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INTRODUCTION




EVALUATING TREATMENT EFFECTS

m Evaluation of the effect of a treatment A on an outcome Y
is commonly based on contrasts
E(Y' - Y9)
of the expected outcome with (Y') versus without (Y°) treatment.

m In observational studies, this demands
adjustment for potentially high-dimensional confounders.

m Such adjustment is not required in randomized experiments,
but nonetheless desirable to boost precision.

m Two popular approaches are standardisation and inverse probability weighting.
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STANDARDISATION / G-COMPUTATION

To estimate the mean outcome under treatment,

m train a prediction model for outcome
in the treated, using confounders;

m use this to predict outcome for all;
m average these predictions.
This can be based on statistical model building.

The use of machine learning
is increasingly popular.
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WHY MACHINE LEARNING?

m Model misspecification is likely,

and difficult to diagnose
when treated and untreated subjects have limited overlap.

m Even models that fit the observed data well,
may cause large extrapolation bias.
m The analysis can be made more objective
by pre-specifying the machine learning algorithms.
®m In contrast, the human process of building a model is time-consuming
and even more black box; pre-specifying it is difficult.

m |f a more statistical approach is deemed preferable,

then stacking statistical and machine learners allows one to do at least as good.
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PLAN FOR THIS LECTURE

m How best adjust for high-dimensional confounding
when the aim is valid inference for E(Y' — Y©)?
m | will not aim for estimates with e.g. minimal mean squared error.
m | will do this, assuming we have access to a collection of variables L
that suffices to adjust for confounding.

m | will sidestep the difficulty of excluding post-treatment variables, colliders, ...
which should precede the analysis and be based on subject-matter knowledge.
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WHY NAIVE ML-BASED G-COMPUTATION
DOES NOT WORK




PROBLEM 1: NAILING THE WRONG TARGET...

m To avoid overfitting, we inevitably rely on modeling —
e.g., learning E(Y | A=1,L).

m Standard statistical and ML methods
aim to optimize a bias-variance tradeoff.

m But this tradeoff is tuned for prediction accuracy,
not for causal effect estimation.

m The result? Impressive predictions, biased effects.
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WHY BIAS?

m Bias often comes from oversmoothing —
even when models fit observed data well,
they can fail badly where predictions matter.

m Bias can also arise
from dropping key confounders:
variables strongly predicting treatment
are at risk to be trimmed away.

m This is known as plug-in bias:

bias introduced when naive predictions
are plugged into causal effect estimators.
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PLUG-IN BIAS

m When using flexible machine learning algorithms,
or consistent model selection over a rich class,
plug-in bias shrinks with sample size...

m ...but painfully slowly.

m The bias can dominate the estimator’s standard deviation,

leading to confidence intervals with poor coverage and biased p-values.
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PROBLEM 2: UNDERESTIMATING UNCERTAINTY

m Statistical and ML models readily produce predictions of E(Y | A= 1, L),
but we often have no clue how precise they are...

m ...or how this uncertainty propagates into the causal effect estimate.

m Standard error formulas from statistical model-fitting routines
account for estimation uncertainty but not model uncertainty
— so they underestimate variability.

m Even sample splitting or the bootstrap
fail to capture this properly.

(see e.g., Samworth, 2011)
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DEBIASED MACHINE LEARNING




A BIT OF HISTORY...

m Foundations for a solution have been laid in the 80’s - 90’s.

(e.g. Pfanzagl, 1982; Bickel et al., 1998; Newey, 1990; Robins and Rotnitzky, 1995; van der Vaart, 1991)

m van der Laan made use of this theory
to construct debiased plug-in estimators based on machine learning,
which he called Targeted Maximum Likelihood Estimators.

(van der Laan and Rubin, 2008; van der Laan and Rose, 2014)
m His approach is now called targeted learning.

m Chernozhukov, Newey, Robins, ... popularised this theory,
under weaker conditions by invoking sample splitting.

