
Stochastic Choice with Bounded Processing Capacity

Thierry Marchant

Ghent University

Arunava Sen

Indian Statistical Institute, New Delhi

Abstract

We propose and characterize a class of stochastic decision functions for a

decision-maker who has a capacity for processing at most k-alternatives at

a time. When faced with a menu containing more than k alternatives, she

randomly chooses a sub-menu of size k with uniform probability and selects

the best alternative according to a strict ordering �. For smaller menus, she

chooses the best alternative according to �.

1. Introduction

Choosing from a large menu of alternatives typically imposes a significant

burden on the cognitive resources of a decision-maker. In these situations,

a two-step procedure is natural: the decision-maker first narrows down the

menu using a heuristic and then chooses from the smaller set according to the
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standard model of rational choice. In this paper, we propose and axiomatize

a particularly simple form of such a procedure.

We assume that the decision-maker has a strict ordering � over the set

of all alternatives X which she uses to choose alternatives. Choice requires

the evaluation and comparison of alternatives and she can process at most k

alternatives in a menu where k > 2. Consequently, she chooses a �-maximal

alternative for menus of size less than or equal to k. For menus of larger size,

she randomly chooses a sub-menu of size k using the uniform distribution

and picks the �-maximal alternative from the sub-menu. We believe that the

assumption of the uniform distribution is justified since the decision-maker

makes the first-step selection without any reference to the properties of the

alternatives. We call this stochastic decision function a bounded processing

capacity rule or BPCR.

Our main result is a characterization of BPCRs in terms of six axioms

on the choice function. The capacity k and the ordering � can be uniquely

identified from choice functions satisfying the axioms. Virtually all the ax-

ioms are variants of axioms that are familiar in the literature on stochastic

choice functions. We show that our axioms are independent when there are

at least four alternatives.

One interpretation of our choice function is that the decision-maker makes

“mistakes” while choosing from large menus.1 These mistakes are in the form

1Mistakes could also be the result of “choice overload” (see Iyengar and Lepper [13],

Scheibehenne et al. [21], Aguiar et al. [2]). Indeed, some aspects of the “jam study” or

Study 1 in Iyengar and Lepper [13] are consistent with a BPCR. In particular, consumers

in both the small and large jam menus sampled approximately the same number of jams.
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of departures from the decision-maker’s “true” preference. In a BPCR some

alternatives that are not �-maximal are picked with strictly positive prob-

ability in large menus. Moreover a BPCR offers an additional, potentially

testable insight that is not available in a deterministic model. It chooses

a higher-ranked alternative according to � with higher probability than a

lower-ranked alternative in a menu. Mistakes are made less frequently for

less preferred alternatives. Ortoleva [18] and Frick [10] develop the “mistakes

approach” in the deterministic context. Frick [10] for example,2 characterizes

a class of rules where the decision-maker has a true preference represented by

a utility function v. In every menu, the decision-maker chooses alternatives

that are within δ ≥ 0 of the v-maximal alternative in the menu. The factor

δ increases monotonically in the size of the menu, so that the decision-maker

makes larger mistakes in terms of choosing non v-maximal alternatives, the

larger is the menu. The rule, however makes no predictions regarding the

relative frequency with which various mistakes are made.

Aguiar et al. [1] develop a model of stochastic choice where a boundedly-

rational decision-maker makes mistakes. As in Frick [10], the decision-maker’s

true preferences are represented by a utility function v. She randomly selects

a sequence of alternatives in a menu and picks the first“satisficing”alternative

in the sequence, i.e. an alternative whose utility exceeds a threshold level v∗.

We note that choice overload is sometimes referred to “as the case where the propensity of

not choosing (or the probability of picking a default alternative) increases in larger choice

sets” (Aguiar et al. [2]). Our model does not explain choice overload in this sense.
2 The model in Ortoleva [18] is different and is concerned with choices over lotteries

over menus. The underlying idea is however, similar to that in Frick [10].
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If no satisficing alternative exists, she selects the v-maximal alternative in

the menu. Mistakes occur because she may choose an alternative x where

v(x) ≥ v∗ even though there exists y in the menu and v(y) > v(x) if x

precedes y in the chosen sequence. This procedure is not compatible with

our notion of bounded capacity. Suppose x and y are the only alternatives

that are satisficing in the set X which contains many other alternatives. The

decision-maker makes mistakes in the“small”menu {x, y}; on the other hand,

she does not make any mistakes in the “large” menu X \ {x, y}.

Geng and Özbay [11] follow an approach similar to ours. It considers a

model where the decision-maker has a capacity of k-alternatives and follows

the two-step procedure outlined earlier. However, the decision-maker uses a

deterministic heuristic in the first step. One of the goals of the paper is to

identify k from choice data for various (deterministic) heuristics. In contrast,

the decision-maker in our model uses a simple but random heuristic in the

first stage.

Dutta [7] proposes a model where the decision-maker evaluates pairs of

alternatives in sequence according to a preference ordering. Inferior alter-

natives are eliminated at each stage. Continuing with this procedure will

eventually lead to the best alternative according to the preference ordering.

However the decision-maker may stop the process at any stage with some

probability and choose from the remaining alternatives with equal probabil-

ity. This procedure is called a Gradual Pairwise Comparison (GPC) pro-

cedure. In a sense, GPC procedures are duals of BPCRs. In the former,

alternatives are eliminated on the basis of the decision-maker’s preference

ordering; alternatives are then chosen using a uniform probability distri-
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bution over the remaining alternatives. Exactly the opposite occurs in a

BPCR. Alternatives are eliminated by means of a uniform rule over subsets

of alternatives of fixed size. An alternative is then chosen over the remaining

alternatives using the decision-maker’s preference ordering.

Our paper is also a contribution to the literature on consideration sets

in the context of stochastic decision functions inspired by Luce [15]. This

literature takes one of two approaches. The first (for example, Ahumada and

Ulku [3] and Echenique and Saito [8]) considers a deterministic consideration

function that selects a subset of every menu from which an outcome is then

picked by a (random) Luce procedure. The second approach (for example,

Manzini and Mariotti [16], Brady and Rehbeck [4], Kovach and Suleymanov

[14], Cattaneo et al. [5] and Cheung and Masatlioglu [6]) to which our paper

belongs is one where consideration sets are picked randomly from a menu. An

alternative is then picked from each chosen consideration set by maximizing

a deterministic preference ordering.

