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INTRODUCTION




EVALUATING TREATMENT EFFECTS

m Evaluation of the effect of a treatment A on an outcome Y
is commonly based on contrasts
E(Y' —Y9)
of the expected outcome with (Y') versus without (Y°) treatment.

m In observational studies, this demands
adjustment for potentially high-dimensional confounders.

m Two popular approaches are standardisation
and inverse probability weighting.
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STANDARDISATION

To estimate the mean outcome under treatment,

m train a prediction model for outcome
in the treated, using confounders;

m use this to predict outcome for all;
m average these predictions.

m The use of machine learning
is increasingly popular.

4/29



WHY MACHINE LEARNING?

m Model misspecification is likely,
and difficult to diagnose
when treated and untreated subjects have limited overlap.
m The analysis can be made more objective
by pre-specifying the machine learning algorithms.
m In contrast, the human process of building a model is time-consuming
and even more black box; pre-specifying it is difficult.

m |f a more statistical approach is deemed preferable,

then stacking statistical and machine learners allows one to do at least as good.
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BuUT...




TWO CAVEATS

Caveat 1: no valid uncertainty margins

machine learning ‘easily’ produces estimates,
but we have ‘no clue’ how precise these are...

m Even sample splitting or the bootstrap does not work.

(e.g. Samworth, 2011)

Caveat 2: plug-in bias

plugging machine learning predictions into a statistical analysis,
typically induces plug-in bias.

m The bias-variance tradeoff is so heavily optimized towards minimal prediction error,
that machine learning algorithms underperform when used for other purposes.
m It leads to biased estimates, p-values and confidence intervals.
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WHAT IS PLUG-IN BIAS?

m Plug-in bias is the result of oversmoothing
in the range of the data
where predictions are needed, -

m or due to mistakenly throwing out
important confounders.

-3 -2 -1 0 1 2 3 8 / 29



DEBIASED MACHINE LEARNING




A BIT OF HISTORY...

m Foundations for a solution have been laid in the 80’s - 90’s.
(e.g. Pfanzag|, 1982; Bickel et al., 1998; Newey, 1990; Robins and Rotnitzky, 1995; van der Vaart, 1991)
m van der Laan made use of this theory
to construct plug-in estimators based on machine learning,
which he called Targeted Maximum Likelihood Estimators.
(van der Laan and Rubin, 2008; van der Laan and Rose, 2014)

m His approach is now called targeted learning.

m Chernozhukov, Newey, Robins, ... popularised this theory,
under weaker conditions by invoking sample splitting.

(Robins et al., 2008; Chernozhukov et al., 2018)

m They refer to their approach as double / debiased machine learning.
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OBSERVATIONAL DATA




TRAIN IN TREATED, USING CONFOUNDERS
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PREDICT OUTCOME ON TREATMENT FOR ALL
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AVERAGE PREDICTED TREATMENT OUTCOME OVER ALL
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HOw TO DEBIAS OUTCOME MEAN ON TREATMENT?
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A SKETCH HOW TO DEBIAS OUTCOME MEAN ON TREATMENT

m To learn the amount of plug-in bias,
we evaluate prediction errors in the treated,
but weigh them (inversely to the propensity score) to approximate bias in the full sample.

m Debiased machine learning subtracts this bias from the estimate.
m Targeted learning updates predictions to be free of bias.

m Sample splitting is used to prevent overfitting bias,
but may also induce finite-sample bias and excess variability.
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TARGETED / DEBIASED LEARNING
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AN IMPRESSION FROM SIMULATION STUDIES
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DITCH THE STATISTICAL MODEL?




DITCH THE STATISTICAL MODEL?

m Developments on debiased machine learning are centered around
efficient influence curves for model-free estimands.
(Hines et al., 2021)
m This can be useful, to target simplicity.
m But by giving up on models to summarize,
developments are largely limited to ‘simple’ causal queries.
m Compromises are therefore made ‘to fit the framework’,
m E.g., ‘What if all had above median levels of glycoprotein acetyls at all times’?
or recourse is made to modeling, bringing back the earlier critiques.
m E.g., marginal structural models, incompatible Cox models in target trials, ...
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BRIDGING STATS AND ML...




ASSUMPTION-LEAN MODELING

m For a dichotomous, randomized exposure A and baseline covariates L,
we consider ‘assumption-lean’ models of the form

g{E(Y?|IL)} = (L) + B(L)a

for a known link g(.) and a = 0, 1.
(JRSS-B discussion paper on assumption-lean regression by Vansteelandt and Dukes (2022))

m In generalised (partially) linear models / SMMs, we would assume that
B(L)=p and/or «L) =L

m We will avoid such assumptions
and learn the mean and variance (or other summaries) of 5(L) instead
(Vansteelandt and Dukes, 2022)
or quantify what components of L explain the variance of (L) the most.

(Hines, Diaz-Ordaz and Vansteelandt, 2022)
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ASSUMPTION-LEAN LOGLINEAR MODELING ALGORITHM

Predict A based on L to obtain predictions p;.
Predict Y based on A and L to obtain predictions ¥;.
Predict log () based on L to obtain predictions .

Linearly regress (using least squares)
~ R Y;
|Og(Y,')—qi+Tl—1
Y
on A; — p; to obtain an estimate for 3 and a robust standard error.
When using variable selection in a loglinear model, this debiases the naive estimate (3 as

B+ S0 (A — pi)(Yie PATTL — 1)
o (A= pi)?

and delivers valid post-selection inference.
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FEATURES

m The flexibility of standard regression

(e.g., it readily handles continuous exposures).

m |t overcomes Occam’s dilemma by separating modeling to summarise
from (data-adaptive) modeling to handle the curse of dimensionality.

(Breiman, 2001)

m It prevents model misspecification bias by incorporating flexible modeling, machine learning,
and is clear on what is being estimated, even when the model is wrong.

m [t avoids to extract information from modeling assumptions
by working under the nonparametric model.

m It delivers valid (post-selection) inference after using ML, variable / model selection.
m It enables (near) pre-specification of the entire analysis.

m ltis ‘'simple’ to obtain.
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PERCENTILES OF E(Y'|L) vs E(Y°|L) INACTG175
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SUMMARY




SUMMARY

m Standard statistical analyses

® ignore model uncertainty,
m leave residual confounding bias due to model misspecification,
m and complicate pre-specification of the analysis.

m Debiased / targeted learning overcome these concerns.

m These techniques are essential for any data-adaptive analysis,
in particular enabling valid use of variable selection in parametric models.
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SUMMARY

m Causal machine learning = machine learning for evaluating treatment effects
as opposed to prediction.

m This is much harder: we can compare predictions with observed outcomes,
but cannot compare estimated with true treatment effects.

m This is why results from asymptotic statistics are essential.

Hines, O., Dukes, O., Diaz-Ordaz K., and Vansteelandt, S. (2021). Demystifying statistical learning based on efficient influence functions. The American Statistician, 1-48.

m Most existing works have focused on the average effect of a binary treatment,
leading to lack of flexibility and oversimplification.

m Assumption-lean modeling bridges traditional modeling with debiased machine learning.

Vansteelandt, S., & Dukes, O. (2022). Assumption-lean inference for generalised linear model parameters (with discussion). JRSS - B, 84, 657-685.

m Orthogonal learning targets prediction of counterfactuals, causal effects, ....
(e.g., Athey and Imbens, 2016; Wager and Athey, 2018; Kiinzel et al., 2019; Kennedy, 2020; Nie and Wager, 2021; Foster and Syrgkanis, 2023; Vansteelandt and

Morzywolek, 2023, van der Laan et al., 2024)
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