
This is an example of plagiarism, submitted to

4OR: A Quarterly Journal of Operations Research.

It is a very slightly modified and shortened copy of the paper by S. Storøy:

“The Transportation: More-for-less Criterion”

downloadable from the Repository of Optimization Online

http://www.optimization-online.org/DB_FILE/2007/09/1763.pdf



The Transportation: More-for-less Criterion 
 
 
 
 
 
 
 
 

M. Sreenivas 
Alluri Institute of Management Sciences 

Hunter Road, Hanamkonda – 506001 
A.P., INDIA 

Mobile: 98485 74382 
mastermaruthi@gmail.com 

 
 
 
 

Dr. T. Srinivas 
Department of Mathematics 

Kakatiya University 
Warangal – 506009 

tsrinivasku@gmail.com
 
 
 
 

Correspondence Author: 
 

M. Sreenivas 
H.No: 23-6-80/7 
Opp: Physiotherapy College 
Hunter Road, Hanamkonda – 506001 
A.P., INDIA 
Mobile: 98485 74382 
mastermaruthi@gmail.com 
 

 
 
 
 
 
 
 
 
 
 
 
 

PLA
GIA

RIS
M



 2

The Transportation: More-for-less Criterion 
 
 

Abstract 

The transportation more-for-less criterion is related to the classical 

transportation problem. For certain instances of this problem an increase in the 

amount of goods to be transported may lead to a decrease in the optimal total 

transportation cost. Even though the criteria has been known since the early days of 

linear programming, it has got very little attention in the literature, and it seems to be 

almost unknown to the majority of the LP-practitioners.  

This paper presents necessary and sufficient conditions for a transportation 

cost matrix to be protected against the criteria. These conditions are rather restrictive; 

supporting the results reported from simulations that the criteria might occur quite 

frequently. We also consider some post optimal conditions for when the criteria may 

occur. A simple procedure for modifying an existing model to exploit the criteria is 

given and illustrated by examples.  

 

Keywords:  

Transportation Problem; Transportation Criteria; Linear Programming; 

Duality 

 

1 Introduction 

 

The increasing use of spatial analytical methods to identify optimal locations 

and efficient allocations has become a characteristic of operations in the private and 

public sectors. As companies face constant pressure for cost reduction and efficient 

operations, location and transportation strategies are required for efficient use of 

limited resources. 

 

Various location and allocation objectives may be supported by the inclusion 

of constraints from the Natural Slack or Transportation Paradox frameworks. These 

constraints, when incorporated into existing models, provide opportunities for a More 

- for- Less solution which indicates improved system performance expressed either by 

expenditure savings, service improvements or both simultaneously. The philosophy 
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behind the More-for-Less paradox is in tune with objectives of all classes of location 

models. Indeed, the More-for-Less paradox searches for additional benefit from a 

lower outlay of resources. Thus, the ability to exploit spatial relationships to extract 

extra efficiency should be a critical issue in location modeling. 

The classical transportation problem is the name of a mathematical model, 

which has a special mathematical structure. The mathematical formulation of a large 

number of problems conforms (or can be made to conform) to this special structure. 

So the name is frequently used to refer to a particular form of mathematical model 

rather than the physical situation in which the problem most natural originates. 

The standard problem description is as follows:  

A commodity is to be transported from each of m sources to each of n 

destinations. The amounts available at each of the sources are ai, i = 1, . . . ,m, and the 

demands at the destinations are bj , j = 1, . . . , n respectively. The total sum of the 

available amounts at the sources is equal to the sum of the demands at the 

destinations. The cost of transporting one unit of the commodity from source i to 

destination j is cij . 

The goal is to determine the amounts xij to be transported over all routes (i, j) 

such that the total transportation cost is minimized. The mathematical formulation of 

this standard version of the transportation problem is the following linear program, 

TP: 

 
                    

ji,          0x           and

1,2,.....n  jfor        bx                    

1,2,.....m  ifor        ax      to subject

cxZ imizemin

ij

j

m

1i
ij

i
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1j
ij

m

1i

n

1j
ijij



















 

 

An instance of TP is specified by an m × n cost matrix C = [cij], an n-

dimensional demand vector b = [bj] and an m-dimensional supply vector a = [ai]. All 

the data are assumed to be nonnegative real numbers. We will use the notation        

z(C, a, b) to denote the optimal objective value of an instance of TP specified by C, a 

and b. 
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The so-called transportation criterion is the name of the following behaviour 

of the transportation problem: Certain instances have the property that it is possible to 

decrease the optimal objective value by increasing the supplies and demands. More 

precisely, let 
^
a  and 

^
b  be two other supply and demand vectors, such that 

^
a    a and 

^
b    b. Then the criteria occurs if and only if z(C, 

^
a , 

^
b ) < z(C, a, b). 

