of the family of
continuous, non-decreasing, weakly idempotent and associative functionsA : [a, b]2 → [a, b].
Imposing some additional conditions leads to the followingimmediate corollaries.

Corollary 17.2. A : [a, b]2 → [a, b] is continuous, strictly increasing, weakly idempotent and
associative if and only if there exists a continuous strictly increasing functiong : [a, b]→ [0, 1],
with g(a) = 0 andg(b) = 1, such that either

–
A(x, y) = g−1[g(x) g(y)] (x, y ∈ [a, b]),

– or
A(x, y) = g−1[g(x) + g(y)− g(x) g(y)] (x, y ∈ [a, b]).

Corollary 17.3. A : [a, b]2 → [a, b] is symmetric, continuous, non-decreasing, weakly idem-
potent and associative if and only if there existα ∈ [a, b] and two functionsAa,α,α ∈ Aa,α,α

andAα,b,α ∈ Aα,b,α such that for allx, y ∈ [a, b],

A(x, y) =





Aa,α,α(x, y), if x, y ∈ [a, α]
Aα,b,α(x, y), if x, y ∈ [α, b]
α, otherwise.

Corollary 17.4. A : [a, b]2 → [a, b] is continuous, non-decreasing, weakly idempotent, asso-
ciative and has exactly one identity element in[a, b] if and only ifA ∈ Aa,b,a ∪Aa,b,b.

17.4.4. Internal associative functions

We now investigate the case of internal associative functions, that is, associative means. As
these functions are idempotent, we actually investigate idempotent and associative functions.
Although we have already observed that there are no continuous, strictly increasing, idempo-
tent and associative functions, the class of continuous, non-decreasing, idempotent and associa-
tive functions is non-empty and its description can be deduced from theorem 17.7. However,
Fodor [FOD 96] had already obtained this description in a more general framework, as follows.

Theorem 17.10. LetE be a real interval, finite or infinite.A : E2 → E is continuous, non-
decreasing, idempotent and associative if and only if thereexistα, β ∈ E such that

A(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y) ((x, y) ∈ E2).

Notice that, by distributivity of∧ and∨,A can also be written in the equivalent form:

A(x, y) = (β ∨ x) ∧ (α ∨ y) ∧ (x ∨ y) ((x, y) ∈ E2).

For sequences of associative functions, the statement can be formulated as follows.
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Theorem 17.11. Let E be a real interval, finite or infinite.(A(n) : En → E)n≥1 is an
associative sequence of continuous, non-decreasing and idempotent functions if and only if
there existα, β ∈ E such that

A(n)(x) = (α∧x1)∨
( n−1∨

i=2

(α∧β∧xi)
)
∨(β∧xn)∨

( n∧

i=1

xi

)
(x ∈ En, n ∈ N\{0}).

Before Fodor [FOD 96], the description of symmetric functions was obtained by Fung and
Fu [FUN 75] and revisited by Dubois and Prade [DUB 84]. The result can now be formulated
as follows.

Theorem 17.12. LetE be a real interval, finite or infinite.

1) A : E2 → E is symmetric, continuous, non-decreasing, idempotent andassociative if
and only if there existsα ∈ E such that

A(x, y) = median(x, y, α) (x, y ∈ E).

2) (A(n) : En → E)n≥1 is an associative sequence of symmetric, continuous, non-
decreasing and associative functions if and only if there existsα ∈ E such that

A(n)(x) = median
( n∧

i=1

xi,

n∨

i=1

xi, α
)

(x ∈ En, n ∈ N \ {0}). (17.18)

The previous three theorems show that the idempotency property is seldom consistent with
associativity. For instance, the associative mean (17.18)is not very decisive since it leads to the
predefined valueα as soon as there existxi ≤ α andxj ≥ α.

Czogala and Drewniak [CZO 84] have examined the case whenA has an identity element
e ∈ E, as follows.

Theorem 17.13. LetE be a real interval, finite or infinite.

1) If A : E2 → E is non-decreasing, idempotent, associative and has an identity element
e ∈ E, then there exists a decreasing functiong : E → E with g(e) = e, such that for all
x, y ∈ E,

A(x, y) =





x ∧ y, if y < g(x),
x ∨ y, if y > g(x),
x ∧ y or x ∨ y, if y = g(x).

2) If A : E2 → E is continuous, non-decreasing, idempotent, associative and has an
identity elemente ∈ E, thenA = min or max.

17.4.5. t-norms, t-conorms, and uninorms

In fuzzy set theory, one of the main topics consists of defining fuzzy logical connectives
which are appropriate extensions of logical connectivesAND, OR andNOT in the case when
the valuation set is the unit interval[0, 1] rather than{0, 1}.

Fuzzy connectives modelingAND andOR are calledtriangular norms(t-norms for short)
andtriangular conorms(t-conorms) respectively; see Alsinaet al.[ALS 83] and Schweizer and
Sklar [SCH 83].
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Definition 17.14. 1) A t-norm is a symmetric, non-decreasing and associative functionT :
[0, 1]2 → [0, 1] having1 as identity.

2) A t-conorm is a symmetric, non-decreasing and associative functionS : [0, 1]2 → [0, 1]
having0 as identity.

The investigation of these functions has been made by Schweizer and Sklar [SCH 61,
SCH 63] and Ling [LIN 65]. There is now an abundant literatureon this topic; see the book
by Klementet al. [KLE 00].

Of course, the family of continuous t-norms is nothing otherthan the classA0,1,0, and the
family of continuous t-conorms is the classA0,1,1. Both families have been fully described in
this section. Moreover, corollary 17.4 gives a characterization of their union.

Corollary 17.5. A : [0, 1]2 → [0, 1] is continuous, non-decreasing, weakly idempotent, as-
sociative and has exactly one identity in[0, 1] if and only ifA is a continuous t-norm or a
continuous t-conorm.

It is well known that t-norms and t-conorms are extensively used in fuzzy set theory, es-
pecially in modeling fuzzy connectives and implications [WEB 83]. Applications to practical
problems require the use of, in a sense, the most appropriatet-norms or t-conorms. On this
issue, Fodor [FOD 91a] presented a method to construct new t-norms from t-norms.

It is worth noting that some properties of t-norms, such as associativity, do not play any es-
sential role in preference modeling and choice theory. Recently, some authors [ALS 93, DYC 84,
ZIM 80] have investigated non-associative binary operation on[0, 1] in different contexts. These
operators can be viewed as a generalization of t-norms and t-conorms in the sense that both are
contained in this kind of operations. Moreover, Fodor [FOD 91b] defined and investigated the
concept of weak t-norms. His results were usefully applied to the framework of fuzzy strict
preference relations.

Further associative functions were recently introduced, namelyt-operators[MAS 99] and
uninorms[YAG 96] (see also [MAS 01, MAS 02]), which proved to be usefulin expert systems,
neural networks and fuzzy quantifiers theory.

Definition 17.15. 1) A t-operatoris a symmetric, non-decreasing, associative functionF :
[0, 1]2 → [0, 1], with 0 and1 as idempotent elements, such that the sectionsx 7→ F (x, 0) and
x 7→ F (x, 1) are continuous on[0, 1].

2) A uninormis a symmetric, non-decreasing and associative functionU : [0, 1]2 → [0, 1]
having an identity.

It is clear that a uninorm becomes a t-norm (respectively, a t-conorm) when the identity is 1
(respectively, 0).

We will not linger on this topic of t-norms, t-conorms, and uninorms. The interested reader
can consult the book by Klementet al. [KLE 00]. For more recent results, we also recommend
an article on associative functions by Sander [SAN 02].
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17.5. Non-additive integrals

Many aggregation functions can be seen as non-additive discrete integrals with respect to
non-additive measures. In this section we introduce Choquet and Sugeno integrals. The reader
can find more details on this topic in Chapter 18.

17.5.1. Motivations

A significant aspect of aggregation in multicriteria decision making is the difference in
the importance of criteria or attributes, usually modeled by using different weights. Since
these weights must be taken into account during the aggregation phase it is necessary to use
weighted functions, therefore giving up the symmetry property. Until recently, the most often
used weighted aggregation functions were averaging functions, such as the quasi-linear means
(17.4).

However, the weighted arithmetic means and, more generally, the quasi-linear means present
some drawbacks. None of these functions are able to model in an understandable way an inter-
action among attributes. Indeed, it is well known in multiattribute utility theory (MAUT) that
these functions lead tomutual preferential independenceamong the attributes [e.g. FIS 95],
which expresses in some sense the independence of the attributes. Since these functions are not
appropriate when interactive attributes are considered, people usually tend to construct indepen-
dent attributes or attributes that are supposed to be so, causing some bias effect in evaluation.

In order to have a flexible representation of complex interaction phenomena among at-
tributes or criteria (e.g. positive or negative synergy among some criteria), it is useful to sub-
stitute the weight vector for a non-additive set function, allowing the definition of a weight not
only on each criterion but also on each subset of criteria.

For this purpose, the use of fuzzy measures was proposed by Sugeno in 1974 [SUG 74] to
generalize additive measures. It seems widely accepted that additivity is not suitable as a re-
quired property of set functions in many real situations, due to the lack of additivity in many
facets of human reasoning. To be able to express human subjectivity, Sugeno proposed replac-
ing the additivity property with a weaker one: monotonicity. These non-additive monotonic
measures are referred to as fuzzy measures.

We consider a discrete set ofn elementsN = {1, . . . , n}. Depending on the application,
these elements could be players of a cooperative game, criteria in a multicriteria decision prob-
lem, attributes, experts or voters in an opinion pooling problem, etc. To emphasize thatN has
n elements, we will often writeNn.

Definition 17.16. A (discrete)fuzzy measureon N is a set functionµ : 2N → [0, 1] that
is monotonic, that isµ(S) ≤ µ(T ) wheneverS ⊆ T , and fulfills the boundary conditions
µ(∅) = 0 andµ(N) = 1.

For anyS ⊆ N , the coefficientµ(S) can be viewed as the weight, importance or strength
of the combinationS for the particular decision problem under consideration. Thus, in addition
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to the usual weights on criteria taken separately, weights on any combination of criteria are also
defined. Monotonicity then means that adding a new element toa combination cannot decrease
its importance. We denote the set of fuzzy measures onN asFN .

When a fuzzy measure is available onN , it is interesting to have tools capable of summa-
rizing all the values of a function to a single point, in termsof the underlying fuzzy measure.
These tools are thefuzzy integrals, a concept proposed by Sugeno [SUG 74, SUG 77].

Fuzzy integrals are integrals of a real function with respect to a fuzzy measure, by analogy
with Lebesgue integral which is defined with respect to an ordinary (i.e. additive) measure. As
the integral of a function in a sense represents its average value, a fuzzy integral can be viewed
as a particular case of averaging aggregation function.

Contrary to the weighted arithmetic means, fuzzy integralsare able to represent a certain
kind of interaction among criteria, ranging from redundancy (negative interaction) to synergy
(positive interaction). For this reason they have been thoroughly studied in the context of mul-
ticriteria decision problems [GRA 95a, GRA 96, GRA 98, GRA 00].

There are several classes of fuzzy integrals, among which the most representative are the
Choquet and Sugeno integrals. In this section we discuss these two integrals as aggregation
functions. In particular, we present axiomatic characterizations for these integrals. The main
difference between them is that the former is suitable for the aggregation on interval scales,
while the latter is designed for aggregating values on ordinal scales.

17.5.2. The Choquet integral

The concept of the Choquet integral was proposed in capacitytheory [CHO 54]. Since then,
it was used in various contexts such as non-additive utilitytheory [GIL 87, SAR 92, SCH 86,
WAK 89], theory of fuzzy measures and integrals [CAM 91, HÖH 82, MUR 89, MUR 91]
(see also the excellent edited book [GRA 00]) and also finance[DOW 92] and game theory
[DOW 94].

Since this integral is viewed here as ann-variable aggregation function, we will adopt a
function-like notation instead of the usual integral form,and the integrand will be a set ofn real
values denotedx = (x1, . . . , xn) ∈ Rn.

Definition 17.17. Let µ ∈ FN . The (discrete)Choquet integralof x ∈ Rn with respect toµ is
defined by

Cµ(x) :=

n∑

i=1

x(i) [µ(A(i))− µ(A(i+1))],

where(·) is a permutation onN such thatx(1) ≤ . . . ≤ x(n). Also,A(i) = {(i), . . . , (n)} and
A(n+1) = ∅.

For instance, ifx3 ≤ x1 ≤ x2, we have

Cµ(x1, x2, x3) = x3 [µ({3, 1, 2}) − µ({1, 2})] + x1 [µ({1, 2}) − µ({2})] + x2 µ({2}).
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The Choquet integral is therefore a linear expression, up toa reordering of the arguments.
It is closely related to the Lebesgue integral, since both coincide when the measure is additive:

Cµ(x) =
n∑

i=1

µ(i) xi (x ∈ Rn).

In this sense, the Choquet integral is a generalization of the Lebesgue integral.

Let us now turn to axiomatizations of the Choquet integral. First of all, as we can see, this
aggregation function fulfills a number of natural properties. It is continuous, non-decreasing,
unanimously increasing, idempotent, internal and meaningful for the same input-output interval
scales; see for instance Grabisch [GRA 96]. It also fulfills thecomonotonic additivityproperty
[DEL 71, SCH 86], that is,

f(x1 + x′
1, . . . , xn + x′

n) = f(x1, . . . , xn) + f(x′
1, . . . , x

′
n)

for all comonotonicvectorsx, x′ ∈ Rn. Two vectorsx, x′ ∈ Rn are comonotonic if there exists
a permutationσ onN such that

xσ(1) ≤ · · · ≤ xσ(n) and x′
σ(1) ≤ · · · ≤ x′

σ(n).

An interpretation of this property in multicriteria decision making can be found in Modaveet
al. [MOD 97, MOD 98].

The following result [MAR 99, proposition 4.1] gives a characterization of the 2-variable
Choquet integral in a very natural way.

Proposition 17.2. f : R2 → R is non-decreasing and meaningful for the same input-output
interval scales if and only if there existsµ ∈ F2 such thatf = Cµ.

The class ofn-variable Choquet integrals has been first characterized bySchmeidler [SCH 86]
by using monotonic additivity; see also [CAM 91, CAM 92, GRA 93, GRA 95c]. Note that this
result was stated and proved in the continuous case (infinite) instead of the discrete case.

Theorem 17.14.f : Rn → R is non-decreasing, comonotonic additive and fulfillsf(1N ) = 1
if and only if there existsµ ∈ FN such thatf = Cµ.

Since the Choquet integral is defined from a fuzzy measure, itis sometimes useful to con-
sider, for a given setN , the family of Choquet integrals onN as a set of functions

{fµ : Rn → R | µ ∈ FN}

or, equivalently, as a functionf : Rn × FN → R.

Let us mention a first characterization of the family of Choquet integrals onN ; see Groes
et al. [GRO 98]. For anyS ⊆ N , S 6= ∅, denote byµS the fuzzy measure onN defined by
µS(T ) = 1 if T ⊇ S and 0 otherwise.
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Theorem 17.15. The class of functions{fµ : Rn → R | µ ∈ FN} fulfills the following
properties:

– for anyµ, ν ∈ FN and anyλ ∈ R such thatλµ+ (1− λ)ν ∈ FN , we have

fλµ+(1−λ)ν = λfµ + (1− λ)fν ,

– for anyS ⊆ N , we havefµS = minS ,

if and only iffµ = Cµ for all µ ∈ FN .

A second characterization obtained by the author [MAR 98, MAR 00a] can be stated as
follows.

Theorem 17.16. The class of functions{fµ : Rn → R | µ ∈ FN} fulfills the following
properties:

– any functionfµ is a linear expression ofµ, that is there exist2n functionsgT : Rn → R
(T ⊆ N) such thatfµ =

∑
T⊆N gT µ(T ) for all µ ∈ FN ,

– for anyµ ∈ FN and anyS ⊆ N , we havefµ(1S) = µ(S),

– for anyµ ∈ FN , the functionfµ is non-decreasing and meaningful for the same input-
output interval scales,

if and only iffµ = Cµ for all µ ∈ FN .

These two characterizations are natural and similar to eachother. The linearity condition
proposed in the second characterization is useful if we wantto keep the aggregation model as
simple as possible. Technically, this condition is equivalent to the superposition condition, that
is,

fλ1µ+λ2ν = λ1fµ + λ2fν

for all µ, ν ∈ FN and allλ1, λ2 ∈ R such thatλ1µ + λ2ν ∈ FN . Of course, linearity
implies the first condition of the first characterization. Moreover, under this linearity condi-
tion, the other conditions are equivalent. In fact, in the proof of the second characterization
[MAR 98, MAR 00a], the author replaced the conditionfµS = minS with the three conditions:
fµ(1S) = µ(S), non-decreasing monotonicity and meaningfulness for the same input-output
interval scales offµ.

We also have the following three results [MAR 98, section 4.2.3].

Proposition 17.3. The Choquet integralCµ : Rn → R is bisymmetric if and only if

Cµ ∈ {minS ,maxS | S ⊆ N} ∪ {WAMω | ω ∈ [0, 1]n}.

Proposition 17.4. The sequence of Choquet integralsC := (C(n)

µ(n) : Rn → R)n≥1 is bisym-
metric if and only if either:
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– for anyn ∈ N \ {0}, there existsS ⊆ Nn such thatC(n)

µ(n) = minS ,

– for anyn ∈ N \ {0}, there existsS ⊆ Nn such thatC(n)

µ(n) = maxS , or

– for anyn ∈ N \ {0}, there existsω ∈ [0, 1]n such thatC(n)

µ(n) = WAMω.

Proposition 17.5. The sequence of Choquet integralsC := (C(n)

µ(n) : Rn → R)n≥1 is decom-
posable if and only if either

– C = (min(n))n≥1,

– C = (max(n))n≥1, or

– there existsθ ∈ [0, 1] such that, for anyn ∈ N \ {0}, we haveC(n)

µ(n) = WAMω, with

ωi =
(1− θ)n−iθi−1

∑n
j=1(1− θ)n−jθj−1

(i ∈ Nn).

Proposition 17.6. The sequence of Choquet integralsC := (C(n)

µ(n) : Rn → R)n≥1 is associa-

tive if and only if

C = (min(n))n≥1 or (max(n))n≥1 or (P
(n)
1 )n≥1 or (P (n)

n )n≥1.

Let us now consider certain special cases of the Choquet integral, namely the weighted
arithmetic means (WAM) and the ordered weighted averaging functions (OWA).

Theweighted arithmetic meanWAMω is a Choquet integral defined from an additive mea-
sure. It fulfills the classicaladditivity property, i.e.

f(x1 + x′
1, . . . , xn + x′

n) = f(x1, . . . , xn) + f(x′
1, . . . , x

′
n)

for all vectorsx, x′ ∈ Rn. More precisely, we have the following results (see Marichal [MAR 98,
section 4.2.4] and Murofushi and Sugeno [MUR 93]).

Proposition 17.7. The Choquet integralCµ : Rn → R is additive if and only if there exists
ω ∈ [0, 1]n such thatCµ = WAMω.

Proposition 17.8. A : Rn → R is non-decreasing, meaningful for the same input-output
interval scales and additive if and only if there existsω ∈ [0, 1]n such thatA = WAMω.

The ordered weighted averaging functionsOWAω were proposed by Yager [YAG 88].
Since their introduction, these aggregation functions have been applied to many fields as neural
networks, data base systems, fuzzy logic controllers and group decision making. An overview
on these functions can be found in the book edited by Yager andKacprzyk [YAG 97]; see also
Grabischet al. [GRA 00].

The following result, ascribed to Grabisch [GRA 95b] (see [MAR 02a] for a concise proof),
shows that the OWA function is nothing but a Choquet integralwith respect to acardinality-
basedfuzzy measure i.e. a fuzzy measure depending only on the cardinalities of the subsets.
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Proposition 17.9. Letµ ∈ FN . The following assertions are equivalent:

1) For anyS, S′ ⊆ N such that|S| = |S′|, we haveµ(S) = µ(S′).

2) There exists a weight vectorω such thatCµ = OWAω.

3) Cµ is a symmetric function.

The fuzzy measureµ associated to anOWAω is given by

µ(S) =

n∑

i=n−s+1

ωi (S ⊆ N, S 6= ∅).

Conversely, the weights associated toOWAω are given by

ωn−s = µ(S ∪ i) − µ(S) (i ∈ N, S ⊆ N \ i).

The class of OWA functions includes an important subfamily,namely the order statistics

OSk(x) = x(k),

whenωk = 1 for somek ∈ N . In this case, we have for anyS ⊆ N

µ(S) =

{
1, if s ≥ n− k + 1,
0, otherwise.

This subfamily itself contains the minimum, the maximum andthe median. Axiomatizations of
the class of OWA functions can be immediately derived from those of the Choquet integral and
from proposition 17.9.

17.5.3. The Sugeno integral

The Sugeno integral [SUG 74, SUG 77] was introduced as a fuzzyintegral, that is, an inte-
gral defined from a fuzzy measure. This integral has then beenthoroughly investigated and used
in many domains (an overview can be found in Duboiset al. [DUB 01] and the volume edited
by Grabischet al. [GRA 00]).

As for the Choquet integral, we give here the definition of theSugeno integral in its discrete
(finite) version, which is nothing other than an aggregationfunction from[0, 1]n to [0, 1].

Definition 17.18. Let µ ∈ FN . The (discrete)Sugeno integralof x ∈ [0, 1]n with respect toµ
is defined by

Sµ(x) :=
n∨

i=1

[x(i) ∧ µ(A(i))],

where(·) is a permutation onN such thatx(1) ≤ . . . ≤ x(n). Also,A(i) = {(i), . . . , (n)} and
A(n+1) = ∅.



Aggregation Functions for Decision Making 675

Exactly as in the definition of the Choquet integral, the ‘coefficient’ associated with each
variablexi is fixed uniquely by the permutation(·). For instance, ifx3 ≤ x1 ≤ x2, then we
have

Sµ(x1, x2, x3) = [x3 ∧ µ({3, 1, 2})] ∨ [x1 ∧ µ({1, 2})] ∨ [x2 ∧ µ({2})].

From the definition, we can immediately deduce that

Sµ(x) ∈ {x1, . . . , xn} ∪ {µ(S) |S ⊆ N} (x ∈ [0, 1]n).

Moreover, similarly to the Choquet integral, we have

Sµ(1S) = µ(S) (S ⊆ N),

which shows that the Sugeno integral is completely determined by its values at the vertices of
the hypercube[0, 1]n.

It was proven [GRE 87, MAR 00b, SUG 74] that the Sugeno integral can also be set in the
following form, which does not require the reordering of thevariables:

Sµ(x) =
∨

T⊆N

[
µ(T ) ∧ (

∧

i∈T

xi)
]

(x ∈ [0, 1]n).

It was also proven [KAN 78] that the Sugeno integral is a kind of weighted median:

Sµ(x) = median[x1, . . . , xn, µ(A(2)), µ(A(3)), . . . , µ(A(n))] (x ∈ [0, 1]n).

For instance, ifx3 ≤ x1 ≤ x2, then

Sµ(x1, x2, x3) = median[x1, x2, x3, µ(1, 2), µ(2)].

The following result [MAR 01] shows that the Sugeno integralis a rather natural concept
and, contrary to the Choquet integral, it is suitable for an aggregation in an ordinal context.

Proposition 17.10. Any weakly idempotent functionA : [0, 1]n → [0, 1], whose (well-formed)
expression is made up of variablesx1, . . . , xn, constantsr1, . . . , rm ∈ [0, 1], lattice operations
∧ = min and∨ = max and parentheses is a Sugeno integral (and conversely).

Let us now turn to axiomatizations of the Sugeno integral. Wecan easily see that the Sugeno
integral is a continuous, non-decreasing, unanimously increasing, idempotent and internal func-
tion. It also fulfills thecomonotonic minitivityandcomonotonic maxitivityproperties [CAM 91],
that is

f(x1 ∧ x′
1, . . . , xn ∧ x′

n) = f(x1, . . . , xn) ∧ f(x′
1, . . . , x

′
n)

f(x1 ∨ x′
1, . . . , xn ∨ x′

n) = f(x1, . . . , xn) ∨ f(x′
1, . . . , x

′
n)
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for all comonotonic vectorsx, x′ ∈ [0, 1]n. More specifically, it isweakly minitiveandweakly
maxitive, that is, it fulfills

f(x1 ∧ r, . . . , xn ∧ r) = f(x1, . . . , xn) ∧ r
f(x1 ∨ r, . . . , xn ∨ r) = f(x1, . . . , xn) ∨ r

for all vectorsx ∈ [0, 1]n and allr ∈ [0, 1]. Even more specifically, by replacingx with the
Boolean vector1S in the two equations above, we see that it is alsonon-compensative, that is
it fulfills

f(r1S) ∈ {f(1S), r} and f(1S + r1N\S) ∈ {f(1S), r}
for all S ⊆ N and allr ∈ [0, 1].

Comonotonic minitivity and maxitivity have been interpreted in the context of aggregation
of fuzzy subsets by Ralescu and Ralescu [RAL 97]. Non-compensation has been interpreted in
decision making under uncertainty in Duboiset al. [DUB 01].

The main axiomatizations of the Sugeno integral as an aggregation function are summarized
in the following result; see Marichal [MAR 98, MAR 00b].

Theorem 17.17. LetA : [0, 1]n → [0, 1]. The following assertions are equivalent:

– A is non-decreasing, idempotent and non-compensative;

– A is non-decreasing, weakly minitive and weakly maxitive;

– A is non-decreasing, idempotent, comonotonic minitive and maxitive; and

– there existsµ ∈ FN such thatA = Sµ.

The 2-variable Sugeno integral can be characterized in a very natural way by means of the
associativity property. Indeed, theorem 17.10 can be rewritten as follows.

Proposition 17.11. A : [0, 1]2 → [0, 1] is continuous, non-decreasing, idempotent and asso-
ciative if and only if there existsµ ∈ F2 such thatA = Sµ.

Considering associative or decomposable sequences, we have the following result; see
Marichal [MAR 98, p. 113].

Proposition 17.12. LetA := (A(n) : [0, 1]n → [0.1])n≥1 be a sequence of functions. Then
the following assertions are equivalent:

– A is an associative sequence of Sugeno integrals;

– A is a decomposable sequence of Sugeno integrals;

– A is an associative sequence of continuous, non-decreasing and idempotent functions;
and
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– there existα, β ∈ [0, 1] such that

A(n)(x) = (α∧x1)∨
( n−1∨

i=2

(α∧β∧xi)
)
∨ (β∧xn)∨

( n∧

i=1

xi

)
(x ∈ [0, 1]n, n ∈ N\{0}).

Just as the Choquet integral includes two main subclasses, namely the weighted arith-
metic means and the ordered weighted averaging functions, the Sugeno integral includes the
weighted minimum and maximum and the ordered weighted minimum and maximum. These
functions have been introduced and investigated in Dubois and Prade [DUB 86] and Duboiset
al. [DUB 88], respectively.

For any vectorω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∨n

i=1 ωi = 1, theweighted maximum
associated withω is defined by

pmaxω(x) =
n∨

i=1

(ωi ∧ xi) (x ∈ [0, 1]n).

For any vectorω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∧n

i=1 ωi = 0, theweighted minimum
associated withω is defined by

pminω(x) =
n∧

i=1

(ωi ∨ xi) (x ∈ [0, 1]n).

The functionspmaxω and pminω can be characterized as follows [DUB 86, MAR 98,
RAL 96].

Proposition 17.13. Letµ ∈ FN . The following assertions are equivalent:

– µ is a possibility measure such that

µ(S ∪ T ) = µ(S) ∨ µ(T ) (S, T ⊆ N);

– there existsω ∈ [0, 1]n such thatSµ = pmaxω; and

– Sµ(x1 ∨ x′
1, . . . , xn ∨ x′

n) = Sµ(x1, . . . , xn) ∨ Sµ(x′
1, . . . , x

′
n) (x, x′ ∈ [0, 1]n).

Proposition 17.14. Letµ ∈ FN . The following assertions are equivalent:

– µ is a necessity measure, such that

µ(S ∩ T ) = µ(S) ∧ µ(T ) (S, T ⊆ N);

– there existsω ∈ [0, 1]n such thatSµ = pminω; and

– Sµ(x1 ∧ x′
1, . . . , xn ∧ x′

n) = Sµ(x1, . . . , xn) ∧ Sµ(x′
1, . . . , x

′
n) (x, x′ ∈ [0, 1]n).

For any vectorω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∨n

i=1 ωi = 1, theordered weighted
maximumassociated withω is defined by

opmaxω(x) =
n∨

i=1

(ωi ∧ x(i)) (x ∈ [0, 1]n).
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For any vectorω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∧n

i=1 ωi = 0, the ordered weighted
minimumassociated withω is defined by

opminω(x) =
n∧

i=1

(ωi ∨ x(i)) (x ∈ [0, 1]n).

Surprisingly enough, the class of ordered weighted minima coincides with that of ordered
weighted maxima and identifies with the symmetric Sugeno integrals. The result can be stated
as follows [GRA 95b, MAR 98].

Proposition 17.15. Letµ ∈ FN . The following assertions are equivalent:

– µ depends only on the cardinalities of the subsets;

– there existsω ∈ [0, 1]n such thatSµ = opmaxω;

– there existsω ∈ [0, 1]n such thatSµ = opminω; and

– Sµ is a symmetric function.

Using the fact that the Sugeno integral is also a weighted median, we can write

opmaxω(x) = median(x1, . . . , xn, ω2, . . . , ωn),

opminω(x) = median(x1, . . . , xn, ω1, . . . , ωn−1).

Another interesting subclass is that of lattice polynomials, which are nothing other than
Sugeno integrals defined from fuzzy measures taking their values in{0, 1}. We will characterize
these functions in the final section.

17.6. Aggregation on ratio and interval scales

In this section, we present the families of aggregation functions that are meaningful for
ratio and interval scales (see definition 17.7). First of all, we have the following two results
concerning ratio scales (see [ACZ 86, case #2], [ACZ 89a, chapter 20], [ACZ 94, p. 439]).

Theorem 17.18.A : ]0,∞[n→ ]0,∞[ is meaningful for the same input-output ratio scales if
and only if

A(x) = x1 F
(x2

x1
, . . . ,

xn

x1

)
(x ∈]0,∞[n),

withF : ]0,∞[n−1→ ]0,∞[ arbitrary (F = constant ifn = 1).

Theorem 17.19.A : ]0,∞[n→ ]0,∞[ is meaningful for the same input ratio scales if and only
if

A(x) = g(x1)F
(x2

x1
, . . . ,

xn

x1

)
(x ∈ ]0,∞[n),

with F : ]0,∞[n−1→ ]0,∞[ arbitrary (F = constant ifn = 1) andg : ]0,∞[→ ]0,∞[ such
thatg(xy) = g(x)g(y) for all x, y ∈ ]0,∞[. g(x) = xc if A is continuous (c arbitrary).
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We have the following results regarding interval scales (see [ACZ 86, case #5] and [MAR 98,
section 3.4.1]).

Theorem 17.20.A : Rn → R is meaningful for the same input-output interval scales if and
only if

A(x) =

{
S(x)F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ AM(x), if S(x) 6= 0,

x1, if S(x) = 0

whereS(x) =
√∑n

i=1(xi − AM(x))2 andF : Rn → R arbitrary (A(x) = x if n = 1).

Theorem 17.21.A : Rn → R is meaningful for the same input interval scales if and only if

A(x) =

{
S(x)F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ aAM(x) + b, if S(x) 6= 0,

a x1 + b, if S(x) = 0,

or

A(x) =

{
g(S(x))F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ b, if S(x) 6= 0,

b, if S(x) = 0

wherea, b ∈ R, S(x) =
√∑n

i=1(xi − AM(x))2, F : Rn → Ris arbitrary (A(x) = ax+ b if
n = 1) andg : R→ ]0,∞[ is such thatg(xy) = g(x)g(y) for all x, y ∈ R.

The restriction of these families to non-decreasing functions and strictly increasing func-
tions is discussed in Aczélet al. [ACZ 94].

In the rest of this section, we present axiomatizations of some subfamilies of functions that
are meaningful for the same input-output interval scales [MAR 99]. For instance, we observed
in section 17.5.2 that the discrete Choquet integral fulfills this property. More generally, it is
clear that any aggregation function obtained by composition of an arbitrary number of dis-
crete Choquet integrals is again meaningful for the same input-output interval scales. These
functions, calledcomposed Choquet integrals, have been investigated in e.g. Narukawa and
Murofushi [NAR 02].

If we confine ourselves to bisymmetric functions, we have thefollowing results.

Proposition 17.16. A : Rn → R is non-decreasing, meaningful for the same input-output
interval scales and bisymmetric if and only if

A ∈ {minS ,maxS | S ⊆ N} ∪ {WAMω | ω ∈ [0, 1]n}.

Corollary 17.6. A : Rn → R is symmetric, non-decreasing, meaningful for the same input-
output interval scales and bisymmetric if and only if

A ∈ {min,max,AM}.

Proposition 17.17. (A(n) : Rn → R)n≥1 is a bisymmetric sequence of non-decreasing and
meaningful functions for the same input-output interval scales if and only if either
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– for anyn ∈ N \ {0}, there existsS ⊆ Nn such thatM (n) = minS ;

– for anyn ∈ N \ {0}, there existsS ⊆ Nn such thatM (n) = maxS , or

– for anyn ∈ N \ {0}, there existsω ∈ [0, 1]n such thatM (n) = WAMω.

Corollary 17.7. A := (A(n) : Rn → R)n≥1 is a bisymmetric sequence of symmetric, non-
decreasing and meaningful functions for the same input-output interval scales if and only if

A = (min(n))n≥1 or (max(n))n≥1 or (AM(n))n≥1.

Let us now consider the decomposable and associative sequences of aggregation functions.
We have the following results.

Proposition 17.18. A := (A(n) : Rn → R)n≥1 is a decomposable sequence of non-
decreasing and meaningful functions for the same input-output interval scales if and only if
either

– A = (min(n))n≥1;

– A = (max(n))n≥1; or

– there existsθ ∈ [0, 1] such that, for anyn ∈ N \ {0} we haveA(n) = WAMω with

ωi =
(1− θ)n−iθi−1

∑n
j=1(1− θ)n−jθj−1

(i ∈ Nn).

Corollary 17.8. A := (A(n) : Rn → R)n≥1 is a decomposable sequence of symmetric,
non-decreasing and meaningful functions for the same input-output interval scales if and only
if

A = (min(n))n≥1 or (max(n))n≥1 or (AM(n))n≥1.

Proposition 17.19. A := (A(n) : Rn → R)n≥1 is an associative sequence of non-decreasing
and meaningful functions for the same input-output interval scales if and only if

A = (min(n))n≥1 or (max(n))n≥1 or (P
(n)
1 )n≥1 or (P(n)

n )n≥1.

Corollary 17.9. A := (A(n) : Rn → R)n≥1 is an associative sequence of symmetric, non-
decreasing and meaningful functions for the same input-output interval scales if and only if

A = (min(n))n≥1 or (max(n))n≥1.

17.7. Aggregation on ordinal scales

In this final section, we consider aggregation functions that are meaningful for the same
input-output ordinal scales. Their description is not immediate and requires the concept of in-
variant sets. Denote the set of strictly increasing bijections ofR by Φ.

Definition 17.19. A nonempty subsetI ⊆ Rn is said to beinvariant if

x ∈ I → φ(x) ∈ I (φ ∈ Φ).

Such a set is said to beminimal if it does not contain any proper invariant subset.
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The family I of all invariant subsets ofRn provides a partition ofRn into equivalence
classes, wherex, y ∈ Rn are equivalent if there existsφ ∈ Φ such thaty = φ(x). In fact, one
can show that any invariant subset is of the form

I = {x ∈ Rn | xπ(1) C1 · · · Cn−1 xπ(n)},

whereπ ∈ ΠN andCi∈ {<,≤} for i = 1, . . . , n− 1.

The meaningful functions for the same input-output ordinalscales have been investigated
by many authors [MAR 02b, MAR 93, MES 04, OVC 98]. They can be described as follows
[OVC 98].

Theorem 17.22.A : Rn → R is meaningful for the same input-output ordinal scales if and
only if, for anyI ∈ I, there existsi ∈ N such thatA|I = Pi|I is theith projection.

The meaningful functions for the same input ordinal scales have also been widely stud-
ied [MAR 02b, MAR 05, ORL 81, OVC 96, YAN 89]. They have been described as follows
[MAR 05].

Theorem 17.23.A : Rn → R is meaningful for the same input ordinal scales if and only if, for
anyI ∈ I, there existsiI ∈ N and a constant or strictly monotone functiongI : PiI (I)→ R
such that

A|I = gI ◦ PiI |I ,
where, for anyI, J ∈ I, eithergI = gJ , or ran(gI) = ran(gJ) is a singleton, orran(gI) <
ran(gJ), or ran(gI) > ran(gJ).