(Robins et al., 2008; Zheng and van der Laan, 2010; Chernozhukov et al., 2018)

m They refer to their approach as double / debiased machine learning.
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OBSERVATIONAL DATA




TRAIN IN TREATED, USING CONFOUNDERS
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PREDICT OUTCOME ON TREATMENT FOR ALL
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AVERAGE PREDICTED TREATMENT OUTCOME OVER ALL
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How TO DEBIAS QOUTCOME MEAN ON TREATMENT?
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How TO DEBIAS OUTCOME MEAN ON TREATMENT? (CONT'D)

m To learn the amount of plug-in bias,
we evaluate prediction errors in the treated,

but weigh them (inversely to the propensity score) to approximate bias in the full sample:

—— Y, —E(Y; |A=1,L
z s (B A= 10
m Debiased machine learning subtracts this bias from the estimate:
- (Y| A =1,L Y — E Yi | Ai=1,L;
z A= 10+ g (Y B A= 10)

m This delivers the popular augmented IPW estimator,
which uses standard ML for both the propensity score and outcome predictions.
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TARGETED LEARNING
m Instead of subtracting bias from a plug-in estimate,
targeted learning updates outcome predictions to remove bias.

m E.g., for a binary outcome, it does this by building a logistic regression model
around initial predictions E©)(Y; | A, L;):

~ A/
logitE(Y; | As, L;) = logitEQ(Y; | A, L)) +6 —————
gitE(Y | Aj, Li) g (Vi | A Li) P(A =1 L)
qlogis (pred0) N—_———
C = a/ps

m InR:
model <- glm(
y = offset(qlogis(pred0)) + C,
family = binomial(),
data = dataset)
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TARGETED LEARNING (CONT’D)

m When this model is fitted using maximum likelihood,
the updated estimator

_1 n
EZE(U(Yi | A =1,L)
i=1

is free of plug-in bias.

m This estimator is equivalent to the AIPW estimator in large samples,
but may have finite-sample benefits.
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PROBLEM 1 — How DID WE REMOVE PLUG-IN BIAS?

m In variable selection procedures, we eliminate plug-in bias because
confounders get two chances to be selected — for both treatment and outcome models.

® In machine learning procedures, we reduce plug-in bias by
targeting prediction performance over the full covariate distribution,
not just where data are dense.
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TARGETED / DEBIASED LEARNING
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PROBLEM 2 — HOwW CAN WE RECOVER UNCERTAINTY?

m Once plug-in bias is removed, estimator enjoys an oracle property: it behaves
like an AIPW estimator based on the true propensity score and outcome regression:

1 — A
D C|EMi A=)+ o {Yi— E(Yi | A =1L
nﬂ[(:l: ”)+P(A,-=1|L,-){’ (Yi | A i)}

m As a result, we can validly compute standard errors
as if no machine learning or model selection had been used.

m This works the same for debiased and targeted learning.
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IMPLEMENTATION ON ACTG175 IN R

vV VvV Vv

install.packages("tmle")
library(tmle)

W = cbind(age,wtkg,hemo,homo,drugs,karnof ,oprior,z30,zprior,preanti,race,gender,str2,

strat,symptom, cd40)

1ib = c("SL.glm", "tmle.SL.dbarts.k.5", "SL.gam", "SL.glmnet", "SL.glm.interaction",

"SL.ranger", "SL.nnet")
tmle_est <- tmle(Y=Y,A=A,W=W,Q.SL.library=1ib)
summary (tmle_est)

Initial estimation of Q
Procedure: cv-SuperLearner, ensemble
Model: Y = SL.glm_All + [...]
Coefficients:
SL.glm_All 0
tmle.SL.dbarts.k.5_All 0.1071496
SL.gam_All 0.3746302
SL.glmnet_All 0.3434137
SL.glm.interaction_All 0
SL.ranger_All 0.1748065
SL.nnet_All 0

Cross-validated R squared : 0.393
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IMPLEMENTATION ON ACTG175 IN R (CONT’'D)

Estimation of g (treatment mechanism)
Procedure: SuperLearner, ensemble Empirical AUC = 0.6177

Model:
A~ SL.glm_All + tmle.SL.dbarts.k.5_Al11l + SL.gam_All

Coefficients:
SL.glm_All 0.7703587
tmle.SL.dbarts.k.5_A1l1 0.2296413
SL.gam_All 0

Additive Effect
Parameter Estimate: 49.514
Estimated Variance: 25.768
p-value: <2e-16
95% Conf Interval: (39.565, 59.463)
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IMPLEMENTATION ON ACTG175 IN R (CONT’'D)

> t10 = 1m(cd420~treat,data=ACTG175)
> summary (t10)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 336.139 6.210 54.125 < 2e-16 ***
treat 46.810 7.165 6.533 8.03e-11 **x*

> confint (t10)

2.5 % 97.5 %
(Intercept) 323.95990 348.31830
treat 32.75921 60.86179
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CAVEAT: SAMPLE SPLITTING

m Sample splitting helps avoid overfitting bias when ML is used.