 

Example:1: 

 Let 

87Demand
1060320O
530050O

SupplyDD

2

1

21

 

 By MODI method, the optimum solution is given by  

x11=5, x12=0, x21=2 and x22=8  with min Z = 1370. 

 Let us denote the same values in the matrices as follows: 

     


















82
05

 Xand   87b , 105a  , 
60320
30050

C                                   

with Z(C,a,b)=1370. 

 Now on increasing a1 and b2 by one unit, i.e. let    87b and  106a
^^
  

The optimal solution is then: 









91
06

X  with z(C, 
^
a , 

^
b ) = 1160. So one 

more unit transported will reduce the optimal cost by 210.  

 Now the main focus is to identify where the value is to be increased and its 

alterations to the remaining basic cells. 

 

2 Historical facts 

It is not quite clear when and by whom this criterion was first discovered. 

Monge first formulated the transportation problem itself in 1781, which was solved by 

geometrical means and Hitchcock ([11]) in 1941, and was independently treated by 

Koopmans and Kantorovich. In 1951 Dantzig gave the standard LP- formulation TP 

in [7] and applied the simplex method to solve it. Very efficient algorithms and 

corresponding software have been developed for solving it. 
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The transportation criterion is, however, hardly mentioned at all where the 

transportation problem is treated. Apparently, several researchers have discovered the 

criteria independently from each other. But most papers on the subject refer to the 

papers by Charnes and Klingman [6] and Szwarc [14] as the initial papers. In [6] 

Charnes and Klingman name it the more-for-less criteria, and they write: The criteria 

was first observed in the early days of linear programming history (by whom no one 

knows) and has been a part of the folklore known to some (e.g. A.Charnes and 

W.W.Cooper), but unknown to the great majority of workers in the field of linear 

programming. 

According to [4], the transportation criteria is known as Doigs criteria at the 

London School of Economics, named after Alison Doig who used it in exams etc. 

around 1959 (Doig did not publish any paper on it). 

Since the transportation criteria seems not to be known to the majority of those 

who are working with the transportation problem, one may be tempted to believe that 

this phenomenon is only an academic curiosity, which will most probably not occur, 

in any practical situation. But that seems not to be true. Experiments done by Finke 

[9], with randomly generated instances of the transportation problem of size 100×100 

and allowing additional shipments (post optimal) show that the transportation costs 

can be reduced considerably by exploiting the criteria properties. More precisely, the 

average cost reductions achieved are reported to be 18.6% with total additional 

shipments of 20.5%. 

In a recent paper [8], Deineko & al. develop necessary and sufficient 

conditions for a cost matrix C to be protected against the transportation criteria. These 

conditions are rather restrictive, supporting the observations by Finke. 

 

3 Non-occurrence of the criteria 

In [8] Deineko & al. give an exact characterization of all cost matrices C that 

are protected against the transportation criteria. A protected cost matrix satisfies     

z(C, a, b)   z(C, 
^
a , 

^
b ) for all supply vectors a and 

^
a  with a

^
a  and for all 

corresponding demand vectors b and 
^
b  with b 

^
b . So regardless of the choice of the 

supply and demand vectors, the transportation criterion does not arise when the cost 

matrix C is protected. 
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Theorem: 1: 

A m×n cost matrix C = [cij ] is protected against the transportation criteria if 

and only if, for all integers q, r, s, t with 1  q, s  m, 1  r, t  n, q   s, r  t, 

the inequality                               

cqr  cqt + csr         (1) 

is satisfied. 

Proof:  

Let C be protected against the transportation criteria. 

To prove that (1) is satisfied. 

If possible, suppose (1) is not true. 

i.e. cqr > cqt + csr for some q, r, s, t.  

Then consider an instance where component q of the supply vector, aq = 1, and 

where all the other components are zero, i.e. ai = 0, i = 1, . . . m, i  q. Similarly, let 

component r of the demand vector, br = 1, and let all the other components be zero, 

i.e. bj = 0, j = 1, . . . , n, j  r.  

Then clearly z(C, a, b) = cqr.  