Our rule does not belong to the class of rules analyzed in Manzini and

Mariotti [16] and Brady and Rehbeck [4]. Among other reasons, BPCRs are

deterministic for some menus and probabilistic for others. At a methodolog-

ical level, we do not assume the existence of a default alternative on which

both Manzini and Mariotti [16] and Brady and Rehbeck [4] rely heavily (see

also Horan [12] and Kovach and Suleymanov [14]). Cattaneo et al. [5], Aguiar

et al. [2] and Cheung and Masatlioglu [6] consider general models of random

attention. They characterize (the large) classes of stochastic decision func-

tions that satisfy mild monotonicity requirements on attention. Our rule
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belongs to the classes characterized by these papers 3 but is, of course, one

of several that do so. A relative strength of our result resides in its ability to

characterize a fairly narrow class of stochastic decision functions. This class

uses far fewer parameters than, for instance, the rules in Cattaneo et al. [5] or

Cheung and Masatlioglu [6]: a preference ordering and one positive integer

compared to a preference ordering and 2X real numbers. This makes it much

more manageable if one needs, for instance, to elicit the parameters from a

set of empirical observations.

Theorem 3.3.1 by Rafäı [19] characterizes a large class of stochastic deci-

sion function resembling ours: from each menu (not only the large ones), it

draws a sub-menu using some probability distribution defined over a family

D of sub-menus of X, with D closed under inclusion. When a sub-menu is

drawn, the decision-maker chooses according to a linear ordering � (like in

our rule). The parameter space for this rule is huge. When the probability

distribution is restricted to be uniform, Rafäı’s rule does not coincide with

ours because (1) it draws sub-menus even from small menus and (2) it does

not draw sub-menus of fixed size.

The rest of the paper is organized as follows. Section 2 sets out the model

and the axioms. Section 3 contains the main result of the paper. Section 4

shows the independence of our axioms. The Appendix contains the proof of

an elementary combinatorial identity used in the proof of our main result.

3We would like to thank Yusufcan Masatlioglu for pointing out that a BPCR is a special

case of attention overload.
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2. The Model and Axioms

There is a finite set of alternatives X = {x, y, . . .} of size n. Let P denote

the set of all probability distributions over X.

Definition 1. A stochastic choice function p is a mapping from 2X \∅ into
P such that p(x, Y ) = 0 whenever x /∈ Y .

A menu Y is a non-empty subset of X. A stochastic choice function p as-

signs probability p(x, Y ) to every x ∈ Y . Thus p(x, Y ) ≥ 0 and
∑

x∈Y p(x, Y ) =

1. Fishburn [9] also uses the primitive p, but, unlike him, we do not define a

deterministic choice function: we try to explain p by means of an unobserved

preference relation �.

Let � be a strict ordering4 over X and let k ≥ 2 be an integer. For all

menus Y such that |Y | > k, let Y (k) = {Z ⊂ Y : |Z| = k}. For all menus

Y such that |Y | > k and x ∈ Y , let Yx(k) = {Z ∈ Y (k) : x � z for all z ∈

Z \ {x}}. The set Y (k) denotes the set of subsets of Y that have exactly k

alternatives. The set Yx(k) is the set of subsets of Y (k) that have x as their

�-maximal alternative. Note that Yx(k) = ∅ is a possibility.

We are interested in the class of stochastic choice functions defined below.

Definition 2. A Bounded Processing Capacity Rule (or BPCR) is a stochas-
tic choice function p�k where � is a strict ordering over X and k is an integer
(n ≥ k ≥ 2) such that, for all menus Y,

p�k (x, Y ) =

{
1 if |Y | ≤ k and x � z for all z ∈ Y \ {x}
|Yx(k)|
|Y (k)| if |Y | > k.

4A strict ordering over X is a complete, transitive and antisymmetric binary relation

on X.
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The decision-maker has a strict ordering � over X and is able to process

k ≥ 2 alternatives at a time. When presented with a menu with no more than

k alternatives, the decision-maker chooses the best alternative in the menu

according to �; otherwise he selects a subset of exactly k alternatives with

uniform probability and chooses the best alternative in the subset according

to �.

It is possible to compute the probability of choosing an alternative in a

menu of size greater than k in terms of its rank in the menu according to �.

Let Y be a menu with |Y | > k. Let x ∈ Y . The rank of x in Y (according

to �) is denoted by r�Y (x) = |{z ∈ Y : x � z}|. Note that there are
(|Y |

k

)
subsets of size k and

(
i

k−1

)
of those subsets have as maximal alternative

the alternative of rank i in Y .5 Using this observation, Definition 2 can be

rewritten as follows:

Definition 3. A Bounded Processing Capacity Rule (or BPCR) is a stochas-
tic choice function p�k where � is a strict ordering over X and k is an integer,
n ≥ k ≥ 2 such that, for all menus Y,

p�k (x, Y ) =

1 if |Y | ≤ k and r�Y (x) = |Y | − 1,

(r�
Y

(x)

k−1 )
(|Y |k )

if |Y | > k.

Remark 1. Let p�k be a BPCR. Suppose the decision-maker has to choose
from a menu Y where |Y | = l. If l > k, an alternative x in Y is chosen with
strictly positive probability if and only if it “beats” at least k−1 alternatives
in Y according to �, i.e |{y ∈ Y : x � y}| ≥ k − 1. Equivalently, there must
be exactly k − 1 alternatives in Y that are chosen with zero probability. On
the other hand, if l ≤ k, an alternative x is chosen if and only if |{y ∈ Y :
x � y}| = l − 1.

5We adopt the convention that
(
i
j

)
= 0 if i < j.
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Remark 2. There is another feature of a BPCR which we have alluded to
earlier, which deserves special mention. Consider an arbitrary BPCR p�k .
Let Y be a menu with |Y | > k and suppose x, y ∈ Y with x � y. The
rank of x in Y is therefore larger than the rank of y in Y . Consequently,
p�k (x, Y ) > p�k (y, Y ) according to Definition 3. Choice overload causes the
decision-maker to commit“mistakes”while choosing her �-best alternative in
Y . However, she is still more likely to choose a better alternative (according
to �) than a worse one, i.e. less likely to make a bigger mistake.