We therefore see that the meaningful functions for the same input-output ordinal scales
reduce to projections on each invariant subset. In addition, the meaningful functions for the
same input ordinal scales reduce to constants or transformed projections on these invariant
subsets.

The restriction of these functions to non-decreasing and/or continuous functions has also
been studied. To describe these subfamilies, we need the concept of lattice polynomials.

Definition 17.20. A lattice polynomialof n variables is a well-formed expression involvingn
variablesx1, . . . , xn linked by the lattice operations∧ = min and∨ = max in an arbitrary
combination of parentheses.

For instance,L(x) = (x1 ∨ x2) ∧ x3 is a 3-variable lattice polynomial.

We can show [BIR 67, chapter 2] that anyn-variable lattice polynomial can be written in
disjunctive form as

Lγ(x) =
∨

S ⊆ N
γ(S)=1

∧

i∈S

xi (x ∈ Rn),



682 Decision Making

whereγ : 2N → {0, 1} is a binary fuzzy measure (i.e. with values in{0, 1}). We denote the
family of these fuzzy measures onN by ΓN .

It was also proven [MAR 01] that the class of lattice polynomials restricted to the domain
[0, 1]n identifies with the intersection between the family of Choquet integrals on[0, 1]n and
the family of Sugeno integrals.

Regarding non-decreasing functions, we have the descriptions [MAR 02b, MAR 05] as fol-
lows.

Proposition 17.20. A : Rn → R is non-decreasing and meaningful for the same input-output
ordinal scales if and only if there existsγ ∈ ΓN such thatA = Lγ .

Proposition 17.21.A : Rn → R is non-decreasing and meaningful for the same input ordinal
scales if and only if there existsγ ∈ ΓN and a constant or strictly monotone functiong : R→ R
such thatA = g ◦ Lγ .

The functions in the above two theorems are continuous, up todiscontinuities of function
g. Regarding continuous functions, we have the following results [MAR 02b].

Corollary 17.10. A : Rn → R is continuous and meaningful for the same input-output ordinal
scales if and only if there existsγ ∈ ΓN such thatA = Lγ .

Corollary 17.11. A : Rn → R is continuous and meaningful for the same input ordinal scales
if and only if there existsγ ∈ ΓN and a constant or continuous and strictly monotone function
g : R→ R such thatA = g ◦ Lγ .

Lattice polynomials are idempotent, but not necessarily symmetric. Actually, symmetric lat-
tice polynomials are exactly the order statistics, which include the classical median. By adding
symmetry and/or idempotency to the previous results, we obtain the following corollaries.

Corollary 17.12. A : Rn → R is symmetric, non-decreasing (or continuous) and meaningful
for the same input-output ordinal scales if and only if thereexistsk ∈ N such thatA = OSk.

Corollary 17.13. A : Rn → R is idempotent, non-decreasing (or continuous) and meaningful
for the same input ordinal scales if and only if there existsγ ∈ ΓN such thatA = Lγ .

Corollary 17.14. A : Rn → R is symmetric, non-decreasing and meaningful for the same
input ordinal scales if and only if there existk ∈ N and a constant or strictly increasing
functiong : R→ R such thatA = g ◦OSk.

Corollary 17.15. A : Rn → R is symmetric, continuous and meaningful for the same input
ordinal scales if and only if there existsk ∈ N and a constant or continuous and strictly
monotonic functiong : R→ R such thatA = g ◦OSk.
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17.8. Conclusion

In this chapter we have discussed the most classical aggregation functions that are used in
decision making. An appropriate classification of these functions into a catalog can be better
done through an axiomatic approach, which consists of listing a series of reasonable properties
and classifying or, better, characterizing the aggregation functions according to these properties.

With knowledge of the increasing need to define suitable aggregation functions fulfilling
very precise conditions in various situations, it is not surprising that such a catalog of aggrega-
tion functions, which is already huge, is constantly growing and remains an important topic of
research. We have only skimmed the surface of a still-growing domain here.
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Chapter 18

Subjective Evaluation

18.1. Introduction

In the area of decision, an important topic isevaluation. When a director of human resources
examines the profiles of candidates for a position, when a manager from the European Commis-
sion must choose which projects to fund among those submitted and when a marketing director
evaluates the various models of a new car to be launched, all these people perform an evaluation
process. Closer to everyday life, in an unconscious way, we constantly evaluate goods we have
bought e.g. when saying that chocolate XXX is better than chocolate YYY, that the seat of this
car is really very comfortable or that the keyboard of this computer is too soft.

In the above examples, the reader has certainly noticed thesubjectivecharacter of evalu-
ation: it seems impossible to give an objective measurementof the intellectual, managerial or
commercial abilities of a candidate, of the social and economical consequences of the next five
years of a given project, of the aesthetic of a car, of the comfort of a seat or of the bitterness,
sweetness or salty degree of some edible good. Numerous attempts have nevertheless been made
in order to reach objectivity in the measurement of many of the above cited examples. This can
be seen in the various testing procedures to measure the abilities of people in a specific domain;
e.g. the food industry uses trained and regularly calibrated experts (who could be calledhuman
sensors) to measure fundamental aspects of taste.

Even if we could achieve a precise measurement of these notions, the above examples in
evaluation would remain nevertheless subjective in nature. A given candidate can be judged very
differently by two different directors and, as the popular dicton states, nobody should discuss
matter of taste. The subjective character lies therefore more in the global perception we have
of the object, rather than in the difficulty of measuring its characterstics. The global perception
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is proper to the individual and reflects its subjectivity, while the sensorial perception remains
more or less invariant, up to physiological fluctuations.

Hence, among the above-mentioneddescriptorsor attributes(how the various character-
istics or dimensions describing the object are referred to), we can distinguish two categories.
There are those which are clearly objective descriptors, since they are measurable by sensors
(physical or human) or by well-defined and repeatable procedures. These are e.g. the abilities
(intellectual, managerial, etc.) of a given kind, the performance of a car, the volume of its trunk,
the degrees of sweetness and bitterness degrees.

The second category includes descriptors for which it seemsnearly impossible to conceive a
measurement procedure, mainly because these notions are very difficult to define. These are e.g.
aesthetic, the design of a car or the comfort of a seat. Although everybody has a clear intuitive
understanding of these descriptors, they are difficult to grasp because they are multidimensional
in nature, each dimension being a new descriptor which is possibly itself multidimensional.
Even if we could imagine an infinite power of analysis which would enable the extraction of
the set of all objective descriptors forming such a descriptor, we must admit the fact that two
different people having the same stimulus (for example, thephotograph of a car in a magazine)
would certainly have different global perceptions. Hence,these are subjective descriptors.

The aim of evaluation is to try to mathematically model this global perception, proper to a
given individual or a given population, in terms of objective descriptorsmeasurable by human
or physical sensors, or by clearly defined procedures.

This informal introduction should have made clear the fact that the problem taken as a whole
is a complex one, and that it is connected to many disciplines. Let us mention at this stage that
this topic is of great interest in Japan, where the wordkansei(feeling) is used (even in English
publications due to the difficulty of translating it). Thereexist some annual workshops on this
topic (called ‘Heart and Mind’), as well as a whole book devoted to thekanseidata analysis
[NAK 00].

The aim of this chapter is both more modest and more focused. In section 18.2, we set
the borders of the problem we want to address and mention related domains. After a section
giving the foundations of our approach, which is based on multicriteria decision making and
measurement theory, we methodically build our approach in sections 18.4–18.8. Section 18.9
is devoted to applications. After a general presentation ofpotential applications, we detail the
main applications using the methodology described in this chapter.

18.2. What is subjective evaluation?

The aim of this section is to formalize the problem of subjective evaluation and to define
some general notation.

18.2.1. General definition and related domains

We simply call the parameter to be evaluatedobject. The object can be a concrete object in
the usual sense (a piece of chocolate, a car), an abstract one(a piece of music), or an unanimated
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being (candidate, cat, etc.). The evaluation of an object orof a collection of objects of the same
type is done with respect to aquality which the object is supposed to have (the good taste of
chocolate, the comfort of a car, the beauty of a piece of music, the cleverness of a candidate,
etc.). This evaluation is carried out by anevaluatoror asubject.

Subjective evaluationis restricted to the case where the quality cannot be directly evaluated
by some sensor, either human or physical, or by some well-defined and repeatable procedure. By
a human sensor, we mean a expert, calibrated and well trained for measuringa given quality,
whose characteristics are known as for a physical sensor. Wemake the assumption that this
quality has a multidimensional character, each dimension being called adescriptoror attribute.
A descriptor is also a quality of an object which ideally is measurable, but it may be the case that
some descriptors are themselves subjective qualities (notdirectly measurable), and therefore
also multidimensional. Performing this process until the end, we obtain a tree of descriptors
[ZIM 83] whose leaves are all directly measurable descriptors (objectivedescriptors).

Such a construction is only possible in ideal situations. Inreal situations, only an approxi-
mation of it can be reached with a limited number of descriptors. Given the recursive character
of this representation, it is sufficient to consider here onequality defined by a set of descrip-
tors as being all objective. We denote byX the quality of interest, and byX1, . . . ,Xn then
objective descriptors which describe it.Xi represents the set of all possible values (numerical,
qualitative, etc.) taken by the corresponding descriptor.

The process of subjective evaluation relies on or is closelylinked to a certain number of
disciplines, which we briefly list below:

1) Multicriteria decision making, which is the study of choice procedures with respect to
several criteria or points of view, is a central tool in subjective evaluation. It offers a solid the-
oretical background for the multidimensional aspect of choice, which underlies every problem
of subjective evaluation. The approach we propose here lieswithin this perspective.

2) Data analysis is undoubtedly another fundamental and compulsory tool in this domain,
which permits correlations between dimensions, principalcomponents or factors to be exam-
ined. It allows the most synthetic representation of the quality of the object of interest to be
found.

This approach needs an important amount of data (measurements of descriptors, evaluation
of the quality of several objects by several subjects). If data are quantitative, Principal Compo-
nent Analysis (PCA) can be used; on the other hand, in case of qualitative data, the Multiple
Correspondence Analysis (MCA) is used [SAP 90]. Lastly, data of the frequency type can be
processed by the Factorial Analysis of Correspondences (FAC). There exists a method able to
treat these different cases conjointly, called the Multiple Factorial Analysis (MFA) [ESC 88].

3) Measurement theory is concerned with the mathematical foundations of the act of mea-
suring objects. It permits a numerical representation of relations between objects to be deter-
mined, as for the preference relation. In section 18.3.2, wewill describe this theory.

4) Sensorial analysis allows a quantitative approach of descriptors based on the five senses
of human perception (taste, smell, touch, sight, sounds), and leads to the concept of ‘human
sensor’. Measurement is made by a panel of calibrated judges, i.e. able to measure a descriptor
in a repeatable way with an acceptable standard deviation.
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5) Sensorial physiology studies how senses function. It informs us of all factors which may
modify our perception. Lastly, some research in psychologyhas highlighted several phenomena
which may influence, sometimes heavily, our perception.

The above list is deliberately ordered. Multicriteria decision making and data analysis apply
to the values of descriptors; the different possibilities of how to use these values is controlled
by measurement theory, which takes into account the way these values have been obtained. In
turn, the way of obtaining measurements relies on sensorialanalysis, which is itself based on
sensorial physiology and psychology.

18.2.2. Definition of our scope

The previous section has demonstrated how large the topic is; it could easily fill an entire
book. In this chapter we will restrict ourselves to an approach based on multicriteria decision
making, leaving some room for measurement theory for the following reasons. First of all, we
have neglected sensorial analysis, sensorial physiology and psychology, which are very large
topics that cannot fit into this book devoted to decision theory. Nevertheless, we will devote a
section to psychology since it is somehow related to the scales and measurement notions which
we will introduce. In a similar way, data analysis is a well-known domain for which numerous
textbooks already exist. On the other hand, multicriteria decision making, which clearly has an
important place in this book, offers an original approach tothe problem of subjective evaluation.
This approach is, however, not applicable to every situation, a point which we detail below.

Let us consider the example of evaluating the comfort of car seats, which will be detailed in
section 18.9. The aim is to analyze the sensations of discomfort felt by the driver of a car after a
certain duration. There are basically two ways to proceed. Afirst method consists of questioning
the subject about local discomfort sensations (back, legs,arms, etc.) and overall discomfort
sensation. A second method consists of performing electromyographical measurements on the
subject, in order to determine the overall sensation of discomfort.

In the first case, descriptorsX1, . . . ,Xn will be expressed e.g. on a scale from 0 (no dis-
comfort) to 10 (unbearable discomfort). Doing so, these descriptors are ‘homogeneous’ and
represent a degree of discomfort, as well as qualityX represents the overall discomfort. We
understand that an augmentation ofXi among the local sensations cannot lead to a reduction of
the overall discomfortX.

In the second case, measurements can be of a very different nature. It is therefore not possi-
ble to know in advance if augmenting the value ofXi for a giveni will cause an augmentation
or a diminution of the overall sensation of discomfort.

Our approach is limited to the first case, where it is always possible to put the descriptors
on homogeneous scales (or more precisely, oncommensuratescales), which can be thought of
as satisfaction degrees or (in the present case) dissatisfaction degrees. This amounts to defining
functionsui : Xi −→ R, which transform the values of descriptors into degrees of satisfaction
or attractiveness. The degree of overall satisfaction is then a functionu : X = X1 × . . . ×
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Xn −→ R which is written

u(x) = F (u1(x1), . . . , un(xn)) (18.1)

whereF : Rn −→ R is a non-decreasing function of each argument. Note that this formula is
also used in fuzzy set theory: theui(xi) are then membership degrees. In the above example of
discomfort, functionsui are all the identity function.

The second case cannot be handled by this method since there is no way to build functions
ui; it is more related to data analysis.

Section 18.3 details the multicriteria approach.

18.3. A multicriteria approach to subjective evaluation

We consider descriptorsX1, . . . ,Xn, supposed all measurable, describing a qualityX of
an object. For eachi = 1, . . . , n, Xi denotes the descriptor itself, as well as the set of all
possible values of the descriptor (denoted byxi). We stress the fact that these values are not
always numbers. We make the assumption that the set of descriptors is exhaustive, hence an-
tuple (x1, . . . , xn) defines without ambiguity an instance of the qualityX. This can be seen
as the quality of an object, possibly fictitious. We can therefore assimilateX to the Cartesian
productX1 × . . . × Xn and, considering that in a given problem we are interested only in a
single quality, we can assimilatex ∈ X to the object of qualityx if it is unique or to one of the
members of its equivalence class.

We make the assumption that we are able to associate a satisfaction or attractiveness degree
ui(xi) to eachxi ∈ Xi, i.e. to define a functionui : Xi −→ R sometimes referred to as the
utility function. The existence of this utility function, translating the values of the descriptor in
satisfaction, allows us to speak ofcriterion. Strictly speaking, criterioni is the pair(Xi, ui)
and, with some abuse of notation, we will sometimes labelXi itself the criterioni. We then
look for a functionF : Rn −→ R (called theaggregation function) which permits a numerical
model of subjective evaluation of an objectx by equation (18.1) to be built.

There are two problems underlying this representation:

1) Under which conditions does such a model exist? More precisely, when can we ensure
the existence of utility functionsui or of the aggregation functionF?

2) Assuming that functionsui do exist, they are not in general unique but instead defined
by some transformation. Among all possible functionsui, i = 1, . . . , n, which one should we
choose?

The answer to these questions is based on measurement theory. The MACBETH (Measuring
Attractiveness by a Categorical Based Evaluation TecHnique) methodology offers a less general
but more operational answer to these two questions. The following sections provide its essential
elements. First, however, we recall some useful results obtained in psychology, which will help
our construction.



696 Decision Making

18.3.1. The importance of affect in evaluation

Research in psychology, generally conducted by Slovic [SLO02], have shown that our way
of judging, evaluating and making decision is guided byaffect. Quoting Slovic, this word can
be defined as “specific quality of ‘goodness’ and ‘badness’, as it is felt consciously or not by the
decision maker, and demarcating a positive or negative quality of stimulus”. We limit ourselves
to the main points of interest for our purpose.

– Evaluability: in multi-attribute evaluation, attributes whose perception is imprecise or
without reference level have few impacts on the final decision. Hsee [HSE 96] has performed
the following experiment. A population are asked how much they would pay for second-hand
dictionaries of music, one (a) having 10,000 entries and looking almost new, the other (b) hav-
ing 20,000 entries and the cover being torn. The amount for B is far above the amount given
for A, because of the number of entries. However, if the experiment is done with a second pop-
ulation who are asked to evaluate only A or B, the price for A isgreater than that given for B.
The reason is that most people are unable to tell whether 10,000 or 20,000 entries can be con-
sidered as sufficient for a dictionnary of music (absence of areference level). The evaluation is
therefore only made on the second attribute i.e. the condition of the book, which can be directly
appreciated.

– Dominance of proportion: expressing an attribute with a proportion or percentage has
more impact than if it is expressed in an absolute way. The reason is again the absence of
reference level when the attribute is expressed in an absolute manner. As noticed by Slovic,
people are more inclined to support policies in airports which save 95% of 150 human lives than
to save 150 human lives, because this last figure does not giveany reference level. Similarly,
people prefer a small but overflowing cup of ice-cream, rather than a big cup which is half-filled
even if the latter may contain more ice-cream than the former.

– Bipolarity: thebipolar character of affect, i.e. built on two opposite poles (good/bad, pos-
itive/negative), is central in evaluation, and it is important to represent it in the correct way.
The representation based on a bipolar scale, i.e. one singleaxis for coding affect from nega-
tive to positive, has been until recently the dominant practice (see the works of Osgoodet al.
[OSG 57]). Recently, Cacioppoet al.have proposed the use of two unipolar separate scales, one
for the positive part of affect and the other for the negativepart [CAC 97]. The motivation for
such an approach is that we may feel both a positive feelinganda negative feeling for the same
object, while it is not possible to fuse them in a singleresulting feeling (for example, eating
some chocolate gives a gustative pleasure, but one can also feel guilty). A recent study of Peters
and Slovic [PET 03] with the aim of comparing the two paradigms was not able to reach a clear
conclusion. In our construction, we will adopt the bipolar version but we will indicate some
research carried out on the ‘doubly unipolar’ side.

– Sign theory: recently proposed by Lin and Slovic [LIN 03], this makes the assumption
that the evaluation of an object with respect to an attributeis done on three values coded by
−1 (negative), 0 (neutral) and 1 (positive). Values ‘positive’ and ‘negative’ of course refer to
positive and negative affects, value ‘neutral’ is used whenthe stimulus does not bear a clear
affective value (which can be the case when there is no reference level; see above). For the
overall judgment of an object, one counts the positive and negative signs.
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18.3.2. Measurement theory, notion of scale

The reader is refered to [KRA 71, ROB 79] for more details.

Consider a set of objectsA, on which we define a relation (most often binary)% such as
‘greater than’, ‘warmer than’, ‘prefered to’, etc. and a binary operation∗. The prototype of a
binary operation is concatenation, which amounts e.g. to laying end to end two objects when
the relation of interest% is ‘bigger than’. We callA := (A,%, ∗) a relational system. In the
following, we essentially consider relational systems(A,%) without concatenation law.

It is convenient to introduce thesymmmetricpart∼ andasymmetricpart� of the relation
%, defined bya ∼ b if and only if a % b andb % a, anda � b if and only if a % b and
¬(b % a). We will often use the quotient setA/ ∼ (set of equivalence classes of∼).

The fundamental problem of measurement is to find homomorphisms between relational
systemsA andB := (B,%′, ∗′), the most common case being whenB = (R,≥,+). This
amounts to finding a functionf : A −→ B such that:

a % b⇔ f(a) %′ f(b)

and
f(a ∗ b) = f(a) ∗′ f(b).

We call scalea triple (A,B, f), wheref is an homomorphism fromA to B. With some
abuse of notation, we will sometimes say thatf itself is the scale. The scale is said to be
numericalif B = R. Finally, we say thatf is arepresentationof A, numericalif B = R.

In generalf is not unique. Every functionφ : B −→ B such thatφ ◦ f is still a homo-
morphism areadmissible transformations. If we take the example of temperature measurement
(%=’warmer than’), Celsius and Kelvin degrees are examples ofscales.

We distinguish between several types of scales, according to the class of admissible trans-
formations. The main examples of scale are:

– Absolute scales: the only admissible transformation is identity e.g. counting.

– Ratio scales: Admissible transformations areφ(x) = αx, α > 0 e.g. mass, temperature
in Kelvin degrees.

– Interval scales: Admissible transformations areφ(x) = αx+ β, α > 0 e.g. temperature
in Celsius degrees, years of the calendar.

– Ordinal scales: every functionφ which is increasing is admissible e.g. scale of hardness,
scale of Richter.

A proposition onA/ ∼ (e.g.a is 2 times longer, or warmer or heavier thanb) is meaningful
if its truth remains unchanged for all admissible transformation. Hence, for the scale of Kelvin
degrees, it is meaningful to say thata is twice as warm asb; this has no meaning for the scales
of Celsius degrees, however.
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Let us examine the simplest case of relational systemA = (A,%), where% is a binary
relation. We want to find a homomorphismf fromA to B = (R,≥) (this is called theordinal
measurementproblem). In the case of a finite setA, it is easy to show that such a homomorphism
exists if and only if% is a complete preorder. We can take as solutionf(x) := |{y | x % y}|.
The result can be extended to the case whereA is countable (in fact, it is sufficient that the
quotient setA/ ∼ is countable).

In the general case, it is not always possible to find a homomorphism. The counterexample
of the lexicographic order, due to Debreu, is famous. Let us takeA = R2, and define the
lexicographic order (asymmetric part) by:

(a, b) �lex (c, d)⇔
[
a > c or (a = c andb > d)

]
.

Let us suppose that a homomorphismf exists; we shouldthen havef(a, 1) > f(a, 0). A ratio-
nal numberg(a) therefore exists such thatf(a, 1) > g(a) > f(a, 0). Since this is valid for all
a ∈ R, we have defined a functiong : R −→ Q. Let us remark that this function is injective.
Indeed, ifa 6= b, we necessarily havea > b or b > a. In the casea > b, this implies that
g(a) > f(a, 0) > f(b, 1) > g(b). However, there exists no injective function from the realsto
the rationals.

Roughly speaking, a numerical representation cannot existif A has a cardinality greater
than that of the real numbers. This is expressed by the resultof Birkhoff-Milgram, based on the
notion of order-density. Let (A,%) be a complete order (i.e. antisymmetric:A/ ∼= A). We
say that a partB of A is order-densein (A,%) if ∀a, b ∈ A \ B such thata � b, then∃c ∈ B
such thata % c % b. We then have the following result.

Theorem 18.1. Consider(A,%), with % a binary relation. There existsf : A −→ R such
thata % b ⇔ f(a) ≥ f(b) if and only if% is a complete preorder, and the quotient setA/ ∼
has a order-dense subset at most countable. Moroever, if such anf exists, then(A,B, f) is an
ordinal scale.

This result answers our first question in the casen = 1. The utility functionui plays the role
of a homomorphism, and% represents the preference of the subject. Moreover, since function
ui is defined up to an increasing transformation, we obtain an ordinal scale.

An ordinal scale is poor, and cannot allow numerical values to be handled. Is it possible to
go farther, and to specify an interval scale? This question is related to difference measurements,
of which we give a brief description. We consider a quaternary relation% onA. The meaning
given toab % st for a, b, s, t ∈ A is the following: the intensity difference betweena andb
is greater than the difference of intensity betweens andt, the intensity being expressed by a
real-valued functionf defined onA. We therefore have the following equivalence:

ab % st⇔ f(a)− f(b) ≥ f(s)− f(t).

The question is to know which are the required conditions on% so that such a functionf
exists, and if this function is unique. Krantzet al. [KRA 71] have shown that the following five
conditions are necessary and sufficient for the existence off :
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1) The binary relationR onA2 defined by(a, b)R(s, t) := ab % st is a complete preorder.

2) ab % st⇒ ts % ba.

3) ab % a′b′ andbc % b′c′ imply ac % a′c′.

4) ab % st andst % xx imply the existence ofu, v ∈ A such thatau ∼ st andvb ∼ st
(solvability).

5) Every strictly bounded standard sequence is finite (Archimedian axiom). We say that
a1, . . . , an is astandard sequenceif ai+1ai ∼ a2a1, i = 1, . . . , n − 1 and¬(a2a1 ∼ a1a1)
(regular spacing). The standard sequence is strictly bounded if there existss, t ∈ A such that
st � aia1 � ts, i = 1, . . . , n.

Moreover, if such anf exists, it is unique up to a positive affine transformation and it therefore
defines an interval scale.

There exists a result due to Scott in the case whereA is finite, which uses an infinite scheme
of axioms.

There exists a third type of measurement calledextensive measurement, where we look
for a homomorphism between(A,%, ∗) and(R,≥,+). A representation exists if and only if
(A,%, ∗) is an Archimedean ordered group (Hölder’s theorem). In thiscase, we obtain a ratio
scale.

We have now studied the mono-dimensional casen = 1. What happens in the multidimen-
sional case? According to our notation, we denote the set of objects byX = X1 × . . . ×Xn.
We are looking for a functionu : X −→ R such thatx % y if and only if u(x) ≥ u(y).
The existence of this function is given by the theorem of Birkhoff-Milgram: it is necessary and
sufficient that(X/ ∼,%) has a countable order-dense subset and that% is a complete preorder.
In order to make the dimensionsXi explicit, we are looking for functions which are called
decomposable, i.e. of the form

u(x1, . . . , xn) = F (u1(x1), . . . , un(xn)), (18.2)

with F increasing. A necessary condition for the existence of thisform is weak separability
or independenceof (X,%).(Note that if there is no condition onF , we replace% by ∼ in
equation (18.3). This condition is calledsubstitutability. On the other hand, the independence
condition can be found in expected utility theory within thesure-thing principle [SAV 72].)

(xi, zic ) % (yi, zic)⇔ (xi, z
′
ic ) % (yi, z

′
ic), ∀x, y, z, z′ ∈ X. (18.3)

Notationz = (xA, yAc) means that the objectz is such thatzi = xi if i ∈ A, andzi = yi

otherwise. This property entails the existence of relations %i on eachXi, and therefore of
homomorphismsui : Xi −→ R. To summarize, the result is as follows.

Theorem 18.2. (X,%) is representable by a decomposable functionu with F : Rn −→ R
being increasing if and only if% is a complete preorder,(X/ ∼,%∗) has a countable order-
dense subset, and(X,%) is weakly separable.
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u defines an ordinal scale since it is unique up to an increasingtransformation.

This result answers our two questions raised at the begining, since equations (18.1) and
(18.2) are identical:F is then the aggregation function we were looking for, and theutility
functionsui are unique. However, it is nothing other than an existence theorem, with conditions
which are difficult to check in practice. On the other hand, itwould be interesting to obtain
at least a difference scale. The MACBETH methodology, whichwe present below, permits a
difference scale (non-unique) to be obtained, with an experimental protocol at the expense of
some additional assumptions. We first introduce the fundamental notion of unipolar and bipolar
scales.

18.3.3. Unipolar and bipolar scales

Let us examine the notion of scale from a different viewpoint, in the light of work done in
psychology around the notion of affect (section 18.3.1). This work has shown the bipolar nature
(good/bad, positive/negative) of evaluation, and the existence of a neutral level (theory of sign).
We will attempt to formalize these notions, relying on measurement theory.

The distinction between unipolar and bipolar scales lies inthe presence of a particular value
of the scale, calledneutral value, whose exact meaning is related to the nature of the relation%.
In many cases, however, and in particular for all relations% of physical nature, this distinction
has no meaning at all. It seems however useful for all relations of a more subjective nature
where affect is present, such as preference.

Let (A,%) be a relational system andf a scale which we will suppose to be numerical (it
is however possible to work on any totally ordered set). There exists a particular valuee in A,
called theneutral value, which has the property that ifa � e thena is felt as ‘good’ while if
e � a, thena is felt as ‘bad’. It is convenient (but not compulsory) to assign the valuef(e) = 0
to e. Doing so, positive numbers correspond to good values of thedescriptor and negatives num-
bers to bad values. A neutral value exists whenever the relation % corresponds to two opposite
notions of the language. This is the case for the relations ‘more attractive than’, ‘better than’,
‘like more than’, whose corresponding pairs of opposite notions are attractiveness/repulsion,
good/bad and like/dislike, respectively. On the contrary,relations such as ‘higher priority than’,
‘more permitted than’ or ‘belongs more to categoryC than’ clearly do not correspond to pairs
of opposite concepts (absence of affect), and therefore have no neutral value.

A bipolar scalehas a neutral value, while aunipolar scaledoes not. Typically, for a bipolar
scale the range off will be R (bipolarunbounded) or a closed interval ofR, symmetric around
0 (bipolarbounded), considered as neutral value. For a unipolar scale, we generally consider
that it has a least element, that is, there existsa ∈ A/ ∼ such thatb % a for all b ∈ A (it
is always the case ifA is finite and% is a total preorder). It is convenient but not compulsory
to assign the valuef(a) = 0 to a. In this case, the range off is R+ (unipolar unbounded) or
a closed interval[0, α] (unipolar bounded). If we take again the examples of unipolar scales
given above, the relations ‘more permitted’ and ‘belongs more to categoryC than’ have a least
element, which we can express by ‘forbidden’ (in the strict sense) and ‘outside categoryC ’,
respectively. On the contrary, there is no least element for‘higher priority than’ since one can
always find something of less priority.
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It is convenient to denote by0 the neutral value of a bipolar scale, or the least element of a
unipolar scale.

A scale has a greatest element if there exists a valuea1 ∈ A such thata1 % a for all
elementsa of A. We say that a unipolar scale isboundedif it has a greatest element. A bipo-
lar scale is bounded if it has a least and a greatest element (because of the symmetry of this
type of scale, the existence of a greatest element entails that of a least element). In the above
examples, relations ‘more attractive than’, ‘better than’and ‘of higher priority than’ are not
bounded in general, while ‘more permitted than’ and ‘belongs more to categoryC than’ are
clearly bounded. The greatest elements are ‘fully permitted’ and ‘totally belongs to category
C ’, respectively. We denote the greatest element by1 and the least element of the bipolar scale
by−1, when they exist.

The absence of a greatest element can create a problem when several scales are used at the
same time (commensurability). In this case, we must build another particular level which we call
thesatisfactory level, also denoted by1. This level is considered asgood and quite satisfactory
if the decision maker could obtain it, even if more attractive elements could exist inA, by the
unboundedness assumption. As we will see in the next section, the existence of such a level is
a basic assumption in the MACBETH approach. The existence ofa ‘satisfactory’ level which
would satisfy the decision maker, and would be such that theywould not feel the need to find
better elements, is one of the fundamental thesis of the economist Herbert Simon in his theory
of satisficing bounded rationality[RAD 75, SIM 56, SIM 01]. The main idea is that in a real
situation, hence naturally complex (e.g. chess game) and often under incomplete information
(e.g. an animal looking for food), the decision maker or agent does not try tooptimizebut to
satisfy: they will choose any solution which will be satisfactory for them.

In addition, the necessity to have a reference point on the scale has been well demonstrated
in psychology: this is precisely the notion ofevaluability(see section 18.3.1). When the scale is
bounded, we can see in addition the phenomenon ofdominance of proportion(section 18.3.1):
to express a value in percentage or in proportion is indeed tomake reference to a greatest
element, to which all values are compared.

What is the relation between bipolar/unipolar and the different types of scales (ordinal,
interval, ratio, etc.) explained above? There is noa priori relation; we can have for example a
scale which is both ordinal and bipolar or unipolar. Nevertheless, the neutral value of a bipolar
scale is linked to the 0 of a ratio scale, which is a fixed point of any admissible transformation.
For a unipolar scale without a least element, the absence of any reference point would imply
that it has an interval scale. If a least element exists, according to the meaning of the relation%,
we can have a ratio or interval scale.

18.3.4. The MACBETH approach

The MACBETH methodology is due to Bana e Costa and Vansnick [BAN 94, BAN 97,
BAN 99].

Let us begin as above with the mono-dimensional case. We consider a finite set of objects
A = {a, b, c, . . .}. The subject is asked two types of questions for every pair(a, b) ∈ A2:
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– Is a more attractive (or preferred, etc.) thanb? (yes/no) If the answer is ‘yes’, we write
aPb.

– If aPb, is the difference of attractivity (or preference, etc.):
- very weak (aC1b)
- weak (aC2b)
- moderate (aC3b)
- strong (aC4b)
- very strong (aC5b)
- extreme (aC6b).

(only one answer is possible)

If neitheraPb norbPa holds, we say thata andb are indifferent which we denote byaC0b. We
haveP = C1 ∪ C2 ∪ . . . ∪ C6, and we definePk := Ck ∪ Ck+1 ∪ . . . ∪ C6, k = 1, . . . , 6.

Refering to measurement theory, the answer to the first question brings an ordinal informa-
tion. We are looking for a numerical representationf : A −→ R such thatf(a) > f(b) if and
only if aPb. We know (section 18.3.2) that in this case there always exists one ifP is a strict
complete preorder, and that this defines an ordinal scale.

The second question is related to difference measurement. The quaternary relation% is
implicitly defined by the ordered character of categoriesC1, . . . , C6. We have seen that a rep-
resentation by a difference scale does not always exists (result of Scott for the finite case and
of Krantz et al. for the general case). In the present case, this amounts to looking for a func-
tion f : A −→ R such thataCkb andcCk′d, with k > k′ being equivalent to the condition
f(a)− f(b) > f(c)− f(d). Bana e Costa and Vansnick have found conditions of existence of
such a functionf [BAN 94] which are simpler that those of Scott. First, the existence of such a
functionf is equivalent to the existence of real numbers0 =: t1 < . . . < t6 and of a function
f : A −→ R such that

aPkb⇔ f(a) > f(b) + tk, k = 1, . . . , 6. (18.4)

This condition is in turn equivalent to a condition on the graph of the relationP . It can also be
verified more simply by solving a linear program.

Let us suppose that the two ordinal and cardinal conditions are verified. By a linear program,
we then look for the smallest functionf imposingtk := k. This functionf defines an interval
scale, since it is unique up to a positive affine transformation.

We consider now the multidimensional case. We denote as above the set of potential objects
byX, of the formX1× . . .×Xn. For every descriptorXi, we suppose that it is either finite or
that there exists a finite subset̃Xi containing the remarkable values ofXi. This assumption is
necessary, since MACBETH can only work on a finite set of low cardinality. In practice, this is
not restrictive since we should not forget that the set of objects of interest (in the experiment) is
necessarily finite:x1, x2, . . . , xp. It is sufficient to takeX̃i := {x1

i , x
2
i , . . . , x

p
i } for all i such

thatXi is infinite.

The MACBETH methodology belongs to the category of the methods which build a decom-
posable functionu (equation (18.2)), withF being of the form

∑n
i=1 wixi, wi ≥ 0 (weighted
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sum; for necessary and sufficient conditions on% for preference representation by a weighted
sum see [KRA 71, ROB 79]). We know from section 18.3.2 that a decomposable representation
needs an assumption of weak separability for%. MACBETH implicitly makes this assumption,
and builds the utility functionsui on eachXi upon it. We proceed as follows. Suppose that we
want to build functionui onXi. We consider the set of objects (most often fictitious)

Ai := {(01, . . . ,0i−1, x
j
i ,0i+1, . . . ,0n)}

x
j
i
∈X̃i

(18.5)

where0j is a particular value ofXj . Under the assumption of weak separability, the application
of the above described MACBETH methodology on the set of objectsAi determines, without
ambiguity, an interval scaleui i.e. defined up to a positive affine transformationαiui + βi,
αi > 0. As presented in [GRA 04b], it is possible to avoid the weak separability assump-
tion. We can state that the functionF satisfies the following property (which could be called
weak homogeneity) for i = 1, . . . , n: there exists a non-negative real numberαi such that
F (ai, 0ic ) = αiai for all ai ∈ R+. If we setui(0i) = 0, then equation (18.5) permitsui to be
determined without ambiguity. The weighted sum, as well as the Choquet integral, satisfy the
weak homogeneity property.

At first sight, any value ofXj can be chosen for0j . For commensurability reasons which
will be clear, it is important that the values0j could have an absolute meaning. Depending on
whether the scale is unipolar or bipolar (section 18.3.3), we define0j as the value ofXj felt
by the subject as being completely inacceptable (case of unipolar scales:0i is then the least
element), or neutral (case of bipolar scales:0i is the neutral value of the scale).

MACBETH makes the assumption that such a value having an absolute meaning exists on
each descriptor, and that it can be expressed by the subject.The absolute meaning of these
values means that for allj = 1, . . . , n, the satisfaction induced by the value0j for the subject
is the same. Hence, We must haveui(0i) = uj(0j), for eachi, j. It seems natural to take as
common valueui(0i) = 0.

In order to fix the two constantsαi, βi, it is necessary to fix a second particular point having
an absolute meaning on eachXi, which will be denoted by1i. If the scale is bounded, then1i

corresponds to the greatest element ofAi/ ∼ (the most satisfactory value). Otherwise, the value
1i is thesatisfactoryvalue of section 18.3.3. As above, the absolute meaning of these values
implies thatui(1i) = uj(1j) for all i, j. By convention, we setui(1i) := 1, i = 1, . . . , n.

