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THE MODELING TRADITION




THE STATISTICAL MODELING TRADITION

m The introduction of generalized linear(mixed) models, quantile regression, ...
marked an enormous revolution in statistical data analysis:

m it provided flexibility to study a wide range of scientific questions in an accessible manner,
m allowed more rigorous adjustments to be made,
m and helped getting rid of certain poor practices (e.g., dichotomizing variables)

m Even so, the statistical modeling tradition has been severely critiqued.

(Breiman, 2001; Freedman, 2001; Robins and Rotnitzky, 2001; van der Laan, 2015; ...)
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CRITIQUES TO THE STATISTICAL MODELING TRADITION

(Vansteelandt S. Statistical modeling in the Age of Data Science. Observational Studies. 2021;7(1):217-28.)

m Occam'’s dilemma leaves us torn between using simple and interpretable,
versus complex and plausible models.
(Breiman , 2001)

m Inferring the whole data-generating mechanism is an overly ambitious undertaking.
(Breiman, 2001)

m Even if we concentrate on parts of it,
misspecification of the remaining parts may induce large bias.
(Robins, 2000)

m Such misspecification can be difficult to diagnose.
(Rubin, 1999)

m Attempts towards model building themselves introduce bias
and make honest uncertainty assessments difficult to obtain.

(Leeb and Pdtscher, 2006; Dukes and Vansteelandt, 2020)

4/25



WHAT ABOUT OTHER MODELING CULTURES?

m Model misspecification is much less a concern in the algorithmic modeling culture.

m But it focuses on prediction,
but is not aimed at explanation, and provides no real uncertainty assessments.

m The causal modeling culture increasingly builds on this culture,

instead targeting model-free estimands and providing valid uncertainty assessments.

m But not rarely over-simplifying the scientific question,
or returning to traditional use of (causal) models.
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How CAN WE BRIDGE
THESE MODELING CULTURES?




ASSUMPTION-LEAN REGRESSION (1)

m That is what we achieve in a recent JRSS B discussion paper on assumption-lean modeling.

Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters (with discussion). JRSS-B 2022.
m Assume that adjustment for L suffices to control for confounding: Y# L A|L.

m Consider the semi-parametric structural quantile model

Q-(YL) — Q@ (Y°|L) = f,a foralla
—_—— N—_——

Q-(Y|A=a,L)  unknown fctof L

m Techniques for partially linear quantile models are relevant, but have limited utility:
(Lee, 2003; Sun, 2005; Wu et al., 2010; Wu and Yu, 2014; Lv et al., 2015; Sherwood and Wang, 2016; Zhong and Wang, 2023)
m computational demands;
m challenges in high-dimensional applications (due to reliance on kernel weighting or splines);
m biased inference when the model is wrong.
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ASSUMPTION-LEAN REGRESSION (2)

m Because model
Q-(Y?|L) — Q-(Y°|L) = B,a foralla
is deliberately kept simple, we will not assume it to hold.

m The real modeling is done through statistical/machine learning,
results of which are projected and de-biased in view of a specific estimand.

m As such, we ensure that we are estimating a well-understood exposure effect
and obtain valid inferences,
even when the model is misspecified, and despite the use of machine learning.
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ASSUMPTION-LEAN
QUANTILE REGRESSION




BE CLEAR ABOUT THE ESTIMAND (1)

m A ‘hygienic’ analysis is clear about the estimand, even when models are used.

m For instance, with a binary randomized treatment A,
we map (3, in model
Q- (Y'L) — Q- (Y°|L) = 53,

onto the model-free estimand
E{a,(Y'|L) — o, (Y°|L)},

which is what we will estimate.

m This choice prevents that naive interpretation as a ‘difference between quantiles’
would be misleading.

m In contrast, in standard (partially linear) quantile regression,
it is unclear what we are estimating when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (2)

m When A is not randomized, we may consider the same estimand,
or generalize it to the weighted average:

Efw(L) {Q-(Y"IL) — ar(Y°IL)}]
E{w(L)} ’

with
w(L) = P(A = 1|L)P(A = 0O|L).

m This weighting gives the stability desired for widescale practical use.

m Because it changes the target population, we provide similarly weighted summary statistics.
m In contrast, standard quantile regression

m also weighs the data, but we have a poor understanding how the weighting is done;
m mixes the effects of A and L when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (3)

For arbitrary A, these estimands generalize
to a least squares projection of the quantile difference

Q (Y?|L) — @, (Y¥|L) onto a-—a*

for exposure values a and a* randomly and independently drawn with the same value L
(averaged over L).
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DEBIASED MACHINE LEARNING




A DEBIASED ESTIMATOR
m When

E[{A— E(A|0)}[Q-(Y]A L) — E{Q-(Y
E [{A— E(AIL)}]

m Based on the estimand’s efficient influence function,
we construct the following debiased estimator

A|L) N .
,21 7 (A-|L-))2 [QT(Y,A,,L) E( - (VilA;, L) \L)]

i=1 n

 L)|L}]