We illustrate a BPCR with an example below.

Example 1. Let X = {x1, x2, x3, x4} with x1 � x2 � x3 � x4. For
the purposes of this example, we shall introduce some special notation.
A menu Y will be understood to be of the form {xi1 , xi2 , . . . , xi|Y |} where
i1 < i2 . . . < i|Y |. For any capacity k, BPCR p�k and menu Y , p�k (·, Y ) will
denote the |Y |-dimensional vector whose first element is the probability as-
signed to alternative xi1 , the second element is the probability assigned to
alternative xi2 and so on.

Then,

p�2 (·, Y ) =


(1, 0) if |Y | = 2

(2
3
, 1
3
, 0) if |Y | = 3

(1
2
, 1
3
, 1
6
, 0) if |Y | = 4

p�3 (·, Y ) =


(1, 0) if |Y | = 2

(1, 0, 0) if |Y | = 3

(3
4
, 1
4
, 0, 0) if |Y | = 4

and

p�4 (·, Y ) =


(1, 0) if |Y | = 2

(1, 0, 0) if |Y | = 3

(1, 0, 0, 0) if |Y | = 4

Binary choices are deterministic when capacity is two. Binary and ternary
choices are deterministic when capacity is three and all choices are determin-
istic when capacity is four. Note also that, for any capacity and menu,
the decision-maker chooses a higher ranked alternative according to � with
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higher probability. �

We now introduce the axioms that characterize BPCRs. The first axiom

is Sen’s Condition α (see Rubinstein [20], Lecture 3) or contraction consis-

tency, adapted to our context. If the alternative x is chosen with the highest

probability in a menu, it must be chosen with the highest probability in every

sub-menu of the original menu.

A 1. Contraction (CONT): If x ∈ Y ⊂ Z and p(x, Z) > p(x′, Z) for all
x′ ∈ Z \ {x}, then p(x, Y ) > p(x′, Y ) for all x′ ∈ Y \ {x}.

Fishburn [9] uses a similar condition (named P4’) but with weak inequalities

instead of strict ones.

The next axiom is a counterpart of Sen’s Condition β or expansion con-

sistency (Rubinstein [20], Lecture 3). If an alternative y is never chosen from

a menu and the menu is enlarged with a “better alternative” x, then y con-

tinues to be never chosen. The alternative x is better than y in the sense

that the former is chosen with a strictly higher probability than the latter

from the binary menu {x, y}.
A 2. Expansion (EXP): Suppose y ∈ Y and p(y, Y ) = 0. Let x /∈ Y and
suppose p(x, {x, y}) > p(y, {x, y}). Then p(y, Y ∪ {x}) = 0.

Fishburn [9] uses a similar condition (named P4) but without the restriction

that p(x, {x, y}) > p(y, {x, y}). Our condition is therefore weaker. Con-

ditions similar to CONT and EXP are also found in Ok and Tserenjigmid

[17].

The next axiom requires the existence of an alternative in every menu

that is chosen with a strictly higher probability than any other alternative in

the menu. The same axiom is used in Dutta [7].
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A 3. Unique Best (UB): For all Y ⊆ X, there is y ∈ Y such that p(y, Y ) >
p(x, Y ) for all x ∈ Y \ {x}.

Let p∗(Y ) be the largest choice probability observed in menu Y . In other

words, p∗(Y ) = maxz∈Y p(z, Y ). Let Y − be the set Y without the alternatives

with maximal probability. Formally, Y − = Y \ {z ∈ Y : p(z, Y ) = p∗(Y )}.

The next axiom is a weak version of the well-known Luce independence

axiom (Luce [15]). Let y and z be alternatives in Y −, both chosen with non-

zero probabilities. Then, the ratio of the probabilities of choosing y and z in

Y and Y − are the same, i.e. this ratio does not depend on whether the ‘best’

alternatives are available or not. The Luce Independence axiom requires this

ratio to be independent for all pairs of alternatives and for all menus that

include this pair.

A 4. Limited Luce Independence (LLI): Let y, z ∈ Y − with p(y, Y −), p(z, Y −) >
0. Then

p(y, Y −)

p(z, Y −)
=
p(y, Y )

p(z, Y )
.

The LLI axiom imposes restrictions on the manner in which probabilities

of non-maximal alternatives are updated when an alternative chosen with

maximal probability is removed from a menu. The next axiom is also about

updating, but relates to alternatives chosen with maximal probability. If an

alternative is removed from a menu, it is natural to expect the probabili-

ties in the smaller menu to increase since the same probability mass is now

distributed over fewer alternatives. The following axiom requires the ratio

of maximal probabilities in two menus that differ only by the removal of a

maximal alternative in one, to be inversely proportional to the s ize of the

two menus.
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A 5. Ratio of Maximals (RM): Let Y be a menu such that p∗(Y ) < 1. Then,

p∗(Y )

p∗(Y −)
=
|Y −|
|Y |

.

The RM condition can be stated in another way. Noting that |Y | =

|Y −| + 1, rearrangement of terms yields p∗(Y −) = p∗(Y ) + p∗(Y )
|Y −| . In other

words, the maximal probability in the smaller menu Y − is obtained by adding

a fraction 1
|Y −| of the maximal probability in the larger menu Y to itself.

The final axiom is the axiom of Neutrality. For any menu Y and stochastic

choice function p, let p(Y, Y ) = {p(Y, x) : x ∈ Y } i.e. p(Y, Y ) is the set of

probabilities with which various alternatives in Y are chosen by p.

A 6. Neutrality (NEU): For any permutation σ of X and any Y ⊆ X,
p(Y, Y ) = p(σ(Y ), σ(Y )).

The NEU axiom is the familiar requirement that a stochastic choice func-

tion should not discriminate between alternatives. An important consequence

of this axiom is that the set of probabilities for alternatives in different menus

are the same if the menus are of the same size.

3. Characterization

Our result is the following:

Theorem 1. A BPCR satisfies CONT, EXP, UB, LLI, RM and NEU. Con-
versely, let p be a stochastic choice function satisfying the axioms. Then there
exists a unique strict ordering � over X and a unique integer k ≥ 2 such
that the BPCR p�k coincides with p.
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Proof. Necessity: Let p�k be a BPCR where � is a strict ordering over X

and k is an integer such that n ≥ k ≥ 2. We show that p�k satisfies all the

axioms in the statement of the Theorem.