This being done, functionsui are determined in a unique way. They arecommensurablein
the sense where an equality of the values implies an equalityof the satisfaction for the subject.

The last step consists of determining the weightswi of each descriptor in the weighted sum
F . For this, we build the following set of (fictive) objects

B := {01, . . . ,0i−1,1i,0i+1, . . . ,0n}i=1,...,n (18.6)

and apply the MACBETH methodology onB to find an interval scalew. Denoting the element
of B having the value1i at theith coordinate bybi, we obtainwi = w(bi), i = 1, . . . , n.
By this method, the weights of a descriptor correspond to thevalue assigned to an object being
satisfactory on this descriptor and neutral (or unacceptable) elsewhere.
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18.3.5. Construction of the model of subjective evaluation

The application of the MACBETH methodology yields a constructive answer to the two
questions asked at the beginning of this section, restricted to the case whereF is the weighted
sum. The weighted sum is a simple aggregation function, but of limited power. On the other
hand, we know that there exist many other aggregation functions (see Chapter 4). We propose
here a more general approach.

Consider the following example in order to show the limitations of the weighted sum and
to motivate our approach.

Example 18.1. Let us takeX = X1 × X2, and suppose that we have built the two utility
functionsu1, u2. Consider three objectsa, b, c, with the following utility values:

u1(a1) = 0.4 u1(b1) = 0 u1(c1) = 1
u2(a2) = 0.4 u2(b2) = 1 u2(c2) = 0,

assuming thatui : Xi −→ [0, 1], i = 1, 2. The subject has as preferencea � b ∼ c. Let us
findw1, w2 such that this choice is represented by the weighted sum. We get:

b ∼ c⇔ w1 = w2

a � b⇔ 0.4(w1 +w2) > w2

equivalent to0.8w2 > w2, which is impossible. This is because in the model, the subject
specifies only the satisfaction on fictive objects which are satisfactory on the first criterion and
unacceptable for the second, and vice versa. Obviously, thesubject is sensitive to objects having
an unacceptable criterion, and the two criteria must be equally satisfied.

This example suggests that to constructF we must determine the subject’s preference on
fictive objects with an arbitrary combination of1i and0i, (we call such an objectbinary).
Hence, the setB of fictive objects to consider is not that defined by equation (18.6), but the set
of binary objects:

B := {(1A,0Ac) | A ⊂ N} (18.7)

whereN := {1, . . . , n} and the fictive objectz = (1A,0Ac) is defined byzi = 1i if i ∈ A and
zi = 0i otherwise. Applying MACBETH to this set, we build an interval scaleµ : P(N) −→
R. Noting thatA = ∅, N leads to objects(01,02, . . . ,0n) and (11,12, . . . ,1n), it seems
natural to setµ(∅) = 0 andµ(N) = 1.

WhenA ⊂ B, we remark that the fictive object(1B ,0Bc ) dominatesobject(1A, 0Ac),
which means that the former is at least as good as the latter oneach descriptor. It then seems
reasonable to impose thatµ(A) ≤ µ(B), a property which is called monotonicity orisotonicity.

The valueµ(A) is the value assigned by the model to the fictive object(1A,0Ac ). Since
ui(1i) = 1, ui(0i) = 0, ∀i ∈ N , we have:

F (1A, 0Ac ) = µ(A), ∀A ⊂ N. (18.8)
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Otherwise,µ determinesF on the vertices of the hypercube[0, 1]n. It remains to determine
F on the whole hypercube[0, 1]n or on Rn

+ or Rn depending on the type of scale (unipolar,
bipolar, bounded, etc.). This is the topic of section 18.4.

To summarize, the model of evaluation is built in the following way:

(0) Data: descriptorsX1, . . . ,Xn, and if necessary, finite subsets of these descriptors
X̃1, . . . , X̃n.

Fundamental assumptions:
(H1) The relation% onX = X1× . . .×Xn is a complete preorder weakly separable (this

assumption cannot be verified since% cannot be known onX entirely).
(H2) On each descriptor, it is possible to identify two particular values0i and1i, possessing

an absolute meaning.

(1) Construction of utility functionsui: we consider fori ∈ N the setAi given by equa-
tion (18.5). The application of the MACBETH methodology gives a functionui up to a posi-
tive affine transformation. We determine functionsui in a unique way, imposingui(0i) = 0,
ui(1i) = 1, ∀i ∈ N .

This construction supposes that:
(Oi) Relations%i on Ai are complete preoders (implicitly satisfied if the fundamental

assumption (H1) is satisfied).
(Di) The conditions of difference measurement are satisfied (equation (18.4)).

(2) Construction of the weightingµ: we consider the set of fictive objectsB defined by equa-
tion (18.7). We apply the MACBETH methodology to determine the functionµ : P(N) −→ R,
defined up to a positive affine transformation. We choose the unique function such thatµ(∅) =
0 andµ(N) = 1. Doing so, the aggregation functionF is defined on the vertices of the hyper-
cube[0, 1]n (equation (18.8)).

This construction supposes that:
(O) The relation% restricted toB is a complete preorder (implicitly satisfied if the funda-

mental assumption (H1) is satisfied).
(D) the conditions of difference measurement are satisfied (equation (18.4)).

We add the additional following assumption:
(I) % restricted toB satisfies dominance (or equivalently, under the condition that %

restricted toB is a complete preorder,µ is isotone).

The construction which we have presented for the scaleµ remains theoretical. It is given in
order to define precisely all our working assumptions, and tolead in a natural way to our model.
We will examine practical methods for identifyingµ in section 18.6.

18.4. Construction of the aggregation function

Let us turn to the construction of the functionF . We have shown above that this function
is known on the vertices of the hypercube[0, 1]n by equation (18.8), since it coincides with the
functionµ : P(N) −→ [0, 1]. Recall thatN = {1, . . . , n} is the set of indices of descriptors.
Hence,F can be viewed as an extension ofµ on the whole hypercube (evenRn).

We have fixed the values ofµ(∅) andµ(N), and have imposed thatµ is monotone (isotone)
(assumption (I)).
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Definition 18.1. A function µ : P(N) −→ [0, 1] such thatµ(∅) = 0, µ(N) = 1, and
A ⊂ B ⇒ µ(A) ≤ µ(B) is calledfuzzy measure[SUG 74] orcapacity[CHO 53].

The notion of fuzzy measure extends that of (additive) measure theory [HAL 50] (not to be
confused with measurement theory), and has given rise to a theory of non-additive measures
[DEN 94]. Recall thatµ is additiveif µ(A ∪ B) = µ(A) + µ(B), A ∩ B = ∅. On the other
hand, we say thatµ is symmetricif, for all A ⊂ N , µ(A) depends only on|A|.

18.4.1. Case of cardinal unipolar scales

Consider the case of a unipolar bounded scale, typically[0, 1]. Our aim is then to buildF on
[0, 1]n. There are of course infinitely many ways of extendingF from µ, however, we look for
a simple method. An easy way is to use interpolation: for anyx ∈ [0, 1]n, F (x) would be given
by a formula involving valuesF (1A, 0Ac ), for A in a set of verticesA(x), in order that the
convex hullA(x) of vertices ofA(x) contains pointx: this is the very meaning of the notion of
interpolation. On the other hand, in order to avoid any ambiguity, a given pointx must belong
to a unique region. Consequently, the hypercube[0, 1]n is partitioned into polyhedra defined by
their sets of verticesA1, . . . ,Aq which are all vertices of[0, 1]n. These polyhedra contain the
points whose interpolation is obtained from their vertices.

The simplest interpolation would be a linear interpolation:

F (x) =
∑

A∈A(x)

[ n∑

i=1

αi(A)xi

]
F (1A, 0Ac ),

whereαi(A) ∈ R, i = 1, . . . , n, ∀A ∈ A(x), with polyhedra containing as few as possible
vertices.

Let us examine in detail the casen = 2 (Figure 18.1). To interpolateF in x, it is necessary
(except for particular cases ofx) to have at least three vertices; otherwise, their convex hull
could not containx. There are only two possible cuttings (a) and (b). Let us examine the first,
which divides[0, 1]2 into two regions{(x1, x2) | x1 ≤ x2} and{(x1, x2)|x2 ≤ x1}. Suppose
thatx1 ≤ x2. The formula becomes (note thatF (0, 0) = 0 andF (1, 1) = 1):

F (x1, x2) = (α1x1 + α2x2)F (0, 1) + (β1x1 + β2x2).

Taking(x1, x2) = (0, 1) and(1, 1), we obtain the equations:

α2 = 1, β2 = 0

α1 + α2 = 0, β1 + β2 = 1,

from which we obtain the unique solution in the form:

F (x1, x2) = (x2 − x1)µ({2}) + x1. (18.9)

Proceeding similarly with the casex2 ≤ x1, we obtain:

F (x1, x2) = (x1 − x2)µ({1}) + x2. (18.10)
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Figure 18.1.Linear interpolation: two possible cuttings

Let us examine now if the other cutting leads to a solution. Let us choosex ∈ {x1 + x2 ≥
1}; the interpolation equation then becomes:

F (x1, x2) = (α1x1 +α2x2)F (0, 1) + (β1x1 + β2x2)F (1, 0) + (γ1x1 + γ2x2)F (1, 1).

Settingx = (1, 0) andx = (0, 1), we necessarily haveγ1 = γ2 = 0, which implies that the
point (1,1) will never be recovered by the interpolation formula. We understand that, in order
for the cutting to work, subsets corresponding to vertices chosen for the interpolation must form
a chainA1 ⊂ A2 ⊂ . . . ⊂ An, as is the case for cutting (a).

Generalizing this reasoning for anyn, we can show that the unique solution with polyhedra
containing the fewest number of vertices is given by:

– q = n!;

– each polyhedron is defined by a permutationσ onN :

Aσ = {x ∈ [0, 1]n | xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n)};

– eachAσ containsn vertices, plus the origin(0, 0, . . . , 0);

– for x ∈ Aσ , the interpolation formula is

F (x) =
n∑

i=1

[xσ(i) − xσ(i−1)]µ({σ(i), . . . , σ(n)}). (18.11)

This result can also be found in Lovász [LOV 83] and in Marichal [MAR 02]. Equation (18.11)
is in fact the Choquet integralof x (considered as a function ofN to [0, 1]).

Definition 18.2. Letµ be a capacity onN , and a functionf : N −→ R+. TheChoquet integral
of f w.r.t.µ is defined by:

Cµ(f) :=
n∑

i=1

[f(σ(i)) − f(σ(i− 1))]µ({σ(i), . . . , σ(n)}),

with σ a permutation onN such thatf(σ(1)) ≤ . . . ≤ f(σ(n)).
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We have shown that the Choquet integral corresponds to the simplest linear interpolation to
solve our problem in the case of unipolar bounded scales. However, there is no limitation forx
to belong toRn

+, hence the unipolar unbounded case can be treated in the sameway.

It is easy to verify that ifµ is additive, then the Coquet integral reduces to the weighted
sum

∑n
i=1 µ({i})xi. On the other hand, we have for allx ∈ Rn

+ and all capacityµ, mini xi ≤
Cµ(x) ≤ maxi xi, bounds being attained by capacitiesµmin, µmax, defined byµmin(A) := 0,
∀A 6= N andµmax(A) := 1, ∀A 6= ∅.

The Choquet integral is the basis of numerous works in decision making theory. In decision
under uncertainty or risk, it has given rise to models of Choquet expected utility [SCH 89,
WAK 90] and to rank dependent utility [QUI 93] (see a survey ofthese models in [CHA 00]).
In multicriteria decision making, the Choquet integral is used as a general aggregation function,
permitting the interaction between criteria to be represented [GRA 96, GRA 03e, GRA 04b]
(section 18.7).

The first result of characterization of the Choquet integralhas been given by Schmeidler
[SCH 86]; it has been followed by many others, in particular those of Marichal. for a general
study of the properties of the Choquet integral, see [DEN 00,MAR 00a, MUR 00].

18.4.2. Case of cardinal bipolar scales

Consider now the case of bipolar scales; it will be enough to consider the interval[−1, 1].
Recall that a bipolar scale contains three remarkable points: the neutral value0 and the values
1 and−1 (here 0, 1 and –1, respectively). It seems necessary that these values appear in the set
of fictive objects to consider for constructing the model (see equation (18.7)).

The simplest solution is to suppose some symmetry between positive and negative parts,
in which case the setB of binary objects defined by equation (18.7) suffices. For example,
we could say that the evaluation of the object(−1A,0Ac) is equal to the opposite to that of
object (1A,0Ac) (symmetricmodel) or of the object(1Ac ,0A) (asymmetricmodel). For an
object having both positive and negative scores, the simplest is to compute overall scores for
the positive and negative parts separately, then to add them. In the casen = 2, this procedure is
illustrated in Figure 18.2(a).

If we take the Choquet integralCµ to compute overall scores on the positive part of the
scale, these two models, forx ∈ Rn, are respectively:

Čµ(x) := Cµ(x+)− Cµ(x−) (symmetric) (18.12)

Cµ(x) := Cµ(x+)− Cµ(x−) (asymmetric) (18.13)

with x+
i := xi ∨ 0 andx−

i = (−xi)
+, i = 1, . . . , n. On the other hand,µ is the conjugate

capacity defined byµ(A) := 1 − µ(Ac), A ⊂ N . These expressions in fact define what is
called the symmetric Choquet integral (or Šipoš integral [ŠIP 79]) and the asymmetric Choquet
integral [DEN 94].
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Figure 18.2.Case of a bipolar scale: (a) symmetric model; (b) CPT; and (c)general bipolar.
Black circles indicate fictive objects determining the model and values in parentheses indicate

overall evaluations. Scores not in gray parts are computed from scores in gray parts

If there is no reason to suppose any symmetry between positive and negative parts, we can
add the set ofnegative binary objectsNB to the set of binary objectsB:

NB := {(−1A,0Ac ) | A ⊂ N}.

In this waywe construct two capacitiesµ+, µ−, hence two unipolar models whose overall scores
will be added:

Cµ+,µ− (x) := Cµ+(x+)− Cµ−(x−), ∀x ∈ Rn. (18.14)

In decision under risk, this model corresponds to the model of cumulative prospects (cumulative
prospect theory, CPT) of Tversky and Kahnemann [TVE 92]. Forn = 2, the CPT model is
illustrated in Figure 18.2(b).

Finally, if we do not want to make any independence assumption between positive and
negative parts of the scale, we must consider as additional fictive objects those which have both
satisfactory levels1 and non-satisfactory levels−1. We are then led to consider the set offictive
ternary objects:

T := {(1A,−1B ,0(A∪B)c ) | A,B ⊂ N, A ∩ B = ∅}. (18.15)

This is illustrated in Figure 18.2(c) in the casen = 2. When applying the MACBETH method-
ology onT , we construct an interval scalev : Q(N) −→ R denoted byQ(N) := {(A,B) ∈
P(N) × P(N) | A ∩ B = ∅}. As before, we setv(N,∅) = 1 andv(∅,∅) = 0, since
these are the overall scores of objects being satisfactory everywhere and neutral everywhere,
respectively. Similarly, one can set by conventionv(∅, N) = −1. Lastly, the notion of domi-
nance applies as in section 18.3.5, which leads a property ofisotonicity ofv to be opposed in
the following sense:A ⊂ B impliesv(A, ·) ≤ v(B, ·) andv(·, A) ≥ v(·, B). By analogy with
the notion of capacity, we call such a function abicapacity[GRA 02c, GRA 02d].

Definition 18.3. A bicapacityonN is a functionv : Q(N) −→ R satisfying:

1) A ⊂ B ⇒ v(A, ·) ≤ v(B, ·) andv(·, A) ≥ v(·, B); and

2) v(N,∅) = 1, v(∅,∅) = 0, v(∅, N) = −1.
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A bicapacity is said to be of theCPT typeif it can be written as the difference of two capacities
µ+, µ−:

v(A,B) = µ+(A)− µ−(B), ∀(A,B) ∈ Q(N).

The bicapacity is said to besymmetricif, in addition,µ+ = µ−.

Thus,v assigns to each ternary object an overall score byv(A,B) = F (1A,−1B), where
(1A,−1B) denotes the vector whose coordinate is 1 fori ∈ A,−1 for i ∈ B and 0 elsewhere.
This is in accordance with the bipolar view of the affect, as it has been initiated by Osgoodet al.
[OSG 57] (section 18.3.1). Grecoet al.[GRE 02] have proposed a notion ofbipolar capacityζ :
Q(N) −→ [0, 1]× [0, 1], where we assign two scoresζ+(A,B) andζ−(A,B) to each element
(A,B) of Q(N), one concerning the positive part of the score and the other the negative part
of the score. The scores satisfy the properties:

– if A ⊂ A′ andB ⊃ B′, thenζ+(A,B) ≤ ζ+(A′, B′) andζ−(A,B) ≥ ζ−(A′, B′);

– ζ−(A,∅) = 0, ζ+(∅, A) = 0, ∀A ⊂ N ; and

– ζ(N,∅) = (1, 0) andζ(∅, N) = (0, 1).

This notion corresponds to thedouble unipolarview of the affect[CAC 97], where we have the
coexistence of positive and negative feelings.

Consider the first bicapacities to be given. Let us try to construct the aggregation function
F , viewed as an extension ofv on [−1, 1]n, then onRn. Regarding the case of unipolar scales,
we look for a solution which is the simplest linear interpolation. Points to be considered for
the interpolation are no longer the vertices of the hypercube [−1, 1]n, however, but all points
corresponding to ternary objects i.e. pointsx such thatxi = −1, 0 or 1, i = 1 . . . , n.

Let us examine first the casen = 2 (Figure 18.3). Let us take a pointx such thatx1 ≥ 0,
x2 ≤ 0 and|x1| ≤ |x2|. For the point|x| located in the positive quadrant, we already know the
best linear interpolation by applying the result of section18.4.1: it is the Choquet integral. It is
now sufficient, by an adequate symmetry, to set the suitable vertices for interpolation:

F (x1, x2) := |x1|F (1,−1) + (|x2| − |x1|)F (0,−1).

This expression is a Choquet integral with respect to a set functionν1 defined by:

ν1({1, 2}) = F (1,−1)

ν1({2}) = F (0,−1).

Consider now the general case. Let us defineN+ = {i ∈ N | xi ≥ 0},N− = N \N+. With
similar considerations of symmetry, we obtain:

F (x) =|xσ(1)|F (1N+ ,−1N− )+

n∑

i=2

(|xσ(i)| − |xσ(i−1)|)F (1{σ(i),...,σ(n)}∩N+ ,−1{σ(i),...,σ(n)}∩N−)
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Figure 18.3.Linear interpolation in the bipolar case (n = 2)

whereσ is a permutation onN such that|xσ(1)| ≤ . . . ≤ |xσ(n)|. This expression is the
Choquet integral of|x| with respect to the set functionνN+ defined by:

νN+(A) := F (1A∩N+ ,−1A∩N− ).

Recalling thatF (1A,−1B) =: v(A,B), we obtain the following definition.

Definition 18.4. Let v be a bicapacity onN , andx ∈ Rn. The Choquet integralof x with
respect tov is defined by:

Cv(x) := Cν
N+ (|x|), (18.16)

whereN+ := {i ∈ N | ai ≥ 0},N− := N \N+ andνN+ (A) := v(A ∩N+, A ∩N−).

It should be noted thatνN+ is not in general a capacity, since it could be non-monotonicor
take negative values.

If v is of the CPT type withv(A,B) = µ+(A)− µ−(B), then we recover the CPT model
Cµ+,µ− (and consequently we recover the symmetric Choquet integral whenv is symmetric).
This leads to two remarks:

– The Choquet integral for bicapacities is indeed a generalization of symmetric and CPT
models.

– The symmetric and CPT models are particular cases of linearinterpolation between the
‘ternary’ pointsx (with xi = −1, 0, 1).

Let us return to the double unipolar model of Grecoet al. [GRE 02]. The Choquet integral
with respect to a bipolar capacity is defined as follows. Forx ∈ Rn, let us denote a permutation
onN by σ such that|xσ(1)| ≤ . . . ≤ |xσ(n)|, and define:

A+
i := {σ(j), j ∈ {i, . . . , n} | xσ(j) ≥ 0}

A−
i := {σ(j), j ∈ {i, . . . , n} | xσ(j) ≤ 0}
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and

C+ζ (x) :=
∑

i∈N

(
x+

σ(i) − x+
σ(i−1)

)
ζ+(A+

i , A
−
i )

C−ζ (x) :=
∑

i∈N

(
x−

σ(i) − x−
σ(i−1)

)
ζ−(A+

i , A
−
i )

with the same notation as before. The Choquet integral with respect toζ is then defined by

Cζ(x) := C+ζ (x)− C−ζ (x), ∀x ∈ Rn. (18.17)

There are two important remarks to make at this point. The first one is that if we want to
keep the original spirit of the double unipolar model of Cacioppo, it is better to consider the
couple(C+ζ (x), C−ζ (x)) as the Choquet integral without taking the difference. The second one
is that, under the assumption that we take the difference equation (18.17), we can show that if
the expression does not depend on the chosen permutationσ (if several are candidates), then the
bipolar capacityζ necessarily reduces to the bicapacityv(A,B) := ζ+(A,B) − ζ−(∅,B).
The expression ofCζ then coincides withCv given by equation (18.16) [GRA 04b].

18.5. The case of ordinal scales

18.5.1. Introduction

Until now we have supposed that the quantities and the scaleswe handle are numerical,
either of interval or of ratio type (cardinal scales). However, in practice, it is often not possible
to directly obtain cardinal information. The aim of the MACBETH methodology is indeed to
obtain by a well-founded approach cardinal information from an ordinal information, at the
price of some additional assumptions (measurement of difference, determination of neutral and
satisfactory levels, etc.). In some situations, it may not be possible to get this information from
the decision maker, the decision maker may be inconsistent or the basic assumptions may not
be satisfied. In this case, we are obliged to use the ordinal information as such (despite the poor
algebraic structure it induces) and avoid making arbitraryassumptions to return to the cardinal
world.

Dealing with ordinal information in fact creates many difficulties. First, our construction
of utility functions and of weighting explained in section 18.3.5 is no longer possible. Second,
the above approach based on interpolation cannot be transposed, and the same happens with
the multicriteria approaches of the Choquet integral proposed in [GRA 03e, LAB 03b]. In this
section, we provide the existing tools to tackle this type ofproblem.

In this section, we consider finite ordinal scales (often denoted byL), with a least ele-
mentO and greatest element1l. We have shown in section 18.3.2 that, for ordinal scales, the
usual arithmetical operations are no longer meaningful. Weare therefore restricted to the min-
imum (∧) and maximum (∨) operators, and their combinations. We refer to any expression
P (x1, . . . , xn) formed ofn variablesx1, . . . , xn taking values inL, of constants inL, and
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linked by∨,∧ in an arbitrary combination of parentheses as aBoolean polynomial. An ex-
ample is:((α ∧ x1) ∨ (x2 ∧ (β ∨ x3))) ∧ x4. An important result of Marichal states that
the Sugeno integral(defined later) coincides with the class of Boolean polynomials such that
P (O,O, . . . ,O) = O, P (1l, 1l, . . . , 1l) = 1l andP is non-decreasing with respect to each vari-
able [MAR 01a]. Since these conditions are those on which we have based our study up to this
point, we understand that the Sugeno integral is an unavoidable concept in the ordinal frame-
work.

Let us emphasize the fact that other methods could exist. Forexample, Roubens has pro-
posed a method based on the Choquet integral, where scores are related to the number of times
that the concerned object is better or worse than the others on the same criterion [ROU 01]
(section 18.6.2).

First, it seems important to emphasize the difficulties of the ordinal nature of the informa-
tion:

1) Finiteness of scales: if we define the aggregation function F as a function fromLn to
L, it is clear that it is impossible to have an increasing function. Moreover, there will be large
indifference domains where the function will have the same value, which makes the construction
not very interesting. This is why studies on t-norms and t-conorms on finite scales give a very
poor class of functions [FOD 00]. It is better to have a largerscale for the image ofF , built
step by step. This approach has been chosen in [GRA 01b] for the Sugeno integral (see also a
general study of this topic in [GRA 01a]).

On the other hand, in the finite case, there are very few results in measurement theory since
most of the models suppose a condition of solvability or an Archimedian axiom. This cannot
exist in a finite framework.

2) Ordinal nature of the scale: even if we consider a continuous scale such as[0, 1], the
Sugeno integral cannot be increasing. On the other hand, as shown by Marichal [MAR 01a],
the Sugeno integral induces a preference relation which satisfies weak separability if and only
if there is a criterion which is a dictator. In fact, the Sugeno integral induces a weaker property
which isweak directional separability, defined by:

(xi, z−i) � (yi, z−i)⇒ (xi, z
′
−i) � (yi, z

′
−i), ∀x, y, z, z′ ∈ X.

This condition prevents a preference reversal occuring.

3) Construction of utility functions: contrary to the cardinal case, it is not possible to de-
termine the utility functions without knowing the weighting. We will see later that the overall
evaluation of an object(xi,0ic ) by the Sugeno integral readsui(xi) ∧ µ({i}). Therefore, it
is not always possible to recoverui(xi) since the value ofµ({i}), either known or unknown,
acts like a threshold. This explains why in most applications, and although this assumption is
questionable, we suppose that all attributes are defined on acommon scaleL which serves for
all scores of attributes. Grabischet al. [GRA 01b] propose a method to construct the utility
functions after having constructed the weightingµ.

18.5.2. The Sugeno integral

(See also Chapters 11 and 17.) Letµ be a capacity onN taking values inL, withµ(∅) = O
andµ(N) = 1l. Let a := (a1, . . . , an) be a vector of scores inLn. TheSugeno integralof a
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with respect toµ is defined by [SUG 74]:

Sµ(a) :=

n∨

i=1

[aσ(i) ∧ µ(Aσ(i))], (18.18)

whereσ is a permutation onN such thataσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(n), andAσ(i) :=
{σ(i), . . . , σ(n)} (note the similarity to the Choquet integral, see definition18.2). If we take
L = [0, 1], the Choquet and Sugeno integrals coincide when either the capacity or the integrand
is valued in{0, 1}. More precisely:

Sµ(1A, 0Ac ) = µ(A) = Cµ(1A, 0Ac), ∀A ⊂ N
Sµ(a) = Cµ(a) ∀a ∈ [0, 1]n ⇔ µ(A) ∈ {0, 1}, ∀A ⊂ N.

The reader can refer to [DUB 01a, MUR 00] for survey papers andto [MAR 00b, MAR 01a]
for detailed studies of properties of the Sugeno integral. We also mention an axiomatization of
the Sugeno integral in a framework of decision under uncertainty, similar to that of Savage for
expected utility [DUB 00, DUB 01b].

As described in the introduction, the ordinal framework leads to difficulties as well as some
surprising results. For example, it may be that fora, a′ ∈ Rn such thatai > a′i, i = 1, . . . , n,
we haveSµ(a) = Sµ(a′) (drowning effect). These unwanted effects are summarized in the
following proposition [MAR 00b, MUR 01]. Let� be a complete preorder on[0, 1]n and, for
a, b ∈ [0, 1]n, we writea ≥ b if ai ≥ bi for all i ∈ N , a > b if a ≥ b andai > bi for at least
onei ∈ N anda � b if ai > bi for all i ∈ N . We say that� satisfiesmonotonicityif a ≥ b
impliesa � b, strong Pareto dominanceif a > b impliesa � b andweak Pareto dominanceif
a� b impliesa � b. The following proposition holds.

Proposition 18.1. Let µ be a capacity onN and�µ the complete preorder induced by the
Sugeno integralSµ.

1) �µ always satisfies monotonicity;

2) �µ satisfies weak Pareto dominance if and only ifµ is valued in{0, 1};
3) �µ never satisfies strong Pareto dominance.

It is to be noted that the Choquet integral always satisfies weak Pareto dominance and strong
Pareto dominance if and only ifµ is strictly monotone.

18.5.3. The symmetric Sugeno integral and bipolar models

The above section presented the ordinal counterpart of the Choquet integral. This model
does not suppose any particular point on the scale, except boundariesO and1l, so it can be
considered asunipolar. The question is now to define a bipolar ordinal model, similar to that
proposed in the cardinal framework. This section is based onwork by [GRA 02a, GRA 03b,
GRA 04a].

Let us begin by constructing a bipolar ordinal scale i.e. with a central point denoted byO.
The scale demarcates the limit between the domain of ‘good’ scores with a greatest element
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denoted by1l and the domain of ‘bad’ scores with a least element denoted by−1l. It is sufficient
to make a reversed copy of the ordinal scaleL+ with greatest and least elementsO and 1l
denoted byL−, and to join them. In other words,L− := {−a | a ∈ L+} with (−a) ≤ (−b) if
and only ifb ≤ a. The bipolar scale isL := L+ ∪ L−, makingO and−O coincide.

The second step consists of endowing this bipolar scale withsuitable operations which
permit computations to be made taking into account the ordinal character and also the symmetry
of the scale. As∨ and∧ are the two basic operations in an ordinal framework, we wantto
construct operations denoted by6,7 satisfying the following conditions in particular:

(C1) 6,7 coincide with∨,∧ onL+;

(C2)−a is the opposite ofa, in the sense thata6 (−a) = O;

(C3) a7b follows the rule of signs for the multiplication of real numbers:−(a7b) = (−a)7b,
∀a, b ∈ L.

The first condition states that the operations we are lookingfor are extensions of min and
max. The second one states that6 behaves like an addition of real numbers, and the third that
7 is the counterpart of multiplication. These analogies are inspired by the comparison with
expressions of the Choquet integral (definition 18.2) and ofSugeno (equation (18.18)). The
conditions of symmetry (C2) and (C3) should permit models similar to CPT and to the general
bipolar model to be defined.

A difficulty however becomes apparent. The conditions (C1) and (C2) imply that6 cannot
be associative in general. Indeed, let us takeO < a < b, and consider the expression(−b)6b6
a. According to the location of parentheses, the results differ since we have((−b) 6 b) 6 a =
O 6 a = a, but (−b) 6 (b6 a) = (−b) 6 b = O. We can show that the best solution (that is,
associative on the largest domain) is given by:

a6 b :=




−(|a| ∨ |b|) if b 6= −a and|a| ∨ |b| = −a or = −b
O if b = −a
|a| ∨ |b| otherwise.

(18.19)

Except for the caseb = −a, a 6 b is equal to the one betweena andb which has the greatest
absolute value.

The non-associativity of6 implies that we cannot write expressions such as6
n
i=1ai if

some computation rule is not specified. Several are possible, and in the following we will use
the following rule, which simply consists of aggregating the positive and negative quantities
separately:

〈6n
i=1ai〉 := (6n

i=1a
+
i ) 6 (−6

n
i=1 a

−
i ).

The definition of7 following the conditions (C1) and (C3) does not create a problem, and the
operation is associative:

a7 b :=

{
−(|a| ∧ |b|) if sign a 6= sign b
|a| ∧ |b| otherwise.

(18.20)
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We are now in the position to define the symmetric Sugeno integral and the ordinal counterpart
of the CPT model. It reads:

Sµ+,µ− (a) := Sµ+(a+) 6 (−Sµ−(a−)).

Whenµ+ = µ−, we obtain thesymmetric Sugeno integral, denotedŠµ.

From this point, we can define the Sugeno integral with respect to a bicapacityv. We pro-
ceed as in definition 18.4 i.e. settingSv(a) := Sν

N+ (|a|), with notation as above, and replacing
∨,∧ by 6,7. It can be shown that the Sugeno integral can be written as follows [GRA 03c]:

Sv(a) =
〈

6
n
i=1

[
|aσ(i)|7 v(Aσ(i) ∩N+, Aσ(i) ∩N−)

]〉
, (18.21)

whereσ is a permutation onN such that|aσ(1)| ≤ . . . ≤ |aσ(n)|, andN+ := {i ∈ N | ai ≥
O}, N− := N \ N+. A similar expression for the bipolar capacities has been proposed by
Grecoet al. [GRE 02].

We can show that ifv is of the CPT type, the ordinal CPT model is recovered. Finally, we
mention Denneberg and Grabisch [DEN 04] who have proposed a general formulation of the
Sugeno integral on bipolar scales with an arbitrary structure (finite or infinite, with or without
holes).

18.6. Identification of the parameters of the aggregation function

Suppose that we want to determine a model of subjective evaluation, using models described
in this chapter, from experimental data and measurements. We have explained the general con-
struction of the model based on MACBETH in section 18.3.5. Ifthis methodology can be used
for the determination of utility functions by contrast, theway to determine the aggregation func-
tion (which in our case amounts to determining the weightingµ (capacity) orv in the bipolar
case (bicapacity)) is usually not possible in a framework ofsubjective evaluation. Indeed, the
binary objects(1A,0Ac ) (ternary in the bipolar case) which are necessary for the determination
of µ or of v are fictive objects with which it is not possible to make real experiments. We are
then forced to usephysicalobjects at disposal, often in limited number. Let us call theset of
available objectsO ⊂ X, which we assimilate as before to their vectors of descriptors.

The general principle is to use optimization methods, afterdefining some suitable validity
criterion. We can distinguish two main types of criteria:

– Minimization of an error or of a distanced between the output of the model
F (u1(x1), . . . , un(xn)) (the computed overall score) and the ‘desired’ outputy(x), x ∈ O.
This implies that we must necessarily have a measurement of the overall scorey(x) for each
object ofO, which is not always the case in practice.

– The criteria aiming at representing the preferences onO. If for x, x′ ∈ O the exper-
iment reveals thatx is ‘at least as good as’x′ (denoted byx � x′) then, under the as-
sumption that� is complete and transitive onO, the model must represent the preference:
F (u1(x1), . . . , un(xn)) ≥ F (u1(x

′
1), . . . , un(x′

n)).
In fact, a faithful representation of preferences induces constraints onµ or v, and does not

define (strictly speaking) a validity criterion. Since the set of solutions is in general empty or
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infinite, it is necessary to define a validity criterion in order to choose one of the solutions (for
example the one which produces the most distant overall scores).

The two approaches have their own advantages and drawbacks,and can be complementary.
Note that when applying the MACBETH methodology onO, it is possible to obtain overall
scores on a difference scale. The advantage of the distance criterion is that we always find a
solution, but there is no guarantee that this solution represents the preference induced by the
overall scores.

We can have bothy(x) > y(x′) andF (u(x)) < F (u(x′)), denotedF (u(x)) := F (u1(x1),
. . . , un(xn)). In order to avoid this, we can incorporate contraints induced by preferences in
the optimization problem, at the risk of finding no solution.The main drawback of the second
approach is that there is not always a solution. In this case,it is not that easy to know how to
modify the preference in order to get a solution.

We now describe these approaches in more detail, according to the type of scales (cardinal
or ordinal).

18.6.1. Cardinal case

The most common error criterion is the sum of squared errors.WhenF is the Choquet
integral with respect to a capacity, the optimization problem reads:

minimize
∑

x∈O

[
Cµ(u1(x1), . . . , un(xn))− y(x)

]2

underµ(A) ≤ µ(B), ∀A,B ⊂ N,A ⊂ B,

fixing µ(∅) = 0, µ(N) = 1. We can show that this leads to a quadratic problem under linear
constraints [GRA 95b, GRA 96] with2n − 2 variables (the values taken on byµ, except for∅
andN ) andn(2n−1 − 1) constraints.

There is always a solution to this problem, but not always unique. The set of solutions forms
a convex set. A study of uniqueness of the solution is not easy, and can be found in [MIR 98].
Suppose that there arel datax1, . . . , xl in O, and denote the vector of their overall scores by
y := [y1, . . . , yl]T . We can write under a vector form[dk]T u the Choquet integral ofxk ∈ O,
whereu is the vector of size2n−2 containing the values ofµ, anddk is a vector of size2n−2
containing the scores ofxk arranged in a suitable way. Defining the matrixDT := [d1, . . . ,dl],
the minimization of the criterion amounts to findingu∗ such that:

d(Du
∗,y) = min

u∈F(N)
d(Du,y)

whereF(N) is the set of capacities onN and d is the Euclidian distance. SinceF(N) is
convex, the set of productsY := {Du | u ∈ F(N)} is also convex so that there exists a
uniquey∗ ∈ Y which satisfies:

d(y∗,y) = min
u∈F(N)

d(Du,y).
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The linear systemDu∗ = y∗ remains to be solved, whose uniqueness of the solution
depends on the rank of the matrixD. However,u∗ must be a member ofF(N), which makes
the study of uniqueness complex. We can have a rank much smaller than2n − 2 but a unique
solution.

From the experimental point of view, the quadratic method, although optimal, has some
drawbacks:

– If the amount of data is low, the set of possible solutions can be large and the solution
returned by the software of quadratic programming is often ‘extremal’ (in the sense that it
contains a lot of values set to 0 and 1). The capacity obtainedin that way induces behaviors
which are close to the minimum and maximum for the Choquet integral.