72 E(A]L) [7’— 1y < Q. (Y»|A,,L-)}]

i1 7 ,1(A:— B(AIL))? | Ty (Q-(YilAL L)AL L)

where the nuisance parameters are substituted by data-adaptive estimates (e.g., ML).
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A TARGETED LEARNING ESTIMATOR (TMLE)

m Targeted learning ‘simplifies’ this by forcing the second line to give zero,
which gives an asymptotically equivalent estimator.
m It does so by ‘targeting’ an initial estimator Q, (Y

, L) so that

'3 fa- i} [ B0

fyiac(Q- (i A L) A, Li)
m This is done by fitting the quantile regression model
A — B(AL)

Pl L) = QYA L) 0 - A )

m Next, we calculate the estimator of 5, as

— B(AL
721 nﬁ (\)

i=1 n (Ai|L/))2

Q-(Yi|A, L) — I“E(~ (Yi|A, L) |L>]
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ASSESSING STANDARD ERRORS

m Uncertainty in data-adaptive estimates is difficult to quantify.

m But proposed estimator is not sensitive to it
when nuisance parameter estimators converge at faster than n to the quarter rates.

m The variance of the estimator can therefore be estimated
as 1 over ntimes the sample variance of the influence functions
as if the nuisance parameters were given.
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A FEW CAVEATS

m When flexible machine learning methods are used,
sample-splitting/cross-fitting should be used.

(Zheng & van der Laan, 2011; Chernozhukov et al., 2018)
m This removes additional bias due to overfitting.

m In order for the learners to converge sufficiently fast (at faster than n to the quarter rates),
we also require assumptions like smoothness/sparsity.

m These are weaker than standard parametric assumptions,
but are still non-negligible.

m This is why our inferences are assumption-lean,
rather than assumption-free.
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SIMULATION STUDIES




SIMULATION STUDIES

m We considered inference for 3 in
Q- (Y?3|L) — Q(Y°|L) = 3,a foralla

L is 4-dimensional multivariate normal.

2 settings:
m Binary exposure: P(A = 1|L) = expit(—0.5 + 0.2Ly — 0.4L, — 0.4L3 + 0.2L,).
m Continuous exposure: A ~ N (—0.5 + Ly — 2L, — 2L + Ly, 22).

The outcome was generated according to

Y=1+A+sin(Ly)+ L5+ L+ Ls+Lls Lyt

where € ~ Gamma(k, ).
Nuisance parameters are estimated using ‘grf’, ‘SuperLearner’ and ‘FKSUM’ R-packages.

We contrast the proposal with an oracle quantile regression and a naive plug-in estimator.
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SIMULATION STUDIES

Oracle -0.0017  0.19
Bin. Plugin -0.70 0.12
TMLE-CF  0.012 0.22
Oracle -0.0013 0.035
Cont. Plugin -0.17  0.064

TMLE-CF  -0.011  0.044

m Sample size n = 500, quantile 7, 1000
simulations

m Oracle: correctly specified QR
m Plugin: Naive plug-in estimator
m TMLE-CF: TMLE with 5-fold cross-fitting

0.20
0.015

0.25
0.036
0.016
0.042

96.6 -0.011 056 0.60 96.0
0.1 -0.64 022 0.036 1.6
97.2 0.14 068 063 0914
95.6 0.0010 0.10 0.11 94.6
0.5 -0.39 0.11 0.021 0.0

92.9 0.012 0.14 0.10 853

bias: Monte Carlo bias
SD: Monte Carlo standard deviation
SE: averaged estimated standard error

Cov: coverage of 95% CI
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CONCLUSION




MORE HYGIENIC (CAUSAL) ANALYSES (1)

m The starting point of the ‘causal roadmap’
is the postulation of a causal estimand linked to the scientific question.
m This gets forgotten

m when causal models are used (e.g., MSMs, SNMMs, target trials, ...);
m when the use of overly simplistic estimands
drifts researchers away from the scientific question (e.g., dichotomizing exposures).

m Assumption-lean modeling aims to make statistical / causal analyses more hygienic,
by being clear about what we are estimating when the models is wrong.

m [t does this by transporting the concept of a causal estimand to the broader modeling context.

22/25



MORE HYGIENIC (CAUSAL) ANALYSES (2)

m This focus on estimands may be viewed as undesirable.
m Itis needed to be open about the statistical analysis,
just like openness about causal assumptions is central to causal inference.
m Also the focus on generic estimands may be view as less desirable.

m [t is needed to give statistical / causal analyses flexibility and accessibility to non-experts.
m It prevents being overly ambitious in descriptive etiologic studies
(where it is too ambitious to think about hypothetical interventions)

and does not prevent more refined analyses.
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FEATURES

The flexibility of standard regression

(e.g., it readily handles continuous exposures).

It overcomes Occam’s dilemma by separating modeling to summarise
from (data-adaptive) modeling to handle the curse of dimensionality.

(Breiman, 2001)

It prevents model misspecification bias by incorporating flexible modeling, machine learning.

m [t avoids to extract information from modeling assumptions

by working under the nonparametric model.

It enables valid (post-selection) inference after using machine learning, variable selection,
model selection.

m |t enables (near) pre-specification of the entire analysis.

m |t tries to avoid making strong extrapolations.

m ltis ‘simple’ to obtain.
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