m Information loss is ‘minimized’ via cross-fitting procedures,
but these can introduce some finite-sample bias and excess variability.
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AN IMPRESSION FROM SIMULATION STUDIES
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CAVEAT (CONT'D): RESIDUAL BIAS

m Debiased (targeted learning) estimators are not completely unbiased,
but their bias can be bounded (in absolute value) by:

A 57 1/2

P(A=1]L)

m If this product shrinks faster than 1/+/n,
then the residual bias is asymptotically negligible.
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CAVEAT (CONT’'D): RATE DOUBLE ROBUSTNESS

m This is the case for many machine learning algorithms
and consistent model selection over rich model classes,
but is not guaranteed in general.

m It expresses rate double robustness:
errors in one nuisance estimate can be offset by accuracy in the other.
m In randomized experiments, this is guaranteed:

m if the true propensity score is used, or
m if the sample proportion is used as propensity score,
and the outcome predictions are consistent.
m For targeted learning estimators, even this outcome consistency can be relaxed.

(Van Lancker, Diaz and Vansteelandt, 2025)
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BRIDGING MODELING AND ML...




BRIDGING STATISTICAL MODELING AND ML...

m Debiased ML can also be connected
to statistical modeling.

m ML for confounder adjustment.

Density of
m Results ‘projected’ onto a simple model. e foneloueame

a
50

m This is the focus
of assumption-lean modeling.

m [t alleviates concerns about modeling 4

e.g., MSMs, Cox models in target trials, ...

Mean treatment outcome
o
N ow

m It may also provide more refined insight. é

000 ,°

Mean control outcome
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ASSUMPTION-LEAN MODELING

m For a dichotomous, randomized exposure A and baseline covariates L, consider
g{E(YAIL)} = (L) + H(L)a

for a known link g(.) and a = 0, 1.

(Vansteelandt and Dukes, 2022)

m In generalised (partially) linear models / SMMs, we would assume that
B(L)=p and/or aL) =L

m We will avoid such assumptions
and learn the mean and variance (or other summaries) of 3(L) instead
(Vansteelandt and Dukes, 2022)
or quantify what components of L explain the variance of (L) the most.

(Hines, Diaz-Ordaz and Vansteelandt, 2022)
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ASSUMPTION-LEAN LOGLINEAR MODELING ALGORITHM

Predict A based on L to obtain predictions p;.
Predict Y based on A and L to obtain predictions v
Predict log (\A/) based on L to obtain predictions g;.
Linearly regress (using least squares)

~ Y;
Iog(%)—af+7:—1

on A; — p; to obtain an estimate for 5 and a robust standard error.

When using variable selection in a loglinear model, this debiases the naive estimate B as

Z7=1 (A — ,IAJ,')(Y,-e*BAi*@’Li —1)
> (A= pi)?

and delivers valid post-selection inference.

B+
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FEATURES OF THE APPROACH

m Prevents model misspecification bias by incorporating flexible models and ML—
it guarantees valid causal effect estimation, even if the model is wrong.
m Overcomes Occam’s dilemma by separating:
m modeling for interpretation via

g{E(Y?|L)} = o(L) + Pa
m from data-adaptive modeling to tackle high-dimensionality.

(Breiman, 2001)

m Delivers valid post-selection inference—
even after using ML or model/variable selection.

m Supports (near) full pre-specification of the analysis plan.

m Offers the flexibility and simplicity of regression,
e.g., it readily accommodates continuous exposures.
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SUMMARY




SUMMARY

m Standard statistical analyses

® ignore model uncertainty,
m leave residual confounding bias due to model misspecification,
m and complicate pre-specification of the analysis.

m Debiased / targeted learning overcome these concerns.

m These techniques are essential for any data-adaptive analysis,
in particular enabling valid use of variable selection in parametric models.
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SUMMARY

m Causal machine learning = machine learning for evaluating treatment effects
as opposed to prediction.

m This is much harder: we can compare predictions with observed outcomes,
but cannot compare estimated with true treatment effects.

m This is why results from asymptotic statistics are essential.

Hines, O., Dukes, O., Diaz-Ordaz K., and Vansteelandt, S. (2021). Demystifying statistical learning based on efficient influence functions. The American Statistician, 1-48.

m Most existing works have focused on the average effect of a binary treatment,
leading to lack of flexibility and oversimplification.

m Assumption-lean modeling bridges traditional modeling with debiased machine learning.

Vansteelandt, S., & Dukes, O. (2022). Assumption-lean inference for generalised linear model parameters (with discussion). JRSS - B, 84, 657-685.
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