– The size of the matrices of the quadratic program increasesexponentially withn. Com-
putation time, memory size, as well as problems with ill-conditioned matrices also increase.
Hence,n = 8 is a large value; it would be unreasonable to go beyondn = 10.

Suboptimal heuristic algorithms exist, e.g. that of Ishii and Sugeno [ISH 85] and Mori and
Murofushi [MOR 89]. The author has proposed an optimizationalgorithm [GRA 95a] based on
the latter. Although suboptimal, the algorithm performs better than that of previous methods.
The criterion used here is again the quadratic error criterion, to which the gradient is applied.
The basic idea of this algorithm is that, if no information ispresent, the less arbitrary way to ag-
gregate scores is the arithmetic mean i.e. the Choquet integral with respect to the equidistributed
additive capacity. Any new information tends to depart fromthis initial point. Consequently, if
there are few learning data, the values ofµ which are not concerned with the computations are
kept as close as possible to the initial point, while ensuring monotonicity of the capacity.

Experiments with classification problems have demonstrated the good performance of this
algorithm, sometimes better than the optimal quadratic algorithm whenn becomes large. In
particular, the required memory size and computation time are far less than that required by the
quadratic algorithm, and it is then possible to go beyondn = 10 (n = 16 in [MET 95]).

More recently, many authors have applied genetic algorithms for the identification ofµ
[COM 03, GRA 03a, KWO 00, WAN 99].

Let us examine now the approach of the second type. The overall scores of objects ofO are
replaced by an order relation�, which we will suppose to be reflexive and transitive but not
necessarily complete. We want to find a capacityµ such that

x � x′ ⇔ Cµ(u1(x1), . . . , un(xn)) > Cµ(u1(x
′
1), . . . , un(x′

n))

for all x, x′ ∈ O. The set of solutions, when non-empty, is a convex polyhedron. We must
reduce its size as much as possible, and eventually choose a particular solution inside. In or-
der to reduce its size, we can add constraints expressing desire for a given type of capacity
(e.g. ak-additive capacity, see section 18.7), or some particular behavior of the aggregation
function (importance of criteria, interaction: see section 18.7). To choose a solution, Marichal
and Roubens [MAR 98b] propose maximizing the discrepancy between the overall scores com-
puted by the model for all the objects inO. Indeed, if the expert thinks thatx � x′, it means
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thatx is significantlybetter thanx′; their overall scores must reflect this difference. This canbe
expressed by the following linear program:

maximizeε

subject to

ε ≥ 0
Cµ(u1(x1), . . . , un(xn)) ≥ Cµ(u1(x

′
1), . . . , un(x′

n)) + ε, ∀x, x′, x � x′

µ(A) ≤ µ(B), ∀A,B ⊂ N,A ⊂ B,

fixing µ(∅) = 0, µ(N) = 1. See [GRA 00b] for a description of this method, an example
treated by this approach and a comparison with the error criterion.

Everyting described above concerns the Choquet integral with respect to a capacity. One
can directly generalize these methods to bipolar models (bicapacities).

18.6.2. Ordinal case

We first remark that the specificities of the ordinal case makethe approachs based on the
error criterion irrelevant, since the notion of differenceand therefore also of error or of distance
do not make sense on an ordinal scale.

Even if we setL = [0, 1], which makes the definition of a mean quadratic error possi-
ble, the problem of minimizing the quadratic error when the model is the Sugeno integral is
difficult to solv. This is because it involves the operations∨,∧,6,7 which are nonlinear and
non-differentiable. In this case, only the so-called meta-heuristic methods (genetic algorithms,
simulated annealing, etc.) can resolve the problem. There has been some research in this direc-
tion, although most applied to the Choquet integral [GRA 03a, VER 03, WAN 99].

By contrast, the ordinal framework is quite compatible withthe approach based on prefer-
ence representation. A detailed study of this approach has been carried by Ricoet al. [RIC 05]
in the case where the model is the Sugeno integral with respect to a capacity. We briefly explain
the results.

Suppose that the utility functions are known and take valueson a unipolar scaleL. We can
therefore consider that the preference� of the expert is directly expressed onLn. Let us call
the set corresponding toO A ⊂ Ln. Let us distinguish two levels of representation:

– strong representation, where the capacityµ must be such thatSµ(a) ≥ Sµ(b) if and only
if a � b; and

– weak representation, where only inversion is forbidden:a � b impliesSµ(a) ≥ Sµ(b).

It appears initially that the weak representation is bettersuited to the Sugeno integral because
of its properties (weak separability).

Suppose that the objects inA can be partitioned inp indifference classes[a1], . . . , [ap] by
∼, the symmetric part of�, numbering them so thata1 ≺ . . . ≺ ap. The problem of strong
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representation amounts to findingp valuesα1 < α2 < . . . < αp in L, such that there exists a
capacityµ satisfyingSµ(a) = αi for all a ∈ [ai], i = 1, . . . , p. For the weak representation
problem, it is sufficient to findp− 1 numbers0 =: α0 ≤ α1 ≤ α2 ≤ . . . ≤ αp := 1 in L such
that there exists a capacityµ satisfyingαi−1 ≤ Sµ(a) ≤ αi for all a ∈ [ai], i = 1, . . . , p.

Denoting a permutation onN which rearranges scores by increasing order byσ as above,
the set of capacities such thatSµ(a) = α is non-empty ifaσ(n) < α or aσ(1) > α, and is the
interval [µ̌a,α, µ̂a,α] where for allA 6= ∅, N

µ̂a,α(A) :=

{
α if A ⊂ A(i>

a,α)
1l otherwise,

µ̌a,α (A) :=

{
α if A(

i
≥
a,α

) ⊂ A
O otherwise,

with i≥a,α ∈ N such thata(
i
≥
a,α−1

) < α ≤ a(
i
≥
a,α

) andi>a,α ∈ N such thata(i>
a,α−1) ≤ α <

a(i>
a,α). The set of solutions for the strong representation is then the intersection of all these

intervals, for allαi.

Since the set of capacities which are solutions of the problem of the weak representation is
empty if and only if there existsi such thata(1) > αi for somea ∈ [ai] or if there existsi such
thatb(n) < αi for someb ∈ [ai+1]. Otherwise, there exists an interval[µ̌, µ̂], with

µ̌ (A) =

p−1∨

i=1

∨

a∈[ai+1]

µ̌a,αi (A) , µ̂ (A) =

p−1∧

i=1

∧

a∈[ai]

µ̂a,αi (A) .

Another approach has been proposed by Roubens [MAR 01b, ROU 01], based on the Cho-
quet integral. We suppose that on each attributeXi, the subject is able to compare the objects
(relation�i). For objectsx, y, we setRi(x, y) = 1 if xi �i yi, and 0 otherwise. On the other
hand, the subject is able to sort the different objects ofO in ordered categoriesC1, . . . , Cm,
thus defining a partition ofO in O1, . . . , Om. For i < j, the subject thinks thatx ∈ Oi is at
least as good as (in the strict sense)y ∈ Oj . We defines thenet marginal scoreof x ∈ O on the
attributei by:

Si(x) :=
∑

y∈O

[Ri(x, y)−Ri(y, x)].

We can easily show thatSi is a representation (ordinal measurement) of�i in the sense
thatxi �i yi ⇔ Si(x) ≥ Si(y). The functionsS1, . . . , Sn are commensurable, since they all
share a common meaning (number of times whenx is better, minus the number of times where
it is worse). On the other hand we can consider them as ratio scales, since a multiplication
by a positive constant does not change the meaning. It is thenpossible to useSN

1 , . . . , S
N
n ,

which are the normalized versions between 0 and 1. Marichal and Roubens proposed using
these normalized scores in a Choquet integral to compute an overall score for each object, thus
Cµ(SN

1 (x), . . . , SN
n (x)).
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By doing so, the drawbacks of the Sugeno integral are avoidedwhile respecting the ordinal
character of the data. However, the net scores of an objectx ∈ O strongly depend on all other
objects inO, although a score should reflect the intrinsic quality of an object according to a
criterion.

Nevertheless, the capacityµ remains to be determined. If we wants the model to correctly
separate classesC1, . . . , Cm, it is sufficient that

Cµ(SN
1 (x), . . . , SN

n (x))− Cµ(SN
1 (x′), . . . , SN

n (x′)) ≥ ε,
for all pairs(x, x′) ∈ Oj × Oj−1, j = 2, . . . ,m andε > 0. We can reduce the number of
constraints by introducing for each class the sets of dominated and dominating objects:

Ndj := {x ∈ Oj |6 ∃x′ ∈ Oj \ {x}, x ≥ x′}
NDj := {x ∈ Oj |6 ∃x′ ∈ Oj \ {x}, x′ ≥ x}

with the relation of dominance defined byx ≥ y if and only if xi �i yi, i = 1, . . . , n. It
is then sufficient to consider the above constraints for the pairs (x, x′) ∈ Ndj × NDj−1,
j = 2, . . . , m. These constraints, added to those of monotonicity forµ, form a linear program
where the objective function is simplymax ε.

The model being entirely determined, we must now be able to evaluate any objectx which
does not belong to the learning setO i.e. to classify it in one of the categoriesC1, . . . , Cm. The
rule is as follows:

x ∈ Cj if zj ≤ Cµ(SN
1 (x), . . . , SN

n (x)) ≤ Zj

x ∈ Cj ∪ Cj−1 if Zj−1 ≤ Cµ(SN
1 (x), . . . , SN

n (x)) ≤ zj

with zj := minx∈Ndj
Cµ(SN

1 (x), . . . , SN
n (x)) andZj := maxx∈NDj Cµ(SN

1 (x), . . . , SN
n (x)).

Intervals[zj , Zj ] form an interval order, but not necessarily a quasi-order. For a detailed ex-
ploitation of the ranking we refer the reader to [MEY 05].

18.7. Interpretation of the aggregation function

Suppose that the model has been obtained by one of the above identification methods i.e.
we know the utility functions and the aggregation functionF . The utility functions translate the
attributes of the object in quantitative or qualitative scores; they have a clear interpretation for
this reason. On the other hand, in the general case whereF is a Choquet or a Sugeno integral,
it is not easy to have an intuitive understanding of the wayF aggregates scores. However, for
some applications (section 18.9), this can be of primary importance.

There are numerous ways of interpretingF . The most significant include the following:

– The degrees with whichF is close to min (∧) and to max (∨): these degrees indicate if
F aggregates scores in a rather conjunctive way (related by ‘and’) or disjonctive way (related
by ‘or’). These degrees were introduced by Dujmović [DUJ 74] for any aggregation function
then by Yager [YAG 88] (degrees of‘orness’and‘andness’) for the weighted ordered average
(OWA). These are Choquet integrals where the capacity is symmetric (µ(A) depends only on
|A|).



722 Decision Making

– The presence of vetoes and of favors [GRA 97a]: we say that criterion i is a veto if for
all vectors of scores(a1, . . . , an), we haveF (a1, . . . , an) ≤ ai. If the inequality is reversed,
we say thati is a favor criterion. The situations wherei is a veto or a favor being rather seldom,
Marichal has defined adegree of veto(or favor) for the Choquet integral [MAR 03].

– The degree of importance of a criterion: this degree indicates the average weight of a
criterion in the model. WhenF is the weighted sum, this degree of importance is simply the
weighting of the concerned criterion. In the case of the Choquet integral, we will show that this
degree can be defined as the Shapley value.

– The degree of interaction between criteria: if we take again the example of section 18.3.5
with the 3 objectsa, b, c, we have an example of interaction between criteria. The satisfaction
of one of them acts on the necessity that the other criterion are also satisfied in order to have
a satisfactory overall score. (In this example, it is necessary that the other is satisfied: we then
have aconjunctiveaggregation.) This shows in an intuitive way that the weighted sum cannot
represent interaction phenomena between criteria, and that the degrees of ‘orness’ and ‘andness’
are linked to interaction as well as the phenomena of veto andfavor.

– The degree of improvement power of a criterion: this permits the following question to
be answered. For a given object, if we want to significantly improve its overall score, on which
criterion should we act first? Or, in average, which criterion should we satisfy to have a high
overall score? Although similar to the degree of importance, we will see that this notion is in
fact different.

Before going into the details of these various degrees (which we will refer to asindices),
we stress the fact that often, when the capacity (or any otherparameter of a given modelF )
has been obtained by a learning procedure, it is an optimal solution among a convex set of other
optimal solutions. Consequently, the pertinence of the interpretation of the capacity is becoming
smaller if this set is large.

18.7.1. Index of importance of a criterion

Consider first the case of a unipolar cardinal scale. It seemsnatural to say that a criterioni
is important if for any coalition of criteriaA, the overall score of the object(1A∪i,0−(A∪i)) is
significantly larger than that of(1A,0−A). Consequently, the index of importance is defined as
an average value∆i of the quantityµ(A ∪ i) − µ(A), for all A ⊂ N \ i. On the other hand,
we want the sum of indices on all the criteria to be constant sothat comparisons can be made
and that the numbering of criteria has no influence on the result. If, moreover, we calculate the
average value∆i as a weighted sum, then Shapley [SHA 53] has shown that the expression of
the index of importance is unique:

φµ(i) :=
∑

K⊂N\i

(n− k − 1)!k!

n!

[
µ(K ∪ i) − µ(K)

]
(18.22)

wherek := |K| (we omit the superindexµ if there is no ambiguity). We have
∑n

i=1 φ(i) =
µ(N) = 1 and, ifµ is additive, thenφ(i) = µ({i}).

We can adapt this notion to the case of a bipolar scale. We say that a criterioni is important if
each time we add it to a coalition of satisfied criteria or remove it from a coalition of unsatisfied
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criteria, we get a significant improvement of the overall score. In terms of bicapacities, this
means that the index of importance should be an average of thequantitiesv(A∪i, B)−v(A,B)
andv(A,B)− v(A,B ∪ i) on each(A,B) ∈ Q(N \ i). Summing these two expressions, we
obtainv(A∪i, B)−v(A,B∪i), where the term in whichi has a neutral value has disappeared.
In [GRA 02c, LAB 03a], it is this last expression which is chosen, making the assumption
that the index of importance must not depend on situations wherei is neutral. Felsenthal and
Machover [FEL 97] take the other route and keep the two expressions in the average separated;
see a detailed discussion of this point in [LAB 03c].

Regarding the capacities, under an assumption of linearityit is sufficient to impose symme-
try conditions (no influence of the numbering of criteria) and normalization (the sum of indices
on all the criteria is constant) to obtain a unique expression of the index of importance, also
called index of importance of Shapley:

φv(i) =
∑

K⊂N\{i}

(n− k − 1)!k!

n!
[v(K ∪ {i} , N \ (K ∪ {i}))− v(K,N \K)] . (18.23)

This expression is very similar to the original i.e. equation (18.22). The property of normal-
ization is written

∑n
i=1 φ(i) = v(N,∅) − v(∅, N) = 2. If v is of the CPT type with

v(A,B) := µ+(A)− µ−(B), thenφv(i) = φµ+

(i) + φµ−

(i).

If we works in an ordinal framework, thenµ andv take their values on an ordinal scale and
the above definitions no longer have any meaning. Definitionssimilar to that used for capacities,
adapted to the ordinal case, have been proposed by the author[GRA 97c]. However, although
they maintain similar properties, their interpretation inpractice remains questionable.

18.7.2. Index of interaction

Let us give a precise definition of interaction. Consider first the casen = 2 and the four
following objects (see Figure 18.4):

– x = (01,02);

– y = (11,02);

– z = (01,12); and

– t = (11,12)

(b) (c)(a)

criterion 1

criterion 2

x

y z

t

0 1

0

1

1 1

2

2

criterion 1

criterion 2

x

y z

t
0

1

1 1

2

2

criterion 1

criterion 2

x

y z

t

0 1

0

1

1 1

2

2

0 1

Figure 18.4.Different cases of interaction
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It is clear thatt is better thanx, but the preference of the other pairs depends on the subject.
Because of the condition of dominance, we have the followingtwo extreme situations:

1) We setµ({1}) = µ({2}) = 0, which amounts to the preferencex ∼ y ∼ z (Fig-
ure 18.4(a)). This means that for the subject, the two criteria must be satisfied to have a satis-
factory object, and the satisfaction of only one of the two isnot enough. We say that the criteria
arecomplementary.

2) We setµ({1}) = µ({2}) = 1, which amounts to the preferencey ∼ z ∼ t (Fig-
ure 18.4(b)). In this case, the subject thinks that the satisfaction of one of the two criteria is
sufficient to have a satisfactory object, and satisfying both criteria is not rewarding. We say that
the criteria aresubstitutive.

The criteria are not independent in these two situations, inthe sense that the satisfaction of
one of them influences the usefulness of the other to have a satisfactory object (necessary in the
first case, useless in the second). We say that there isinteractionbetween the criteria.

A situation without interaction is such that the satisfaction of each criterion brings its own
contribution to the overall satisfaction, which can be expressed:

µ({1, 2}) = µ({1}) + µ({2}) (18.24)

(additivity) (see Figure 18.4(c)). In situation (1), we haveµ({1, 2}) > µ({1}) + µ({2}) with
the reverse inequality for situation (2). This suggests that the interactionI12 between criteria
(1) and (2) should be defined by:

Iµ
12 := µ({1, 2}) − µ({1}) − µ({2}) + µ(∅). (18.25)

We remark that this expression is nothing other tha the difference between the sum of overall
scores of objects on the diagonal (where there is strict dominance), and the sum of scores on
the antidiagonal (where there is no relation of dominance).The interaction is positive when the
criteria are complementary, and negative when they are substitutive.

In the case of more than two criteria, the definition of the interaction is similar to that of the
Shapley index i.e. all coalitions ofN must be taken into account. The following definition has
been proposed by Murofushi and Soneda [MUR 93] for a pair of criteria i, j:

Iµ
ij :=

∑

K⊂N\{i,j}

(n− k − 2)!k!

(n− 1)!

[
µ(K ∪ {i, j}) − µ(K ∪ {i})−

µ(K ∪ {j}) + µ(K)
]
. (18.26)

We haveIij > 0 (respectively,< 0,= 0) for complementary criteria (respectively, substi-
tutive, independent). The definition of this index was extended by the author to any coalition of
criteria∅ 6= A ⊂ N [GRA 97b]:

Iµ(A) :=
∑

K⊂N\A

(n− k − |A|)!k!
(n− |A|+ 1)!

∑

L⊂A

(−1)|A|−|L|µ(K∪L),∀A ⊂ N,A 6= ∅. (18.27)
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We remark that we haveIij = I({i, j}) and alsoI({i}) = φ(i), the importance index of
Shapley. For this reason, we call functionI the interaction index of Shapley. It is easy to see
that, when the capacity is additive, we haveI(A) = 0 for all A such that|A| > 1. Lastly, let
us note thatI has been axiomatized by Grabisch and Roubens [GRA 99] in a waysimilar to the
importance index of Shapley. Another axiomatization has been proposed by Fujimoto [FUJ 03].

We have seen that the interaction index contains as a particular case the importance index of
Shapley. In fact, it is possible to obtain the interaction index in a recursive way from the index
of importance of Shapley, considering subproblems with less criteria [GRA 99]. ForIµ

ij , this
relation reads:

Iµ
ij = φµ[ij]

([ij]) − φµN\i(j)− φµN\j (i), (18.28)

where[ij] is a fictive criterion (i andj taken together),µ[ij] : P((N \ {i, j}) ∪ {[ij]}) −→
[0, 1], whereµ[ij](A) := µ((A \ [ij])∪{i, j}) if A 3 [ij] andµ(A) otherwise andµN\i is the
restriction ofµ toN \ i.

Let us examine now how this concept can be generalized to the case of bicapacities. A first
way would be to proceed recursively from the index of importance of Shapley (equation (18.23))
using a formula similar to equation (18.28) [GRA 02d]. However, because of bipolarity, it seems
more natural to distinguish the satisfied criteria from the unsatisfied ones. Denoting the coali-
tions of satisfied and unsatisfied criteria byA,B, we are led to an interaction index with two
argumentsIA,B (calledbi-interactionin [GRA 02d]). Let us detail this in the casen = 2, fol-
lowing the same argument as for capacities. Because of bipolarity, we now have nine ternary
objects (see Figure 18.5).

-

6s s

s s

c

c

c c c

(01,12) (11,12)

(01,02) (11,02)

(01,−12) (11,−12)

(−11,12)

(−11,02)

(−11,−12)

v({1, 2},∅)v({2},∅)v({2}, {1})

v({1}, {2})v(∅, {2})v(∅, {1, 2})

v({1},∅)v(∅, {1}) v(∅,∅)

Figure 18.5.Ternary objects forn = 2



726 Decision Making

In each subsquare of[−1, 1]2, it is sufficient to apply the definition of the classical interac-
tion index given by equation (18.24). We obtain:

I{1,2},∅ := v({1, 2},∅)− v({1},∅)− v({2},∅) + v(∅,∅) (18.29)

I∅,{1,2} := v(∅,∅)− v(∅, {1}) − v(∅, {2}) + v(∅, {1, 2})
I1,2 := v({1},∅)− v(∅,∅)− v({1}, {2}) + v(∅, {2})
I2,1 := v({2},∅)− v({2}, {1}) − v(∅,∅) + v(∅, {1}).

Based on this principle, we can show that the general formulais:

Iv(A,B) =
∑

K⊂N\(A∪B)

(n− a− b− k)!k!
(n− a− b+ 1)!

∆A,Bv(K,N \ (A ∪K)),

with ∆A,Bv(S, T ) :=
∑

K⊂A,L⊂B(−1)(a−k)+(b−l)v(S ∪ K,T \ (K ∪ L)). We can check
that the Shapley importance index for bicapacities reads:

φ(i) = Ii,∅ + I∅,i.

In fact, we recover withIi,∅ andI∅,i the averages of quantitiesv(A ∪ i, B) − v(A,B) and
v(A,B) − v(A,B ∪ i) introduced in section 18.7.1, and which represent an index for the
satisfied criteria and an index for the unsatisfied criteria,respectively.

If v is of the CPT type withv(S, T ) := µ+(S) − µ−(T ), the interaction can be expressed
in the following form:

1) Iv
S,T = 0 except ifS = ∅ or T = ∅.

2) Denoting byIµi the interaction index of the capacityµi, we have:

Iv
S,∅ = Iµ+

(S), ∀∅ 6= S ⊆ N

Iv
∅,T = Iµ−

(T ), ∀T ⊆ N.

Property (1) clearly expresses the fact that for a CPT model,there is no interaction between the
positive and negative parts. Property (2) shows the relation between the interaction for bicapac-
ities and for capacities.

Again, for capacities there exists an ordinal counterpart of the interaction [GRA 97c] which,
however, has the same drawbacks as the ordinal importance index.

18.7.3. Maximum improving index

The aim of this index is to quantify the interest we have in improving scores on a coalition
A of criteria, in order to obtain a maximal effect on the overall score taken in average on all
fictive objects (in fact, all vectors of scores). An axiomatic construction of this index has been
proposed by Labreuche and Grabisch [GRA 01c], of which we give a brief description. For
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A ⊂ N , let us denote this index byWA(F ), viewed as a functional assigning a real number to
an aggregation functionF .

We suppose first thatWA is continuous and linear. Consider a family ofthresholdaggrega-
tion functions, denoted by1α : [0, 1]n −→ {0, 1}, α ∈ [0, 1]n and defined for allx ∈ [0, 1]n

by:

1α(x) =

{
1, if xi ≥ αi, i = 1, . . . , n

0, otherwise.

Intuitively, WA(1α) should be proportional to the number of vectors in[0, 1]n whose overall
score goes from 0 to 1 if only scores of criteria inA are improved. More precisely, let us define
Sα as the set of situations(x, y) ∈ [0, 1]n × [0, 1]n such thaty ≥ x, x andy are identical on
N \A. Their scores are1α(x) = 0 and1α(y) = 1, respectively. ThenWA(1α) is proportional
to the Lebesgue measure ofSα.

a normalization axiom remains to be added, saying that whenF is the weighted sum∑n
i=1 λixi, WA(F ) =

∑
i∈A λi. These four axioms determine the index in a unique way,

which reads:

WA(F ) = 3 · 2|A|

∫

x∈[0,1]n

∫

yA∈[xA,1]

[
F (yA, xAc)− F (x)

]
dx dyA

with the usual notation.yA ∈ [xA, 1] means thatyi ∈ [xi, 1] for all i ∈ A. WhenF is the
Choquet integral, we get forA = {i}:

Wi(Cµ) = 6
∑

K⊂N\i

(n− k)!(k + 1)!

(n+ 2)!
[µ(K ∪ i)− µ(K)],

which is very similar to the Shapley index. We can show that, in general,Wi(Cµ) ≤ 3φµ(i).
ForA = {i, j} we get:

Wij(F ) = Wi(F ) +Wj(F ),

but this additivity property is no longer true as soon as|A| > 2.

It is possible to construct an index which is proper to a particular object in a similar way,
and not an average over all possible objects [LAB 04].

18.7.4. Conjunction and disjunction indices

Adapting a definition of Dujmovíc [DUJ 74], Marichal [MAR 98a, MAR 03] proposed the
following general definition for the conjunction and disjunction indices of the Choquet integral
with respect to a capacityµ:

conjµ :=
E(max)− E(Cµ)

E(max)− E(min)

disjµ :=
E(Cµ)− E(min)

E(max)− E(min)
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whereE(F ) is the average value of an aggregation functionF on the unit hypercube:

E(F ) :=

∫

[0,1]n
F (x)dx.

Recall that the minimum and the maximum are the limit cases ofthe Choquet integral. These
indices therefore express a normalized distance to these bounds. Their definitions can be easily
extended to other aggregation functions.

We can show that these indices generalize those introduced by Yager for ordered weighted
averages [YAG 88].

18.7.5. Veto and index of veto

We have seen thati is a veto criterion (respectively, favor criterion) ifF (a1, . . . , an) ≤ ai

(respectively,≥ ai) for all vectors of scores. WhenF is the Choquet integral with respect to a
capacityµ, it is easy to show thati is a veto if and only ifµ is such thatµ(A) = 0 whenA 63 i.
It can also be shown thati is a veto implies that interactionIij is positive∀j 6= i [GRA 97a].
Similarly, i is a favor criterion is equivalent toµ(A) = 1 wheni ∈ A, which also implies that
Iij ≤ 0 ∀j 6= i.

As it is very uncommon to find vetoes and favors in the above sense, Marichal has proposed
veto and favor indices valued on[0, 1] defined as follows [MAR 98a, MAR 03]:

vetoµ(i) := 1− 1

n− 1

∑

T⊂N\i

(n− t− 1)!t!

(n− 1)!
µ(T )

favor(i) :=
1

n− 1

∑

T⊂N\i

(n− t− 1)!t!

(n− 1)!
µ(T ∪ i)− 1

n− 1
.

These definitions, which may look arbitrary, are in fact uniquely determined by four axioms.
Regarding the Shapley index, we impose that these indices are linear in terms ofµ and symmet-
ric in the sense that they are insensitive to a renumbering ofthe criteria. We impose on the other
hand that the veto index of the minimum operator is equal to 1,similarly for the favor index
of the maximum. Lastly, a normalization condition says thatif all criteria have the same veto
index (respectively, favor index), then this value should coincide with the conjunction index
(respectively, disjunction index).

We have the following properties:

1

n

n∑

i=1

vetoµ(i) = conjµ

1

n

n∑

i=1

favorµ(i) = disjµ.
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18.8. Particular families of capacities and bicapacities

We have seen in the preceding sections that capacities and bicapacities are powerful and
very general means of constructing multicriteria models ofevaluation. However, this richness
has a cost which is non-negligible since the complexity of these models is exponential (of the
order of 2n for capacities and3n for bicapacities). The question then arises if it would be
possible to have models based on capacities defined by less than2n coefficients, but keeping
as far as possible the performances and richness of capacities. A first family of capacities of
this type is that ofdecomposable measures[DUB 82, WEB 84] which includeλ-measuresof
Sugeno [SUG 74], very often used in practice. These capacities are defined by a function onN
analogous to a density, and which need onlyn − 1 coefficients. However, such models based
on decomposable capacities have a limited power of modeling, since the interaction indexIij

always has the same sign for alli, j.

It is possible to generalize this concept to bicapacities [GRA 02c]. A more suitable family
is that ofk-additive capacities.

Definition 18.5. [GRA 97b] Letk ∈ {1, . . . , n − 1}. A capacityµ is said to bek-additive if
I(A) = 0 when|A| > k, and there existsA ⊂ N with exactlyk elements such thatI(A) 6= 0.

From the properties of the interaction index, a 1-additive capacity is in fact an additive
capacity. Generally,k-additive capacity needs1 + n+

(
n
2

)
+ . . .+

(
n
k

)
− 2 coefficients to be

defined.

A good compromise between richness and complexity is offered by 2-additive capacities,
which need onlyn(n+1)

2
− 1 coefficients since they permit the representation of interaction

between two criteria (usually sufficient in practice). Experimentally, it is observed that the dif-
ference in precision between a 2-additive model and a general model is small [GRA 02b].

When the measure is 2-additive, it is possible to express theChoquet integral withI instead
of µ [GRA 97a]:

Cµ(a1, . . . , an) =
∑

Iij>0

(ai ∧ aj)Iij +
∑

Iij<0

(ai ∨ aj)|Iij |

+

n∑

i=1

ai(φi − 1

2

∑

j 6=i

|Iij |), ∀a ∈ [0, 1]n, (18.30)

for all (a1, . . . , an) ∈ Rn
+. Moreover, we haveφi − 1

2

∑
j 6=i |Iij | ≥ 0 for all i. This shows

that the Choquet integral for 2-additive measures is a sum ofa conjunctive part (corresponding
to positive interactions), a disjunctive part (negative interactions) and a linear part (importance
index of Shapley). All this corresponds to the interpretation of the interaction that we have
given. This sum is convex since

∑n
i=1 φi = 1. The Choquet integral is therefore the convex

closure of all the conjunctions and disjunctions of pairs ofcriteria and of all the dictators.

The concept ofk-additive bicapacity can be defined in an analogous way [GRA 02c].
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Definition 18.6. A bicapacity is said to be k-additive for k in {1, . . . ,
n − 1} if its interaction index is such thatIA,B = 0 when |B| < n − k and there exists
(A,B) with |B| = n− k such thatIA,B 6= 0.

A bicapacity needs1 + 2
(

n
n−1

)
+ 22

(
n

n−2

)
+ . . .+ 2k

(
n

n−k

)
− 3 coefficients to be defined.

For a 2-additive bicapacity, the number of coefficients is2n2−3. The expression of the Choquet
integral for a 2-additive bicapacity is however not easy [GRA 03d] and therefore not useful.

We also mention a third family of capacities introduced by Miranda and Grabisch [MIR 02]
calledp-symmetric capacities. The idea is to generalize the notion of symmetric measure (sec-
tion 18.4), considering a partition{A1, . . . , Ap} of N into subsets of indifference. These are
sets such thatµ(A) does not depend on|A|, for allA ⊂ Ai. A symmetric capacity is therefore
a 1-symmetric capacity, where the partition isN . The number of coefficients for defining a
p-symmetric capacity is

∏p
i=1(|Ai|+ 1)− 2.

This concept can be generalized to bicapacities [MIR 03].

18.9. Applications

Before briefly presenting some applications, it is worthwile indicating several general facts
about them. The question is the following: why construct a mathematical model of subjective
evaluation? If we want to know how a new product is received bythe consumer, why not eval-
uate it or test it on an individual or a population of individuals? If we want to know if a project
or a candidate is good, why it is not sufficient to evaluate it by an expert?

Among the possible answers, let us give the most significant:

– The mathematical model allows an automatic or semi-automatic treatment in case of nu-
merous data. Moreover, in this case, it can ensure a stability in time that a human expert would
be unable to maintain.

– The mathematical model can predict the result of a test of a new product, without per-
forming costly tests on a panel of consumers.

– The mathematical model allows the analysis of the process of evaluation. For an industry
launching a new product on the market, it is more important toknow why the product has had
(will have) success, rather than to know whether it will havesuccess. We provided tools for
such an analysis in section 18.7: importance of criteria, interaction, conjunctive or disjunctive
behavior, vetoes, etc.

– Lastly, the mathematical model allows an axiomatic approach. These axioms can be cho-
sen and considered as being rational according to the situations. They determine a model or a
family of models which will suit the problem.

We now cite several applications based on the presented methodology. The first examples
using the Choquet or the Sugeno integral, although very empirical in nature, come from Japan.
We refer the reader to [GRA 95b] for a presentation of them.
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Several more recent examples can be found in [GRA 00a], amongwhich an application
on the evaluation of motorcycles by Kwon and Sugeno (see also[SUG 95]). Again in Japan,
Nakamori has performed a certain number of studies on the evaluation of the environnement
[NAK 95] and on the impression of space in a living room [NAK 00].

Mauriset al.have realized applications in project management aiding [MON 02], and eval-
uation of a web site [BÜY 03]. In the domain of environnement,Verkeynet al.have applied the
Sugeno integral to the evaluation of noise annoyance [VER 03].

Lastly, the author has also realized several applications,in particular for the evaluation of
cosmetics [GRA 97d], of mental workload and of comfort in sitting position [GRA 02b]. We
end this section by detailing this last application, in order to show how the analysis of the model
can be used.

The problem is to measure the sensation of discomfort felt ona car seat, after having re-
mained still for a long time. The human body is divided in 38 zones, and we consider 5 types
of discomfort called: vibratory, overheating, pins and needles, hard point and contraction. The
intensity of discomfort goes from 0 (no discomfort) to 10 (unbearable). The aim is to explain
the overall sensation of discomfort felt, with local discomforts (zones and type of discomfort).
Eleven subjects, two seats and two modes (with or without vibration of the road) have been
used. In order to maintain the number of descriptors to a reasonable level because of the low
number of data, two types of models have been constructed:

1) The descriptors are the 5 types of discomfort and we take anaverage of all zones of the
body.

2) The descriptors are 5 macro-zones of the body (arm, legs, upper back, lower back, chest)
and we take an average of the types of discomfort.

We have obtained the following two models (Choquet integralwith respect to a 2-additive
capacity):

1) Model by type of discomfort (variables are the levels of discomfort on the attributes:
vibratory, overheating, pins and needles, hard point and contraction;e is the overall level of
discomfort, with precision10−3).

e = 0.022(a2 ∧ a3) + 0.337(a2 ∨ a4) + 0.256(a2 ∨ a5)

+ 0.163(a3 ∨ a5) + 0.142(a4 ∨ a5) + 0.003(a1 ∨ a3) + 0.028a3.

2) Model by macro-zones (variables are the levels of discomfort on macro-zones legs, arms,
lower back, upper back and chest;e is the overall level of discomfort, with precision10−3).

e = 0.517(a2 ∨ a4) + 0.134(a4 ∨ a5) + 0.122(a2 ∨ a3)

+ 0.095(a1 ∨ a3) + 0.051(a3 ∨ a4) + 0.039(a1 ∨ a5) + 0.043a5.

We can see that the linear part of these models is very small. The Shapley importance indices
and the interaction indices are as listed in Tables 18.1 and 18.2.

These results can be interpreted as follows:
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Shapley index(×5) InteractionI(i, j)
Vibratory 0.004897 I(1, 2) −0.000 I(2, 4) −0.337
Overheating 1.538209 I(1, 3) −0.002 I(2, 5) −0.256
Pins and needles0.732960 I(1, 4) −0.000 I(3, 4) −0.050
Hard point 1.321827 I(1, 5) −0.000 I(3, 5) −0.163
Contraction 1.402106 I(2, 3) 0.022 I(4, 5) −0.142

Table 18.1.Model by type of discomfort

Shapley index (×5) InteractionI(i, j)
Legs 0.333036 I(1, 2) −0.000 I(2, 4) −0.517
Arms 1.599255 I(1, 3) −0.095 I(2, 5) −0.000
Lower back0.669032 I(1, 4) −0.000 I(3, 4) −0.051
Opper back1.755150 I(1, 5) −0.039 I(3, 5) −0.000
Chest 0.643526 I(2, 3) −0.122 I(4, 5) −0.134

Table 18.2.Model by macro-zones

– Model by type of discomfort: the most important criteria are overheating, contraction and
hard point. Criterion vibratory does not play any role in theoverall discomfort. On the whole,
the model is of the disjunctive type. We can summarize: ‘It issufficient that one discomfort of
the type overheating, contraction or hard point is present for an overall discomfort to be felt. No
sensation of discomfort can alleviate another sensation ofdiscomfort.’

– Model by macro-zones: the most important macro-zones are the upper back and the arms,
and then the lower back. Legs have little influence in the model, which is mainly expressed by
a disjunction between discomforts in the upper back and the arms, the other pairs of criteria
being more or less independent. This can be summarized: ‘It is sufficient that one discomfort
is felt in the arms or the upper back for an overall discomfortto be felt. Discomfort sensations
appearing in other macro-zones (especially the lower back)will reinforce the overall sensation
of discomfort.’

These results can be further analyzed and exploited for the design of car seats.

