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Abstract— Excessive or inadequate Gestational Weight Gain
(GWG) is considered to not only put the mothers, but also the
infants at increased risks with a number of adverse outcomes.
In this paper, we use self-reported weight measurements from
the early days of pregnancy to predict and classify the end-of-
pregnancy weight gain into an underweight, normal or obese
category in accordance with the Institute of Medicine recom-
mended guidelines. Self-reported weight measurements suffer
from issues such as lack of enough data and non-uniformity. We
propose and compare two novel parametric and non-parametric
approaches that utilise self-training data along with population
data to tackle limited data availability. We, dynamically find
the subset of closest time series from the population weight-
gain data to a given subject. Then, a non-parametric Gaussian
Process (GP) regression model, learnt on the selected subset is
used to forecast the self-reported weight measurements of given
subject. Our novel approach produces mean absolute error
(MAE) of 2.572 kgs in forecasting end-of-pregnancy weight
gain and achieves weight-category-classification accuracy of
63.75% mid-way through the pregnancy, whereas a state-of-
the-art approach is only 53.75% accurate and produces high
MAE of 16.22 kgs. Our method ensures reliable prediction of
the end-of-pregnancy weight gain using few data points and can
assist in early intervention that can prevent gaining or losing
excessive weight during pregnancy.

I. INTRODUCTION
Global trends suggest [1] that around 47% of the pregnant

women end-up being overweight or obese at the end of ges-
tational period and around 23% tend to gain too little weight
during their pregnancy. Gaining too much or too little weight
during the pregnancy can cause several short-term and long-
term health related problems not only to the mother but also
the infant. Excessive Gestational weight Gain (GWG) can
lead to postpartum weight retention and subsequent maternal
obesity [2] that increases the risk of gestational diabetes [3].
It can also result in large-for-gestational-age infant and/or
caesarean delivery or other labor and delivery complications
[1]. Foreseeable risks for infants such as childhood obesity
are also reported [4]. On the contrary, gaining too little
weight during pregnancy is also not considered healthy. This
increases the risk of preterm birth or small-for-gestational-
age infants [1]. Institute of Medicine (IOM) recommends a
set of guidelines [5] on how much weight women in different
body mass index (BMI) categories should gain during their
pregnancy to deliver at a normal weight (Table I).
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Most of the women do not follow the guidelines or
realize when it’s too late into the pregnancy. Our proposed
solution can accurately predict the trend in weight gain using
the weights during the initial days of the pregnancy. This
can help prenatal care providers in risk assessment during
a pregnancy and provide better adaptive coaching to the
mothers. Moreover, mothers can track the rate of weight gain
and use our proposed model to monitor weight gain, thus
reducing GWG related risks at the end of their pregnancy.

We use self-reported real life weight measurements data
from 80 expecting mothers collected during their pregnancy.
We formulate this as an absolute weight prediction problem
with the end goal of predicting the weight at the end of
the pregnancy and classifying if the weight is within the
guidelines or not. We have restricted our analysis to the
mothers with singleton pregnancy for this study. Data from
mothers expecting more than one child is very rare to obtain.
Also, the guidelines [5] for gestational weight gain consider
singleton mothers.

TABLE I: 2009 IOM guidelines for weight gain and rate of
weight gain during pregnancy

Pre-pregnancy
Body Mass Index (BMI)

category

Mothers of singletons

Total weight gain
(in kgs)

Rate of weight gain
in the second

and third trimesters (kg/wk)
Underweight (<18.5 kg/m2) 12.7-18.14 0.45-0.59

Normal-weight (18.5-24.9 kg/m2) 11.34-15.88 0.36-0.45
Overweight (25.0-29.9 kg/m2) 6.8-11.34 0.23-0.32

Obese (≥ 30.0 kg/m2) 4.99-9.07 0.18 -0.27

Weight gain during pregnancy varies from person to per-
son based on their pre-pregnancy weight and BMI ranges.
Women with underweight pre-pregnancy BMI are expected
to gain weight at a higher rate than women that were
overweight before pregnancy. If enough reliable weight mea-
surements collected uniformly over time are available for
training, one can estimate the end-of-pregnancy weight gain
by fitting a first to third order polynomial. However, there
are two major challenges i) weight measurement data suffers
from noise, is incomplete, sparse and non-uniformly sampled
due to the self-reported nature, ii) limited availability of
training data from the initial few days of the pregnancy for
early prediction. Fig. 1 shows weight gain measurements and
early prediction using polynomial fitting from two subjects.