CONT: Suppose x ∈ Y ⊂ Z and p�k (x, Z) > p�k (x′, Z) for all x′ ∈ Z \ {x}. If

|Z| ≤ k, then x is maximal in the restriction of � to Z. It is also maximal

in the restriction of � to Y . Hence p�k (x, Y ) > p�k (x′, Y ) for all x′ ∈ Y \ {x}.

If |Z| > k, x has rank |Z| − 1 in the restriction of � to Z according to

Definition 3. It has also rank |Z| − 1 in the restriction of � to Y . Hence

p�k (x, Y ) > p�k (x′, Y ) for all x′ ∈ Y \ {x}.

EXP: Suppose y ∈ Y and p�k (y, Y ) = 0. Let x /∈ Y and suppose p�k (x, {x, y}) >

p�k (y, {x, y}). Since x � y, we have |{z ∈ Y : y � z}| = |{z ∈ Y ∪ {x} :

y � z}|. Since p�k (y, Y ) = 0, we have two cases: (i) if |Y | > k, we have

|{z ∈ Y : y � z}| < k−1 and (ii) if |Y | ≤ k, then |{z ∈ Y : y � z}| < |Y |−1.

Both conclusions follow from Remark 1. Therefore, the following hold: (iii)

if |Y ∪ {x}| > k, we have |{z ∈ Y ∪ {x} : y � z}| < k − 1 and (iv) if

|Y | ≤ k, then |{z ∈ Y ∪ {x} : y � z}| < |Y | − 1. Again Remark 1 implies

p�k (y, Y ∪ {x}) = 0.

UB: This follows immediately by inspection of Definition 3.

LLI: Let Y be a menu such that |Y | = l + 1. Thus |Y −| = l. Pick y, z ∈ Y −

such that p�k (y, Y −), p�k (z, Y −) > 0. Let i (resp. j) be the rank of y (resp. z)

in the restriction of � to Y −. Then the rank of y (resp. z) in the restriction

of � to Y is also i (resp. j). It follows from Definition 3 that

p�k (y, Y −)

p�k (z, Y −)
=

(
i

k−1

)(
l
k

)(
l
k

)(
j

k−1

) =

(
i

k−1

)(
j

k−1

) .
13



Similarly,

p�k (y, Y )

p�k (z, Y )
=

(
i

k−1

)(
l+1
k

)(
l+1
k

)(
j

k−1

) =

(
i

k−1

)(
j

k−1

) .
Clearly

p�k (y,Y −)

p�k (z,Y −)
=

p�k (y,Y )

p�k (z,Y )
so that LLI is satisfied.

RM: Let Y be a menu such that |Y | = l+1. Thus |Y −| = l. According to Def-

inition 3, p�∗k (Y ) =
( l
k−1)

(l+1
k )

. Similarly, p�∗k (Y −) =
( l−1
k−1)
( l
k)

. After simplification,

p�∗k (Y ) = k
l+1

and p�∗k (Y −) = k
l
. Thus,

p�∗k (Y )

p�∗k (Y −)
= l

l+1
as required.

NEU: This follows immediately by inspection of Definition 3.

Sufficiency: Let p be a stochastic choice function satisfying CONT, EXP,

UB, LLI, RM and NEU. We begin by identifying a strict ordering � over X.

Let � be a binary relation defined on X by x � y iff p(x, {x, y}) = 1,

for x 6= y. We show that � is (i) complete, (ii) anti-symmetric and (iii)

transitive.

Suppose there exists x, y ∈ X such that 0 < p(x, {x, y}) < 1. As-

sume without loss of generality that p(x, {x, y}) ≥ p(y, {x, y}). UB im-

plies that the previous inequality must be strict. Applying RM, we have

p(x,{x,y})
p(x,{x}) = 1

2
. Since p(x, {x}) = 1, we conclude that p(x, {x, y}) = 1

2
.

Therefore p(x, {x, y}) = p(y, {x, y}) contradicting UB. Consequently 0 <

p(x, {x, y}) < 1 cannot hold, i.e. p(x, {x, y}) is either zero or one and ei-

ther x � y or y � x must hold. Moreover both cannot hold so that � is

anti-symmetric.

Suppose � is not transitive, i.e. x � y, y � z and x � z. Clearly

x 6= z. Since � is complete, we must have z � x. So, p(x, {x, y}) = 1,

p(y, {y, z}) = 1 and p(z, {x, z}) = 1. According to UB, one of p(x, {x, y, z}),
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p(y, {x, y, z}) and p(z, {x, y, z}) is strictly larger than the two others. Let us

consider the three possible cases.

• p(x, {x, y, z}) is strictly larger than both p(y, {x, y, z}) and p(z, {x, y, z}.

Then CONT implies p(x, {x, z}) > p(z, {x, z}) = 1.

• p(y, {x, y, z}) is strictly larger than both p(x, {x, y, z}) and p(z, {x, y, z}).

Then CONT implies p(y, {x, y}) > p(x, {x, y}) = 1.

• p(z, {x, y, z}) is strictly larger than both p(x, {x, y, z}) and p(y, {x, y, z}).

Then CONT implies p(z, {y, z}) > p(y, {y, z}) = 1.

The three cases imply a probability strictly larger than 1, which is impossible.

This proves that � is transitive. In view of the fact that � is complete, anti-

symmetric and transitive, all alternatives in X can be relabelled 1, 2, . . . , n in

a manner such that i � j iff i > j. Thus the smallest and largest alternatives

in X according to � are 1 and n respectively. For any j ∈ {1, . . . , n}, let [j]

denote the set {1, . . . , j}.

Let k be the smallest integer in the set [n− 1] such that p(j, [j]) = 1 for

all j ≤ k and p(k+ 1, [k+ 1]) < 1. If p(j, [j]) = 1 for all j ∈ [n], we let k = n.

We claim that k ≥ 2. To see this, observe that p(1, [1]) = 1. If k = 1, then

RM and p(1, [1]) = 1 imply p(2, [2]) = p(1, [2]) = 1/2, thereby violating UB.

Therefore k ≥ 2.