18.10. Conclusion

We have attempted to give a constructive and overall view of methods dealing with subjec-
tive evaluation based on a multicriteria approach. As we have emphasized, these approachs are
a complement of the tools of data analysis, and can only be used if scores or degrees of satisfac-
tion can be defined on the attributes. The reader has perhaps seen some similarity with Principal
Component Analysis (PCA) which determines the most important axes, and the importance in-
dex of Shapley or the interaction. These indices effectively aim to detect the most important
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attributes in the model and to understand how they interact.Our indices are more useful in prac-
tice, however, as (in the case of ACP) axes which are found arein fact linear combinations of
attributes, making their interpretation difficult. In contrast, the methods that we propose use the
attributes without changing them.
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Chapter 19

Social Choice Theory and Multicriteria
Decision Aiding

19.1. Introduction

Many organizations face such complex and important management problems that they
sometimes want their decisions to be somehow supported by a ‘scientific approach’, some-
times called adecision analysis. The analyst in charge of this preparation faces many diverse
tasks: stakeholders identification, problem statement, elaboration of a list of possible actions,
definition of one or several criteria for evaluating these actions, information gathering, sensitiv-
ity analysis, elaboration of a recommendation (for instance a ranking of the actions or a subset
of ‘good’ actions), etc. The desire or necessity to take multiple conflicting viewpoints into ac-
count for evaluating the actions often makes this task even more difficult. In that case, we speak
of multicriteria decision aiding[POM 93, ROY 85, VIN 89]. The expert must then try to syn-
thesize the partial preferences (modeled by each criterion) into a global preference on which a
recommendation can be based. This is calledpreference aggregation.

A very similar aggregation problem has been studied for a long times in the framework of
voting theory. It consists of searching a ‘reasonable’ mechanism (we callit voting system or
aggregation method in the sequel) aggregating the opinionsexpressed by several voters on the
candidates in an election, in order to determine a winner or to rank all candidates in order of
preference. This problem is of course very old but its modernanalysis dates back to the end of
the eighteenth century [BOR 81, CON 85].

The diversity of voting systems actually used in the world shows that this problem is still
important. In the 1950s, the works of [ARR 63, BLA 58, MAY 52] have initiated a huge litera-
ture [KEL 91] forming what is today calledsocial choice theory. It analyzes the links that exists
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(or should exist) between theindividual preferencesof the members of a society and the deci-
sions made by this group when these decisions are supposed toreflect thecollective preference
of the group.

The many results obtained in social choice theory are valuable for multicriteria decision
aiding. There are indeed links between these two domains: itis easy to go from one to the
other by replacing the words ‘action’, ‘criterion’, ‘partial preference’ and ‘overall preference’
by ‘candidate’, ‘voter’, ‘individual preference’ and ‘collective preference’ [ARR 86].

The aim of this chapter is to present some important results in social choice theory in a
simple way and to discuss their relevance for multicriteriadecision aiding. Using some classical
examples of voting problems (section 19.2), we will show some fundamental difficulties arising
when aggregating preferences. We will then present some theoretical results that can help us
better understand the nature of these difficulties (section19.3). We will then try to analyze the
consequences of these results for multicriteria decision aiding (section 19.4). A long list of
references will help the interested reader to deepen their understanding of these questions.

19.2. Introductory examples

Choices made by a society often impact the individuals making up this society. It therefore
seems reasonable to ground these choices on the preferencesof the individuals. The choice of a
candidate (law, project, social state, etc.) then depends on the outcome of an election in which
the individuals (voters) express their preferences. A voting system (or aggregation method)
uses the information provided by the voters in order to determine the elected candidate or, more
generally, the decision made by the group.

In such conditions, how should we conceive a ‘good’ voting system? Common sense tells
us that such a system must be democratic, i.e. it must yield collective preferences reflecting the
individual preferences as much as possible. In many countries (groups, companies, committees),
this is operationalized by themajority rule(or some variant of it): candidatea wins againstb if
the majority of the voters prefera to b. This simple rule is very intuitive. As we will later see,
when there are only two candidates this rule raises almost noproblem [MAY 52].

This rule can be adapted in many ways to face situations with more than two candidates.
These adaptations can lead to surprising outcomes, which will be illustrated by a few examples
in this section. We will begin withuninominalvoting systems, where each voter expresses their
opinion through a ballot that only contains the name of one candidate (section 19.2.1), before
moving to other systems where the voters can express their preferences in more complex ways
(section 19.2.2).

In all examples, we will assume that each voter is able to rank(possibly with ties) all can-
didates in order of preference, i.e. can express preferences by means of a weak order. If a voter
prefersa to b andb to c (thereby preferinga to c), we write ‘a � b � c’. Except if other-
wise stated, we will suppose that the voters are sincere, i.e. they express their ‘true’ preferences.
Finally, notice that most examples presented here are classic. Many more examples and the anal-
ysis of many voting systems can be found in [DUM 84, FIS 77, MOU80, MOU 88, NUR 87].
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19.2.1. Uninominal systems

Example 19.1. Dictatorship of majority
Let {a, b, c, . . . , z} be the set of 26 candidates for an election with 100 voters whose prefer-

ences are:

51 voters have preferencesa � b � c � . . . � y � z,
49 voters have preferencesz � b � c � . . . � y � a.

It is clear that 51 voters will vote fora while 49 vote forz. Thusa has an absolute majority and,
in all uninominal systems we are aware of,a wins. But isa really a good candidate? Almost
half of the voters perceivea as the worst one. And candidateb seems to be a good candidate for
everyone. Candidateb could be a good compromise. As shown by this example, a uninominal
election combined with the majority rule allows a ‘dictatorship of majority’ and doesn’t favor a
compromise. A possible way to avoid this problem might be to ask the voters to provide their
whole ranking instead of their preferred candidate. We willsee some examples in section 19.2.2.

The possibility of a dictatorship of the majority was already acknowledged by classic greek
philosophers. The following examples show that many other strange phenomena can occur with
uninominal voting systems.

Example 19.2. Respect of majority in the British system
The voting system in the United Kingdom isplurality voting, i.e. the election is uninominal

and the aggregation method is simple majority. Let{a, b, c} be the set of candidates for a 21
voters election (or21× 106 voters if one wishes a more realistic example). Suppose that

10 voters have preferencesa � b � c,
6 voters have preferencesb � c � a,
5 voters have preferencesc � b � a.

Then a (respectively,b and c) obtains 10 votes (respectively, 6 and 5) so thata is chosen.
Nevertheless, this might be different from what a majority of voters wanted. Indeed, an absolute
majority of voters prefers any other candidate toa (11 out of 21 voters preferb andc to a).

Let us see, using the same example, if such a problem could be avoided by the two-stage
French system (also called plurality with runoff). After the first stage, as no candidate has an
absolute majority, a second stage is run between candidatesa andb. We suppose that the voters
keep the same preferences on{a, b, c}. So

10 voters have preferencesa � b,
11 voters have preferencesb � a.
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Thusa obtains 10 votes andb 11 votes so that candidateb is elected. This time, none of the
beaten candidates (a andc) are preferred tob by a majority of voters. Nonetheless we cannot
conclude that the two-stage French system is superior to theBritish system from this point of
view, as shown by the following example.

Example 19.3. Respect of majority in the two-stage French system
Let {a, b, c, d} be the set of candidates for a 21 voters election. Suppose that

10 voters have preferencesb � a � c � d,
6 voters have preferencesc � a � d � b,
5 voters have preferencesa � d � b � c.

After the first stage, as no candidate has absolute majority,a second stage is run between can-
didatesb andc. Candidateb easily wins with 15 out of 21 votes although an absolute majority
(11/21) of voters prefera andd to b.

Because it is not necessary to be a mathematician to figure outsuch problems, some voters
might be tempted not to sincerely report their preferences as shown in the next example.

Example 19.4. Manipulation in the two-stage French system
Let us continue with the example above. Suppose that the six voters having preferencesc �
a � d � b decide not to be sincere and vote fora instead ofc. Then candidatea wins after the
first stage because there is an absolute majority for him (11/21). If they had been sincere (as in
the previous example),b would have been elected. Thus, casting an insincere vote is useful for
those 6 voters as they prefera to b. Such a system, that may encourage voters to falsely report
their preferences, is called manipulable.

This is not the only weakness of the French system, as attested by the following three
examples.

Example 19.5. Monotonicity in the two-stage French system
Let {a, b, c} be the set of candidates for a 17 voters election. A few days before the election,

the results of a survey are as follows:

6 voters have preferencesa � b � c,
5 voters have preferencesc � a � b,
4 voters have preferencesb � c � a,
2 voters have preferencesb � a � c.

In the French system, a second stage would be run betweena andb anda would be chosen
obtaining 11 out of 17 votes. Suppose that candidatea, in order to increase his lead overb
and to lessen the likelihood of a defeat, decides to strengthen his electoral campaign againstb.
Suppose that the survey exactly revealed the preferences ofthe voters and that the campaign has
the correct effect on the last two voters. Hence we observe the following preferences.
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8 voters have preferencesa � b � c,
5 voters have preferencesc � a � b,
4 voters have preferencesb � c � a.

After the first stage,b is eliminated, due to the campaign ofa. The second stage opposesa to c
andc wins, obtaining 9 votes. Candidatea thought that his campaign would be beneficial. He
was wrong. Such a method is called non-monotonic because an improvement of a candidate’s
position in some of the voter’s preferences can lead to a deterioration of his position after the
aggregation.

It is clear with such a system that it is not always interesting or efficient to sincerely re-
port one’s preferences. You will note in the next example that some manipulations can be very
simple.

Example 19.6. Participation in the two-stage French system
Let {a, b, c} be the set of candidates for a 11 voters election. Suppose that

4 voters have preferencesa � b � c,
4 voters have preferencesc � b � a,
3 voters have preferencesb � c � a.

In the French system, a second stage should opposea to c andc should win the election obtain-
ing 7 out of 11 votes. Suppose that 2 of the first 4 voters (with preferencesa � b � c) decide
not to vote becausec, the worst candidate according to them, is going to win anyway. What will
happen? There will only be 9 voters.

2 voters have preferencesa � b � c,
4 voters have preferencesc � b � a,
3 voters have preferencesb � c � a.

Contrary to all expectations, candidatec will loose whileb will win, obtaining 5 out of 9 votes.
Our two lazy voters can be proud of their abstention since they preferb to c. Clearly such a
method does not encourage participation.

Example 19.7. Separability in the two-stage French system
Let {a, b, c} be the set of candidates for a 26 voters election. The voters are located in two
different areas: countryside and town. Suppose that the 13 voters located in the town have the
following preferences.

4 voters have preferencesa � b � c,
3 voters have preferencesb � a � c,
3 voters have preferencesc � a � b,
3 voters have preferencesc � b � a.
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Suppose that the 13 voters located in the countryside have the following preferences.

4 voters have preferencesa � b � c,
3 voters have preferencesc � a � b,
3 voters have preferencesb � c � a,
3 voters have preferencesb � a � c.

Suppose now that an election is organized in the town, with 13voters. Candidatesa andc will
go to the second stage anda will be chosen, obtaining 7 votes. If an election is organized in the
countryside,a will defeatb in the second stage, obtaining 7 votes. Thusa is the winner in both
areas. Naturally we expecta to be the winner in a global election. But it is easy to observethat
in the global election (26 voters)a is defeated during the first stage. Such a method is called
non-separable.

The previous examples showed that, when there are more than 2candidates, it is not an
easy task to imagine a system that would behave as expected. Note that, in the presence of 2
candidates, the British system (uninominal and one-stage)is equivalent to all other systems and
it suffers none of the above-mentioned problems [MAY 52]. Wemight therefore be tempted by
a generalization of the British system (restricted to 2 candidates). If there are 2 candidates, we
use the British system; if there are more than 2 candidates, we arbitrarily choose 2 of them and
we use the British system to select the winner. The winner is opposed (using the British system)
to a new arbitrarily chosen candidate, and so on until no morecandidates remain. This would
requiren−1 votes between 2 candidates. Unfortunately, this method suffers severe drawbacks.

Example 19.8. Influence of the agenda in sequential voting
Let {a, b, c} be the set of candidates for a 3 voters election. Suppose that

1 voter has preferencesa � b � c,
1 voter has preferencesb � c � a,
1 voter has preferencesc � a � b.

The 3 candidates will be considered two by two in the following order or agenda:a andb first,
thenc. During the first vote,a is opposed tob anda wins with absolute majority (2 votes against
1). Thena is opposed toc andc defeatsa with absolute majority.c is therefore elected.

If the agenda isa andc first, it is easy to see thatc defeatsa and is then opposed tob. Hence,
b wins againstc and is elected.

If the agenda isb andc first, it is easy to see thata is finally elected. Consequently, in this
example, any candidate can be elected and the outcome depends completely on the agenda,
i.e. on an arbitrary decision. Let us note that sequential voting is very common in different
parliaments. The different amendments to a bill are considered one by one in a predefined
sequence. The first one is opposed to the original bill using the British system; the second one
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is opposed to the winner and so on. Finally, the result is opposed to the status quo. Clearly, such
a method lacks neutrality. It doesn’t treat all candidates in a symmetric way. Candidates (or
amendments) appearing at the end of the agenda are more likely to be elected than those at the
beginning. We say that such a method is notneutral. Notice that the British and French systems
are neutral because they do not favor any candidate.

Example 19.9. Violation of unanimity in sequential voting
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

1 voter has preferencesb � a � d � c,
1 voter has preferencesc � b � a � d,
1 voter has preferencesa � d � c � b.

Consider the following agenda:a andb first, thenc and finallyd. Candidatea is defeated by
b during the first vote. Candidatec wins the second vote andd is finally elected although all
voters unanimously prefera to d. Let us remark that this cannot happen with the French and
British systems.

Example 19.10. Tie-breaking chairperson
Suppose we use the two-stage French system and, at the secondstage, the two candidates have
the same number of votes. This is very unlikely in a national election but can often occur in
small-scale elections (board of trustees, court jury, Ph.D. jury, etc.). It is then usual to use the
chairperson’s vote to break the tie. In this case, the opinions of all voters are not treated in the
same way. We then say that the voting system is notanonymous, unlike all systems we have
seen so far. Note that using the chairperson’s vote is not theonly possibility: we could break the
tie by choosing, for instance, the oldest of the two candidates (this would not respect neutrality).

Up until now, we have assumed that the voters are able to rank all candidates from best to
worst without ties but the only information that we collected was the best candidate. We could
try to palliate the many encountered problems by asking voters to explicitly rank the candidates
in order of preference (some systems, like approval voting,use another kind of information; see
[BRA 82]). This idea, although interesting, will lead us to many other pitfalls as discussed in
the following section.

19.2.2. Systems based on rankings

In this kind of election, each voter provides a ranking without ties of the candidates. Hence
the task of the aggregation method is to extract from all these rankings the best candidate or a
ranking of the candidates reflecting the preferences of the voters as much as possible. Compar-
ing all candidates pairwise in the following way has been suggested [CON 85].

Condorcet method (or majority method) Candidatea is preferred tob if and only if the num-
ber of voters rankinga beforeb is larger than the number of voters rankingb beforea.
In case of tie, candidatesa andb are indifferent.
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Condorcet states the following principle.

Condorcet principle If a candidate is preferred to each other candidate using themajority rule,
then he should be chosen. The candidate, theCondorcet winner, is necessarily unique.

Note that neither the British or French system respect this principle. Indeed, in exam-
ple 19.2, the British system leads to the election ofa while b is the Condorcet winner and,
in example 19.3, the French system electsb while a is the Condorcet winner.

The Condorcet principle seems very sensible and close to theintuitive notion of democracy
(yet it can be criticized, as suggested in example 19.1 wherecandidatea is a Condorcet winner).
It is not always operational: in some situations, there is noCondorcet winner; this is the so-
calledCondorcet paradox. Indeed, in example 19.8,a is preferred tob, b is preferred toc andc
is preferred toa. No candidate is preferred to all others. In such a case, the Condorcet method
fails to elect a candidate. One might think that example 19.8is very bizarre and unlikely to
happen. Unfortunately it isn’t. If you consider an electionwith 25 voters and 11 candidates,
the probability of such a paradox is significantly high: approximately1/2 [GEH 83]. The more
candidates or voters, the higher the probability of such a paradox. Note that, in order to obtain
this result, all rankings are supposed to have the same probability. Such an hypothesis is clearly
questionable [GEH 83].

We must find how to proceed when there is no Condorcet winner. We may, for example,
choose a candidate such that no other candidate defeats him according to the majority rule (weak
Condorcet principle), but such a candidate does also not always exist (as in example 19.8). Many
methods have been proposed for exploiting the relation constructed using the majority method
[FIS 77, LAS 97, NUR 87].

An alternative approach has been proposed by [BOR 81]. He suggests associating a global
score to each candidate. This score is the sum of his ranks in the rankings of the voters.

Borda method Candidatea is preferred tob if the sum of the ranks ofa in the rankings of
the voters is strictly smaller than the corresponding sum for b (we now assume that the
rankings are without tie and we assign rank 1 to the best candidate in the ranking, rank
2 to the second best candidate, and so on; as we will see, the method can be easily
generalized for handling ties).

Example 19.11. Borda and Condorcet methods
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

2 voters have preferencesb � a � c � d,
1 voters have preferencesa � c � d � b.

The Borda score ofa is 5 = 2 × 2 + 1 × 1. Forb, it is 6 = 2 × 1 + 1 × 4. Candidatesc and
d receive 8 and 11. Thusa is the winner and the collective ranking isa � b � c � d. Using
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the Condorcet method, the conclusion is different:b is the Condorcet winner. Furthermore, the
collective preference obtained by the Condorcet method is transitive and yields the ranking
b � a � c � d. The two methods diverge; the Borda method does not verify the Condorcet
principle. Nevertheless, it can be shown that the Borda method never chooses a Condorcet loser,
i.e. a candidate that is beaten by all other candidates by an absolute majority (contrary to the
British system, see example 19.2).

The Borda method has an important advantage with respect to the Condorcet method. In
any situation, it selects one or several winners (those withthe lowest sum of ranks). Further-
more, it always yields a ranking of the candidates from best to worse. The Condorcet method,
on the contrary, sometimes yields non-transitive preferences and it is then impossible to rank
the candidates or even to choose a subset of ‘good’ candidates (see example 19.8). It is easy
to verify that the Borda method is neutral, anonymous, separable, monotonic and encourages
participation.

The Borda method nevertheless sometimes behaves in a strange way. Indeed, consider ex-
ample 19.11 and suppose that candidatesc andd decide on the eve of the election not to compete
because they are almost sure to lose. With the Borda method, the new winner isb. Thusb now
defeatsa just becausec andd dropped out. The fact thata defeats or is defeated byb therefore
depends not only on the relative positions ofa andb in the rankings of the voters but is also
contingent upon the presence of other candidates and on their position with respect to all other
candidates. This can be a problem as the set of candidates is not always fixed. It is even more of
a problem in decision aiding because the set of actions is seldom given and is, to a large extent,
the outcome of a modeling process.

After all these examples, we would like to propose a democratic method with the advantages
of the Borda method (transitivity of the collective preferences) and those of the Condorcet
method (Condorcet principle and absence of contingency problems). We will see in section 19.3
that it is mainly hopeless.

Let us mention that we limited this discussion to voting systems aimed at choosing a candi-
date and not a subset of candidates. The reader might then be tempted to conclude that those sys-
tems are inferior to systems aimed at choosing a representative body with some ‘proportional’
method. But this is too simple, for at least two reasons. First, the definition of what constitues
a fair or democratic proportional representation is complex and most proportional systems lead
to paradoxical situations [BAL 82]. Second, representative bodies must make decisions and, to
this end, they need voting systems aimed at choosing a singleaction.

19.3. Some theoretical results

Based on the preceding examples, we now have the intuition that conceiving ‘good’ prefer-
ence aggregation methods raises serious problems. This is confirmed by some celebrated results
in social choice theory.
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19.3.1. Arrow’s theorem

Arrow’s theorem is central in social choice theory. It is about voting systems aimed at ag-
gregatingn (n ≥ 3) weak orders (rankings possibly with ties) in a collective weak order. Just
as in section 19.2.2, each voter ranks all the candidates, possibly with ties.

Formalization 19.1. A binary relationR on a setA is a subset ofA × A. We often write
aRb instead of(a, b) ∈ R. A weak order onA is a complete (for alla, b ∈ A we haveaRb
and/or bRa) and transitive (for alla, b, c ∈ A, aRb and bRc imply aRc) binary relation on
A. LetWO(A) denote the set of all weak orders on the setA. The asymmetric part ofR is
the binary relationP defined byaPb ⇔ [aRb and NotbRa]. The symmetric part ofR is the
binary relationI defined byaIb⇔ [aRb andbRa].

LetN = {1, 2, . . . n} represent the set of voters andA the set of candidates. We assume
that voteri ∈ N expresses their preference by means of a weak orderRi ∈ WO(A) on the set
A. We writePi (respectively,Ii) for the asymmetric (respectively, symmtric) part ofRi.

Arrow was interested in the aggregation methods satisfyingthe following conditions.

Universality Every configuration of rankings is admissible.

Formalization 19.2. We want to find an aggregation functionF yielding a result (a collective
weak order) for every element(R1, R2, . . . , Rn) ofWO(A)n.

This condition excludes any constraint on the set of admissible rankings. The examples
of the previous section have shown that some problems are caused by some specific rankings
or configurations of rankings. A possible way out would then consist of proposing a method
that works only with ‘simple’ configurations. Imposing restrictions on the admissible configu-
rations is sometimes reasonable. For instance, one may sometimes assume that all voters and
candidates are located on a right-left axis and that each voter ranks the candidates in order of
increasing distance between themself and the candidates. The preferences of the voters are then
single-peaked; [BLA 58] showed that a Condorcet winner then necessarily exists. However,
such restrictions imply e.g. the absence of atypical voters. This cannot be excludeda priori.
With a non-universal aggregation method, some ballots would be impossible to analyze.

Transitivity The outcome of the aggregation method must always be a complete ranking, pos-
sibly with ties.

Formalization 19.3. The aggregation function takes its values inWO(A).
When there is no ambiguity, we writeR = F (R1, R2, . . . , Rn) andP (respectively,I) the
asymmetric part (respectively, symmetric) ofR.

This condition imposes that the outcome is transitive irrespective of the preference of the
voters. Whenever the society prefersa to b and b to c, it must therefore prefera to c. We
have seen that the Condorcet method does not satisfy this condition. It is sufficient (but not
necessary) to ensure that the method will, in all cases, designate one or several best candidates
(those with the best positions in the ranking). We will latersee that weakening this condition
does not improve the situation formalized by Arrow’s theorem.
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Unanimity The outcome of the aggregation method may not contradict thevoters when they
vote unanimously.

Formalization 19.4. The aggregation functionF must be such that, for alla, b ∈ A, if aPib
for all i ∈ N , thenaPb.

If a is ranked beforeb in each ranking, then it must be beforeb in the collective ranking.
This condition is very sensible; Example 19.9 neverthelessshows that some methods violate it.

IndependenceThe relative position of two candidates in the collective ranking only depends
on their relative position in the individual rankings.

Formalization 19.5. For all (R1, R2, . . . , Rn), (R′
1, R

′
2, . . . , R

′
n) ∈ WO(A)n and alla, b ∈

A, if aRib⇔ aR′
ib andbRia⇔ bR′

ia, thenaRb⇔ aR′b.

This condition is more complex than the previous conditions. When comparinga andb, it
forbids

– taking preference intensities into account: the only thing that matters is thata is ranked
by the voters before or afterb; and

– taking other candidates into account.

Let us illustrate this condition with an example.

Example 19.12. The Borda method and Independence
Let {a, b, c, d} be the set of candidates. Suppose there are three voters withthe following pref-
erences:

2 voters have preferencesc � a � b � d,
1 voters has preferencesa � b � d � c.

The Borda method yields the ranking:a, c, b, d with the respective scores 5, 6, 8 and 11.

Suppose now that :

2 voters have preferencesc � a � b � d,
1 voters has preferencesa � c � b � d.

The Borda method yields the ranking:c, a, b, d with the respective scores 4, 5, 9 and 12.

Note that, in each individual ranking, the relative position of a andc did not vary across
ballots: one voter prefersa to c while two voters preferc to a. Independence then imposes that
the position ofa andc in the collective ranking be identical. This is not the case with the Borda
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method. Indeed, this method uses the fact that the ‘distance’ betweena andc seems larger in
the rankinga � b � d � c than in the rankinga � c � b � d, becauseb andd lie betweena
andc in the first case.

The dependence of the relative position ofa andc with respect tob andd is ruled out by the
Independence condition. It also excludes any method using,in addition to the rankings, some
information regarding preference intensities.

The last condition used by Arrow states that no voter can impose, in all circumstances,
their preferences to the society. This condition is extremely sensible for anyone willing to use a
democratic method.

Non-dictatorship There is no dictator.

Formalization 19.6. For all i ∈ N and all a, b ∈ A, there is a profile(R1, R2, . . . , Rn) ∈
WO(A)n such thataPib andbRa.

We are now ready to state the following celebrated theorem.

Theorem 19.1. [ARR 63] If the number of voters is finite and there is at least three candi-
dates, no aggregation method can simultaneously satisfy universality, transitivity, unanimity,
independence and non-dictatorship.

Proof. The proof of Arrow’s theorem uses the following definitions.A subsetI ⊆ N of vot-
ers isalmost decisivefor the pair of candidates(a, b) ∈ A2 if, for all (R1, R2, . . . , Rn) ∈
WO(A)n, [aPib,∀i ∈ I andbPja,∀j /∈ I ] ⇒ aPb. Similarly, the subsetI ⊆ N of voters
is decisivefor the pair of candidates(a, b) ∈ A2 if, for all (R1, R2, . . . , Rn) ∈ WO(A)n,
[aPib,∀i ∈ I ]⇒ aPb.

We first show that, ifI is almost decisive for the pair(a, b), thenI is decisive for all pairs
of candidates.

Let c be a candidate distinct froma and b (such a candidate always exists because we
assumedn ≥ 3). Let (R1, R2, . . . , Rn) ∈ WO(A)n be a profile such thataPic, ∀i ∈ I . Let
(R′

1, R
′
2, . . . , R

′
n) ∈ WO(A)n be a profile such that

– aP ′
i bP

′
i c, ∀i ∈ I ,

– bP ′
ja andbP ′

jc, ∀j /∈ I .

SinceI is almost decisive for the pair(a, b), we haveaP ′b. Unanimity imposesbP ′c. Tran-
sitivity then impliesaP ′c. Since the relation betweena andc for the voters outsideI in the
profile (R′

1, R
′
2, . . . , R

′
n) has not been specified, Independence impliesaPc. We have there-

fore proved that wheneverI is almost decisive for the pair(a, b), thenI is decisive for any pair
of candidates(a, c) such thatc 6= a, b. This reasoning is easily generalized to the case wherec
is not distinct froma or b.
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We now show that there is always a voteri ∈ N almost decisive for some pair of candidates.
As shown above, this voter will be decisive for all pairs of candidates and will therefore be a
dictator.

By unanimity,N is almost decisive for all pairs of candidates. SinceN is finite, there is at
least one subsetJ ⊆ N almost decisive for the pair(a, b) with a minimal cardinality. Suppose
|J | > 1 and consider a profile(R1, R2, . . . , Rn) ∈ WO(A)n such that:

– aPibPic, for i ∈ J ,

– cPjaPjb ∀j ∈ J \ {i},
– bPkcPka ∀k /∈ J .

SinceJ is almost decisive for the pair(a, b) we haveaPb. It is impossible thatcPb. Indeed, by
independence, this would implyJ \{i} is almost decisive for the pair(c, b) and, hence, decisive
for all pairs, contrary to our hypothesis. We therefore havebRc and transitivity impliesaPc.
This implies that{i} is almost decisive for the pair(a, c). �

This negative result applies only when there are at least three candidates. It is easy to verify
that the majority method satisfies the five conditions of Arrow’s theorem with two candidates.
Arrow’s theorem explains to a large extent the problems we met in section 19.2 when we were
trying to find a ‘satisfying’ aggregation procedure. Observe, for instance, that the Borda method
verifies universality, transitivity, unanimity and non-dictatorship. Hence, it cannot verify inde-
pendence, as shown in example 19.12. The Condorcet method respects universality, unanimity,
independence and non-dictatorship. It cannot therefore betransitive, as shown in example 19.8.

Notice that Arrow’s theorem uses only five conditions. In addition to these, we might wish
to impose also neutrality, anonymity, monotonicity, non-manipulability, separability or Con-
dorcet’s principle. What makes Arrow’s theorem so strong isprecisely that it uses only five
conditions, all seemingly reasonable. This is enough to prove an impossibility.

Arrow’s theorem initiated a huge literature, a good overview of which can be found in
[CAM 02, FIS 87, KEL 78, SEN 86]. Let us mention that weakeningtransitivity does not solve
the problem revealed by Arrow’s theorem. For instance, if weimpose quasi-transitivity (i.e.
transitivity of the asymmetric part) instead of transitivity, then we can always determine one or
several winners. However, it is possible to prove that replacing transitivity by quasi-transitivty
in Arrow’s theorem leads to an oligarchy instead of a dictatorship. An oligarchy is a subset of
voters that can impose their preferences when they are unanimous and such that each of them
can veto any strict preference i.e. if a member of the oligarchy strictly prefersa to b, thenb
cannot be strictly better thana in the collective preference [GIB 69, MAS 72].

Example 19.13. Let us consider six voters numbered fromi = 1 to 6 and an aggregation
method yielding the relationR = F (R1, R2, . . . , R6) by means of:

xPy ⇔ ∑
{i:xPiy}

wi > λ,

xIy otherwise,

with w1 = w2 = 0.4, w3 = w3 = w5 = w6 = 0.05 andλ = 0.7. This method is oligarchic.
Indeed, consider the setO containing voters 1 and 2. It is easy to verify that, for any profile of
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preferences,

[xP1y andxP2y]⇒ xPy,

[xP1y or xP2y]⇒ Not yPx.

The existence of an oligarchy is as problematic as the existence of a dictator. Indeed, if the
oligarchy contains all voters (this is the only possibilityif we want a democratic method) then,
because of the veto right of each voter, the collective preference will not be very decisive since
it will not discriminate much between candidates. On the contrary, an oligarchy containing only
one voter is a dictatorship. Between these two extreme cases, no solution is satisfactory.

We can weaken transitivity even more and impose that there isno circuit in the asymmetric
part of the collective preference relation. This conditionis necessary and sufficient to guarantee
the existence of maximal elements in any finite set of candidates [SEN 70]. However, it is then
possible to prove the existence of a voter with an absolute veto [MAS 72] so this does not really
help much.

19.3.1.1.Arrow’s theorem and fuzzy preferences

Why is it impossible to aggregate voters’ preferences in a satisfactory way (i.e. while re-
specting Arrow’s conditions)? There are mainly two reasons:

– The information contained in the weak orders describing the voters’ preferences is too
poor; it is ordinal. If we use richer structures, we can hope to escape Arrow’s theorem. In
particular, if we represent the voters’ preferences by means of fuzzy relations, we can not only
speak of the preference ofa overb but also of the intensity of this preference.

– The global preference must be a weak order and this is a strong constraint. If we weaken
this condition, we may consider aggregation methods yielding relations with more flexibility,
such as fuzzy relations.

Some authors [e.g. BAR 86, BAR 92, LEC 84, PER 92a] have analyzed the consequences of
imposing that the outcome of the aggregation is a fuzzy relation, that is a mappingR fromA2 to
[0, 1]. Their findings are unfortunately largely negative: if we impose that the fuzzy relation has
some properties permitting the easy designation of a winneror construction of a ranking, then
we find that the only possible aggregation methods give very different powers to the various
voters (as in oligarchies or dictatorships). In particular, it is the case if we impose that the
collective preference relation verifies min-transitivity, i.e. for alla, b, c ∈ A:

R(a, c) ≥ min(R(a, b),R(b, c)).

This condition guarantees that the relationRλ defined by

aRλb⇔ R(a, b) ≥ λ,

is transitive for any value ofλ. Hence, starting from a min-transitive relation, it is not difficult
to designate a winner or to rank the candidates.

However, there are some positive results in the literature which use weaker transitivity con-
ditions [e.g. OVC 91]. It is then tempting to believe that Arrow’s theorem does not hold with
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fuzzy relations. But these apparently positive results aremisleading: the transitivity condition
they use is so weak that is not incompatible with Condorcet cycles, as shown in the following
example.

Example 19.14. The transitivity condition used by [OVC 91] can be expressedas follows. For
all a, b, c ∈ A:

R(a, c) ≥ R(a, b) +R(b, c)− 1. (19.1)

Suppose we want to aggregate the preferences ofn voters. We can define the collective fuzzy
preference relation by

R(a, b) =
1

n
#{i ∈ A : aRib}.

It is easy to show that it satisfies equation (19.1). Let us nowconsider 3k voters with the fol-
lowing preferences:

k voters have preferencesa � b � c,
k voters have preferencesb � c � a,
k voters have preferencesc � a � b.

We obtain:R(a, b) = 2/3, R(b, c) = 2/3 andR(c, a) = 2/3; this is indeed compatible with
equation (19.1). However, note that this relation is in somesense cyclic and does not permit
us to designate a winner or to rank the candidates. Therefore, this does not solve the problem
raised by Arrow’s theorem.

In summary, unless we consider a very weak transitivity relation (without any practical
interest), aggregation methods yielding fuzzy relations do not escape Arrow’s theorem.

19.3.2. Some other results

Arrow’s theorem and its many extensions represent only a part of the numerous results in
social choice theory. For a comprehensive overview of this field, see [CAM 02, SEN 86]. In this
paper, we will roughly group the results into three categories as follows:

1) Impossibility results, as for Arrow’s theorem, show thatsome conditions are incompat-
ible. These results help us to understand better why it is difficult to find a ‘good’ aggregation
method.

2) Characterization results present a set of conditions that a given aggregation method and
only this one simultaneously respects. Such results help usunderstand better the essential char-
acteristics of a method. It is then easier to compare it with other methods.

3) ‘Analysis’ results: given a set of desirable conditions,these results compare different
methods in order to see which satisfies the most axioms. This can help to find a satisfactory
method (within the limits revealed by impossibility results).
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This distinction is of course to some extent arbitrary, and the three kinds of results are not
contradictory. They often use the same conditions.

We will now informally mention some results that we find important or interesting for un-
derstanding some phenomena presented in the examples of section 19.2.

19.3.2.1.Impossibility results

Among the impossibility results in social choice theory, two are particularly important:

1) Gibbard-Satterthwaite’s theorem [GIB 73, SAT 75]. This result shows that there is no
aggregation method (for choosing a single candidate) verifying universality, non-dictatorship
and non-manipulability when there are at least three candidates. The French electoral system
is clearly non-dictatorial and satisfies universality. If we neglect the ties than can occur during
the second stage, Gibbard-Satterthwaite’s theorem tells us that there is at least one situation
where a voter would benefit from voting not sincerely. We haveseen such a situation in exam-
ple 19.4. Note that this result initiated a huge literature analyzing voting problems in terms of
non-cooperative games [DUM 84, MOU 80, MOU 88, PEL 84].

2) Sen’s theorem of the ‘Paretian liberal’ [SEN 70]. Supposea society must vote to choose
one of several social states. These are defined in such a way that they concern the private sphere
of an individual. Clearly, there are conflicts between the majority principle, possibly yielding to
a dictatorship of majority (see example 19.1), and the respect of this individual for his private
sphere, in which he should decide alone. The theorem of the Paretian liberal tells us much more
than this: it proves that the respect of a private sphere is incompatible with universality and
unanimity. This result initiated a large literature, a goodoverview of which can be found in
[SEN 83, SEN 92].

19.3.2.2.Characterizations

Among the many characterization results (many such resultsare presented in [SEN 86]),
those about the Borda method (section 19.2.2) are particularly interesting. Indeed, this method
satisfies most conditions encountered so far and it is very easy to implement.

19.3.2.2.1. A characterization of the Borda method

In this section, we present a characterization of the Borda method proved by [YOU 74].
This method is considered as a choice procedure, i.e. a procedure mapping each profile of weak
orders onA to a non-empty subset ofA. In this context, the Borda method works as follows:
for each candidatea, we calculate a score (Borda score)B(a) equal to the sum of the ranks of
candidatea in the weak orders of the voters. In case of tie, we use the meanrank. The choice set
then contains the candidate(s) with the smallest score. Example 19.11 illustrates how the scores
are computed. Note that, in this example, the Borda method isused to rank and not to choose.

Formalization 19.7. A choice procedure is a functionf : WO(A)n → 2A \ ∅. To eachn-
uple of weak orders,f associates a non-empty subset ofA, interpreted as the set of the best
candidates. The Borda method is defined by:

f(R1, R2, . . . , Rn) = {a ∈ A : B(a) ≤ B(b), ∀b ∈ A},
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whereB(a) is the Borda score of candidatea and is defined by :

B(a) =
n∑

i=1

[#{b ∈ A : bRia} −#{b ∈ A : aRib}] . (19.2)

This formalization is not exactly the sum of the ranks but thereader will easily check thatB(a),
defined by equation(19.2), is an affine transformation of the sum of the ranks and therefore,
using equation(19.2)or the sum of the ranks always yields the same result. We will use equa-
tion (19.2)because it is more convenient than the sum of the ranks.

