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INTRODUCTION



EVALUATING TREATMENT EFFECTS

Evaluation of the effect of a treatment A on an outcome Y
is commonly based on contrasts

E(Y 1 − Y 0)

of the expected outcome with (Y 1) versus without (Y 0) treatment.

In observational studies, this demands
adjustment for potentially high-dimensional confounders.

Two popular approaches are standardisation
and inverse probability weighting.
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STANDARDISATION

To estimate the mean outcome under treatment,

train a prediction model for outcome
in the treated, using confounders;

use this to predict outcome for all;

average these predictions.

The use of machine learning
is increasingly popular.
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WHY MACHINE LEARNING?

Model misspecification is likely,
and difficult to diagnose
when treated and untreated subjects have limited overlap.

The analysis can be made more objective
by pre-specifying the machine learning algorithms.

In contrast, the human process of building a model is time-consuming
and even more black box; pre-specifying it is difficult.

If a more statistical approach is deemed preferable,
then stacking statistical and machine learners allows one to do at least as good.
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BUT...



TWO CAVEATS

Caveat 1: no valid uncertainty margins

machine learning ‘easily’ produces estimates,
but we have ‘no clue’ how precise these are...

Even sample splitting or the bootstrap does not work.
(e.g. Samworth, 2011)

Caveat 2: plug-in bias

plugging machine learning predictions into a statistical analysis,
typically induces plug-in bias.

The bias-variance tradeoff is so heavily optimized towards minimal prediction error,
that machine learning algorithms underperform when used for other purposes.
It leads to biased estimates, p-values and confidence intervals.
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WHAT IS PLUG-IN BIAS?

Plug-in bias is the result of oversmoothing
in the range of the data
where predictions are needed,

or due to mistakenly throwing out
important confounders.
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DEBIASED MACHINE LEARNING



A BIT OF HISTORY...

Foundations for a solution have been laid in the 80’s - 90’s.
(e.g. Pfanzagl, 1982; Bickel et al., 1998; Newey, 1990; Robins and Rotnitzky, 1995; van der Vaart, 1991)

van der Laan made use of this theory
to construct plug-in estimators based on machine learning,
which he called Targeted Maximum Likelihood Estimators.
(van der Laan and Rubin, 2008; van der Laan and Rose, 2014)

His approach is now called targeted learning.

Chernozhukov, Newey, Robins, ... popularised this theory,
under weaker conditions by invoking sample splitting.
(Robins et al., 2008; Chernozhukov et al., 2018)

They refer to their approach as double / debiased machine learning.
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OBSERVATIONAL DATA
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TRAIN IN TREATED, USING CONFOUNDERS
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PREDICT OUTCOME ON TREATMENT FOR ALL
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AVERAGE PREDICTED TREATMENT OUTCOME OVER ALL
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HOW TO DEBIAS OUTCOME MEAN ON TREATMENT?

15 / 29



A SKETCH HOW TO DEBIAS OUTCOME MEAN ON TREATMENT

To learn the amount of plug-in bias,
we evaluate prediction errors in the treated,
but weigh them (inversely to the propensity score) to approximate bias in the full sample.

Debiased machine learning subtracts this bias from the estimate.

Targeted learning updates predictions to be free of bias.

Sample splitting is used to prevent overfitting bias,
but may also induce finite-sample bias and excess variability.
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TARGETED / DEBIASED LEARNING
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AN IMPRESSION FROM SIMULATION STUDIES
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DITCH THE STATISTICAL MODEL?



DITCH THE STATISTICAL MODEL?

Developments on debiased machine learning are centered around
efficient influence curves for model-free estimands.
(Hines et al., 2021)

This can be useful, to target simplicity.

But by giving up on models to summarize,
developments are largely limited to ‘simple’ causal queries.

Compromises are therefore made ‘to fit the framework’,
E.g., ‘What if all had above median levels of glycoprotein acetyls at all times’?

or recourse is made to modeling, bringing back the earlier critiques.
E.g., marginal structural models, incompatible Cox models in target trials, ...
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BRIDGING STATS AND ML...



ASSUMPTION-LEAN MODELING
For a dichotomous, randomized exposure A and baseline covariates L,
we consider ‘assumption-lean’ models of the form

g {E(Y a|L)} = α(L) + β(L)a

for a known link g(.) and a = 0, 1.
(JRSS-B discussion paper on assumption-lean regression by Vansteelandt and Dukes (2022))

In generalised (partially) linear models / SMMs, we would assume that

β(L) = β and/or α(L) = α′L.

We will avoid such assumptions
and learn the mean and variance (or other summaries) of β(L) instead
(Vansteelandt and Dukes, 2022)

or quantify what components of L explain the variance of β(L) the most.
(Hines, Diaz-Ordaz and Vansteelandt, 2022)
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ASSUMPTION-LEAN LOGLINEAR MODELING ALGORITHM

1 Predict A based on L to obtain predictions p̂i .

2 Predict Y based on A and L to obtain predictions Ŷi .

3 Predict log
(
Ŷ
)

based on L to obtain predictions q̂i .

4 Linearly regress (using least squares)

log
(
Ŷi
)
− q̂i +

Yi

Ŷi
− 1

on Ai − p̂i to obtain an estimate for β and a robust standard error.
When using variable selection in a loglinear model, this debiases the naïve estimate β̂ as

β̂ +

∑n
i=1(Ai − p̂i)(Yie−β̂Ai−γ̂′Li − 1)∑n

i=1(Ai − p̂i)2

and delivers valid post-selection inference.
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FEATURES

The flexibility of standard regression
(e.g., it readily handles continuous exposures).

It overcomes Occam’s dilemma by separating modeling to summarise
from (data-adaptive) modeling to handle the curse of dimensionality.
(Breiman, 2001)

It prevents model misspecification bias by incorporating flexible modeling, machine learning,
and is clear on what is being estimated, even when the model is wrong.

It avoids to extract information from modeling assumptions
by working under the nonparametric model.

It delivers valid (post-selection) inference after using ML, variable / model selection.

It enables (near) pre-specification of the entire analysis.

It is ‘simple’ to obtain.
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PERCENTILES OF E(Y 1|L) VS E(Y 0|L) IN ACTG175
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SUMMARY



SUMMARY

Standard statistical analyses
ignore model uncertainty,
leave residual confounding bias due to model misspecification,
and complicate pre-specification of the analysis.

Debiased / targeted learning overcome these concerns.

These techniques are essential for any data-adaptive analysis,
in particular enabling valid use of variable selection in parametric models.
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SUMMARY

Causal machine learning = machine learning for evaluating treatment effects
as opposed to prediction.

This is much harder: we can compare predictions with observed outcomes,
but cannot compare estimated with true treatment effects.

This is why results from asymptotic statistics are essential.
Hines, O., Dukes, O., Diaz-Ordaz K., and Vansteelandt, S. (2021). Demystifying statistical learning based on efficient influence functions. The American Statistician, 1-48.

Most existing works have focused on the average effect of a binary treatment,
leading to lack of flexibility and oversimplification.

Assumption-lean modeling bridges traditional modeling with debiased machine learning.
Vansteelandt, S., & Dukes, O. (2022). Assumption-lean inference for generalised linear model parameters (with discussion). JRSS - B, 84, 657-685.

Orthogonal learning targets prediction of counterfactuals, causal effects, ....
(e.g., Athey and Imbens, 2016; Wager and Athey, 2018; Künzel et al., 2019; Kennedy, 2020; Nie and Wager, 2021; Foster and Syrgkanis, 2023; Vansteelandt and

Morzywolek, 2023, van der Laan et al., 2024)
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