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Abstract. In this paper, we define twisted Rarita-Schwinger operators RT
l1

and explain how
these invariant differential operators can be used to determine polynomial null solutions of the
higher spin Dirac operators Ql1,l2 .
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1 INTRODUCTION

Classical Clifford analysis is usually defined as a function theory generalizing complex anal-
ysis to the case of arbitrary dimension m ∈ N, where the role of the Cauchy–Riemann operator
is played by an elliptic first order differential operator, see e.g. [4, 7, 9, 10]. One of these opera-
tors is the Dirac operator, being invariant with respect to the spin group. This operator is acting
on spinor-valued functions, see e.g. [1, 6, 8].

Clifford analysis also offers an elegant framework to study function theoretical problems not
only for the classical Dirac operator, but also for generalizations of it, acting on functions which
take their values in arbitrary half-integer irreducible spin-representations, higher spin Dirac op-
erators (HSD operators for short).

In a previous paper [11], we have already established their explicit definition. A special case
is the operator Ql1,l2 , studied in depth in e.g. [2, 3], which acts on polynomials taking values
in irreducible Spin(m)-representations with highest weight

(
l1 +

1
2
, l2 +

1
2
, 1
2
· · · , 1

2

)
. We will

introduce an alternative method to determine the polynomial null solutions for these operators,
which can then be translated to the most general case.

The outline of this paper is as follows. In section 2, we will give some general Clifford
analysis background in order to define the higher spin Dirac operators Ql1,l2 and the twisted
Rarita-Schwinger operators RT

l1
. In section 3, we will then determine the structure of the poly-

nomial null solutions of Ql1,l2 .

2 CLIFFORD ANALYSIS BACKGROUND

Let Rm be the Clifford algebra generated by an orthonormal basis (e1, . . . , em) for the m-
dimensional vector space Rm and let Cm = Rm⊗C be its complexification. The multiplication
is governed by the relations

eiej + ejei = −2δij, for all i, j = 1, . . . ,m

If m = 2n + 1 is odd, we denote the unique spinor space, which can be realized as a minimal
left ideal inside Cm, by S. In case m = 2n, we have S = S+ ⊕ S− with S± the space of posi-
tive (resp. negative) spinors. Unless explicitly stated otherwise, we will disregard the parity of
the spinors in even dimension, and we will speak, with a slight abuse of language, about ‘the’
spinor space.

The Dirac operator, acting on S-valued polynomials f(x), is defined as ∂x =
∑m

j=1 ej∂xj .

For odd dimensions, the vector space S defines the basic half-integer representation for the
spin group Spin(m), described by the highest weight (1

2
, 1
2
, · · · , 1

2
). In even dimensions, the

spinor space S is reducible, with the spaces S± both irreducible representations of Spin(m) with
highest weights (1

2
, 1
2
, · · · , 1

2
) and (1

2
, 1
2
, · · · , 1

2
,−1

2
). It is crucial to mention that in the language

of Clifford analysis, other irreducible half-integer Spin(m)-representations can be characterized
as spaces of polynomials, see e.g. [5]. This is done using several vector variables ui ∈ Rm. In
particular, these irreducible modules will be modelled in terms of the following spaces, where
we will denote the Dirac operators ∂ui by ∂i.
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These spaces will be characterized as particular classes of polynomials, which are introduced
in the following definitions.

Definition 1. A function f : Rkm → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called simplicial
monogenic if it satisfies the system

∂if = 0, for all i = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k

The vector space of S-valued simplicial monogenic polynomials which are li-homogene-
ous in ui will be denoted by Sl1,...,lk , where we assume that l1 ≥ · · · ≥ lk (dominant weight
condition). The following definition involves weaker conditions on the S-valued functions, but
will nevertheless be crucial in what follows.

Definition 2. A function f : Rkm → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called monogenic if it
satisfies ∂if = 0, for all 1 ≤ i ≤ k.

The vector space of S-valued monogenic polynomials which are li-homogeneous in ui will
be denoted by Ml1,...,lk , again with l1 ≥ · · · ≥ lk. Each of these polynomial vector spaces
can be seen as a module for the spin group, under the regular representation (or so-called L-
representation) given by

L(s)P (x1, . . . , xk) := sP (sx1s, . . . , sxks), s ∈ Spin(m)

In e.g. [5], it was proven that under this action, the Spin(m)-modules Sl1,··· ,lk define a model for
the irreducible highest weight representation characterized by means of

Sl1,··· ,lk →
(
l1 +

1

2
, · · · , lk +

1

2
,
1

2
, · · · , 1

2

)
=: (l1, · · · , lk)′.

Note that when m = 2n, one should also add a parity index to the spaces of simplicial mono-
genics, according to the one for spinors.