In order to characterize the Borda method, [YOU 74] uses fourconditions.

Neutrality The choice set depends only on the position of the candidatesin the preferences of
the voters and not, for instance, on the name of the candidates or on their age.

Formalization 19.8. LetP be the set of all permutations onA, π an element ofP andR a
binary relation onA. We writeπ(T ) for the binary relation such thatπ(a) π(T ) π(b)⇔ aRb.
A choice method is neutral if and only iff(R1, . . . , Rn) = π(f(π(R1), . . . , π(Rn))) for any
permutationπ in P .

This condition imposes that all candidates be treated in thesame way. It excludes, for in-
stance, methods where the older candidate wins in case of tie. Similarly, sequential voting (ex-
ample 19.8) is ruled out.

Faithfulness If there is only one voter, then the choice set must contain the best candidates
according to this unique voter.

Formalization 19.9. f(R1) = {a ∈ A : aR1b, ∀b ∈ A}.

This condition is extremely intuitive. Inedeed, if there isonly one voter, why not respect
their preferences?

Consistency Suppose, as in example 19.7, that the voters are divided intotwo groups. We use
the same choice method in both groups. If some candidates belong to both choice sets,
then these candidates and only these should belong to the choice set which results from
applying the same choice method to the whole set of voters.

Formalization 19.10.

f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn) 6= ∅⇒

f(R1, . . . , Rn) = f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn).
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Consistency is quite sensible. If two groups agree that somecandidate, saya, is one of the
best, then it is difficult to understand whya would not be a winner when both groups vote
together.

Many such conditions, involving two groups of voters, have been used in the literature. They
are often called separability. Consistency is one of these conditions.

Cancellation Let us consider two candidatesa andb and suppose the number of voters prefer-
ring a to b is equal to the number of voters preferringb to a. This is not very particular.
Suppose now this is true not only fora andb but for all pairs of candidates, simultane-
ously. We then face a very particular situation. In such a situation, cancellation requires
that the choice set contains all candidates.

Formalization 19.11.

∀a, b ∈ A, #{i ∈ N : aRib} = #{i ∈ N : bRia} ⇒ f(R1, . . . , Rn) = A.

Among the four conditions used by Young, cancellation is probably the most questionable
one. In some sense, it is reasonable: when, for each paira, b of candidates, there are as many
voters in favor ofa as in favor ofb, we can indeed prudently consider that no candidate is
better than the other. But there are other situations when prudence recommends considering
all candidates tied. For instance, when the majority relation is cyclic (see above, Condorcet
paradox). Choosing cancellation rather than another condition imposing a complete tie in case
of a cyclic majority relation or in another case is rather arbitrary.

The reader will easily verify that the Borda method verifies neutrality, faithfulness, consis-
tency and cancellation. The following theorem, proved by Young, tells us much more.

Theorem 19.2. [YOU 74] One and only one choice method verifies neutrality, faithfulness,
consistency and cancellation: the Borda method.

Since the proof of this theorem is quite long, we do not present it in this chapter. Notice
that a similar characterization exists for the borda methodused to rank [NIT 81]. Moreover,
different generalizations of this result have been proved for the Borda method used to aggregate
many different kinds of binary relations and even fuzzy binary relations [DEB 87, MAR 96,
MAR 98, MAR 00, OUL 00].

19.3.2.3.Generalizations of the Borda method

The Borda method is a particular case of a general family of aggregation methods called
scoring rules. These rules associate a number (a score) to each position ina binary relation.
In order to aggregaten preference relations, we compute, for each candidate, the sum of its
scores in the preference relations of then voters. The winner is the candidate with the smallest
total score. The Borda method is a particular scoring rule where the numbers associated to each
rank are equally spaced. The British system is also a scoringrule where the best candidate in a
preference relation receives 1 point and all the others receive the same score, say 2.



Social Choice Theory 759

It has been shown that scoring rules are essentially characterized by neutrality, anonymity
and separability [SMI 73, YOU 74, YOU 75]. (If we then add cancellation, we obtain a char-
acterization of the Borda method.) For an overview of many results about scoring rules, see
[SAA 94]. The French system is not a scoring rule because of the second stage. However, it is
neutal and anonymous. It is therefore not separable, as shown in example 13.7. We have noticed
in section 13.2 that the British system and the Borda method do not satisfy the Condorcet prin-
ciple (see examples 19.2 and 19.10). This is not a surprise: indeed, it is possible to prove that
no scoring rule can satisfy the Condorcet principle [MOU 88].

The French system can be considered as a scoring rule with iteration: at the first stage, it
uses the British system for selecting two candidates. The same system is then used at the second
stage. Note that there are many ways to iterate a scoring rule(one could for example use more
than two stages). A result by [SMI 73] shows that no iterated scoring rule is monotonic. The
violation of monotonicity by the French system (example 19.5) is simply a consequence of this.

19.3.2.4.A characterization of simple majority

In this section, we present the characterization of simple majority of [MAY 52] for two
candidates. In this case, the distinction between choosingand ranking is no longer meaningful
but, in order not to use a new formalism, we adopt here the choice formalism. May considers a
choice procedure, i.e. a method designating one or several winners, based on the preferences of
the voters. A formal definition of a choice method was presented above, in relation to the Borda
method.

A candidate belongs to the choice set with a simple majority if the number of voters sup-
porting them is not smaller than the number of voters supporting their contender.

Formalization 19.12. The simple majority choice method is defined by:a ∈ f(R1, . . . , Rn) if
and only if

#{i ∈ N : aRib} ≥ #{i ∈ N : bRia}.

Note that voters that are indifferent betweena andb have no effect on the outcome of the
election. Their votes are counted on both sides of the inequality. The outcome would be the same
if they did not exist. In order to characterize simple majority, [MAY 52] used three conditions.

Anonymity The choice set depends only on the preferences of the voters and not, for instance,
on their name or age.

Formalization 19.13. Let S be the set of all permutations onN = {1, . . . , n}. A choice
method is anonymous if and only iff(R1, . . . , Rn) = f(Rσ(1), . . . , Rσ(n)) for any permuta-
tion σ in S .

This condition rules out, for example, the methods where some voters weigh more than
others and methods where a voter (usually the chairperson ofthe committee) has the power to
decide in case of a tie.
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Neutrality See above.

Strict monotonicity Given the preferences of the voters, if the candidatesa andb are chosen
and if one of the voters changes his preferences in favor ofa (the other voters do not
change anything), then onlya is chosen. If, onlya was chosen at the beginning, thena
stays alone in the choice set.

Formalization 19.14. Consider two weak ordersRi andR′
i identical apart from the fact there

is a pair of candidates(a, b) such that:

– NotaRib andaR′
ib or

– bRia and NotbR′
ia.

Strict monotonicity then imposes:

f(R1, . . . , Ri, . . . , Rn) = {a} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a},

and

f(R1, . . . , Ri, . . . , Rn) = {a, b} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a}.

A consequence of this condition is that, in case of a tie, a single voter changing their mind is
enough to break the tie. Simple majority clearly verifies thethree above-mentioned conditions.
Moreover, no other method satisfies them all.

Theorem 19.3. [MAY 52] When there are exactly two candidates, the only choice method sat-
isfying neutrality, anonymity and strict monotonicity is simple majority.

To understand why this theorem only applies to the case of twocandidates, note that many
different choice methods coincide when there are only two candidates. In particular, the Borda
method and many scoring methods always yield the same resultas simple majority with two
candidates. You may then question the interest of this characterization. Actually, Arrow’s theo-
rem has shown us that simple majority cannot be extended to more than two candidates (without
deeply modifying it). The characterization with two candidates is therefore essential.

19.3.2.5.Analysis

The few aggregation methods presented so far are just a smallsample of all the methods
proposed in the literature. In particular, we did not mention the methods using the majority
relation (constructed by the Condorcet method) to arrive ata choice set or a ranking. Similarly,
the properties (such as neutrality or monotonicity) presented so far are also a very small subset
of all those studied in the literature. For an overview of methods and properties, see [ARR 63,
DED 00, FEL 92, FIS 77, LEV 95, NUR 87, RIC 75, RIC 78a, RIC 78b, RIC 81].
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19.4. Multicriteria decision aiding and social choice theory

19.4.1. Relevance and limits of social choice results

We have seen in section 19.1 that aggregation problems in multicriteria decision aiding and
social choice are formally very close to each other. The examples of section 19.2 and the results
of section 19.3 taught us that conceiving a satisfactory aggregation method is a challenging task.
Some authors [e.g. GAR 82] have then concluded that muticriteria decision aiding is doomed
to failure. For a detailed answer to this objection, see [ROY93]. We nonetheless mention the
following points:

1) Such a conclusion flows from a biased and too radical interpretation of the available
results in social choice theory. There are some impossibility results but this does not mean that
resorting to an aggregation method to try to find a collectivedecision is a futile exercise. It
is a demanding task requiring compromises to be made betweenseveral exigencies that are in
general not compatible.

These results, when combined with characterization and analysis results, provide a good
support to motivate the choice of a method. There is no ideal method but some are perhaps
more satisfactory than others. See [SAA 94] for a convincingplea in favor of the Borda method
or [BRA 82] for approval voting.

2) The formal proximity between both problems does not implythat both problems are
identical. In particular:

- The goal of a multicriteria decision aiding process is not always to choose one and
only one action. There are many other kinds of outcomes, unlike in social choice theory
[ROY 85].

- Some conditions look intuitive in social choice theory butare questionable in multicri-
teria decision aiding, and conversely. Let us mention, for example, that anonymity is not relevant
in multicriteria decision aiding as soon as we wish to take criteria of different importance into
account. Conversely, the set of potential actions to be evaluated is seldom given in multicriteria
decision aiding (contrary to the set of candidates in socialchoice theory); it can evolve. The
conditions telling us how an aggregation method should behave when this set changes (some
actions are added or removed) are therefore more important in multicriteria decision aiding than
in social choice theory.

- The preferences to be aggregated in multicriteria decision aiding are the outcome of
a long modeling phase along each criterion [BOU 90]. This modeling phase can sometimes
lead to incomplete preferences, fuzzy preferences or preferences such that indifference is not
transitive [FOD 94, PER 92c, PER 98, ROU 85]. In some circumstances, it is possible to finely
model preference intensities or even to compare preferencedifferences on different criteria
[KEE 76, VON 86]. Let us mention that handling uncertainty, imprecision or indeterminacy
is often necessary to arrive at a recommendation in multicriteria decision aiding [BOU 89],
contrary to social choice theory.

- In multicriteria decision aiding, contrary to social choice, it is not always necessary
to completely construct the global preference. Indeed, it can occur that the decision maker can
express their global preference with respect to some pairs of alternatives. For example, they are
able to state that they preferx to z andy to z but they hesitate betweenx andy. If they then use
an aggregation method, it is in order to construct the preference only betweenx andy and not
on the whole set of alternatives. Of course, these preferences that we construct on some pairs of
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alternatives must be based on the single-criterion preferences of the decision maker but also on
the global preferences stated.

In multicriteria decision aiding, we therefore have a new element at our disposal: the
global preferences. These do not exist in social choice theory. They are of course (very) incom-
plete but they can nevertheless help construct the global preference relation. In practice, these
global preferences are often used by analysts in order to setthe value of some parameters of
the aggregation method they use. For instance, with the methods based on multi-attribute value
theory (MAVT), the decision maker must compare (sometimes fictitious) alternatives in order
to assess the value functions. The existence of these globalpreferences, totally non-existing
in social choice theory, breaks the symmetry between multicriteria decision aiding and social
choice theory. Few theoretical results have so far taken theglobal preferences of the decision
maker into account. More research is needed [MAR 03].

Even if both domains are formally close to each other and if some conditions used in so-
cial choice theory can also be found in multicriteria decision aiding, we must beware of crude
transpositions due to the many specificities of multicriteria aggregation.

Conversely, we must not conclude that both domains are unrelated and that the examples
and results of sections 19.2 and 19.3 are of no consequence for multicriteria anlysis. It has
clearly been shown [VAN 86a] that it is possible and useful toconsider multicriteria aggregation
methods in the light of social choice theory. Let us mention that, for example, the difference
between the Condorcet and the Borda method can be found in multicriteria anlysis between
the ordinal methods [ROY 91, ROY 93] and the cardinal ones where the idea of preference
difference is central [KEE 76, VON 86]. In the light of Arrow’s theorem, it is not surprising
that ordinal methods often lead to global preference relations from which a recommendation is
not always easy to derive [VAN 90].

Many results of social choice theory still need to be adaptedand/or extended to make them
relevant to multicriteria analysis. Among the works in thisdirection, let us mention:

– impossibility results [ARR 86, BOU 92a, PER 92b],

– characterization results [BOU 92b, BOU 86, BOU 92c, MAR 96,PIR 95, PIR 97] and

– analysis results [BOU 97, LAN 96, LAN 97, PÉR 94, PÉR 95, PIR 97, VIN 92].

However, there is still much to do [BOU 93].

19.4.2. Some results in close relation with multicriteria analysis

So far, we have tried to sketch a global overview of social choice theory and to show the
links with multicriteria decision aiding and the limits of this analogy. In this last section, we
mention some results of social choice theory that are directly relevant for the analysis of some
popular aggregation methods in multicriteria decision aiding.

19.4.2.1.TACTIC [VAN 86b]

The first relevant result is the characterization of a simplemajority with two alternatives
by [MAY 52], presented higher. This aggregation method can be seen as a particular case of
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TACTIC, with a concordance threshold equal to1, without weights and without discordance.
For the case of two alternatives, a result by [FIS 73] characterizes simple majority with weights.

Another article worth mentioning here is by [MAR 03]. It presents two characterizations of
weighted simple majority with any number of alternatives. It is therefore slightly more general
than the results of May and Fishburn. It corresponds to a particular case of TACTIC with a
concordance threshold equal to1 and no discordance.

19.4.2.2.Multi-attribute value theory (MAVT) [KEE 76, VON 86]

The methods of this family are usually analyzed in the framework of measurement theory
[KRA 71, WAK 89]. There are however some relevant results in social choice theory and, in
particular, in cardinal social choice theory. In this part of social choice theory, the information
to be aggregated is not ordinal (not a binary relation) but cardinal: it consists of utilities, that
is, numbers representing preferences [ROB 80]. As far as we know, none of these results have
been transposed in multicriteria decision aiding.

19.4.2.3.Weighted sum

The weighted sum is a particular case of MAVT methods. The previous section is there-
fore relevant for the weighted sum. Let us highlight a particular result: [ROB 80, theorem 2]
characterizes the weighted sum. See also [BLA 54, D’A 77].

19.4.2.4.ELECTRE and PROMETHEE [ROY 91, ROY 93, VIN 89]

With ELECTRE and PROMETHEE, each alternative is represented by a vector ofRn,
x = (x1, . . . , xn) wherexi represents the performance ofx on criterioni (we suppose that all
criteria are to be maximized).

The first step in PROMETHEE consists of choosing, for each criterion, a preference func-
tion fi [MAR 88]. This is used to compute, for each pair of alternativesx, y, a number be-
tween0 and1 representing a preference degree denoted byPi(x, y) and defined byPi(x, y) =
fi(xi, yi). At the end of the first step, we therefore have a fuzzy preference relation for each
criterion,Pi being the fuzzy relation associated to criterioni andPi(x, y) the value of this
relation for the pairx, y.

In the next step, these fuzzy relations are aggregated by means of a generalization of the
Borda method. This generalization has been characterized by [MAR 96]. Some variants of this
characterization are presented in [MAR 98, MAR 00, OUL 00].

The ELECTRE methods use a somehow similar construction but with veto effects [ROY 91,
ROY 93]. The preference relation constructed at the end of the aggregation phase uses some
functionsfi andgi with values in[0; 1] in order to define (1) concordance indicesCi(x, y) =
fi(xi, yi) representing to what extentxi is at least as good asyi and (2) discordance indices
Di(x, y) = gi(xi, yi) expressing to what extent the differenceyi − xi is compatible with
a global preference ofx over y. Whenyi − xi exceeds a certain threshold (veto threshold),
Di(x, y) equals1 and the aggregation method then forbids a preference ofx overy [PER 92c].



764 Decision Making

The ELECTRE and PROMETHEE methods therefore use aggregation procedures based
on the construction and aggregation of fuzzy relations. They therefore do not escape the im-
possibility results mentioned in section 19.3.1.1 or aboutthe aggregation of fuzzy relations
[PER 92b]. This is why a last phase (exploitation) is necessary in order to reach a recommen-
dation [ROY 93, VAN 90] This last phase is often difficult and the problems it raises can also
be analyzed in the light of axiomatic results on ordinal aggregation of preferences. For in-
stance, some non-monotonicity phenomena arising with exploitation procedures based on an
iterated choice function [FOD 98, PER 92a] can be explained by Smith’s theorem presented in
section 19.3.2.3 or by more recent axiomatic analyses in thesame direction [BOU 04, JUR 03].

Let us finally mention that [BOU 96] has extended the classic results of [MCG 53] regarding
simple majority to ELECTRE and PROMETHEE.
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Chapter 20

Metric and Latticial Medians

20.1. Introduction

The previous chapter of this book dealt with some aggregation problems arising in the field
of collective choice or multicriteria decision. This chapter studies a family of aggregation meth-
ods often met in literature and which may be qualified asmedian procedure. In this introduction,
we first consider the concept of median in general, then the medians of binary relations and fi-
nally latticial medians.

20.1.1. Medians in general

The concept of median comes first from geometry. Every one of us dealt in school with
special lines in triangles. An angle bisector cuts an angle into two equal angles and comes to an
end on the opposite side. An altitude is a straight line through a vertex and perpendicular to the
opposite side. A median is a straight line through a vertex and the midpoint of the opposite side,
which is divided into two equal parts. More generally, medians are based on equal shares. The
median of a sorted statistical series divides it into two equal parts. In their famousDictionary of
statistical terms, Kendall and Buckland [KEN 57] distinguish between ‘median’ and ‘median
center’ by writing that “according to the Italian tradition”, the median center is a point such that
the sum of the distances to the points of a given set is a minimum. In fact, these two notions
coincide as already pointed out by Laplace [LAP 74].

Medians therefore relate two kinds of structures: an ordinal structure (here a linear order;
more generally, a lattice or a semilattice) and a metric structure (we will speak about metric
median in this case). It is interesting to observe that if themedian is of metric nature, it is not of

Chapter written by Olivier HUDRY, Bruno LECLERC, Bernard MONJARDET and Jean-Pierre
BARTHÉLEMY.
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geometric nature. The intersection of the three medians of atriangle is its center of gravity and
not the (metric) median of its three vertices. Moreover, themedian of aligned points depends
only on the succession of these points and not on the lengths of the intervals between them.

20.1.2. Medians of binary relations

The problem of the aggregation of binary relations (here, finite complete preorders) has
been formally raised by Arrow [ARR 51]. The notion of median occurred quickly in the prolon-
gation of this work and according to the above-mentioned dimensions: ordinal and metric. With
respect to the first, Guilbaud [GUI 52] dated back the Arrowian questions to the voting theories
developed at the end of 18th century by Borda [BOR 84], Condorcet [CAR 85] and others (e.g.
[BLA 58]). In particular, Guilbaud insisted on the fact thatthe majority rule is not generally
applicable, and wrote: “The analytic study of Condorcet’s paradox will lead us to perceive how
one can build amedianin various partially ordered structures”.

Indeed, Condorcet (and some others after him) noticed that the usual voting procedures
made possible the election of a candidate defeated by another by a majority of voters. Con-
dorcet then proposed to split the vote into duels (i.e. to compare the candidates pairwise) and to
consider the candidate defeating all the others by a majority as the winner. Unfortunately, Con-
dorcet realized that this voting procedure raised a major difficulty, referred to asCondorcet’s
effectby Guilbaud (‘voting paradox’ in the English literature): it can happen that each candidate
is defeated majoritarily by another one (an example in section 20.2.4).

At the end of the fifties, Kemeny [KEM 59] introduced the notion of metric median of
linear orders in order to palliate Arrow’s impossibility result. This notion of median is based on
the symmetric difference distance, a distance given by the number of ‘disagreements’ between
two binary relations. Kemeny’s justification to use this distance was based on its axiomatic
characterization. Since these pioneering works, the amount of research on the median of binary
relations has considerably increased. We can find in [BART 81] a review of the already abundant
literature devoted to this subject before the 1980s. From analgorithmic point of view, observe
that except some rather obvious cases, the search for a median (in Kemeny’s sense and for
various types of binary relations) generally leads to NP-hard problems [HUD 08].

20.1.3. Medians in lattices

As is usual in mathematics, the understanding of a strong relation between two approaches
is reached with the help of an abstract scheme in which both approaches are embedded. Here,
the abstract model of lattices (and semilattices) will joinordinal (Guilbaud) and metric (Ke-
meny) approaches. In two seminal papers, Barbut [BAR 61, BAR67] showed that Laplace’s
result on the equivalence of ordinal and metric medians (of aseries of numbers) generalizes to
distributive lattices. Moreover, he explicitly related these medians both with Condorcet’s ma-
jority rule and with ordinal statistics as developed by Kendall [KEN 38] (the celebrated Kendall
coefficientτ is nothing but a normalization between –1 and +1 of the symmetric difference
distance, which was later extensively considered by Kemeny). Barbut’s results were then sys-
tematized by Monjardet who introduced the notion of median interval [MON 80]. Significant
extensions were then developed in two directions:
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– to larger types of ordinal structures, especially modularlattices (and semilattices); and

– to the study of medians in trees (a topic undoubtedly initiated by Camille Jordan
[JOR 69]).

Finally, any statement simultaneously valid in trees and indistributive lattices may be ex-
pected to remain valid in the more general abstract structure of median semilattices (previously
considered by Sholander [SHO 54] and Avann [AVA 61]). For instance, Barbut’s results on dis-
tributive lattices, together with those of Zelinka [ZEL 68]and Slater [SLA 78] on trees, were
extended to median semilattices by Bandelt and Barthélemy [BAN 84].

The topic considered in this chapter is very prolific. Barthélemy and Monjardet’s paper
[BART 81] written almost thirty years ago contained about 200 references. Their number has
surely at least tripled (in particular, cluster analysis isbecoming a big consumer of medians).
We have therefore been forced to make drastic choices.

On the relational side, we essentially restrict the field to the cases of arbitrary binary rela-
tions, tournaments and linear orders (although other relations occur in the final section as an
application of the latticial median).

On the metric side, we insist on the symmetric difference distance and its extension to
semilattices. We do not deal with the ‘geodesic’ aspects (for example, in the permutohedron
lattice) which also refer to graph theory and ordered set theory.

On the latticial side, we insist on the structure where medians have a natural algebraic ex-
pression, namely the median semilattices. This is not a reason to forget that similar or more gen-
eral results (in semimodular and even arbitrary semilattices) have been obtained e.g. [LEC 93,
LEC 94].

This chapter is divided into five sections, including this introduction. Section 20.2 gives
the general frame, with the main definitions that will be useful later. It includes a study of the
medians in the simple cases of general binary relations and tournaments. Section 20.3 deals with
median (linear) orders, and considers the problem of their effective computation. It includes
developments about several questions relevant from a combinatorial optimization point of view.

Medians in (semi)lattices are considered in section 20.4. It is first observed that several
sets of binary relations, conveniently ordered, are lattices or semilattices. The attention then
moves from binary relations to lattices. First, the extension of the symmetric difference metric
to lattices involves a definition of medians in such structures. We focus on median semilattices,
previously described as a privileged frame for the unification of almost all the positive results
of the literature. This section also returns to the uses, pointing out how the lattice approach may
provide results about several types of binary relations butalso about other models of preferences
(e.g. some types of choice functions).

Finally, in the conclusion of the chapter, we recapitulate the different notions of medians
encountered, their relationships and the situations wherethe median procedure turns out to be
an easy method.
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20.2. Median relations

20.2.1. The model

We consider in this chapter:

– a finite setV = {1, 2, . . . , v} of v elements referred to asvoters, but which could also be
agents, criteria, etc.

– a finite setX = {x, y, z, . . .} of n elements referred to ascandidates, but which could
also be decisions, objects, etc.

Each voter is assumed to compare the candidates pairwise. Their preferences between the
candidates are therefore expressed by a binary relationR defined onX. We assume thatR
belongs to a given setD of binary relations defined onX. So ifR = P (X2) is the set of all
the subsets ofX2 i.e. the set of all binary relations defined onX, we haveD ⊆ R. When the
preference relationRi of each voteri is given, we obtain the so-calledprofile of the individual
preferences of the voters. We denote such a profile byΠ = (R1, R2, . . . , Rv). The set of all
possible preferences profiles is thereforeDv .

The collective preference must often belong to the same set of relations as the individual
preferences i.e. it must belong toD. We can also allow the collective relation to belong to
a setM (for ‘models’) of relations, generally withD ⊆ M ⊆ R. Then, anaggregation
procedureis a map fromDv toM. Later, we will extend this definition by considering that the
aggregation procedure can lead to several collective preference relations for the same profile of
individual preferences. Then, anaggregation procedurebecomes a map fromDv to P ∗(M),
whereP ∗(M) denotes the set of non-empty subsets ofM.

The applied aggregation procedure is required to satisfy ‘good properties’. For instance, if
all the voters prefer a certain candidate to another, this unanimous preference must be kept in
the collective preference. To find ‘good’ aggregation procedures is not an easy task. Indeed, we
face strong obstacles such as the Condorcet effect (section20.3) or Arrow’s theorem [ARR 51]
(see Chapter 19 and the articles in issue number 163 ofMathématiques et Sciences Humaines
[MSH 03]). We cannot then be too ambitious on the qualities ofthe considered aggregation
procedures.

The aggregation procedures that we are going to study in thischapter belong to the large
class of the so-calledmetric aggregation procedures. They are based on a very natural idea
found in various contexts, for example in data analysis. We look for the collective preference
that is the closest – in a sense to specify – to the profile of individual preferences. In order to
specify this closeness, we begin by defining a distanced on the setM of possible collective
preference relations, which therefore becomes a metric space(M, d). Afterwards in this metric
space we define a remoteness [BART 81] between a profile of individual preferences and an
arbitrary relation ofM. The collective preference relations associated with thisprofile are the
relations ofMminimizing this remoteness.
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20.2.2. The median procedure

Let (M, d) be the metric space whereM is the set of all possible collective preference rela-
tions andd a distance onM. The median procedure is the metric aggregation procedure where
the remotenessE(Π,R) between a profileΠ = (R1, R2, . . . , Rv) of individual preferences
and a relationR ofM is obtained as the sum of the distances of the relationsRi of this profile
to the relationR:

E(Π,R) =

v∑

i=1

d(Ri, R).

Definition 20.1. Let Π ∈ Dv be a profile of individual preferences andM ⊆ R. An M-
median ofΠ is a relation ofM that is a solution of the following optimization problem:

minimize{E(Π,M) : M ∈ M}.

As M is a finite set, there always exists at least oneM-median of a profile and there
can exist severalM-medians. We denote byMedM(Π) the set ofM-medians of a profile
Π. Obviously, theM-medians of a profile depend on the chosen distanced onM. Hereafter,
we will only consider the most natural and used distance between binary relations, namely the
symmetric difference distanceδ. Recall the definition of this distance. LetR andR′ be two
binary relations defined on a setX and|R∆R′| be their symmetric difference. Then,

δ(R,R′) = |R∆R′| = |R ∪R′| − |R ∩R′| = |R\R′|+ |R′\R|

which can also be written:

δ(R,R′) = |{(x, y) : [(x, y) ∈ R and(x, y) /∈ R′] or [(x, y) /∈ R and(x, y) ∈ R′]}|.

In other words, the symmetric difference distance betweenR andR′ is the number of ordered
pairs ofX belonging to one of these relations and not to the other. It counts the number of
disagreementsbetween these two relations.

Then, for the chosen distanceδ, the remoteness of a profileΠ = (R1, R2, . . . , Rv) to a
relationR is:

E(Π, R) =
v∑

i=1

δ(Ri, R).

20.2.3. TheR-medians of a profile of relations

We begin by considering the case where the individual preferences of the voters on the
candidates can be arbitrary binary relations i.e.D = R. This case, unrealistic in a voting
context, can be achieved for other aggregation contexts. Moreover the results obtained for this
case remain valid for particular relations. We need to defineparameters associated to a profile
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Π = (R1, R2, . . . , Rv). We set:

VΠ(x, y) = {i ∈ V : xRiy},
V c

Π(x, y) = {i ∈ V : (x, y) /∈ Ri},
vΠ(x, y) = |VΠ(x, y)| = |{i ∈ V : xRiy}|,
vc
Π(x, y) = |V c

Π(x, y)| = |{i ∈ V : (x, y) /∈ Ri}|,
wΠ(x, y) = vΠ(x, y)− vc

Π(x, y).

VΠ(x, y) is therefore the set of voters preferring candidatex to candidatey, vΠ(x, y) is the
number of these voters andvc

Π(x, y) is the number of voters that do not preferx to y (which
generally does not mean that they prefery to x). We obviously havevΠ(x, y) + vc

Π(x, y) = v
andwΠ(x, y) = 2vΠ(x, y)− v. When there is no risk of ambiguity i.e. almost always, we drop
the indexΠ in the above notation (e.g.VΠ(x, y) becomesV (x, y)).

A first result states the remoteness of a profile to an arbitrary relationR by means of the
previous parameters, and the changes in this remoteness when an ordered pair is removed from
or added toR.

Lemma 20.1. For Π = (R1, R2, . . . , Rv) ∈ Rv andR ∈ R, we have:

1) E(Π,R) =
∑

(x,y)∈R v
c(x, y) +

∑
(x,y)/∈R v(x, y);

2) E(Π,R) =
∑v

i=1 |Ri| −
∑

(x,y)∈Rw(x, y);

3) if (x, y) ∈ R,E(Π, R\{(x, y)}) = E(Π,R) + w(x, y);

4) if (x, y) /∈ R,E(Π, R ∪ {(x, y)}) = E(Π, R)− w(x, y).

Proof. Let us first prove (1). By definition ofE(Π, R), we have:

E(Π, R) =
v∑

i=1

δ(Ri, R) =
v∑

i=1

|Ri∆R|.

Let us introduce the characteristic functionδi of Ri∆R defined by:

∀(x, y) ∈ X2, δi(x, y) =

{
1 if (x, y) ∈ Ri∆R,
0 otherwise.

Then

E(Π, R) =
v∑

i=1

∑

(x,y)∈X2

δi(x, y).

By partitioningX2 intoR and its complementX2\R, we obtain:

E(Π,R) =
∑

(x,y)∈R

v∑

i=1

δi(x, y) +
∑

(x,y)/∈R

v∑

i=1

δi(x, y)

=
∑

(x,y)∈R

vc(x, y) +
∑

(x,y)/∈R

vc(x, y)
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which proves the first relation. Adding and subtracting
∑

(x,y)∈R v(x, y), we obtain (2):

E(Π, R) =
∑

(x,y)∈R

v(x, y) +
∑

(x,y)/∈R

v(x, y)−


 ∑

(x,y)∈R

v(x, y)−
∑

(x,y)∈R

vc(x, y)




=
∑

(x,y)∈X2

v(x, y)−
∑

(x,y)∈R

w(x, y)

=

v∑

i=1

|Ri| −
∑

(x,y)∈R

w(x, y).

Formulae (3) and (4) are immediate consequences of (2).�

In the simple cases, the median relations of a profile are linked to the ‘majority’ relations
associated with this profile. We now define these relations after introducing some notation: for
Π ∈ Rv and for an integerσ, we set:

R(Π, σ) = {(x, y) ∈ X2 : v(x, y) ≥ σ}.

We also denote this relation byR(σ). It contains all the pairwise preferences supported by
at leastσ voters. On the other hand, ifr is a real number, the notationdre (respectivelybrc)
denotes the integer part by excess (respectively by defect)of r. Finally, we setα = d(v+1)/2e
andβ = b(v + 1)/2c (thus, ifv = 2p+ 1, α = β = p+ 1; if v = 2p, α = p+ 1 andβ = p).

Definition 20.2. ForΠ ∈ Rv, the strict majority relation associated toΠ is the relation

R(α) = {(x, y) ∈ X2 : v(x, y) ≥ α = d(v + 1)/2e}

and the majority relation associated toΠ is the relation

R(β) = {(x, y) ∈ X2 : v(x, y) ≥ β = b(v + 1)/2c}.

A candidatex is therefore preferred to a candidatey in the strict majority relation (respec-
tively, in the majority relation) if the number of voters preferringx to y in profile Π is strictly
greater than (respectively, greater than or equal to) half the voters. Obviously, these two relations
are the same if the number of voters is odd. We have also the equalities:

R(α) = {(x, y) ∈ X2 : v(x, y) > vc(x, y)} = {(x, y) ∈ X2 : w(x, y) > 0}

and

R(β) = {(x, y) ∈ X2 : v(x, y) ≥ vc(x, y)} = {(x, y) ∈ X2 : w(x, y) ≥ 0}.

The setR(β)\R(α) = {(x, y) ∈ X2 : w(x, y) = 0} is the set of the ordered pairs(x, y)
of candidates for which there are as many voters preferringx to y as voters not preferringx to
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y. In the case where, for all the voters,x is not preferred toy if and only if y is preferred to
x,R(β)\R(α) is the set of the ordered pairs of candidates which areex æquo, i.e. of candidates
for which the numbers of voters preferring one of the candidates to the other are equal.

Recalling the notion ofinterval in a lattice (see section 6.4.1), we can state the first result
on the (arbitrary) medians of a profile of (arbitrary) relations. In the Boolean lattice (R ⊆) of
all the binary relations defined onX, the interval [S, T ] associated to two relationsS andT
satisfyingS ⊆ T is the set{R ∈ R : S ⊆ R ⊆ T}.

Proposition 20.1. LetΠ ∈ Rv be a profile of binary relations onX. We have:

MedR(Π) = [R(α), R(β)].

The number ofR-medians ofΠ is2|R(β)\R(α)|. IfR(β)\R(α) = ∅ (in particular if the number
of voters is odd), thenΠ has a unique median.

Proof. Let R be anR-median ofΠ. If R(α) ⊆ R is not satisfied, there exists(x, y) ∈ X2

with w(x, y) > 0 and(x, y) /∈ R. By lemma 20.1(4), we have:

E(Π,R ∪ {(x, y)}) = E(Π,R)− w(x, y) < E(Π,R),

which is impossible, sinceR is a median ofΠ. Likewise, ifR ⊆ R(β) is not satisfied, there
exists(x, y) ∈ X2 with (x, y) ∈ R andw(x, y) < 0. By lemma 20.1(3), we have:

E(Π,R\{(x, y)}) = E(Π,R) + w(x, y),

which is still a contradiction.

TheR-medians ofΠ are therefore in the interval[R(α), R(β)] and, since all the relations
R of this interval have the same remoteness to the profile i.e.

E(Π,R) = E(Π, R(α)) =
v∑

i−1

|Ri| −
∑

w(x,y)>0

w(x, y),

this interval provides all theR-medians ofΠ.

Since we may or may not add any element ofR(β)\R(α) to form anR-median ofΠ, we
immediately obtain the number of theseR-medians.�

TheR-medians ofΠ are therefore all the relations between the two majority relations of
Π. They form the interval[R(α), R(β)] (themedian interval) of the Boolean lattice(R,⊆) of
all the binary relations. The last section of this chapter will return to the links between medians
and lattices, but we can already observe that the majority relations are obtained by means of the
operations of this lattice i.e. by means of the union and of the intersection of relations. Indeed,
we have

R(α) =
⋃

W⊆V and|W |≥α

(
⋂

i∈W

Ri

)
andR(β) =

⋃

W⊆V and|W |≥β

(
⋂

i∈W

Ri

)
.
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20.2.4. TheM-medians of a profile of relations

We now consider the case where the collective preference relations associated with a profile
Π are not arbitrary relations but must belong to a given setM of binary relations i.e. must be
theM-medians ofΠ. We can always consider theR-medians ofΠ i.e. the median interval
[R(α), R(β)], but this interval may contain no relation belonging toM. For example, ifD and
M are both the set of the linear orders on three candidatesx, y andz, it is easy to see that
theR-medians of the profile formed by the three linear ordersx > y > z, y > z > x and
z > x > y is the reflexive relationR defined byxRy, yRz andzRx; this relation is not a
linear order (it is a 3-cycle). In fact, we have the followingobvious but not uninteresting result.

Proposition 20.2. Let Π ∈ Rv andM ⊆ R. IfM∩MedR(Π) 6= ∅, thenMedM (Π) =
M ∩MedR(Π).