Consider the case where k = n. We will show that p = p�n . Pick an

arbitrary menu Y . Suppose |Y | = l and j∗ is the alternative with the highest

index present in Y , i.e. j∗ � x for all x ∈ Y \{j∗}. By assumption, p(l, [l]) = 1

so that p(r, [l]) = 0 for all r < l. The NEU axiom implies the following: for

any menu Z such that |Y | = |Z|, p(Y, Y ) = p(Z,Z) holds. By picking Z = [l]
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and noting that |Y | = |[l]|, we can apply NEU to infer that p(Y, Y ) = {1, 0}.

Thus, there exists an alternative in Y which is chosen with probability one

while the remaining alternatives are never chosen. We complete the proof

by showing that the alternative chosen with probability one in Y is j∗. By

assumption, p(j∗, [j]) = 1. Since Y ⊂ [j∗], CONT implies p(j∗, Y ) > p(x, Y )

for all x ∈ Y \ {j∗}. Therefore p(j∗, Y ) = 1 as required.

We now consider the remaining case, i.e. there exists k ∈ {2, . . . , n − 1}

such that p(j, [j]) = 1, for all j ≤ k and p(k + 1, [k + 1]) < 1. Our goal is to

show the following: for all l ∈ {k + 1, . . . , n},

p(r, [l]) =


(r−1
k−1)
( l
k)

if k ≤ r ≤ l

0 if r < k.
(1)

We establish (1) by induction on l. We first show that (1) holds for

l = k + 1. Then we show that if (1) holds for some l ≥ k + 1, it also holds

for l + 1.

By assumption, p(k, [k]) = 1, so that p(r, [k]) = 0 for all r < k. Since k �

r for all r < k, EXP implies p(r, [k+ 1]) = 0 for all r < k. According to RM,

p(k+1,[k+1])
p(k,[k])

= k
k+1

. Since p(k, [k]) = 1 by assumption, p(k + 1, [k + 1]) = k
k+1

.

Also p(k, [k + 1]) + p(k + 1, [k + 1]) = 1, so that p(k, [k + 1]) = 1
k+1

. Noting

that k
k+1

=
( k
k−1)

(k+1
k )

and 1
k+1

=
(k−1
k−1)

(k+1
k )

, we can confirm that (1) is satisfied for the

case of l = k + 1.

Suppose that (1) holds for some integer l where l ≥ k+ 1. We claim that

(1) holds for l + 1, i.e.
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p(r, [l + 1]) =


(r−1
k−1)

(l+1
k )

if k ≤ r ≤ l + 1

0 if r < k.
(2)

Since l > k, we have l + 1 � r for all r < k. Since p(r, [l]) = 0 for

all r < k by the induction hypothesis, we can apply EXP to conclude that

p(r, [l + 1]) = 0) for all r < k.

We now consider p(l + 1, [l + 1]). We have

p(l + 1, [l + 1]) = p(l, [l]).
l

l + 1
(3)

=

(
l−1
k−1

)(
l
k

) .
l

l + 1

=

(
l

k−1

)(
l+1
k

)

The first equality follows from RM, the second from the induction hypoth-

esis and the last from some routine manipulation. Observe that Equation 3

establishes Equation 2 for the case r = l + 1.

We claim that p(l+ 1, [l+ 1]) > p(r, [l+ 1]) for all r < l+ 1. Suppose this

is false. Since p satisfies UB, there exists r 6= l + 1 such that p(r, [l + 1]) >

p(r+1, [l+1]). By CONT, p(r, {r, l+1}) > p(l+1, {r, l+1}) which contradicts

our assumption that l + 1 � r.

We now consider choices from the menu [l + 1]. The argument in the

previous paragraph implies that l + 1 is the alternative which gets maximal

probability in [l + 1]. Pick r such that l + 1 > r > k. According to the
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induction hypothesis, p(r, [l]) =
(r−1
k−1)
( l
k)

> 0 and p(k, [l]) =
(k−1
k−1)
( l
k)

> 0. Axiom

LLI can therefore be applied to infer that

p(r, [l + 1])

p(k, [l + 1])
=
p(r, [l])

p(k, [l])
=

(
r − 1

k − 1

)
. (4)

Therefore,

p(r, [l + 1]) = p(k, [l + 1])

(
r − 1

k − 1

)
. (5)

Adding over all r from k to l and noting that p(k, [l+ 1]) =
(
k−1
k−1

)
p(k, [l+ 1]),

we have
l∑

r=k

p(r, [l + 1]) = p(k, [l + 1])
l∑

r=k

(
r − 1

k − 1

)
. (6)

Since
∑l

r=k p(r, [l + 1]) + p(l + 1, [l + 1]) = 1 and p(l + 1, [l + 1]) =
( l
k−1)

(l+1
k )

,

Equation 6 can be rewritten as follows:

(
l+1
k

)
−
(

l
k−1

)(
l+1
k

) = p(k, [l + 1])
l∑

r=k

(
r − 1

k − 1

)
. (7)

However,

l∑
r=k

(
r − 1

k − 1

)
+

(
l

k − 1

)

=
l+1∑
r=k

(
r − 1

k − 1

)
=

(
l + 1

k

)
. (8)

The last step in Equation 8 is an identity which is proved in the Appendix.

Using (8) in Equation 7 and cancelling terms, we have
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p(k, [l + 1]) =
1(
l+1
k

) =

(
k−1
k−1

)(
l+1
k

) . (9)

Observe that Equation 9 establishes Equation 2 for the case r = k. Fi-

nally, consider r = k + 1, . . . , l. Observe that Equation 5 implies

p(r, [l + 1]) =

(
r−1
k−1

)(
l+1
k

) . (10)

Thus, Equation 10 establishes Equation 2 for r = k+1, . . . , l and Equation

2 is verified generally. Since p(j, [j]) = 1 for all j ≤ k by assumption,

comparison with the probabilities specified in Definition 2 confirms that p

agrees with p�k for the sets [l], l ∈ [n]. The final step in the proof consists in

showing that p and p�k agree over all sets.

Recall that we have already proved the result for the case k = n. Assume

therefore that k < n. Pick an arbitrary menu Y with |Y | = l. Assume

without loss of generality that Y = {yl, yl−1, . . . , y1} where yl � yl−1 � . . . �

y1. According to NEU, the set of choice probabilities of alternatives in Y

is equal to the set of choice probabilities of alternatives in [l]. In order to

complete the proof, we shall show that p(yj, Y ) = p(j, [l]) for all j ∈ [l].