Now let 
^
a  be a new supply vector which is different from a only in 

component s such that 
^
a s = 1, and similarly let 

^
b be different from b only in 

component t such that 
^
b t = 1. Then a 

^
a and b 

^
b . 

In this new instance one unit may be sent directly from source q to destination 

t, and another unit may be sent from source s to destination r. The total cost of this is 

cqt+csr. Our assumption then leads to z(C, a, b) > z(C, 
^
a , 

^
b ), i.e. the criteria has 

occurred, which is contradiction to the statement. 

Hence, (1) is true when C is protected. 

Note:   
1. A quadruple (q, r, s, t) is considered to be Good quadruple if it is satisfied 

by cqr   cqt + csr 
2. Theorem (1) can be stated as, an m×n cost matrix C = (cij) is protected 

against the transportation criteria, if and only if C does not contain a bad 
quadruple. 
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Example 2 : Consider the 4 × 5 cost matrix 



















10918412
541158

161322916
14136154

     (2) 

Here we see immediately that c14 > c11 + c34, which means that (1) is violated 

for q = 1, r = 4, s = 3, t = 1. So C is not protected against the transportation criteria.  

Hence in O(mn) time whether or not a m × n cost matrix C is protected against 

the transportation criteria. ([8]) 

 

4 Occurrence of the criteria  

The dual problem corresponding to the linear program TP is the following 

linear program, DP: 





n

1j
jj

m

1i
ii vbua imizemax  

subject to ui + vj   cij , i = 1, . . . ,m; j = 1, . . . , n.    (3) 

 

Here the dual variables ui and vj correspond to the m first and the n last 

equations of TP respectively. It is well known that the constraint equations of TP are 

linearly dependent and that the rank of the constraint matrix is m+n-1. So one 

equation (any) is redundant and may be omitted. Thus any optimal solution to DP will 

not be unique. In the following we will assume that the first constraint equation of TP 

is omitted, and that the corresponding dual variable, u1, is set to be zero, i.e. u1 = 0 

throughout. 

 

Any basic solution of TP has m + n - 1 basic variables. Let X = [xij ] be an 

optimal basic solution (also called an optimal transportation tableau) of TP and let B 

be the set of index pairs (i,j) of all basic variables xij in X. Then we know from 

elementary LP-theory that ui + vj - cij = 0 for all (i,j)   B, and that xij = 0 for all 

(i,j)B. 
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The optimal objective value may then be written as: 

 

   









  

 







n

1j
jj

m

1i
ii

m

1i

n

1j
ijji

m

1i

n

1j
ijjiij

m

1i

n

1j
ijij

bvau                

xvuxvuc                

xcb,a,CZ

 

We will now look at some post optimal conditions, which are sufficient for the 

occurrence of the criteria. We consider only the case where an instance is improved 

by increasing a single supply ai and a single demand bj by the same amount (all the 

other data are unchanged). A procedure for improving an optimal transportation 

tableau when the conditions are satisfied will be illustrated. 

 

Theorem: 2:  

Assume that indexes p and q exist, 1   p   m; 1 ≤ q   n, such that  

  up + vq < 0.        (4) 

Assume further that a positive number   exists, such that when supply ap is 

replaced by 
^
a p = ap +  , and demand bq is replaced by 

^
b q = bq +  , a basic 

feasible solution for the new instance can be found which is optimal and has 

the same set B of basic variables. Then the criteria will occur. 

Proof :  

Since the optimal solution for the new instance has the same set B of basic 

variables, the optimal dual solution is unchanged. So the new optimal objective value 

is: 

   
 

  0vu  0v u and  0  Since                     
   ba,C,Z                 

vub,a,CZ                

vbvuaub,a,CZ

qpqp

qp

q

n

1j
jjp

m

1i
ii

^^












 



 

Therefore,  z(C,
^
a ,

^
b ) < z(C, a, b).  
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Existence of positive  : 

A 4×5 instance of TP is given by the cost matrix (2) in Example 2 and the 

following supply and demand vectors: 

a = [ 7 18 6 15 ] and b = [ 4 11 12 8 11 ] 

The optimal transportation tableau for this instance is: 

10510u
155u

86415u
70u

0v2v6v6v0v

4

3

2

1

54321








 

 Here the optimal dual values are written above and on the left of the 

tableau. 

 The total optimal cost of this solution is 444. 

 We observe that the set of index pairs for the optimal basic variables is: 

B = {(1, 3), (2, 1), (2, 2), (2, 4), (3, 3), (3, 5), (4, 2), (4, 5)}. 