Proof. Indeed, if a relation ofM belongs to the median interval of a profileΠ, then this relation
(as well as all the other relations ofM belonging to this interval) minimizes the remoteness of
the profile to any relation ofM, since it minimizes this remoteness on the set of all binary
relations.�

20.2.5. TheT -medians of a profile of tournaments

We now restrict the relations modeling the individual and collective preferences of the vot-
ers by assuming that they are tournaments. Atournament TonX is acomplete(i.e.xTy not
satisfied impliesyTx) andantisymmetric(i.e.xTy andyTx imply x = y) relation. A tourna-
ment that is also transitive (i.e.xTy andyTz imply xTz) is a linear order (the classical and
simplest model of transitive preference). However, preference relations which are non-transitive
tournaments often appear, e.g. when a voter is asked what their preferred candidate is in each
pair of candidates (the so-called paired-comparison method). We denote byT (respectively,L)
the set of tournaments (respectively, linear orders) defined onX. It immediately follows from
the properties of tournaments that, for a profileΠ = (T1, T2, . . . , Tv) ∈ T v (and in particular
for Π ∈ Lv), we have for allx andy:

vc
Π(x, y) = vΠ(y, x) if x 6= y; vc

Π(x, x) = 0,

wΠ(x, y) = 2vΠ(x, y)− v;wΠ(x, x) = v,

vΠ(x, y) + vΠ(y, x) =

{
v if x 6= y;
2v if x = y.

As above, when there is no risk of ambiguity i.e. almost always, we omit the indexΠ in the
notation. The remoteness of a tournamentT to a profile of tournamentsΠ = (T1, T2, . . . , Tv)
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is then given by:

E(Π, T ) =
∑

(x,y)∈T

v(y, x) +
∑

(x,y)/∈T

v(y, x)

=
v.n(n+ 1)

2
−

∑

(x,y)∈T

w(x, y).

With this formula and proposition 20.2, we easily find all themedian tournamentsof a
profile of tournaments i.e. all the tournamentsT minimizingE(Π, T ) in the setT of all the
tournaments defined onX.

Proposition 20.3. LetΠ ∈ T v be a profile of tournaments. ThenMedT (Π) = T ∩[R(α), R(β)].
Moreover, the number of median tournaments ofΠ is 2|R(β)\R(α)|/2. The remoteness of a me-
dian tournamentT to the profileΠ is:

E(Π, T ) =
v.n(n+ 1)

2
−

∑

w(x,y)>0

w(x, y).

Proof. By proposition 20.2, we have only to show that there always exists a tournament in
the median interval [R(α),R(β)] of Π. However, we obtain such a tournament by adding to
the antisymmetric relationR(α) one and only one of the two ordered pairs (x, y) and (y, x)
wheneverx andy areex æquoi.e. whenv(x, y) = v(y, x). �

20.3. The median linear orders (L-medians) of a profile of linear orders

Let us consider now the case for which the voters’ preferences are linear orders. Since
linear orders are particular tournaments, we can apply the previous results to find the median
tournaments of a profileΠ of linear orders. These are the tournaments belonging to themedian
interval of Π which always contains some tournaments according to proposition 20.3 stated
above.

Everything may change if we now search for themedian linear ordersof Π i.e. the linear
ordersL minimizingE(Π, L) among the setL of linear orders defined onX. Indeed, as shown
in the example given in section 20.2.4, the median interval of a profile of linear orders may
contain no linear order (in this example, the median interval is reduced to the majority relation
and this single tournament is a circuit i.e. a directed cycle).

We must then distinguish between two cases. In the first case,there exists a linear order in
the median interval ofΠ or, equivalently, the strict majority relationR(α) of Π has no circuit.
In this case (according to proposition 20.3), the median orders ofΠ are all the linear orders
belonging to the median interval, i.e. all the linear ordersthat contain the relationR(α) (it is
well known that a relation is contained in a linear order if and only if the relation has no circuit).
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The second case is that where the median interval of the profile contains no linear order or,
equivalently, the case where the strict majority relation contains a circuit. In this case, we say
that aCondorcet effectoccurs. (The possible existence of circuits in the majorityrelation was
indeed shown by Condorcet [CAR 85]. A sharp analysis [YOU 88]of Condorcet’s propositions
– not always very clear – in order to overcome the existence ofsuch circuits has also led to
him being credited with the paternity of the process providing the median orders of a profile of
linear orders. This process may actually be defined in many ways [MON 90a], which explains
the fact that it has been proposed by several authors, the first of whom was Kemeny [KEM 59].)
The possible existence of a Condorcet effect has the following consequence. Whereas obtaining
median relations or median tournaments of a profile was easy,the problem of searching for a
median linear order becomes hard (actually NP-hard, see section 20.3.4) and requires the study
of the properties of such orders and the use of combinatorialoptimization methods to provide
exact or approximate solutions. This issue will be the subject of section 20.3; in section 20.4, we
will return to the easy case which can be dealt with in the framework of ‘median semilattice’.

20.3.1. Binary linear programming formulation

Consider a profile of linear ordersΠ = (L1, L2, . . . , Lv) ∈ Lv and a linear orderL. We
have seen in section 20.2.3 (lemma 20.1) that the remotenessE(Π, L) can be stated as:

E(Π, L) =
v∑

i=1

|Li| −
∑

(x,y)∈L

w(x, y).

In order to formulate the remoteness with 0-1 variables, letus introduce thecharacteristic func-
tion ρ = (ρxy)(x,y)∈X2 of L. It is defined fromX2 to {0, 1} by ρxy = 1 if xLy, andρxy = 0
otherwise. Since for anyLi(1 ≤ i ≤ v) we have the relation

|Li| = n(n+ 1)

2
,

we obtain for the remoteness:

E(Π, L) =
v.n(n+ 1)

2
−

∑

(x,y)∈X2

w(x, y).ρxy.

Since the variables are the termsρxy for (x, y) ∈ X2, this formulation allows us to consider
E(Π, L) as the objective function of a linear programming problem with binary variablesρxy.
Since minimizing a function is the same as maximizing its opposite (with opposite signs for the
optima), minimizingE(Π, L) is the same as maximizing

∑

(x,y)∈X2

w(x, y).ρxy

up to an additive constant, which will be omitted in the following.

It simply remains to state the characteristic properties ofa linear order as linear constraints.
The reader will easily convince themself that these properties can be expressed as the following
constraints:
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– reflexivity:∀x ∈ X, ρxx = 1;

– antisymmetry:∀(x, y) ∈ X2 with x 6= y, ρxy + ρyx ≤ 1;

– completeness:∀(x, y) ∈ X2 with x 6= y, ρxy + ρyx ≥ 1;

– transitivity:∀(x, y, z) ∈ X3, ρxy + ρyz − ρxz ≤ 1.

The determination of a median order is therefore the same as the resolution of the following
binary linear programming problem:

Maximize
∑

(x,y)∈X2

w(x, y).ρxy

under the constraints




∀x ∈ X, ρxx = 1
∀(x, y) ∈ X2 with x 6= y, ρxy + ρyx ≤ 1
∀(x, y, z) ∈ X3, ρxy + ρyz − ρxz ≤ 1
∀(x, y) ∈ X2, ρxy ∈ {0, 1}.

20.3.2. Formulation using weighted directed graphs

Since a binary relation can be associated with a graph and conversely, we can formulate the
problem with the help of graphs. The previous considerations show that the voters’ preferences
can be summarized by the data contained in the termsw(x, y) for any elementx and any ele-
menty ofX (withw(y, x) = −w(x, y) for x 6= y since we consider individual preferences that
are linear orders; in the general case, the preferences can be summarized by the termsv(x, y)).
Previous considerations show that minimizing the remoteness is the same as maximizing the
sum

∑
(x,y)∈X2 w(x, y).ρxy.

We can therefore summarize a profileΠ = (L1, L2, . . . , Lv) defined onX by a directed
graphG = (X,X2) (in other words,G contains all the possible arcs i.e. directed edges) in
which each arc (x, y) is weighted byw(x, y); we will say that the weighted graphG represents
the profileΠ. Note that the weights of the arcs(x, y) and (y, x), for x 6= y, are opposite.
Moreover, sincew(x, y) is equal to2v(x, y) − v, all the weights have the same parity asv
and are between−v (no voter prefersx to y) and v (all the voters preferx to y, which is
the case in particular ifx = y). We may wonder which graphs represent profiles of linear
orders. The works of Debord [DEB 87], extending those of McGarvey [MCG 53], give such a
characterization when the number of linear orders is large enough.

Theorem 20.1. Let G = (X,X2) be a graph containing all the possible arcs, which are
weighted by a functionw. ThenG represents a profile ofv(v > 0) linear orders if the fol-
lowing properties are satisfied:

1) ∀(x, y) ∈ X2,w(x, y) has the same parity asv;

2) ∀x ∈ X,w(x, x) = v;

3) ∀(x, y) ∈ X2 with x 6= y,w(y, x) = −w(x, y);

4) v ≥ 1/2(
∑

x 6=y |w(x, y)|) if this sum is not equal to 0 andv ≥ 2 otherwise.
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In the following, we will say that a weight-functionw satisfies the property (P) if it verifies
the following conditions:

1) all the values taken byw have the same parity;

2) the quantitiesw(x, x) are the same for allx ∈ X; and

3) ∀(x, y) ∈ X2 with x 6= y,w(y, x) = −w(x, y).

We will say thatw satisfies the property (P′) if its values are non-negative and if it verifies
conditions (1) and (2) stated above.

Debord’s proof of theorem 20.1 consists of building a profileof linear orders from the graph
G. The minimum numberv of linear orders involved in this construction is about1/2(

∑
x 6=y

|w(x, y)|). The exact value depends on the parity of the weightsw(x, y); this quantity is not
necessarily the minimum number of required linear orders. (There exist graphsG representing
profiles of linear orders but which do not satisfy condition (4) of theorem 20.1. Except for some
simple cases, we do not know how to characterize these graphs, nor even how to recognize them
in polynomial time.)

Let us note also that the construction performed by Debord tobuild the profile is polynomial
if the quantitiesw(x, y) are upper-bounded by a polynomial inn or if the profile is represented
in a slightly different manner than before: instead of describing the profileΠ by enumerating
thev orders ofΠ, we enumerate only the orders which are pairwise distinct and which appear
in Π along with the number of occurrences for each such order [HUD89].

This graph theoretic representation of the profiles of linear orders is used to study the prob-
lem complexity in particular, since its polynomiality allows the representative graphs to be dealt
with rather than the profiles without changing qualitatively the obtained results. On the other
hand, theorem 20.1 also provides the characterization of a profile of v tournaments with a slight
adaptation: it is sufficient to replace condition (4) by the inequalityv ≥ max(x,y)|w(x, y)|.
This inequality, with the parity ofv and the fact thatv is non-negative, then gives all the possi-
ble values forv. A particular case is the one for whichv is equal to 1 (the profile is reduced to
one tournament e.g. the majority tournament of a profile of linear orders). We obtain the prob-
lem stated by Slater [SLA 61] to fit a tournament to a linear order; in this case, all the weights
w are equal to 1 or –1.

Similarly, we may associate a graph to the searched median orderL. For this, it is suffi-
cient to consider the graph of which the adjacency matrix admits theρxy as its entries, where
(ρxy)(x,y)∈X2 denotes the characteristic function ofL. From a graph theoretic point of view,
determining a linear order maximizing

∑
(x,y)∈X2 w(x, y)ρxy is then the same as selecting

some arcs ofG constituting a linear order such that the sum of the weights of the selected arcs
is maximum. These arcs(x, y) will be those defined by the equalityρxy = 1.

Beyond this formulation, the properties of linear orders (constituting the profile as well as
that searched for the median relation) permit the search of amedian order to be expressed in
several equivalent ways, the subject of the following section.
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20.3.3. Equivalent formulations for the search of a median order of aprofile of
linear orders

We note that, because of the relationw(y, x) = −w(x, y) for x 6= y, the weights of the arcs
of the graphG (representing the profileΠ) are partially redundant. We may therefore only keep
the arcs with positive weights or, for the pairs of arcs(x, y) and(y, x) weighted by zero, one
of the two arcs chosen arbitrarily. We then obtain a non-negatively weighted tournament, which
also represents the profileΠ. This model can often be found in the literature, leading to new for-
mulations for the problem of the search for a median linear order of a profile of linear orders. We
give some examples below without proving their equivalences; see [CHARO 96, CHARO 07].
These formulations are often known under different names. Some of them have been mentioned
above, such asproblem of the median orderor Kemeny rule, but there is alsolinear order prob-
lemor linear ordering problem, etc. We specify some of these names in the following.

We start by recalling the three statements previously mentioned. The first is the original
one, the second is the one permitting the expression of the problem as a 0-1 linear programming
problem and the third is that obtained by considering the graph representing the profile. The
solutions of problems 20.1–20.3 below are therefore the same, but are considered according to
several points of view: as a binary relation for problem 20.1, as a set of binary variables (defining
the characteristic function of the solution of problem 20.1) for problem 20.2, or even as a graph
(of which the adjacency matrix is given by the solution of problem 20.2) for problem 20.3.

Problem 20.1. Given a profileΠ of v linear orders defined onX, determine a median linear
order ofΠ.

Problem 20.2. Given the integersw(x, y) satisfying the property (P), determine an optimal
solution of the problem:

Maximize
∑

(x,y)∈X2

w(x, y)ρxy

under the four constraints listed at the end of section 20.3.1.

In order to state some of the following problems, we introduce some new notation. Let
G = (X,A) be a graph whose arcsa are weighted byw(a). For any subsetB of A, the
quantityw(B) =

∑
b∈B w(b) will be called theweight of B.

Problem 20.3. Given a graphG = (X,X2) containing all the possible arcs and such that each
arc (x, y) is weighted byw(x, y), these weights satisfying property (P), determineL ⊂ X2

with a maximum weightw(L) and such that(X,L) is the graph of a linear order defined onX.

For the following formulation, let us recall that a linear order is a transitive tournament and
conversely. If we only keep fromG the positively weighted arcs and some arcs with weights
equal to zero in order to obtain a tournamentT as specified above (see section 20.3.3), selecting
inG an arc(x, y) with a non-positive weight (such an arc does not appear inT , but the reversed
arc (y, x) does) is the same as reversing inT the arc(x, y) in order to recover(y, x). We
therefore obtain the formulation of problem 20.4 (known as theminimum reversing set problem
if all the weights are equal to 1; see [BART 95a,CHARO 07]). Note that an optimal solution of
problem 20.4 (a transitive tournament) still defines an optimal solution of problem 20.1, i.e. a
median order.
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Problem 20.4. Given a tournamentT = (X,A) whose arcs(x, y) are weighted by weights
w(x, y) which satisfy propertyP ′, determine a subsetA′ of A with a minimum weight and
such that reversing the elements ofA′ in T transformsT into a transitive tournament.

A tournamentT is transitive (i.e. represents a linear order) if and only ifT contains no
circuit of length greater than or equal to 3 (in terms of number of arcs). (In other words, there
must be no circuit except the loops(x, x), for x ∈ X, which are characteristic of the reflexivity.
Remember that, by definition of a tournament, there is no circuit of length 2.) This remark
could permit the equivalence between the statement of problem 20.4 and that of problem 20.5
to be proved. More precisely, the optimal solutions of problem 20.4 (subsets of arcs) are not
necessarily the same as those of problem 20.5. However, it iseasy to show that the weights of
the optimal solutions of problems 20.4 and 20.5 are equal: the optimal subsets of arcs of these
problems can differ only by some arcs with a weight equal to zero.

Problem 20.5. Given a tournamentT = (X,A) whose arcs(x, y) are weighted by weights
w(x, y) that satisfy propertyP ′, determine a subsetA′ of A with a minimum weight such that
the graph obtained fromT by deleting the arcs ofA′ contains no circuit of length greater than
or equal to 3.

The following formulation is a consequence of problem 20.5.Its only interest is to relate
two problems that are sometimes studied separately. Example 20.5 is a weighted formulation
of theminimum feedback arc set problem, and problem 20.6 is a weighted formulation of the
maximum arc consistent set problem, also called theacyclic subdigraph problem. We will see in
the following that problems 20.5 and 20.6 do not behave similarly with respect to approximation
algorithms.

Problem 20.6. Given a tournamentT = (X,A) whose arcs(x, y) are weighted by weights
w(x, y) that satisfy propertyP ′, determine a subsetA′ of A with a maximum weight such that
the graph(X,A′) contains no circuit of length greater than or equal to 3.

Example 20.7 states problems 20.4 and 20.5 in terms of a matrix (Slater [SLA 61] adopts
this formulation to define the problem of fitting a tournamentin which all the weights are equal
to 1 into a linear order; see also [YOUN 63]). For this, given atournamentT = (X,A) whose
arcs (x, y) are weighted by weightsw(x, y) that satisfy propertyP ′, we define the matrix
M = (mxy)(x,y)∈X2 of the weights ofT by:

mxy =

{
w(x, y) if (x, y) ∈ A
0 otherwise.

Problem 20.7. Given the matrixM of the weights of a tournament weighted byw that satisfies
propertyP ′, determine a same ordering on the lines and the rows ofM such that the sum of the
terms located below the diagonal is minimum. (A variant, linked to problem 20.6, would consist
of maximizing the sum of the terms located above the diagonal. It is then a particular case of
the problem met in economics under the name of ‘triangulation’ of a square table of coefficients
that reflect industrial exchanges [GRÖ 84, REI 85].)
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For the final formulation, we need some more sophisticated tools: hypergraphs, or systems
of sets, are a generalization of undirected graphs. More precisely, a hypergraphH = (Y,F ) is
a pair of sets constituted by a setY , whose elements are calledvertices, and by a subsetF of
the set of non-empty parts ofY covering all the elements ofY . If all the elements ofF have
cardinality equal to 2, we recover the usual notion of undirected graph without isolated vertex.
Given a tournamentT = (X,A), we consider here the hypergraphH(T ) of the circuits ofT .
The vertices ofH(T ) are the arcs ofT which are not loops and which the circuits ofT go
through. The elements ofF are the subsets ofX defining the circuits ofT . A vertex coverof a
hypergraphH = (Y, F ) is a subsetY ′ of Y such that any element ofF (a non-empty subset
of Y ) contains at least one element ofY ′. For a tournamentT whose arcs are weighted, each
vertex ofH(T ) has a weight which is the weight of the arc ofT associated with the considered
vertex ofH(T ). We can therefore define the weight of a vertex cover as the sumof the weights
of its vertices. We then obtain the last formulation considered here (already given in [BER 72]
for Slater’s problem).

Problem 20.8. Given a tournamentT = (X,A) whose arcs(x, y) are weighted by weights
w(x, y) that satisfy propertyP ′, determine a vertex cover with a minimum weight of the hy-
pergraphH(T ) of the circuits ofT .

Any vertex cover ofH(T ) selects a subset of arcs ofT which is a solution of problem 20.5:
removing these arcs inT leaves a graph without any circuit. In particular, a minimumvertex
cover will provide an optimal solution of problem 20.5, and hence an optimal solution of prob-
lem 20.4, i.e. will define a median linear order by reversing these arcs.

20.3.4. Complexity of the search of a median order of a profile of linear orders

The theory of complexity [BART 96, GAR 79] studies the efficiency of algorithms and the
intrinsic difficulty of a problem. Broadly speaking, an algorithm is said to be a polynomial
if the number of elementary operations (such as arithmetic operations or comparisons, etc.)
performed to solve any given instance can be upper-bounded by a polynomial of the size of
the considered instance. A problem is said to bepolynomial if there exists an algorithm of
polynomial complexity to solve it. There exist many problems for which we do not know any
polynomial algorithm to solve them (which does not mean thatsuch an algorithm does not
exist). It is the case in particular for the NP-complete and the NP-hard problems.

Note that aNP-completeproblem is a decision problem (i.e. a problem in which a question is
set whose answer is ‘yes’ or ‘no’) which belongs to the class NP (the class of non-deterministic
polynomial decision problems; for any instance admitting the answer ‘yes’ it is possible to
check, in polynomial time with respect to the size of the instance, that the answer is really ‘yes’
with the help of an estimate) and which is at least as difficultas any other problem of NP. Indeed,
NP-complete problems constitute the most difficult problems inside the class NP. The existence
of a polynomial algorithm solving such a problem would involve the existence of polynomial
algorithms for all the problems of NP. ANP-hard problem, which may be a decision problem
or not, is a problem at least as difficult as a NP-complete problem. A decision problem can be
associated canonically with an optimization problem. If this decision problem is NP-complete,
then the optimization problem is itself NP-hard.
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From a practical point of view, the consequence of the NP-hardness of a problem is that the
algorithms designed to solve this problem have large complexities, typically exponential. The
computation time required to solve such a problem exactly may become prohibitive quickly
when the size of the data increases. In order to illustrate the increasing complexity of a non-
polynomial algorithm, let us consider the method consisting of enumerating then! linear orders
and keeping the best one. If we run a computer that can deal with one thousand million linear
orders per second, it would take around 4 msec forn = 10, 77 years forn = 20, 8.4 × 1013

centuries forn = 30, 2.6× 1029 centuries forn = 40 and almost1046 centuries forn = 50. It
is therefore important, when dealing with the resolution ofa problem from a practical point of
view, to know its complexity. Theorem 20.2 gives the complexity of the aggregation of a profile
of linear orders into a linear order; see [BART 89, DWO 01, HUD89].

Theorem 20.2. The problem of the determination of a median linear order of aprofile of linear
orders is NP-hard.

Other complexity results (as well as references) can be found in [HUD 08, WAK 86] and
[WAK 98] about the computation of median relations (including the proof of theorem 20.2;
for the complexity of other voting procedures see [HUD 09a]). Except for some trivial cases,
the problems of preferences aggregation are generally NP-hard or of unknown complexity. For
instance, the aggregation of a profile of linear orders into acomplete preorder is also NP-hard;
similarly, Slater’s problem (i.e. fitting a tournament intoa linear order, which corresponds to a
profile reduced to one tournament) is also NP-hard [ALO 06, CHAR 07, CHARO 07, CONI 06,
HUD 09b]. On the other hand, if there is no Condorcet effect (the majority tournament repre-
senting the profile has no circuit), the median linear ordersare exactly the majority linear orders
and therefore can be computed in polynomial time.

Let us mention a polynomial case which is not trivial: the aggregation of a profile ofuni-
modal linear orders[BLA 48]. In order to define the structure of a unimodal order,we assume
that the candidates are ordered following a criterion independent of the voters, and defining a
linear order≺ on the candidates (e.g. a political election, the usual scale going from extreme-left
to extreme-right, if we can always identify (not an easy taskin practice) the political member-
ship of a candidate and distinguish any two candidates according to this criterion).

Letx1 ≺ x2 ≺ . . . ≺ xn be the order of the candidates with respect to≺, for an appropriate
numbering of the candidates. We assume moreover that each voter attributes a numerical value
to each candidate. With respect to the numbering induced by≺, let γi

k be the value attributed
by voteri (for 1 ≤ i ≤ v) to candidatexk (for 1 ≤ k ≤ n), all these values being distinct for
any giveni. We will say that the preference orderLi of voteri is unimodal with respect to≺ if
there exists an indexk(i), with 1 ≤ k(i) ≤ n, such that the series(γi

k)1≤k≤k(i) is increasing
and the series(γi

k)k(i)≤k≤1 is decreasing.

In the example given previously of a political election, it means that voteri has a favorite
candidatexk(i). The further we move away from this candidate, towards the left or the right,
the less appreciated is the candidate. However, nothing is said about the respective values of
two candidates located on both sides ofxk(i). This order is therefore defined byxkLixk′ if and
only if we haveγi

k > γi
k′ .
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A profile of linear orders is said to be aprofile of unimodal linear ordersif there exists an
order≺ defined onX such that all the orders of the profile are unimodal with respect to the order
≺. In this case, as stated above, the computation of a median linear order can be completed in
polynomial time. More precisely, the majority relation of unimodal linear orders is a unimodal
linear order.

20.3.5. Exact and approximate methods

From the algorithmic point of view, a consequence of theorem20.2 is that we do not know,
in general, any polynomial algorithm computing a median order exactly (and such an algorithm
does not exist if P is different from NP). We will simply present the main algorithmic directions
to compute median orders, the problem being often stated through a weighted tournament (the
interested reader will find some bibliographical references in [BART 81, CHARO 07, HUD 97]
in addition to those given below).

Because of the NP-hardness of the problem, exact methods have large complexities and
therefore do not allow large problems to be solved. These methods are mainly based on branch
and bound methods, with several more or less sophisticated components. Note in particular,
for the design of an evaluation function, the application ofthe continuous relaxation to the
formulation of problem 20.2 stated above (the constraintsρxy ∈ {0, 1} are replaced byρxy ∈
[0, 1]), the Lagrangean relaxation of the transitivity constraints [ARD 84, CHARO 06] and the
application of polyhedral theory using cutting planes. These methods are calledbranch and cut;
see for instance [JÜN 85, MIT 96, MIT 00, REI 85].

Other attempts are based on some combinatorial properties [CHARO 97, CHARO 06] or on
appropriate structures in order to store extra information. For instance, the use of a heap speeds
up the search of the leaf of the search-tree to be developed ina ‘Best-First’ strategy [WOI 97],
and the use of a beginning-sections-tree permits the search-tree to be pruned in another way
than the usual application of the evaluation function [GUÉ 95].

The performance of these algorithms depends on the considered instances. It is possible to
solve some real instances with sizes up to a hundred candidates in a ‘reasonable’ time. For ex-
ample, the software available at http://www.enst.fr/∼charon/tournament/median.html can deal
with instances simulating real data with 100 candidates in about 1 sec. Random instances seem
more difficult to solve; the same software requires about 1000 sec to solve random instances of
Slater’s problem with 36 candidates [CHARO 06].

Another possibility is to look for approximate solutions, with the hope of computing ‘good’
solutions in a ‘reasonable’ time. Some of these heuristics are specific to the considered prob-
lem. Several dealt initially with Slater’s problem, but they can often be generalized to the
case of a weighted tournament; see [BART 89, BEC 67, CHA 96, COO 88, GOD 83, KAY 95,
MEN 00, SMI 74].

Other methods come frommetaheuristics(general approximate methods) such as simu-
lated annealing, tabu search, noising methods, genetic algorithms or even some hybridization
between these different methods e.g. [CAM 99, CAM 01, CHARO 98, CHARO 06, CON 00,
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HUD 89, LAG 99, SCH 03]. If the quality of some specific heuristics can decrease quite fast
with the size of the considered instance, metaheuristics seem to provide good results in a limited
amount of computation time. For instance, in the experiments reported in [CHARO 06] deal-
ing with 5790 tournaments with up to 100 vertices, the noising methods [CHARO 02] could
provide an exact solution in a negligible time for 5784 tournaments (the other six tournaments
were solved exactly by a second application of the method).

We can also mention another type of method to solve difficult problems: the probabilistic
methods. These methods have been applied to tournaments in which all the weights are equal
to 1 in [POL 86, POL 88]. In [POL 86], a recursive algorithm is designed to deal with several
optimization problems, including the search for a partial graph without circuit in a given directed
graph. Suppose we have a graphG = (X,A) weighted by a functionc with non-negative
values. The algorithm provides, for some values of a real parameterλ belonging to[0, 1], a
partial graphH = (X,B) with

∑

b∈B

c(b) ≥ λ
∑

a∈A

c(a) +
1− λ

2
ζ(G),

whereζ(G) denotes the weight of a minimum (with respect toc) spanning tree ofG.

For the search of a maximum partial graph without circuit of adirected antisymmetric graph
weighted bycwhich is the constant function equal to 1, the valueλ = 0.5 gives some interesting
results. Indeed, we obtain an algorithm that selects in a tournament at least

n(n+ 3)

4
+
n− 1

4

arcs without circuit of length (in number of arcs) greater than or equal to 3. This therefore
reverses at most

(n− 1)2

4
arcs to obtain a linear order. This result is improved in [POL88], due to a probabilistic method
with a complexity ofO(n3 log n) that computes (at least forn large enough) a partial graph
without circuit of length (in number of arcs) greater than orequal to 3 in a tournament in which
all weights are equal to 1, with at least

n(n+ 3)

4
+
n
√
n

8
√
π

arcs of the tournament, and therefore a linear order is obtained by reversing at most

n(n− 1)

4
− n
√
n

8
√
π

arcs.

The final possibility considered here is relative to approximation algorithms with perfor-
mance guarantees [VAZ 03]. Indeed, we can design a deterministic algorithm for problem 20.6
stated above (search for a partial subgraph without circuitand of maximum weight) which per-
haps does not provide an optimal solution systematically but permits a solution not too far from
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an optimal solution to be obtained. For this, it is sufficientto put the vertices of the tournament
on a horizontal line, according to any numbering of the vertices e.g.x1, x2, . . . , xn.

With respect to this alignment, some arcs (that are not loops) are directed from the left to
the right and the others from the right to the left. The selection of the loops and of the arcs
directed from the left to the right provides a partial graph without circuit of length greater than
or equal to 3. Letw1 be the sum of the weights of these arcs. Ifwmax denotes the weight of an
optimal solution of problem 20.6 for the considered tournament, we obtain thenwmax ≥ w1.
By doing the same with the loops and the arcs directed from theright to the left, we obtain
another solution of weightw2 which also verifies the inequalitywmax ≥ w2.

LetW be the sum of all the weights of the tournament:

W =
∑

a∈A

w(a).

The loops (of weightv) are counted twice in the sumw1 + w2. We obtain the relations:w1 +
w2 = W + n.v andwmax ≤ W . We may assume without loss of generality thatw2 is at least
as great asw1 (otherwise we reverse the vertices numbering). We then obtain the relations

wmax

2
< w2 ≤ wmax,

or equivalently
wmax −w2

wmax
<

1

2
.

The relative error if we choose the solution associated withw2 instead of an optimal solution
cannot be greater than 50%, for any considered tournament. We can therefore make a mistake
but, to some extent, not too large. (Note that, for the existence of algorithms with performance
guarantees, the eight problems given in section 20.3.3 are not necessarily equivalent. Indeed,
the process described above cannot be applied to problem 20.5 due to the lack of a lower bound
for the minimum value of this problem, proportional toW but not equal to zero.)

20.3.6. Properties of median orders

In this section, we mention some properties of the median linear orders of profiles of linear
orders. The first property can be established from a reasoning close to that which ends the
previous section. We assume here that the considered profileof linear orders is described by its
representative tournament (section 20.3.3) and we focus onproblem 20.4 (inversion of a set of
arcs of minimum weight in order to transform the tournament associated with the profile into a
linear order).

Proposition 20.4. Let T = (X,A) be the tournament associated with a profileΠ of linear
orders and letw be its weight function. LetL = x1 > x2 > . . . > xn be a median order ofΠ.
We then have, for anyi between1 andn− 1:

∑

(xj,xk)∈A,1≤j≤i<k≤n

w(xj , xk) ≥
∑

(xk,xj)∈A,1≤j≤i<k≤n

w(xk, xj).
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Proof. Assume that there exists an indexi for which the previous inequality is not satisfied. Set
the vertices ofT on a horizontal line, the indices increasing from the left tothe right. If we split
the vertices with indices between 1 andi from the others by a vertical line, the arcs which cross
the vertical line from the right to the left have a total weight strictly greater than the total weight
of the arcs crossing the line from the left to the right. Let usconsider then the linear orderL′

obtained by swapping the left part of the vertical line and the right part, i.e. the linear order
L′ = xi+1 > . . . > xn > x1 > . . . > xi. SinceL′ requires the inversion of the same arcs as
L except for the arcs which cross the vertical line (i.e. the arcs involved in one of the two sums
in the statement of the proposition), it is easy to see thatL′ would be necessarily better thanL,
a contradiction with the optimality ofL. Hence the result.�

As shown by the following proposition [JAC 69, YOUN 63], any interval of a median linear
order is a median order of the subtournament induced by this interval.

Proposition 20.5. LetT = (X,A) be the weighted tournament associated with a profileΠ of
linear orders and letL = x1 > x2 > . . . > xn be a median order ofΠ. Then, for anyi and
anyj with 1 ≤ i < j ≤ n, xi > xi+1 > . . . > xj is a median order of the subtournament of
T induced byxi, xi+1, . . . , xj .

Proof. Assume that there exist two indicesi and j for which proposition 20.5 is false. Let
L′ be the linear order obtained by replacingxi > . . . > xj in L by a median order of the
subtournament ofT induced byxi, . . . , xj . It is easy to see thatL′ would be better thanL, a
contradiction with the optimality ofL. �

We can deduce the following corollary.

Corollary 20.1. Let T = (X,A) be the weighted tournament associated with a profileΠ of
linear orders and letw be its weight function. LetL = x1 > x2 > . . . > xn be a median order
of Π. We assume that, fora ∈ A, no weightw(a) is equal to 0. Then, for anyi between1 and
n− 1, the arc betweenxi andxi+1 is directed fromxi to xi+1.

Proof. It is sufficient to apply proposition 20.5 withj = i+ 1. �

In particular, if we apply corollary 20.1 to a tournamentT whose weights are equal to 1
(Slater’s problem), we obtain a well-known result [REM 66],specifying that the arcs between
two consecutive vertices in any Slater order ofT define a Hamiltonian path ofT . (Recall that a
Hamiltonian path ofT is a path going through each vertex ofT exactly once.) The link between
median orders and Hamiltonian paths is also involved in the proof of theorem 20.3.

Theorem 20.3. Let Π be a profile ofv linear orders defined on a same setX of n elements.
Then, ifv is even, the number of median orders ofΠ is between1 andn!, and the bounds may
be reached. Ifv is odd and large enough, the number of median orders ofΠ is between1 and

µn
√
nn!

2n
,

whereµ is a constant.
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Proof. In both cases, the lower bound is trivial: it suffices for instance to consider the case of a
profile consisting of the same linear order repeatedv times.

If v is even, let us consider two opposite linear ordersL1 = x1 > . . . > xn andL2 =
xn > . . . > x1. The profile consisting ofL1 repeatedv/2 times and inL2 also repeatedv/2
times is represented by a tournament in which all the weightsare equal to 0 (for each candidate
x and each candidatey, there exist as many voters preferringx to y asy to x). In this case, it is
easy to see that all the linear orders defined onX are optimal solutions. Hence the result, since
on the other handn! is a trivial upper-bound of the number of median linear orders.

If v is odd, the weights of the arcs of the tournamentT that representsΠ are all odd, and so
are not equal to 0. Therefore, according to the previous results, we can upper-bound the number
of median orders ofΠ by the number of Hamiltonian paths inT . Alon [ALO 90] showed that
this number is upper-bounded by

µn
√
nn!

2n
,

for some constantµ and forn large enough.�

The maximum number of median orders of a profile ofv linear orders is not known exactly
whenv is odd. Some results (combinatorial or experimental) for some profiles seem to indicate
that the maximum number of median orders admitted by a profileconsisting of an odd number
of linear orders is significantly lower than the number of Hamiltonian paths in the tournament
representing this profile. The number of median orders can nevertheless be exponential for some
profiles. More precisely, it has been shown [WOI 97] that for atournament whose weights are
equal to1 (Slater’s problem), the number of optimal solutions can reach

exp

[
ln 3

4
(3n− 2 log3 n− 3)

]

whenn is a power of 3. Since such a tournament can via theorem 20.1 beassociated with
a profile of linear orders, we deduce that this exponential number is a lower bound for the
maximum number of median orders of a profile of linear orders.

Another property satisfied by the median linear orders is theunanimity rule(or Pareto
principle). For a profileΠ = (L1, L2, . . . , Lv) of v linear orders, letU(Π) = ∩1≤i≤vLi

be the unanimous part ofΠ. The following theorem [BART 76, FEL 73, MON 73] shows that,
if all the voters prefer a candidatex to a candidatey, thenxmust also be preferred toy in every
median order ofΠ.

Theorem 20.4. Let Π be a profile ofv linear orders andL be a median order ofΠ. We then
have:U(Π) ⊆ L.

Finally, let us mention a last property: theconsistency. If two profilesΠ andΠ′ of linear
orders defined onX admit some common median orders, then the set of median orders of the
concatenation ofΠ andΠ′ is the set of median orders that are common toΠ andΠ′.
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Theorem 20.5. Let Π = (L1, L2, . . . , Lv) and Π′ = (L′
1, L

′
2, . . . , L

′
v) be two profiles of

linear ordersv andv′, respectively. LetΠΠ′ be the profile obtained by the concatenation ofΠ
andΠ′ i.e.ΠΠ′ = (L1, L2, . . . , Lv, L

′
1, L

′
2, . . . , L

′
v). We then have:

MedL(Π) ∩MedL(Π′) 6= ∅⇒MedL(ΠΠ′) = MedL(Π) ∩MedL(Π′).

This property of consistency is the most important in an outstanding axiomatic character-
ization of the median procedure due to Young and Levenglick [YOU 78], as well as in the
characterization of the median procedure in median semilattices. Moreover, it remains true
for all the metric medians [BART 91]. Other properties of median orders are described in
[BART 81, CHARO 96, CHARO 97, CHARO 07] or, for the tournaments whose weights are
equal to 1, in [LAS 97].

