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THE MODELING TRADITION



THE STATISTICAL MODELING TRADITION

The introduction of generalized linear(mixed) models, quantile regression, ...
marked an enormous revolution in statistical data analysis:

it provided flexibility to study a wide range of scientific questions in an accessible manner,
allowed more rigorous adjustments to be made,
and helped getting rid of certain poor practices (e.g., dichotomizing variables)

Even so, the statistical modeling tradition has been severely critiqued.
(Breiman, 2001; Freedman, 2001; Robins and Rotnitzky, 2001; van der Laan, 2015; ...)
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CRITIQUES TO THE STATISTICAL MODELING TRADITION
(Vansteelandt S. Statistical modeling in the Age of Data Science. Observational Studies. 2021;7(1):217-28.)

Occam’s dilemma leaves us torn between using simple and interpretable,
versus complex and plausible models.
(Breiman , 2001)

Inferring the whole data-generating mechanism is an overly ambitious undertaking.
(Breiman, 2001)

Even if we concentrate on parts of it,
misspecification of the remaining parts may induce large bias.
(Robins, 2000)

Such misspecification can be difficult to diagnose.
(Rubin, 1999)

Attempts towards model building themselves introduce bias
and make honest uncertainty assessments difficult to obtain.
(Leeb and Pötscher, 2006; Dukes and Vansteelandt, 2020)
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WHAT ABOUT OTHER MODELING CULTURES?

Model misspecification is much less a concern in the algorithmic modeling culture.
But it focuses on prediction,
but is not aimed at explanation, and provides no real uncertainty assessments.

The causal modeling culture increasingly builds on this culture,
instead targeting model-free estimands and providing valid uncertainty assessments.

But not rarely over-simplifying the scientific question,
or returning to traditional use of (causal) models.
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HOW CAN WE BRIDGE

THESE MODELING CULTURES?



ASSUMPTION-LEAN REGRESSION (1)

That is what we achieve in a recent JRSS B discussion paper on assumption-lean modeling.
Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters (with discussion). JRSS-B 2022.

Assume that adjustment for L suffices to control for confounding: Y a ⊥⊥ A|L.

Consider the semi-parametric structural quantile model

Qτ (Y
a|L)︸ ︷︷ ︸

Qτ (Y |A=a,L)

− Qτ (Y
0|L)︸ ︷︷ ︸

unknown fct of L

= βτa for all a

Techniques for partially linear quantile models are relevant, but have limited utility:
(Lee, 2003; Sun, 2005; Wu et al., 2010; Wu and Yu, 2014; Lv et al., 2015; Sherwood and Wang, 2016; Zhong and Wang, 2023)

computational demands;
challenges in high-dimensional applications (due to reliance on kernel weighting or splines);
biased inference when the model is wrong.
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ASSUMPTION-LEAN REGRESSION (2)

Because model
Qτ (Y

a|L)− Qτ (Y
0|L) = βτa for all a

is deliberately kept simple, we will not assume it to hold.

The real modeling is done through statistical/machine learning,
results of which are projected and de-biased in view of a specific estimand.

As such, we ensure that we are estimating a well-understood exposure effect
and obtain valid inferences,
even when the model is misspecified, and despite the use of machine learning.
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ASSUMPTION-LEAN
QUANTILE REGRESSION



BE CLEAR ABOUT THE ESTIMAND (1)
A ‘hygienic’ analysis is clear about the estimand, even when models are used.

For instance, with a binary randomized treatment A,
we map βτ in model

Qτ (Y
1|L)− Qτ (Y

0|L) = βτ

onto the model-free estimand

E
{

Qτ (Y
1|L)− Qτ (Y

0|L)
}

,

which is what we will estimate.

This choice prevents that naïve interpretation as a ‘difference between quantiles’
would be misleading.

In contrast, in standard (partially linear) quantile regression,
it is unclear what we are estimating when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (2)
When A is not randomized, we may consider the same estimand,
or generalize it to the weighted average:

E[w(L)
{

Qτ (Y 1|L)− Qτ (Y 0|L)
}
]

E {w(L)}
,

with
w(L) = P(A = 1|L)P(A = 0|L).

This weighting gives the stability desired for widescale practical use.

Because it changes the target population, we provide similarly weighted summary statistics.

In contrast, standard quantile regression
also weighs the data, but we have a poor understanding how the weighting is done;
mixes the effects of A and L when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (3)

For arbitrary A, these estimands generalize
to a least squares projection of the quantile difference

Qτ (Y
a|L)− Qτ (Y

a∗ |L) onto a − a∗

for exposure values a and a∗ randomly and independently drawn with the same value L
(averaged over L).
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DEBIASED MACHINE LEARNING



A DEBIASED ESTIMATOR

When Y a ⊥⊥ A|L, the estimand can be identified as

E [{A − E(A|L)} [Qτ (Y |A, L)− E {Qτ (Y |A, L)|L}]
E
[
{A − E(A|L)}2]

Based on the estimand’s efficient influence function,
we construct the following debiased estimator

1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1(Ai − Ê(Ai |Li))2

[
Q̂τ (Yi |Ai , Li)− Ê

(
Q̂τ (Yi |Ai , Li)

∣∣Li

)]

+
1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1(Ai − Ê(Ai |Li))2

[
τ − I{Yi ≤ Q̂τ (Yi |Ai , Li)}
f̂Y |A,L(Q̂τ (Yi |Ai , Li)|Ai , Li)

]
,

where the nuisance parameters are substituted by data-adaptive estimates (e.g., ML).
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A TARGETED LEARNING ESTIMATOR (TMLE)
Targeted learning ‘simplifies’ this by forcing the second line to give zero,
which gives an asymptotically equivalent estimator.
It does so by ‘targeting’ an initial estimator Q̃τ (Y |A, L) so that

1

n

n∑
i=1

{
Ai − Ê(Ai |Li)

}[
τ − I{Yi ≤ Q̃τ (Yi |Ai , Li)}
f̂Y |A,L(Q̃τ (Yi |Ai , Li)|Ai , Li)

]
≈ 0.