In this paper, we experiment and compare parametric
bayesian regression and non-parametric gaussian process
regression to model the time series data. We find a subset
of population data that is close to our test subjects’ limited
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(a) Good self-training
data (Less sparse, pseudo-
uniformly sampled), i = 9

(b) Bad self-training data
(Highly sparse, non-unif-
ormly sampled), i = 35

Fig. 1: Self-reported weight gain data are sparse, non-
uniformly sampled. Forecasting for ith subject on delivery
day by fitting 1st to 3rd order polynomial is highly inaccurate
for early prediction (with limited self-training data)

self-training data. We then combine models learnt from this
population subset along with personal data for early pre-
diction of gestational weight gain. Autoregressive integrated
moving average (ARIMA) models [6] are considered as a
state-of-the-art approach in time series forecasting that learn
structures from the time series data, given sufficient historical
personal data. We show that our approach out-performs state-
of-the-art in early prediction by tuning the personal model
using the general population model learnt a-priori.

II. METHODOLOGY

We are given a population gestational weight gain time
series data from N subjects as X = {(x1,y1), ...(xN ,yN )},
where xi = {ti1, ti2, ti3, ..., tim} represents the input
gestational days upto delivery day tim and yi =
{yi1, yi2, yi3, ..., yim)} represents the output weight gain for
ith subject, where yik = y(tik). It is important to note here
that ti1 does not necessarily equal tj1, i, j ∈ {1, 2, ...N}.
This is because the data is self-reported and each time of
measurement varies from user to user according to their
personal preferences and adherence to data collection.

Additionally, we are given individual weight measure-
ments from a subject’s initial td days of pregnancy data,
D = {(t+1 , y

+
1 ), (t

+
2 , y

+
2 )..., (t

+
d , y

+
d )}. We call this the self-

training data. Weight gain data from population data over
entire gestational period is called population-training data.

The objective is to try to learn function(s) f from given
population and individual data, such that,

y+ = f(t+) + ε (1)

where ε ∼ N (0, σ2) is independent and identically dis-
tributed (i.i.d) gaussian.

Our parametric approach learns parameters’ information
a-priori from the population data and the non-parametric
approach learns closest subset from the population data. We
then use this knowledge to build personalised models and
learn f . The individual weight gain in future at delivery
time t+m is forecasted using the learned model f and y+m =
y(t+m) = f(t+m). Next, we discuss these approaches in detail.

A. Parametric

We can fit a pth-order polynomial with f = w0 + w1t +
w2t

2 + ... + wpt
p in eq. (1) and estimate the coefficients

w = [w0, w1, ...wp]
T by maximizing the likelihood over

individual’s self-training data D, L(w) = P (D|w),

ŵMLE = argmax
w

P (D|w) =

d∏
i=1

p(y+i |t
+
i ;w) (2)

Eq. (2) refers to the model learnt from the individual’s
sparse limited observations data upto given td days. Next, we
exploit the population-training data and find the maximum
likelihood estimates of ŵ for all the time series in the
population-training data. We, then use the distribution of
the estimates of these coefficients, p(w) acquired from the
N subjects in the population data as an a-priori estimate.
The likelihood learnt from the self-training data and the a-
priori distribution learnt from the population data are then
combined using bayes theorem to calculate the maximum-a-
posteriori estimate of the coefficients p(w|D).

ŵMAP = argmax
w

p(w|D) = P (D|w)p(w)

P (D)
(3)

The forecast at time t+m is given by ŵMAP [t
+
m t+m

2
.... t+m

p
]T .

We call this approach parametric because the choice of order
of the polynomial p depends on the application of interest,
which should be pre-defined.