 We also observe that u1 + v4 = -2 < 0. 

So let us see if it is possible to increase a1 = 7 and b4 = 8 by a number   > 0 

such that the present optimal basic feasible solution can be modified to become 

optimal for the new instance with the same set of basic variables: 

11b8b12b11b4b
15a105
6a15

18a864
7a7

54321

4

3

2

1








 

Here the supplies and the demands are written to the right and below the 

tableau. From this tableau we observe that   may be selected as any number              

0 <     5. 

If  = 4 is chosen, the new optimal transportation tableau is: 

11b12b12b11b4b
15a69
6a51

18a1224
11a11

54321

4

3

2

1
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The cost of this solution is z(C,
^
a ,

^
b ) = z(C,a,b) + (up+vq) = 444 + 4(-2) = 

436. So shipping 4 units more will reduce the total transportation cost by 8 units. 

Note that if   = 5 is chosen (the maximum value for ), the new optimal 

transportation tableau will be degenerate (one of the basic variables becomes zero). 

We observe that in order to determine the upper bound for , a subset S B of 

index pairs has been selected (S = B\{(2, 1)} in our example). Now suppose we link 

the elements of S to form a directed path DS: 

DS = {(1, 3), (3, 3), (3, 5), (4, 5), (4, 2), (2, 2), (2, 4)}. 

 This ordered set defines a directed path, which starts at the basic element 

(1, 3) and ends at (2, 4).  

 It is alternating in the sense that   is added to the tableau elements 

corresponding to the odd numbered elements of DS and is subtracted from 

those corresponding to the even numbered elements of DS.  

 DS consists of an even number of perpendicular links. 

 DS will consist of index pairs for an odd number of (perpendicular) basic 

elements of the tableau. 

 The change in the problem occurs when there exist the path. 

 For more than one ui+vj < 0, maximum importance is to select the 

combination where ith row and jth column have only one basic cell. 

(Example 5 for more than one) 

In general, if indexes p and q exist such that (4) is satisfied, try to determine an 

upper bound for   by constructing a directed alternating path DS, starting at a basic 

element (p,-) in row p of the optimal transportation tableau and ending at a basic 

element (-, q) in column q (in example p = 1 and q = 4).  

Let DSo and DSe denote the odd and even numbered elements of DS 

respectively, such that DS = DSo   DSe. The elements of the cost matrix C 

corresponding to the index pairs in DS are related by the following lemma. 
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Lemma 1:  

  
   

qp
DSj,i

ij
DSj,i

ij vuccCDS
e0

 


 

Proof:  

Since the elements of DS are (perpendicular) alternating, we have that 

 qijijijiji1pj ttt222111
cc......ccccCDS   

Since cij = ui +vj for all (i,j)B and S B, we have 

 CDS  = (up+vj1) – (ui1+vj1) + (ui1+vj2) - ………- (uit+vjt) + (uit +vq) 

= up + vq. 

We add   to the tableau elements corresponding to DSo and subtract   from 

the tableau elements corresponding to DSe. The upper bound for   is limited by the 

smallest basic element of the optimal transportation tableau from which   is 

subtracted. So we have the following result: 

 

Corollary 1: 

 A positive   exists if and only if xij > 0, (i, j)   DSe. 

This corollary tells us that if the optimal solution of TP is nondegenerate, and 

there are components of the optimal dual solution satisfying (4), the criteria will 

occur. In case of degeneracy the criteria will still occur if the index pairs of DSe do 

not include any degenerate elements of the optimal tableau (Example 5). 

Repeated use of the process is of course possible if more than one pair of 

optimal dual values satisfy (4) (the dual solution is unchanged). However, if the 

maximal value of   is selected, the new optimal tableau will be degenerate, and this 

may reduce the possibility of repeated success (as Example 5 also shows). 

 

Example 3:  

There are three origins (plants) and four destinations (distribution centers). 

The amounts (number of units of the product) available at each of the origins, the 

demands at each of the destinations and the transportation cost from each origin i to 

each destination j are given respectively by: 

a = [ 5000 6000 2500 ] , b = [ 6000 4000 2000 1500 ] and 

















5452
3257
6723

C  
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It is easy to verify that this cost matrix is not protected against the 

transportation criteria. The optimal transportation tableau for this instance is: 

25001u
1500200025003u

150035000u
0v1v2v3v

3

2

1

4321







 

The optimal total cost is 39500. 

The assumption (4) is satisfied by p = 3 and q = 3 since u3 +v3 = -2 < 0. 