This is done by fitting the quantile regression model

Q̃τ (Yi |Ai , Li) = Q̂τ (Yi |Ai , Li) + δ · Ai − Ê(Ai |Li)

f̂ (Q̂τ (Yi |Ai , Li)|Ai , Li)

Next, we calculate the estimator of βτ as

1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1(Ai − Ê(Ai |Li))2

[
Q̃τ (Yi |Ai , Li)− Ê

(
Q̃τ (Yi |Ai , Li)

∣∣Li

)]
.
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ASSESSING STANDARD ERRORS

Uncertainty in data-adaptive estimates is difficult to quantify.

But proposed estimator is not sensitive to it
when nuisance parameter estimators converge at faster than n to the quarter rates.

The variance of the estimator can therefore be estimated
as 1 over n times the sample variance of the influence functions
as if the nuisance parameters were given.
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A FEW CAVEATS

When flexible machine learning methods are used,
sample-splitting/cross-fitting should be used.
(Zheng & van der Laan, 2011; Chernozhukov et al., 2018)

This removes additional bias due to overfitting.

In order for the learners to converge sufficiently fast (at faster than n to the quarter rates),
we also require assumptions like smoothness/sparsity.

These are weaker than standard parametric assumptions,
but are still non-negligible.

This is why our inferences are assumption-lean,
rather than assumption-free.
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SIMULATION STUDIES



SIMULATION STUDIES

We considered inference for βτ in

Qτ (Y
a|L)− Qτ (Y

0|L) = βτa for all a

L is 4-dimensional multivariate normal.
2 settings:

Binary exposure: P(A = 1|L) = expit(−0.5 + 0.2L1 − 0.4L2 − 0.4L3 + 0.2L4).
Continuous exposure: A ∼ N (−0.5 + L1 − 2L2 − 2L3 + L4, 22).

The outcome was generated according to

Y = 1 + A + sin(L1) + L2
2 + L3 + L4 + L3 · L4 + ϵ,

where ϵ ∼ Gamma(k , θ).

Nuisance parameters are estimated using ‘grf’, ‘SuperLearner’ and ‘FKSUM’ R-packages.

We contrast the proposal with an oracle quantile regression and a naive plug-in estimator.
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SIMULATION STUDIES
τ = 0.5 τ = 0.9

Setting estimator
bias SD SE Cov bias SD SE Cov

Oracle -0.0017 0.19 0.20 96.6 -0.011 0.56 0.60 96.0
Plugin -0.70 0.12 0.015 0.1 -0.64 0.22 0.036 1.6Bin.
TMLE-CF 0.012 0.22 0.25 97.2 0.14 0.68 0.63 91.4
Oracle -0.0013 0.035 0.036 95.6 0.0010 0.10 0.11 94.6
Plugin -0.17 0.064 0.016 0.5 -0.39 0.11 0.021 0.0Cont.
TMLE-CF -0.011 0.044 0.042 92.9 0.012 0.14 0.10 85.3

Sample size n = 500, quantile τ , 1000
simulations

Oracle: correctly specified QR

Plugin: Naive plug-in estimator

TMLE-CF: TMLE with 5-fold cross-fitting

bias: Monte Carlo bias

SD: Monte Carlo standard deviation

SE: averaged estimated standard error

Cov: coverage of 95% CI
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CONCLUSION



MORE HYGIENIC (CAUSAL) ANALYSES (1)

The starting point of the ‘causal roadmap’
is the postulation of a causal estimand linked to the scientific question.

This gets forgotten
when causal models are used (e.g., MSMs, SNMMs, target trials, ...);
when the use of overly simplistic estimands
drifts researchers away from the scientific question (e.g., dichotomizing exposures).

Assumption-lean modeling aims to make statistical / causal analyses more hygienic,
by being clear about what we are estimating when the models is wrong.

It does this by transporting the concept of a causal estimand to the broader modeling context.
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MORE HYGIENIC (CAUSAL) ANALYSES (2)

This focus on estimands may be viewed as undesirable.
It is needed to be open about the statistical analysis,
just like openness about causal assumptions is central to causal inference.

Also the focus on generic estimands may be view as less desirable.
It is needed to give statistical / causal analyses flexibility and accessibility to non-experts.
It prevents being overly ambitious in descriptive etiologic studies
(where it is too ambitious to think about hypothetical interventions)

and does not prevent more refined analyses.
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FEATURES
The flexibility of standard regression
(e.g., it readily handles continuous exposures).

It overcomes Occam’s dilemma by separating modeling to summarise
from (data-adaptive) modeling to handle the curse of dimensionality.
(Breiman, 2001)

It prevents model misspecification bias by incorporating flexible modeling, machine learning.

It avoids to extract information from modeling assumptions
by working under the nonparametric model.

It enables valid (post-selection) inference after using machine learning, variable selection,
model selection.

It enables (near) pre-specification of the entire analysis.

It tries to avoid making strong extrapolations.

It is ‘simple’ to obtain.
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