20.4. Medians in lattices and semilattices

Until now, we tackled the consensus problem by searching formedians of profiles of binary
relations. We established that such research, easy in some cases (arbitrary relations or tourna-
ments), may become quite hard in other instances (median orders). The purpose of this section
is to show that these results generalize to a large extent. Indeed, one may define and search
medians in any ordered set where a direct generalization of the symmetric difference distance
exists, especially in every (finite) semilattice. The search of median consensus then follows
similar lines in any set of objects (to aggregate) endowed with such an order, while the ease
of this search depends on the structural properties of the obtained ordered set. The ‘good’ case
corresponds to median semilattices, as presented in section 20.4.3.

Previously, we give the required basic notions on ordered sets in section 20.4.1, with the
examples of sets of binary relations ordered by inclusion. In particular, we survey the ordered set
structure of the sets of those relations which are useful in preference modeling. In section 20.4.2,
we give a standard generalization of the symmetric difference distance in semilattices, with the
associated formulae for the remoteness between av-tuple and a single element. Section 20.4.4
gives a brief description of the arising difficulties when the semilattice is no longer a median
one. Finally, some situations showing evidence of the efficiency of such latticial generalizations
are presented in section 20.4.5.

20.4.1. Ordered structures

We frequently consider a setD of relations which is (partially) ordered. That is,D is en-
dowed with anorder relation≤ satisfying three properties: for anyR,R′, R′′ belonging to
D, R ≤ R (reflexivity),R ≤ R′ andR′ ≤ R imply R = R′ (antisymmetry),R ≤ R′ and
R′ ≤ R′′ imply R ≤ R′′ (transitivity). In most cases, this order is just the restriction toD of
the inclusion order on the setP (X2) of all binary relations onX. Without other hypotheses,
we consider this situation and writeR ⊆ R′ instead ofR ≤ R′, andR ⊂ R′ if, moreover,
R 6= R′. The considered orders are generally ‘partial’ orders in the sense of Chapter 2, but
linear orders are allowed.
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Given a subsetA of D, a lower boundof A is a relationR in D such thatR ⊆ A, for
anyA ∈ A. The subsetA is lower boundedif it admits at least one lower bound. Similarly,
an upper boundof A is a relationR in D such thatA ⊆ R for anyA ∈ A, andA is upper
boundedif it admits at least one upper bound. If there is a greatest lower boundg of A, theng
is themeetof A, denoted∧A (the meet of two elementsR andR′ is denotedR ∧ R′). When
the intersection∩A of all the relations inA is again an element ofD, we have∧A = ∩A.
Similarly, if there is a least upper bound` of A, then` is thejoin ofA, denoted∨A or∪A if it
corresponds to set union (the join ofR andR′ is denotedR ∨ R′). We remark that, if it exists,
the minimum (respectively, the maximum) ofA is its meet (respectively, its join).

The ordered setD is:

– ameet semilatticeif any pair{R,R′} of its elements has a meetR ∧ R′;

– a join semilatticeif any pair{R,R′} of its elements has a joinR ∧R′;

– a lattice if any pair has a meet and a join i.e. it is simultaneously a meet and a join
semilattice.

WhenD is linearly ordered, it is therefore a lattice with the minimum as meet and the
maximum as join, respectively. The setP (X2) is a lattice with set intersection and set union
as meet and join, respectively. Table 20.1 gives the ordinalstructures for the inclusion order of
often considered sets of reflexive and transitive binary relations onX.

SetD Properties Meet Join Ordinal structure
Q, (partial) pre-
orders

Set intersection∩ Transitive
closure of set
union

Lattice

E , equivalences Symmetry Set intersection∩ Transitive
closure of set
union

Lattice

O, (partial) orders Antisymmetry Set intersection∩ — Meet semilattice
W, complete pre-
orders

Completeness – Transitive
closure of set
union

Join semilattice

L, linear orders Antisymmetry
and complete-
ness

– – –

Table 20.1.Ordered structures of sets of reflexive and transitive binary relations

Set inclusion on the setL of linear orders and, more generally, on the setT of tournaments,
corresponds to anantichainstructure where, forT, T ′ ∈ T , T ⊆ T ′ impliesT = T ′. Never-
theless, the setT may be endowed with a lattice order as follows: start with a given arbitrary
tournamentT0. It is often convenient to chooseT0 as follows: setX = {1, 2, . . ., n} and take
T0 = {(i, j) ∈ X2 : i ≤ j}.
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Let T d
0 = {(i, j) ∈ X2 : j < i} be the(irreflexive) dual tournamentof T0; to any

tournamentT , we associate the relationI(T ) of all inversepairs inT (with respect toT0) i.e.
I(T ) = {(i, j) ∈ T : j < i} = T ∩ T d

0 . The correspondenceT ↔ I(T ) is one-to-one
between, on the one hand, the setT of all the tournaments onX and, on the other, the set
P (T d

0 ) of the sets of inverse pairs. The (lattice) inclusion order on P (T d
0 ) induces onT the

order defined by:T ≤ T ′ if and only if I(T ) ⊆ I(T ′). The minimum for this order isT0 (with
I(T0) = ∅) and the maximum isT d

0 (with I(T d
0 ) = T d

0 ). The restriction toL of this order on
T is still a lattice (permutohedron lattice), although this property is less immediate [GUI 63].

We have just observed that, either directly with set inclusion or with some change on this
order, the considered sets of binary relations are all endowed with lattice structures (they are
lattices or semilattices; see [DAV 90] for ordered sets and lattices). This observation is strength-
ened by the fact that such structures are again found in othermodels of preferences or choices:
valued (or fuzzy) relations [LEC 95] or choice functions [MON 04]. The study of the consensus
problem at the more abstract level of lattice structures themselves has led to results particular to
various situations e.g. [BART 91, DAY 03, LEC 93, LEC 95. MON 90b]. We therefore now con-
sider the general case of a meet semilattice (possibly a lattice)D whose elements are denoted
s, t, etc. For the caseM = D, we aim to aggregate a profileΠ = (t1, t2, . . .tv) belonging to
Dv into a unique elementt ∈ D.

In the case of binary relations onX, each ordered pair of elements ofX may be considered
as an elementary relation, a given relationR being decomposable into such elementary ones.
Such a decomposition still exists in any semilatticeD by taking into account itsirreducible
elements. An elementt of D is said to bejoin-irreducible if it cannot be obtained as the join of
a subset ofD not containingt. Similarly, t is meet-irreducibleif it is not the meet of a subset of
other elements. Here, we only investigate the role of join-irreducibles, and just mention that the
same considerations apply to meet-irreducibles (althoughmore rarely in practice). Lett ∈ D.
We denote:

– S or S(D) the set of all the join-irreducibles ofD;

– St the set of all the join-irreducibless of D satisfyings ≤ t.

We then have a representation of the elements ofD by subsets ofS, with two essential
properties which are recalled in the following theorem.

Theorem 20.6. LetD be an ordered set. For anyt ∈ D, the equalityt = ∨St holds; for all
t, t′ ∈ D such thatt ∧ t′ exists, the equalitySt∧t′ = St ∩ St′ holds.

So, the mappingt 7→ St fromD to P (S) is ameet-morphismin the sense that it preserves
meets, and anorder encodingsince it may be verified that, for anyt, t′ ∈ D, we havet ≤ t′ ⇔
St ⊆ St′ . In the lattices and semilattices of Table 20.1:S(Q) = S(O) is the set of the orders
onX with a unique ordered pair(x, y) of distinct elements;S(E) is the set of the equivalences
onX with a unique double ordered pair(x, y), (y, x) with distinctx andy; S(W) is the set
of the linear orders onX (it is known that a complete preorder is the union and the joinof the
linear orders that it contains).

Each join-irreducible element of the latticeT of tournaments corresponds to an ordered pair
of T d

0 , withS(T ) = {T ∈ T : |I(T )| = 1}. The join-irreducibles of the permutohedron lattice
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L are still associated to the ordered pairs ofT d
0 , but in a more complex way: the join-irreducible

associated to the ordered pair(x, y) ∈ T d
0 is the lowest linear order containing this ordered pair.

An important remark for the following is that, ift∨t′ exists, then we haveSt∪St′ ⊆ St∨t′ ,
but equality is not true in general. For instance, consider the latticeQ of preorders onX, three
elementsx, y, z of X and two preordersQ andQ′ such that (x, y) ∈ Q and (y, z) ∈ Q′. Then,
by transitivity, we have(x, z) ∈ Q ∨ Q′, although this pair does not necessarily belong to
Q ∪Q′.

20.4.2. Symmetric difference distance in semilattices and remoteness

The symmetric difference distance was previously defined insection 20.2.2. It easily gen-
eralizes to any semilatticeD with the use of the join-irreducible representation described just
above. We now set, for anyt, t′ ∈ D,

δ(t, t′) = |St∆St′ | = |St ∪ St′ | − |St ∩ St′ | = |St\St′ |+ |St′\St|
= |{s ∈ S : [s ∈ St ands /∈ St′ ] or [s /∈ St ands ∈ St′ ]}|.

In lattices or semilatticesP (X2) (binary relations),Q (preorders),E (equivalences),O (or-
ders) andT (tournaments), we recover the number of ordered pairs by which the two relations
R andR′ differ, that is the symmetric difference distance as definedabove. The situation of the
permutohedron latticeL is the same. It differs in the join-semilatticeW (complete preorders)
where the count of differences is made on the linear orders which are or are not included inR
andR′.

We now consider a profileΠ = (t1, . . ., ti, . . ., tv) ∈ Dv. The following parameters are
associated toΠ and to any join-irreducibles ∈ S(D):

vΠ(s) = |{i ∈ V : s ≤ ti}|;
vc
Π(s) = |{i ∈ V : s 6≤ ti}|;

wΠ(s) = vΠ(s)− vc
Π(s).

As above, the subscriptΠ is omitted in the notation when no ambiguity could arise (i.e.
always in practice). The equalitiesv(s) + vc(s) = v andw(s) = 2v(s) − v are satisfied. We
say that a join-irreducibles is amajorityone if2v(s) > v (thens belongs to the representations
of a strict majority of elements of the profile) andbalancedif 2v(s) = v.

In order to tackle the aggregation of a profileΠ of Dv into a unique elementt of D, we
first give an expression of the remotenessE(Π, t) =

∑v
i=1 δ(t, ti) betweenΠ and an arbitrary

elementt of D in terms of the previous parameters.
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Lemma 20.2. For Π = (t1, . . . , ti, . . . , tv) ∈ Dv andt ∈ D, we have:

E(Π, t) =
v∑

i=1

|Sti | −
∑

s∈St

w(s).

This is merely a lattice version of the equality (2) of lemma 20.1 (section 20.2.3). Indeed,
it is obtained in a similar way. The quantity−w(s) then appears as the contribution of the join-
irreducibles of St to the remoteness oft. As described previously, this contribution is negative
if s is a majority join-irreducible, equal to zero if it is balanced and positive otherwise. To obtain
a remoteness as low as possible (i.e. corresponding to a median), the best would be to find an
elementt of D of which the representationSt would contain all the majority join-irreducibles
(and possibly some balanced ones), but no others. The aim of the next section is the recognition
of those semilattices where such an element always exists.

20.4.3. Medians in median semilattices

We now assume thatD is a meet semilattice, possibly a lattice, and we go further in the
transposition to this case of some notions presented in section 20.2.3. WithS still being the set
of the join-irreducibles ofD, we set forΠ ∈ Dv and for any integerσ:

S(Π, σ) = {s ∈ S : v(s) ≥ σ}.

In general, this set will simply be denoted asS(σ). In particular, with the numbersα andβ
of section 20.2.3,S(α) is the set of the majority join-irreducibles andS(β)\S(α) is the set of
the balanced join-irreducibles (empty for oddv).

Proposition 20.6. For anys, s′ ∈ S, s ∈ S(σ) ands′ ≤ s, s′ ∈ S(σ).

Proof. If s ∈ S(σ), then there exists a subsetW ⊆ V such that|W | ≥ σ ands ≤ ti for any
i ∈W . Then,s′ ≤ s impliess′ ≤ ti for all i ∈ W . Therefore,s′ ∈ S(σ). �

Provided that such elements exist, we set

t(σ) = ∨S(σ)

and
t′(σ) = ∨{∧{ti : i ∈ W} : W ⊆ V, |W | ≥ σ}.

The latter expression has the form of a ‘lattice polynomial’.

Recall a general property of meet semilattices: any upper bounded subset admits a join,
precisely the meet of its upper bounds. As a consequence, forany t ∈ D, the ordered subset
{t′ ∈ D : t′ ≤ t} is a lattice.

Proposition 20.7. If one of the elementst(σ) and t′(σ) exists, then the other also exists and
t(σ) = t′(σ).
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Proof. Assume thatt′(σ) exists, and lets ∈ S(σ). There is therefore a subsetW ⊆ V such
that |W | ≥ σ ands ≤ ti for all i ∈ W . Thens ≤ ∧{ti : i ∈ W} ≤ t′(σ) andt′(σ) is an
upper bound ofS(σ). Thus,t(σ) = ∨S(σ) exists, witht(σ) ≤ t′(σ).

On the other hand, according to theorem 20.6, the join-irreducible representation is a meet-
morphism. Thus, for|W | ≥ σ, S∧{ti:i∈W} = ∩i∈WSti is a subset ofS(σ). Then, the ele-
mentt(σ) = ∨S(σ) exists, according to the first part of this proof, and is an upper bound of
∧i∈W ti = ∨S∧{ti:i∈W}. Sincet′(σ) is the join of elements which all admitt(σ) as an upper
bound, we havet(σ) ≥ t′(σ).

Conversely, assume thatt(σ) exists. It is then an upper bound of each meet∧{ti : i ∈ W}
with |W | ≥ σ, which implies thatt′(σ) exists, and one may apply the previous results.�

Following this proposition, we have a polynomial expression for t(α):

t(α) = ∨{∧{ti : i ∈ W} : W ⊆ V, |W | ≥ α}.

This lattice formalization of the majority rule generalizes the expression given at the end of
section 20.2.3.

The elementt(α) is also given by its representationSt(α):

t(α) = ∨St(α) = ∨{s ∈ S : s ≤ t(α)}.

The representationSt(α) contains all the majority join-irreducibles but also, in general,
other join-irreducibles which are neither majority nor balanced ones.

We now describe a particular type of meet semilattices, where the join-irreducible repre-
sentation is not only a meet-morphism but also a join-morphism. First, a latticeD is said to be
distributiveif it satisfies one of the following equivalent conditions:

1) for anyt, t′, t′′ ∈ D, t ∧ (t′ ∨ t′′) = (t ∧ t′) ∨ (t ∧ t′′);
2) for anyt, t′, t′′ ∈ D, t ∨ (t′ ∧ t′′) = (t ∨ t′) ∧ (t ∨ t′′);
3) s ∈ S,D′ ⊆ D ands ≤ ∨D′ imply s ≤ t for at least one elementt ∈ D;

4) for anyt, t′ ∈ D, the equalitySt ∪ St′ = St∨t′ holds.

We do not give a complete proof of these classical equivalences. Observe, for instance, that
when (1) is satisfied, the inequalitys ≤ ∨D′ impliess = s ∧ (∨D′) = ∨{s ∧ t : t ∈ D′}.
Sinces is join-irreducible,s = s ∧ t′ follows, that iss ≤ t′, for at least one elementt′ of D′.
Similarly, assume that (3) is satisfied and considert, t′ ∈ D ands ∈ St∨t′ . Then,s ≤ t or
s ≤ t′. Thus,St∨t′ ⊆ St ∪ St′ , which implies (4) since the converse inclusion is always true.

The class of distributive lattices is particularly important since it includes linear orders (with
the maximum and minimum operations as join and meet), products of linear orders and also
lattices of subsets endowed with set union and set intersection (that is, Boolean lattices). For
instance, in the previous examples, the latticesP (X2) andT are distributive.
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By extension, a meet semilatticeD is said to be distributive if, for anyt ∈ D, the lat-
tice {t′ ∈ D : t′ ≤ t} is distributive. Amedian semilattice[AVA 61] is a distributive meet
semilatticeD in which, for all t1, t2, t3 ∈ D, t1 ∨ t2 ∨ t3 exists as soon as the three elements
t1∨t2, t1∨t3 andt2∨t3 all exist. In such a semilattice, the element(t∧t′)∨(t′∧t′′)∨(t′′∧t)
exists for anyt, t′, t′′ ∈ D. By straightforward algebraic calculations on its latticepolynomial
form, the existence oft(α) follows (but not that oft(β)). We obtain the following character-
ization of medians for the distanceδ in such semilattices [BAN 84]. It generalizes a series of
results on medians in distributive lattices originated in [BAR 61].

Theorem 20.7. LetD be a median semilattice andΠ ∈ Dv be a profile ofD. If v is odd, then
t(α) is the unique median ofΠ; if v is even, then the set of all the medians ofΠ isMedD(Π) =
{∨S′ : S(α) ⊆ S′ ⊆ S(β) and∨S′ exists}.

Proof. It was observed just after lemma 20.2 that, when it exists, anelementt satisfying
S(α) ⊆ St ⊆ S(β) minimizesE(Π, t). From the previous considerations and proposition 20.7,
t(α) = ∨S(α) exists for any profile of a median semilattice. Lets ∈ S such thats ≤ t(α).
From property (3) of distributive lattices, there existss′ ∈ S(α) such thats ≤ s′. Then, from
proposition 20.6,s ∈ S(α). So,St(α) = S(α), which implies thatt(α) is a median. We show
in the same way thats ≤ ∨S′ with S′ ⊆ S(β) impliess ∈ S(β). Thus, the elements that have
the same remoteness asS(α) are those with the form∨S′, whereS(α) ⊆ S′ ⊆ S(β). If v is
odd, thenS(α) = S(β) andt(α) is the unique median.�

In particular, ifD is a (distributive) lattice, we have the simple expressionMedD(Π) =
{t ∈ D : t(α) ≤ t ≤ t(β)}, which generalizes the result given by proposition 20.1 on the
medians of a profile of binary relations. We shall emphasize in section 20.4.5 the interest of
generalizing to median semilattices.

It is implicit, particularly when considering theorem 20.5, that the median procedure con-
stitutes an aggregation multiprocedure which associates anon-empty subsetc(Π) ⊆ D to any
profile of finite lengthΠ ∈ D∗ = ∪v∈ND

v . In median semilattices, this procedure has been
axiomatically characterized [MCM 00]. Recall that an element s of a meet semilatticeD is a
join irreducible if and only if there exists a unique elements− of D such thats− ≤ s, s− 6= s,
ands− ≤ s′ ≤ s imply s′ = s− or s′ = s. For any two profilesΠ = (t1, t2, . . ., tv) and
Π′ = (t′1, t

′
2, . . . , t

′
v′) belonging toD∗, recall that the concatenation ofΠ andΠ′ is the profile

ΠΠ′ = (t1, . . . , tv, t
′
1, . . . , t

′
v′). We then obtain the following theorem. Although considered

structures and statements differ, we observe that the consistency property below is a direct gen-
eralization of that appearing in the characterization of the median procedure applied to profiles
of linear orders mentioned at the end of section 20.3.6.

Theorem 20.8. LetD be a median semilattice and letc : D∗ → (P (D)\{∅}) be an aggre-
gation multiprocedure. Then,c is the median procedure if and only if it satisfies the following
three properties:

1) Condorcet:Π ∈ Dv with evenv, s ∈ S(D), 2v(s) = v, t ∈ D and t ∨ s exists imply
[t ∨ s− ∈ c(Π)⇔ t ∨ s ∈ c(Π)].

2) Consistency:Π,Π′ ∈ D∗ andc(Π) ∩ c(Π′) 6= ∅ imply c(ΠΠ′) = c(Π) ∩ c(Π′).

3) Faithfulness:Π ∈ D1 andΠ = (t) imply c(Π) = {t}.
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As it is most frequently done in the literature, we have developed in this section the case
of meet semilattices and therefore considered median (meet) semilattices. Of course, the above
considerations may be done about join semilattices, with the exchange of joins and meets (meet
irreducibles then replacing join irreducibles). We shall see in section 20.4.5 that the join semi-
latticeW of complete preorders is precisely a ‘median join semilattice’.

20.4.4. Other semilattices

As observed above, median semilattices constitute a type ofstructures where medians are
simply characterized. Moreover, the mediant(α) is easy to determine as soon as the join opera-
tion and, for anyt ∈ S, the computation of the setSt is easy. Otherwise, the search for medians
for the symmetric difference distance in a lattice or semilattice of another type is generally
difficult [LEC 94].

In a distributive meet semilattice which is not a median one,the conclusions of theorem 20.7
apply to every profile such thatt(α) exists. Otherwise, the problem is to find the elementst of
D of the typet = (∨S1)∨ (∨S2), whereS1 is a set of majority join-irreducibles such that∨S1

exists and maximizes
∑

s∈S1
w(s) under this condition, and such thatS2 is a set of balanced

join-irreducibles such thatt exists. Such a problem may become difficult.

WhenD is a meet semilattice which is not distributive, even the property thatt(α) is a
median is no longer guaranteed, since the representationSt(α) may include join-irreducibles
s belonging toS\S(β), for which the quantityw(s) is negative. Nevertheless, some relations
between medians and majority rule remain. They apply, for example, to the lattices of equiva-
lences (or partitions) [BART 95b] and of preorders, or to thesemilattice of orders [LEC 03] as
follows.

Theorem 20.9. LetD be a meet semilattice. For any profileΠ ofD such thatt(β) exists and
for any mediant of Π, the inequalityt ≤ t(β) holds; for any profileΠ such thatt(α) exists
and for any mediant of Π, there exists a mediant′ such thatt′ ≤ t ∧ t(α) and every element
t′′ satisfyingt′ ≤ t′′ ≤ t is a median.

20.4.5. Applications

Theorem 20.7, which characterizes medians in structures including distributive lattices, ap-
plies to the lattice of the subsets of any set and therefore tothe latticeP (X2) of binary relations
and to the latticeT of tournaments described above. A class of distributive lattices generalizing
lattices of subsets is provided by direct products of linearorders. Such lattices naturally appear
in many problems and modelizations. For instance, considera multicriteria evaluation withk
criteria, each of them taking its values in a finite linearly ordered setDi. An elementt of D is
then equivalent to ak-tuple(t1, t2, . . . , tk) ∈ D = D1 ×D2 × . . .×Dk. It is not difficult to
see that the medians of av-tuple of such objects are obtained by taking one median value for
each criterion.

Another example is given by the choice functions satisfyingsome properties. Achoice
function on X is a mappingch : P ∗(X) → P ∗(X) (as in section 20.2.1,P ∗(X) is the



Metric and Latticial Medians 801

set of non-empty subsets ofX) satisfyingch(Y ) ⊆ Y for any Y ⊆ X. Such a function is
assumed to represent the selection made by an agent among theelements of any non-empty
subsetY of X. It is then natural to consider the collective choice of a group of agents as
a consensus of choice functions. Among many axioms defining interesting classes of choice
functions [ALE 07, MON 04] we have the followingheritageproperty (H):

(H) For anyY,Z ⊆ X, Y ⊆ Z impliesY ∩ ch(Z) ⊆ ch(Y ).

The setX of all the choice functions onX is naturally ordered by the pointwise order: for
ch, ch′ ∈ X , ch ≤ ch′ if ch(Y ) ⊆ ch′(Y ) for anyY ⊆ X. It is then shown that the ordered
subsetXH of those choice functions which satisfy the heritage property is a distributive lattice.

The previous examples deal with distributive lattices. Nevertheless, the extension to median
semilattices in theorem 20.7 is justified by the observationthat such semilattices, which are not
lattices, are frequently encountered. Consider a finite setE endowed with a symmetric binary
relationC modeling a ‘compatibility’ of some type. We are concerned with the setF of subsets
F of E whose elements are pairwise compatible. In other terms, thesubgraph induced byC
on F is a clique (i.e. it is a complete subgraph). Then, ordered by inclusion, F is a median
semilattice. For instance, ifE is an ordered set andC its comparability relation, the cliques
of C correspond to the linearly ordered subsets ofE (also called thechainsof E) and they
constitute a median semilattice.

We provide an example of median semilattices of chains. Let us associate to any complete
preorderW onX the (linearly ordered by inclusion) familyN(W ) of subsets ofX defined by
N(W ) = {{y ∈ X : yWx}, x ∈ X}. We may check that there is a one-to-one correspondence
between the setW of all the complete preorders onX and the setN of all the chains of
P (X) includingX. Moreover, we haveW ⊆ W ′ ⇔ N(W ′) ⊆ N(W ). From the above
considerations,N is a median semilattice. Since the inclusion order onN is (order) dual to
the semilatticeW described in Table 20.1, the latter is a so-called median join semilattice. The
join irreducible elements ofN correspond to the meet irreducibles ofW, and the symmetric
difference distanceδ onN counts the subsets ofX present in exactly one of the chainsN(W )
andN(W ′). In fact, with this metric, we often obtain median chains with few subsets ofX,
corresponding to poorly discriminant complete preorders.

The choice functions satisfying the followingArrow condition(A) correspond to a similar
case:

(A) For anyY,Z ⊆ X, Y ⊆ Z andY ∩ ch(Z) 6= ∅ imply Y ∩ ch(Z) = ch(Y ).

This condition (A) implies the heritage (H) and characterizes those choice functions which
arerationalizable by a complete preorderi.e. if ch satisfies (A), there exists a complete preorder
W onX such thatch(Y ) is the set of the maximal (forW ) elements ofY . The setXA of the
choice functions satisfying Condition (A) is a median semilattice, isomorphic toN and dual to
W.
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20.5. Conclusion

We return to the various notions of medians seen in this chapter, in particular to give some
historical information [MON 91, MON 08]. We begin with the notions found in all books on
statistics. Consider a population totally preordered according to the values of a linearly ordered
variable, e.g. the age for a population of individuals. Themedian ageof this population is that for
which there are as many individuals with an age lower than themedian age as individuals with
a greater age. When there arev = 2p individuals ranked by increasing age, each age (strictly)
included between the ages of thepth and the(p + 1)th individual satisfies this property and is
therefore a median.

We have a ‘median interval’ (in this case, statisticians often choose as median age the mean
between the two ages that are the bounds of the median interval). Two observations can be made
on the median(s) of a distribution:

1) A median is a solution of an optimization problem: it minimizes the sum of its distances
to the different values taken by the variable on the population (these values being weighted by
their number of occurrences). This is a consequence of a moregeneral result, due to Laplace,
on the median of a probability distribution [LAP 74].

2) At least when the median is unique, it can be obtained by an algebraic expression using
the operations Max and Min. For instance, in the simplest case where the values of the variable
for three individuals area, b, c with a < b < c, the medianb is given by the formulab =
min[max(a, b),max(b, c),max(c, a)]. (When there is a median interval, its two bounds are
given by algebraic formulas.)

The first observation leads to the notion of metric median. Ina metric space(E, d), a median
of a v-tuple (t1, t2, . . . , tv) is an elementt of E minimizing the sum

∑v
i=1 d(t, ti) of the

distances oft to the elements of thev-tuple. This is in fact an old notion since it appears in a
famous challenge proposed by Fermat in hisEssai sur les maximas et les minimas[FER 29]:
“Let he who does not approve of my method attempt the solutionof the following problem:
given three points of the plane, find a fourth point such that the sum of its distances to the three
given points is a minimum”. Here, the distance between two pointsP andQ is the length of the
segmentPQ. We must therefore find the median point of three points of theplane for the usual
Euclidean metric.

(Contrary to a frequent error, this median point is not the intersection point of the three
medians of the triangle formed by the three points. This lastpoint, thegravity centerof the
three points, minimizes the sum of the squared distances.)

Fermat’s problem and its numerous various generalizationswill be a recurrent topic in pure
or applied mathematics literature. In particular, one of these generalizations appears in Alfred
Weber’s bookÜber den Standort der Industrien[WEB 09] where the problem consists of find-
ing the median ofv weighted points of the plane (in the theory of optimal location, we speak of
Fermat–Weber’s problem). On the other hand, at the beginning of the 20th century the Italian
statistician Gini considered the problem of finding the central value of a multidimensional sta-
tistical series [GIN 14]. He proposed adopting the (multidimensional) value nearest (according
to the sum of the Euclidean distances) the observed values ascentral value, and he called it the
medianof the statistical series.



Metric and Latticial Medians 803

One of Gini’s motivations was to palliate Quételet’smean manparadox. Recall that Quételet
considered a population of men described by several measurable characteristics and he defined
the mean man as the man obtained by taking the means (in the usual sense) of the values of the
attributes in the population. The problem (quickly pointedout by Cournot) is that this mean man
will generally be an impossible man. With the same motivation to palliate Quételet’s defective
definition, the mathematician Fréchet (creator of the notion of metric space in 1904) proposed
[FRÉ 49] introducing a distance in the space of the observations (which can be elements of any
nature) and to take as a ‘typical value’ of av-tuple of observations their (metric) median.

Observe that this median (just as the mean in an Euclidean space) has no reason to be
one of the observed values. Thus, this notion of metric median has been for a long time a
possible solution of the problem to find the central value of data of a various nature. In order
to use this median, it is sufficient to be able to define a distance in the set of possible data. An
example of this approach is described in section 20.2 when data are binary relations. There, the
distance between two relations is the symmetric differencedistance. The studied relations are
first arbitrary (20.2.3), afterwards tournaments (20.2.5)and then linear orders (20.3). However,
in this last case which is e.g. the one where we want to aggregate voters’ preferences assumed
to be linear orders into a ‘consensus’ linear order, computing the median (linear orders) can be
a very difficult combinatorial optimization problem (sinceit is NP-hard; section 20.3.4). This
is why section 20.3 develops different formulations of the problem consisting of searching for
the median (linear) orders (especially as a 0-1 linear programming problem) and gives several
properties of these median orders useful for this research.

Of the opposite nature, when in sections 20.2.3 and 20.2.5 wesearch for the medians of a
profile of arbitrary relations or the median tournaments of aprofile of tournaments, the answer is
easily obtained from the two (strict and not strict) majority relations associated to the profile. We
recover the notion of metric median: indeed, as shown by formulae just before section 20.2.4,
these two majority relations are expressed by algebraic formulae in the Boolean lattice of the
subsets of a set with the two binary operations of this lattice, namely the intersection and the
union. Moreover, the definition of these relations as the union of majority ordered pairs (defi-
nition 20.2) makes them a generalization of the definition ofmedians in a linearly ordered set
as the element(s) dividing the population into two halves. If, for example, we consider the case
of a (2p + 1)-tuple of distinct elements of a linearly ordered set, the median is the maximum
of themajority elementsin the sense of section 20.4.2 (i.e. the maximum of these elements less
than a majority of elements of this tuple).

Finally, the interesting question both for practical and theoretical reasons is therefore to
be able to recognize the ‘good’ discrete (since here we only consider finite structures) metric
spaces. These are those metric spaces where finding medians is possible since they are given by
algebraic expressions generally easily computable. Thesemetric spaces are the so-calledmedian
semilattices. (For sake of brevitymedian graphs, which are the undirected graphs that, suitably
oriented, are the covering graphs of the median semilattices, are not covered here. These graphs,
which in particular contain chains and trees, have many characterizations [BAN 84] and various
generalizations [MUL 80].)

Median semilattices are endowed with a distance which generalizes the symmetric differ-
ence distance between sets (and relations). The median semilattices that are lattices are exactly
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the distributive lattices. Two special cases of distributive lattices seen above are the linearly or-
dered sets and the Boolean lattices (for instance, the Boolean lattices of all the binary relations
defined on a set). In sections 20.4.1 and 20.4.2 we first consider the natural distance, which can
be defined on any (finite) semilattice. Afterwards, section 20.4.3 is devoted to median semilat-
tices. In such semilattices the so-calledjoin-irreducibleelements generalize either the elements
of a linearly ordered set or the ordered pairs of binary relations. The formulae of theorem 20.7
show that in a median semilattice the medians of av-tuple of elements are obtained by the join
operation on the (strict or not strict)majority join-irreducibleelements of thisv-tuple. When
the median semilattice is a distributive lattice, we obtainthe formulae using the meet and the
join operations which generalize the formulae given just before section 20.2.4. Finally, sec-
tion 20.4.4 returns to the case of some other semilattices for which we can give indications on
the location of medians.

To conclude, we see that various motivations and research on‘pure’ and ‘applied’ math-
ematics have met for the elaboration of a theory of the medianprocedure. As for any central
value, the median procedure has good properties but it also has drawbacks. The main drawback
is probably the possible non-uniqueness of the median. Thisprocedure is useful in the many
domains where discrete data must be aggregated. However, wemust take care not to confuse
different levels. On the one hand, the theory shows that the median procedure is conveniently
usable when the data can be considered as elements of a particular ordered structure: namely a
median semilattice (and, as a very particular case, a linearly ordered set) since then the compu-
tation of medians is generally easy. On the other hand, we canapply the median procedure to
data that are themselves orders. This is precisely the case when we search to aggregate profiles
of linear orders into a median (linear) order. However, since the set of all linear orders is not a
median semilattice, it is difficult to obtain these median orders. The final section of this chapter
gives some other examples of ‘good’ cases, e.g. the cases of some sets of choice functions. The
final slogan therefore could be: if you have to aggregate non-numerical discrete data, first look
for an underlying median semilattice.Ccedilla
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exact method, 233
metaheuristics, 240
two phases method, 237

mutually exclusive, 56
necessity, 119

measure, 438
negatively transitive, 52
non-classical logics, 55
non-discordance, 598
normality, 345, 350
numerical representation, 59, 65, 71
oligarchy, 753
omelette, 563
operational research, 4, 49
order

interval, 65, 69, 601, 721
interval (numerical representation), 71
partial, 73, 129, 345, 793
statistic, 649
total, 57, 73, 171, 303
total (numerical representation), 59
weak, 60
weak (numerical representation), 61

ordinal scale, 69
orness, 721
outranking

concordance, 598
method, 15
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paradox

Allais, 417, 420
Ellsberg, 403, 407, 413

Paretian liberal, 756
partial order, 76
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payoff matrix, 205, 248
plausibility function, 114
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anti-ideal, 206
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possibilistic qualitive criterion, 436
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distribution, 436
measure, 438

theory, 14
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preference, 562

a posteriori, 213
a priori, 210
aggregation, 62
ceteris paribus, 323, 337
collective, 742, 774
completeness, 598
conditional, 344
constraint, 301
contradictory, 352
data, 77
defeasible, 345
fuzzy, 754
incomplete, 352
independence, 64
individual, 742, 774
marginal, 601
modeling, 49, 595
parameter, 206
product set, 601
progressive, 213
relation, 7, 326
representational logic, 327
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structure, 54
transitivity, 75, 598
voting, 742

principle
sure-thing, 385, 443

priority, 332
probability, 98

a priori, 163
Bayesian, 104
comparative, 128
conditional, 101, 130, 498
imprecise, 108
joint, 497
marginal, 497
pignistic, 116
qualitative, 389
subjective, 104
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constraint satisfaction, 265
deterministic, 247
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formulation, 11
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programming
dynamic, 521
linear, 4
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fuzzy linear, 253
integer, 224
integer linear, 224
linear, 202
stochastic linear, 245
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pseudo-distance, 335
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quasi-transitivity, 753
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rank-dependent expected utility, 418
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reinforcement learning, 542
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sagittal representation, 54
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bipolar, 696
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search
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second-order stochastic dominance, 367
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numerical representation, 68
partial, 75
weak order, 67

semigraphoïd, 500
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Aczélian, 661
Archimedean, 662
improperly Archimeadean, 664
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properly Archimeadean, 664

semilattice, 772, 773, 796, 800
distributive, 800
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semitransitive, 52, 66
sequential voting, 746
simple majority, 760
simulated annealing, 241
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Soland theorem, 209
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efficient, 203
Pareto optimal, 203
supported efficient, 224
weakly efficient, 203
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state of nature, 563
subjective expected utility, 384
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sure-thing principle, 385, 443
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theorem
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tie-break, 747
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difference, 599, 603
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transitivity, 52, 750

of indifference, 72
triangular conorm, 667
unanimity, 747
uncertainty, 14
universality, 750
utility function, 5, 15, 95, 160, 174, 210,

222, 326, 364, 561
additive, 596
additive under certainty, 567
decomposable, 566
decomposition, 566
multilinear decomposition, 566
multiplicative decomposition, 566
subset of the Cartesian product, 576
von Neumann and Morgenstern, 577

V-structure, 503
value

iteration, 531

value function, 62
additive, 596
decomposable, 597

variable elimination, 288
veto, 629, 722, 728

right, 754
voters, 742
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plurality, 743
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theory, 741

voting procedure
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cancellation, 758
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Condorcet, 747
consistency, 757
dictator, 752
faithfulness, 757
fuzzy preference, 754
impossibility results, 755
independence, 751
majority, 742
majority in two stages, 744
manipulation, 744
monotonicity, 744
neutrality, 757
oligarchy, 753
scoring method, 758
separability, 746
simple majority, 759
strict monotonicty, 760
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veto, 753

voting system, 741
uninominal, 742

weak
order, 76
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