We first argue that mY = yl, where mY denotes the alternative that

has the largest probability in Y . Let yl be the alternative j∗ in the list of

alternatives 1, 2, . . . , n. We can verify by observation that j∗ = mZ where

Z = [j∗]. Since yl � yl−1 � . . . � y1 by assumption, we must have Y ⊂ Z.

Applying CONT, we have mY = j∗ ≡ yl as claimed.

We shall show that p(yj, Y ) = p(j, [l]) for all j ∈ [l] by induction on l.

We first claim that this is true for all l ≤ k. In this case, p(l, [l]) = 1 and

p(j, [l]) = 0 for all j < l. By applying NEU, it follows that p(yj, Y ) = 1 for
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some yj ∈ Y . Since mY = yl, it must be the case that p(yl, Y ) = 1 proving

our claim.

Suppose p(yj, Y ) = p(j, [r]) for all j ∈ [r] holds for all Y such that |Y | = r.

In view of the argument in the previous paragraph, we can assume r ≥ k.

We will show that p(yj, Y ) = p(j, [r + 1]) for all j ∈ [r + 1] holds for all Y

such that |Y | = r+1. Let Y = {yr+1, yr, . . . , y1} where yr+1 � yr � · · · � y1.

We know that mY = yr+1. Since |Y −| = r, the induction hypothesis applies,

so that p(yj, Y
−) = p(j, [r]) for all j ∈ [r]. Observe that p(j, [r]) = 0 for

j ∈ [k − 1] so that p(yj, Y
−) = 0 for j ∈ [k − 1]. Since yr+1 � yj for all

j ∈ [k − 1], EXP implies p(yj, Y ) = 0 for all j ∈ [k − 1]. Summarizing, we

have shown the following thus far: p(yj, Y ) = p(j, [r+ 1]) for j ∈ [k− 1] and

j = r + 1.

Clearly p(yjY
−) > 0 for j = k, . . . , r. Consider the case where r = k.

We know p(yr+1, Y ) = p(r + 1, [r + 1]) and p(yj, Y ) = 0 for all j ∈ [k − 1].

Therefore NEU implies p(yr, Y ) = p(r, [r + 1]) completing the proof of this

case. Suppose r > k. Let yi, yj ∈ Y \ {yr+1} be such that yi � yj and

p(yi, Y
−), p(yj, Y

−) > 0, i.e. i, j ∈ {k, . . . , r} and i > j. Applying LLI and

the induction hypothesis, we have

p(yi, Y )

p(yj, Y )
=
p(yi, Y

−)

p(yj, Y −)
=
p(i, [r])

p(j, [r])
.

It follows from inspection that p(i, [r]) > p(j, [r]). Hence, we have p(yi, Y ) >

p(yj, Y ). Note that NEU and our earlier results imply that the numbers

p(yr, Y ), p(yr−1, Y ), . . . , p(yk, Y ) are a permutation of the numbers p(r, [r +

1]), p(r−1, [r+1]), . . . , p(k, [r+1]). Since p(r, [r+1]) > . . . p(r−1, [r+1]) >

. . . > p(k, [r + 1]) and p(yr, Y ) > p(yr−1, Y ) > . . . > p(yk, Y ), it follows that

p(yj, Y ) = p(j, [r + 1]) for j = k, . . . , r and this completes the proof of the
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result. �

Remark 3. In the case where n = 3, the LLI and NEU axioms are redun-
dant. Let X = {x1, x2, x3}. Using CONT and UB, we can infer the ordering
� over X. Assume without loss of generality that x3 � x2 � x1. There
are two cases to consider. The first is p(x3, {x1, x2, x3}) = 1. Here p is the
BPRC p�3 . The second case is when p(x3, {x1, x2, x3}) < 1. By EXP, we have
p({x1, x2, x3}, x1) = 0 and RM implies p(x3, {x1, x2, x3})/p(x3, {x2, x3}) =
2/3. Since p(x3, {x2, x3}) = 1, p(x3, {x1, x2, x3}) = 2

3
and p(x2, {x1, x2, x3}) =

1
3
. Thus p is the BPRC p�2 . Note that the LLI and NEU axioms were not

used in the argument.

4. Independence of the axioms

.

In this section, we show that the axioms in Theorem 1 are independent.

For each condition, we provide an example satisfying all conditions but one,

indicated between parentheses. According to Remark 3, the axioms can only

be independent when n ≥ 4. Some of the examples below only consider

the case n = 4. This is for expositional convenience—the examples can be

extended generally.

Example 2. (CONT) Let X = [4] and define the stochastic choice function
p as follows:

• p(1, [4]) = 1/2, p(2, [4]) = 1/3, p(3, [4]) = 1/6,

• p(1, [3]) = 2
3
, p(2, [3]) = 1

3
,

• p(2, {1, 2}) = 1, p(1, {1, 3}) = 1, p(1, {1, 4}) = 1, p(2, {2, 3}) = 1,
p(2, {2, 4}) = 1, p(3, {3, 4}) = 1.

For any menu Y of size 3 that is not equal to [3], p(·, Y ) is equal to p(·, [3])
up to a bijection σ : [l]→ Y respecting the natural ordering.
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1. CONT is violated because p(1, [3]) > p(2, [3]), but p(1, {1, 2}) < p(2, {1, 2}).

2. Let us first consider the menus of size 3. One of them (namely [3]) has
zero probability for alternative 3. But there is no x ∈ X \ [3] where
p(x, {x, 3}) > p(3, {x, 3}). Hence, EXP does not apply. The three
other menus of size 3 have zero probability for alternative 4. For each
such menu Y , there is x ∈ X \ Y such that p(x, {x, 4}) > p(4, {x, 4}).
In all cases, we have p(4, [4]) = 0 in accordance with EXP.

Let us now consider the menus of size 2.

– p(1, {1, 2}) = 0, but there is no x ∈ X\{1, 2} such that p(x, {x, 1}) >
p(1, {x, 1}). Hence, EXP does not apply.

– p(3, {1, 3}) = 0, p(2, {2, 3}) > p(3, {2, 3}) and p(3, {1, 2, 3}) = 0
in accordance with EXP. The situation is similar for the remaining
menus of size 2.