A directed path DS starting in (3, 1) and ending in (2, 3) can be constructed. 

Since the optimal solution is non-degenerate, we know from Corollary 1 that a 

positive number   can be found, which when added to a3 and b3 will give a new 

optimal tableau with a lower cost. 

To determine an upper bound for , we consider the following transportation 

tableau: 

1500b2000b4000b6000b
2500a2500

6000a150020002500
5000a15003500

4321

3

2

1







 

 

We see that any value of   such that 0 <    2500 will give a new optimal 

solution with a lower cost. If   = 2500 is selected, the total cost is reduced by 5000 

(to 34500). Repeated use of the process is then not possible (due to degeneracy, no 

positive   can be found for the other dual combinations satisfying (4)). 

 

Example 4: 

Three power plants supply the needs for electricity of four cities. The number 

of kilowatt-hours (in millions) each power plant can supply, and the (peak) power 

demands at the four cities are respectively: 

a = [ 35 50 40 ] and b = [ 45 20 30 30 ]. 

The cost of sending one million kwh from plant i to city j is given by the 

following matrix: 

 

















516914
713129
91068

C  
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This matrix is not protected against the transportation criteria. But the optimal 

solution of this instance is: 

30103u
5453u

25100u
2v10v6v6v

3

2

1

4321







 

 

Here there are not any indexes p and q such that (4) is satisfied. So the 

criterion does not occur. 

However, from Theorem 1 and Lemma 1 we see that if the supplies and 

demands were such that the optimal set B of index pairs included, the index pairs 

(1,3),(3,3) and (3,4), or the index pairs (1,1),(3,1) and (3,4), the criteria may occur. To 

confirm this, suppose we have another instance where the cost matrix C is the same, 

but the supplies and the demands are: 

a = [ 45 20 60 ] and  b = [ 35 20 40 30 ]. 

An optimal transportation tableau (not unique) for this instance is: 

 

3010206u
201u

30150u
1v10v3v8v

3

2

1

4321







 

The total cost is 1090. 

Since u1+v4 = -1, the total cost will be reduced by   if supply a1 and demand 

b4 are both increased by , where 0 <    10. 

Another optimal transportation tableau for this instance is: 

 

3020106u
201u

4050u
1v10v3v8v

3

2

1

4321







 

Again we see that the total optimal cost will decrease if we increase the same 

supply and demand as we did in the previous tableau. 
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Example 5: 

Let a = [ 10 6 15 4 ], b = [ 5 14 10 6 ] and 





















1882115
163157
55106
6785

C
 

The optimal TP-tableau for this instance is: 

49u
6457u

602u
100u

3v4v8v5v

4

3

2

1

4321








 

The total cost of this solution is 255. 

Since u1 + v3 = - 4 and u2 + v3 = -2, we have two possible starting points for 

improvements. If we start with the first alternative, we increase a1 and b3 by   = 4 

and get the following tableau: 

4
1005

60
14

 

The total cost of this solution is 255 - 4 * 4 = 239. This solution cannot be 

further improved (trying to increase a2 and b3 yields   = 0).  

But if we start to improve the optimal TP tableau by first increasing a2 and b3 

(again by   = 4), we get the following tableau: 

4
1005

64
10

 

The total cost of this solution is 255 - 2 * 4 = 247. This solution cannot be 

improved further (trying to increase a1 and b3 yields  = 0). 
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6 Conclusions: 

We have considered the classical transportation problem and studied the 

occurrence of the so-called transportation criteria (also called the more-for-less 

criteria). Even if the first discovery of the criteria is a bit unclear, it is evident that it 

has been known since the early days of LP. It has, however, got very little attention in 

the literature. The main reason for this may be that it is considered as a rather odd 

phenomenon, which hardly occurs, in any practical situation. 

The simulation research reported by Finke in [9] indicates, however, that the 

criteria may occur quite frequently. The rather restrictive conditions for a cost matrix 

to be protected against the criteria (see Theorem 1) point in the same direction. 

We therefore urge that the transportation criteria should be given much more 

attention. In addition we hope that a lot of the existing excellent software for TP will 

be extended to include at least a preprocessing routine for deciding whether the cost 

matrix is protected or not against the criteria. If the cost matrix is not protected, and 

there are optimal dual variables satisfying (4), an option allowing post processing of 

the optimal solution should be available. The cost of these additional computations is 

modest and may provide valuable new insight in the problem from which the data for 

the actual TP-instance originates.  
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