On functions taking values in the space Sλ, one can define operators playing the role of ∂x
for S-valued functions. These operators are precisely the HSD operators. These are first order
Spin(m)-invariant differential operatorsQλ, where λ = (l1, . . . , lk), which are uniquely defined
up to a multiplicative constant:

Qλ : C∞(Rm,Sλ)→ C∞(Rm,Sλ) : f(x;u1, . . . , uk) 7→ Qλf(x;u1, . . . , uk)

The existence and uniqueness of these invariant differential operators follows from Fegan’s
result [7]; their explicit form was determined in [11] as

Qλ =

(
k∏
i=1

(
1 +

ui∂i
m+ 2li − 2i

))
∂x

Let us now define the twisted Rarita-Schwinger operator as follows:

Definition 3.

RT
l1
= 1⊗Rl1 : C∞(Rm,Ml1 ⊗Hl2)→ C∞(Rm,Ml1 ⊗Hl2), (1)

whereHli is the space of harmonic polynomials in ui, homogeneous of degree li.
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Remark 1. We call this operator twisted, as it is acting on spaces with the ’wrong’ values.

In [11] the following result has been proven.

Proposition 1. For each f ∈ C∞(Rm,Sl1,l2), it holds that

RT
l1
f = Ql1,l2f + πl1 [u2]〈∂2, ∂x〉f (2)

where πl1 [u2] is an embedding operator, mapping Sl1,l2−1-valued polynomials to Hl2 ⊗ Sl1-
valued ones.

We will use this last result to determine the polynomial null solutions of the operator Ql1,l2 in
the next section.

3 POLYNOMIAL SOLUTIONS IN THE CASE OF ORDER TWO

In view of the fact that Sl1,l2 ⊂Ml1 ⊗Hl2 , the following holds:

C∞(Rm,Sl1,l2) RT
l1
// C∞(Rm,Hl2 ⊗Ml1)

C∞(Rm,Sl1,l2) Ql1,l2
//

〈∂2,∂x〉 ))

C∞(Rm,Sl1,l2)

C∞(Rm,Sl1,l2−1)

We may then define two types of solutions. The type I solutions will be the solutions both in the
kernel ofRT

l1
and 〈∂2, ∂x〉. The type II solutions are the remaining polynomial null solutions of

Ql1,l2 which aren’t of type I.

Lemma 1. For any f ∈ C∞(Rm,Sl1,l2) withRT
l1
f = 0, one has that 〈∂2, ∂x〉f = 0.

Proof. Suppose f ∈ C∞(Rm,Sl1,l2) and RT
l1
f = 0. As 〈u1, ∂2〉f = 0, one also has that

∂2RT
l1
f = 0. In view of the fact that

∂2RT
l1
f =

(
−2− 4

m+ 2l1 − 2

)
〈∂2, ∂x〉f

where the constant is always different from 0, this proves the lemma.

From this lemma, it follows that the type I solutions ofQl1,l2 may be recharacterized as follows:
f ∈ C∞(Rm,Sl1,l2) is of type I if f ∈ RT

l1
.

Next, it is our goal to reveal more of the structure of the set of these type I solutions. There-
fore, we need the following two lemmata. From now on, we will denote the degree of homo-
geneity in the variable x by h. From now on, when acting on the function space C∞(Rm,Sl1,l2),
we will use the notation ·|Sl1,l2 .

Lemma 2. For each f belonging to kerRT
l1
|Sl1,l2 , one has that 〈∂1, ∂x〉f belongs to kerRT

l1−1|Sl1−1,l2
.
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Proof. Suppose that f ∈ kerRT
l1
|Sl1,l2 . We can verify that 〈∂1, ∂x〉f ∈ C∞(Rm,Sl1−1,l2):

∂1〈∂1, ∂x〉f = ∂2〈∂1, ∂x〉f = 0

since both sets of operators commute, and

〈u1, ∂2〉〈∂1, ∂x〉f = −〈∂2, ∂x〉f = 0

due to Lemma 1. We then get that

RT
l1−1〈∂1, ∂x〉f =

(
1 +

u1∂1
m+ 2l1 − 4

)
∂x〈∂1, ∂x〉f

= 〈∂1, ∂x〉
m+ 2l1 − 2

m+ 2l1 − 4

(
1 +

u1∂1
m+ 2l1 − 4

)
∂xf = 0

which proves the lemma.

Lemma 3. For each f belonging to kerhRT
l1
|Sl1,l2 , one has that

〈∂1, ∂x〉l1−l2+1f = 0

Proof. Suppose that f ∈ kerhRT
l1
|Sl1,l2 . Lemma 2 tells us that 〈∂1, ∂x〉f ∈ kerh−1RT

l1−1|Sl1−1,l2
.

Recalling that l1 ≥ l2, we thus get

〈∂1, ∂x〉l1−l2f ∈ kerRT
l2
|Sl2,l2 .