3. UB can be verified directly.

4. Y = X is the only menu where two alternatives are chosen with strictly
positive probability from Y −. We have

p(2, {2, 3, 4})
p(3, {2, 3, 4})

= 2 =
p(2, [4])

p(3, [4])

and LLI holds.

5. We have to check RM for all menus of size 3 or 4. For the menu [4], we
have

p(1, [4])

p(2, {2, 3, 4})
= 3/4 =

|{2, 3, 4}|
|[4]|

.

For the menu {1, 2, 3}, we have

p(1, {1, 2, 3})
p(2, {2, 3})

= 2/3 =
|{2, 3}|
|{1, 2, 3}|

.

The situation is similar for the menus {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.
Hence RM holds.

6. For menus of size 3, NEU holds by construction. For menus of size 2,
NEU holds because there is always a probability equal to 1 and another
equal to zero. �
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Example 3. (EXP) Let X = [4]. Define the stochastic choice function p as
follows:

• p(2, [2]) = 1, p(1, [2]) = 0,

• p(3, [3]) = 2
3
, p(2, [3]) = 1

6
, p(1, [3]) = 1

6
,

• p(4, [4]) = 1
2
, p(3, [4]) = 1

3
, p(2, [4]) = 1

12
, p(1, [4]) = 1

12
.

For any menu Y of size l that is not equal to [l], p(·, Y ) is equal to p(·, [l])
up to a bijection σ : [l]→ Y respecting the natural ordering.

1. Since p(1, [2]) = p(1, {1, 3}) = 0 and p(1, [3]) > 0, we have a violation
of EXP.

2. CONT and UB can be verified directly by inspection. NEU holds by
construction.

3. Note that if Y = [3], then Y − does not have two non-zero choice
probabilities. Therefore the only candidate menu for verifying LLI is
Y = X. Note that p(3,[4])

p(2,[4])
= p(3,[3])

p(2,[3])
= 4, p(3,[4])

p(1,[4])
= p(3,[3])

p(1,[3])
= 4 while

p(2,[4])
p(1,[4])

= p(2,[3])
p(1,[3])

= 1. Therefore LLI is satisfied.

5. It suffices to verify RM only for menus of the type [l]. Since p(4,[4])
p(3,[3])

= 3
4

and p(3,[3])
p(2,[2])

= 2
3
, RM is verified. �

Example 4. (UB) Let X = {x1, x2, . . . , xn} with n ≥ 3. Define the stochas-
tic choice function p as follows: for any menu Y and y ∈ Y , p(y, Y ) = 1

|Y | .

1. UB is violated because all probabilities in a menu are equal.

2. CONT is satisfied vacuously because no alternative in a menu is chosen
with a strictly higher probability than the other alternatives.

3. EXP holds trivially because all alternatives in a menu are chosen with
strictly positive probability.

4. LLI holds vacuously because the alternative mY is not well-defined for
any menu Y .
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5. RM holds vacuously for the same reason as LLI.

6. Let Y and Z be menus such that |Y | = |Z|. NEU holds with any
bijection σ : Y → Z. �

Example 5. (LLI) Let X = [4]. Define the stochastic choice function p as
follows:

• p(2, [2]) = 1, p(1, [2]) = 0,

• p(3, [3]) = 2
3
, p(2, [3]) = 1

3
, p(1, [3]) = 0,

• p(4, [4]) = 1
2
, p(3, [4]) = 5

12
, p(2, [4]) = 1

12
, p(1, [4]) = 0.

For any menu Y of size l that is not equal to [l], p(·, Y ) is equal to p(·, [l])
up to a bijection σ : [l]→ Y respecting the natural ordering.

1. LLI is violated because p(3,[4])
p(2,[4])

= 5 while p(3,[3])
p(2,[3])

= 2.

2. CONT, EXP, UB can be verified directly. NEU is satisfied by construc-
tion.

3. RM is satisfied because p(4,[4])
p(3,[3])

= 3
4

while p(3,[3])
p(2,[2])

= 2
3
. �

Example 6. (RM) Let X = [4]. Define the stochastic choice function p as
follows:

• p(2, [2]) = 1,

• p(3, [3]) = 2
3
, p(2, [3]) = 1

3
,

• p(4, [4]) = 2
3
, p(3, [4]) = 2

9
, p(2, [4]) = 1

9
.

For any menu Y of size l that is not equal to [l], p(·, Y ) is equal to p(·, [l])
up to a bijection σ : [l]→ Y respecting the natural ordering.

1. RM is violated because p(4,[4])
p(3,[3])

= 1 while RM requires this ratio to be
3
4
.
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2. CONT, EXP, UB can be verified directly. NEU is satisfied by construc-
tion.

3. LLI is satisfied because p(3,[4])
p(2,[4])

= p(3,[3])
p(2,[3])

= 2. �

Example 7. (NEU) Let X = [4]. Define the stochastic choice function p as
follows:

• p(i, {i, j}) = 1 whenever i > j,

• p(3, {1, 2, 3}) = 2
3

and p(2, {1, 2, 3}) = 1
3
,

• p(4, {1, 2, 4}) = 2
3

and p(2, {1, 2, 4}) = 1
3
,

• p(4, {2, 3, 4}) = 1,

• p(4, {1, 3, 4}) = 1,

• p(4, [4]) = 1
2
, p(3, [4]) = 1

3
and p(2, [4]) = 1

6
.

1. Let Y = {2, 3, 4} and Z = {1, 2, 3}. There are two alternatives in Y
that have zero probability of being chosen while there is only one such
alternative in Z. Clearly there cannot be a bijection between p(·, Y )
and p(·, Z). Hence NEU is violated.

2. UB can be easily verified by inspection. For any menu Y , i = mY if
i > j for all j ∈ Y . Therefore p satisfies CONT.

3. Observe that 1 is never chosen in any menu while 4 is always chosen
with positive probability. In order to verify EXP, we therefore need
to only consider 2 and 3. Consider alternative 2. It is chosen with
probability 0 in the menus {2, 3}, {2, 4} and {2, 3, 4}. Enlarging {2, 3}
or {2, 4} by adding a better alternative than 2 yields {2, 3, 4} in which
2 is chosen with probability 0. Enlarging {2, 3, 4} by adding a better
alternative than 2 is not possible. Consider alternative 3. It is chosen
with probability 0 only in the menus {3, 4}, {1, 3, 4} and {2, 3, 4}. None
of these menus can be enlarged by adding a better alternative than 3.
Hence p satisfies EXP.
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4. In order to verify LLI, we are required to identify menus Y such that
there are at least two alternatives chosen with strictly positive proba-
bilities in Y −. The only such menu is X and the only two alternatives
chosen with strictly positive probability in X− are 3 and 2. Since
p(3,{1,2,3})
p(2,{1,2,3}) = 2 = p(3,X)

p(2,X)
, LLI is satisfied.