Since 〈∂2, ∂x〉〈∂1, ∂x〉l1−l2f = 0 in view of Lemma 1, we also have that

0 = 〈u2, ∂1〉〈∂2, ∂x〉〈∂1, ∂x〉l1−l2f = (−〈∂1, ∂x〉+ 〈∂2, ∂x〉〈u2, ∂1〉)〈∂1, ∂x〉l1−l2f
= 〈∂1, ∂x〉l1−l2+1f

which proves the lemma.

From Lemma 2, we get that

kerhRT
l1
|Sl1,l2 ⊇

(
kerhRT

l1
∩ kerh〈∂1, ∂x〉

)
|Sl1,l2 ⊕ 〈∂1, ∂x〉

−1 kerh−1RT
l1
|Sl1−1,l2

where we use the notation 〈∂1, ∂x〉−1 for the (not necessarily surjective) inverse operator of
〈∂1, ∂x〉. Note that

kerhQTl1 ∩ ker〈∂1, ∂x〉|Sl1,l2 = {f ∈ C∞(Rm,Sl1,l2) : ∂xf = 0} =Mh,l1,l2 ∩ ker〈u1, ∂2〉

We will denote the latter space byMs
h,l1,l2

. Using Lemma 2 inductively, we get that

kerhRT
l1
⊇

l1−l2⊕
j=0

(
〈∂1, ∂x〉−1

)jMs
h−j,l1−j,l2

where the sum stops at l1 − l2, because of Lemma 3.

Finally, we have that
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Lemma 4. For each f ∈ C∞(Rm,Sl1,l2), one has:

f ∈ kerQl1,l2 ⇒ 〈∂2, ∂x〉f ∈ kerQl1,l2−1

Proof. Suppose f ∈ C∞(Rm,Sl1,l2) and f ∈ kerQl1,l2 . Then, direct calculations yield that

Ql1,l2−1〈∂2, ∂x〉f =
m+ 2l2 − 4

m+ 2l2 − 6
〈∂2, ∂x〉Ql1,l2f

which proves the lemma.

Lemma 5. Suppose f ∈ C∞(Rm,Sl1,l2) and f ∈ kerQl1,l2 . One then has that

f ∈ ker〈∂2, ∂x〉j+1\ ker〈∂2, ∂x〉j ⇒ 〈∂1, ∂x〉l1−l2+1〈∂2, ∂x〉jf = 0

Proof. Define the twistor operator T l1−1,l2l1,l2
as follows:

T l1−1,l2l1,l2
:= 〈∂1, ∂x〉+

〈u2, ∂1〉〈∂2, ∂x〉
l1 − l2 + 2

It has been shown in e.g. [3] that T l1−1,l2l1,l2
: C∞(Rm,Sl1,l2) → C∞(Rm,Sl1−1,l2). We thus get,

for each f ∈ C∞(Rm,Sl1,l2) ∩ kerQl1,l2 , that

Tl1,l2f := T l2,l2l2+1,l2
. . . T l1−2,l2l1−1,l2 T

l1−1,l2
l1,l2

f ∈ C∞(Rm,Sl2,l2)

Therefore, we have that
〈u2, ∂1〉Tl1,l2f = 0 (3)

It can be shown by means of direct calculations that for all g ∈ C∞(Rm,Sa,b),

〈∂2, ∂x〉T
a−1,b
a,b g = cT a−1,b−1a,b−1 〈∂2, ∂x〉g

where c = l1−l2+2
l1−l2+1

. Since 〈∂2, ∂x〉j+1f = 0, we then have that

〈∂2, ∂x〉jTl1,l2f = C Tl1,l2−j〈∂2, ∂x〉jf = C 〈∂1, ∂x〉l1−l2〈∂2, ∂x〉jf (4)

where the constant C is not further explicited. On the other hand, we have that

〈∂2, ∂x〉j+1Tl1,l2f = 0

whence also 〈u2, ∂1〉〈∂2, ∂x〉j+1Tl1,l2f = 0. Now,

〈u2, ∂1〉〈∂2, ∂x〉j+1Tl1,l2f = (−(j + 1)〈∂1, ∂x〉〈∂2, ∂x〉j + 〈∂2, ∂x〉j+1〈u2, ∂1〉)Tl1,l2f

Due to (3) and (4), we thus have that

〈∂1, ∂x〉l1−l2+1〈∂2, ∂x〉jf = 0

which completes the proof.
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We define the following grading on kerhQl1,l2 . If we set

kerahQl1,l2 := kerh(Ql1,l2 , 〈∂2, ∂x〉a)\ kerh(Ql1,l2 , 〈∂2, ∂x〉a−1)

we get that

kerhQl1,l2 =
l2⊕
j=0

kerjhQl1,l2

On account of Lemma 5, we then obtain, omitting the embedding factors,

kerhQl1,l2 ⊇
l1−l2⊕
i=0

l2⊕
j=0

Ms
h−i−j,l1−i,l2−j

Dimensional analysis done in [3] then reveals that the above inclusion in fact is an equality.
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