5. In order to verify RM, we are required to identify menus Y such that
p(mY , Y ) < 1. The only such menus are X, {1, 2, 3} and {1, 2, 4}.
Since p(4,X)

p(3,{1,2,3}) = 3
4

and p(3,{1,2,3})
p(2,{1,2}) = p(4,{1,2,4})

p(2,{1,2}) = 2
3
, RM is satisfied. �

5. Conclusion and discussion

We presented a new stochastic choice function modelling the behaviour of

a decision-maker with limited processing capacity. When presented with a

large menu, she randomly chooses a sub-menu of fixed size with uniform

probability and selects the best alternative according to a strict ordering �.

For smal menus, she just maximizes �. This rule is characterized by six

independent axioms. In this section, we discuss some noteworthy features of

our model and axioms.

5.1. The Uniform Distribution

A salient feature of the BPCR is that sub-menus of size k are drawn according

to a uniform distribution. It it is tempting to consider other distributions,

but if we do so without imposing any restrictions on the distribution, then

none of our six axioms is guaranteed to hold. A sensible restriction would

be to assume that sub-menus of size k containing more preferred alternatives

(according to �) have a strictly greater chance of being sampled. In that
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case, only CONT, EXP and UB are guaranteed to hold.

We note that from a computational complexity viewpoint, drawing uni-

formly is “easier” than according to a distribution giving greater chance to

more preferred alternatives. The uniform distribution assumption is therefore

consistent with the notion of bounded processing capacity.

5.2. Processing capacity k

None of the axioms in Theorem 1 makes any reference to a threshold k and

yet such an integer k appears in the definition of the family of stochastic

choice functions characterized by the theorem. The following loose reasoning

shows how the threshold emerges from the interaction between the axioms.

Let t be the number of alternatives chosen with zero probability out of the

menu X. By EXP, the number of alternatives chosen with zero probability

out of smaller menus of the form [l] cannot exceed t. By NEU, the same

holds for any menu of size l. Consider the smallest menu [l] such that the

number of alternatives chosen with zero probability out of [l] is t. By LLI,

for all menus [m] with l < m < |X|, the number of alternatives chosen with

zero probability is at least t. But we have seen earlier that it cannot exceed

t. It is therefore equal to t. If we set k = t + 1, we can see the threshold

appearing. For other details, one needs to follow the proof of Theorem 1.

We would like to make a remark regarding the processing capacity k in the

definition of a BPCR. We have assumed it to be deterministic but one could

consider a model where it is an integer-valued random variable for instance,

having a unimodal distribution centred around k. Such a stochastic choice

function would satisfy CONT, EXP, UB and NEU but would violate LLI and
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RM.

5.3. Unique Best

This condition can be seen as unduly restrictive, but it allows us to discuss

the essential features of the BPCR without delving into cumbersome details.

Indeed, if UB does not hold, then it is necessary to consider a preference re-

lation % allowing for indifference and then adding a tie-breaking mechanism.

This clearly makes the axiomatic analysis more complex whilst the more

general model is essentially identical to the one we analyze in this paper.

5.4. Neutrality

Neutrality has consequences that are not immediately obvious: the choice

probabilities associated with the elements of a menu depend only on the

size of the menu and the rank of the elements in the restriction of � to

the menu. Other attributes of the elements in the menu do not play any

role. For instance, any kind of cardinal information about the alternatives

must be discarded (another name for Neutrality could be Ordinality). A

virtue of Neutrality is therefore to constrain the BPCR to be simple from a

computational/cognitive viewpoint.

Neutrality may seem to be the axiom that implies a uniform distribution

but it does not, as shown by Example 6. Indeed, the stochastic choice func-

tion of Example 6 is neutral and can be seen as the result of a BPCR with

k = 2 and 4 � 3 � 2 � 1 except that the sub-menus are not drawn according
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to a uniform distribution but according to this distribution:

P ({3, 4}|[4]) = P ({2, 4}|[4]) = P ({1, 4}|[4]) = 2/9,

P ({2, 3}|[4]) = P ({1, 3}|[4]) = P ({1, 2}|[4]) = 1/9,

P ({x, y}|{x, y, z}) = 1/3 ∀x, y, z ∈ [4],

where P (Z|Y ) represents the probability of drawing the sub-menu Z out of

the menu Y .

It would be interesting to characterize stochastic choice functions that

satisfy all the axioms in Theorem 1 except NEU. A close look at the proof

of Theorem 1 shows that the resulting family of stochastic choice functions

does not have a simple structure: the choice probabilities for all menus of

the form [l] are identical to those predicted by the BPCR, but the choice

probabilities for other menus are less restricted and can deviate from the

BPCR predictions, as in Example 7.

6. Appendix

Proposition: Pick integers k and l such that l ≥ k ≥ 2. Then
∑l+1

r=k

(
r−1
k−1

)
=(

l+1
k

)
.

Proof. Fix k. We prove the proposition by induction on l. We first show

that it holds when l = k. This is true because

(
k − 1

k − 1

)
+

(
k

k − 1

)
= 1 + k =

(
k + 1

k

)
.

Suppose the Proposition holds for l equal to some s ≥ k We show that it
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holds when l = s+ 1. We have

l+1∑
r=k

(
r − 1

k − 1

)
=

s+2∑
r=k

(
r − 1

k − 1

)

=
s+1∑
r=k

(
r − 1

k − 1

)
+

(
s+ 1

k − 1

)
=

(
s+ 1

k

)
+

(
s+ 1

k − 1

)
=

(s+ 1)!

k!(s− k + 1)!
+

(s+ 1)!

(k − 1)!(s− k + 2)!

=
(s+ 1)!((s− k + 2) + k)!

k!(s− k + 2)!

=
(s+ 2)!

k!(s− k + 2)!

=

(
s+ 2

k

)
=

(
l + 1

k

)
.
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