B. Non-Parametric

In this subsection, we discuss Gaussian Processes (GP) as
a non-parametric approach that is robust to sparse and limited
availability of data, especially in medical time series data
such as vital signs monitoring [7]. GP is defined as a set of
random variables, such that any finite number of them have
a joint Gaussian distribution [8]. Here, we define ‘f ’ from
eq. (1) as a GP specified by mean and covariance functions
m(t) and k(t, t′) respectively, f(t) ∼ GP(m(t), k(t, t′)).
The covariance function models the structure of the time se-
ries by exploiting the relationship between two independent
observations based on our assumptions of data, given that
the covariance remains positive semi-definite [8]. Assuming
that the data is noisy with i.i.d gaussian noise, having noise
covariance σ2

n, we chose a gaussian covariance function,

k(t, t′) = σ2
f exp

[
−(t− t′)2

2l2

]
(4)

We chose a Gaussian covariance function as prior because
it is almost unity when two observations are very close in
time, and decreases as they become far apart in time. This
is in line with the fact that gestational weight gain does not
changes abruptly and is correlated in time.

Let’s assume, we find a subset X̂ from the given
population dataset X , X̂ = {(x1,y1), ..., (xM ,yM )} ={
(t11, y

1
1), ..., (t

1
m, y

1
m), ..., (tM1 , y

M
1 ), ..., (tMm , y

M
m )
}

, M <<

N using some heuristic such that X̂ is closer to the indi-
vidual test subject’s data. We discuss the computation and
advantages of this heuristic later in the section II-B.1.
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Given ŷ = [y11 , ..., y
1
m, ...., y

M
1 , .., yMm ]T and K as a matrix

of entries Kab = k(ta, tb), ∀ta, tb ∈ X̂ using eqn. (4),
we follow optimisation procedure from [8] to estimate the
hyperparameters {σf , l, σn} by maximising the marginal
likelihood p(ŷ|X̂ ; {σf , l, σn}). The prediction at time t+m is
given as a gaussian distribution whose mean, µ and variance,
σ2 are given by µ(t+m) = k+

T (K + σ2
nI)−1ŷ, σ(t+m) =

k(t+m, t
+
m) − k+

T (K + σ2
nI)−1k+, where k+ = k(t+m),

k(t+m) = [k(t+m, t
1
1), ..., k(t

+
m, t

M
m )]T

1) Heuristics to find X̂ from X : We find the subset
X̂ from X such that elements in X̂ are in some sense
closest to the individual self-training data, D. This gives
an advantage in terms of prediction capability and reduces
the computational complexity. It improves the prediction
capability by reducing the variability at time t in training data
occurring due to inter-personal variations among subjects
from complete population and selecting only those subjects,
who exhibit similar weight gain trend. The computational
complexity of Gaussian processes is O(n3), where n is the
number of training points in a dataset. Clearly, n(X̂ ) <<
n(X ) because M << N . Although, our heuristics method
give a relative computational advantage over vanilla gaus-
sian process methods, still the computational complexity is
expected to be too high if N is of the order of 106, which
is a limitation of this non-parametric approach. Sparse GPs
detailed in [8] are model approximation methods that can
further reduce the computational complexity, if scaling to
such high number of subjects.

In order to find X̂ from X , first, we calculate
the distances between ith test subject’s self-training
data D = {(t+1 , y

+
1 ), (t

+
2 , y

+
2 )..., (t

+
d , y

+
d )} and given

population subjects’ data (until allowed training day
‘t+d ’) as Ωi = [ωi1, ωi2, ....ωiN ]T , where ωij =
dist([y+1 , ...y

+
d ], [y

j
1, ...y

j
d]). We have chosen Dynamic time

warping (DTW) [9] as distance measure dist in this work due
to it’s robustness over other distance measures in indexing
time series [10] and it’s capability to handle non-uniformly
sampled data. Next, we actively find the closest subjects by
calculating cut-off point for the ith subject as follows; i)
arrange the distance vector Ωi in ascending order to calculate
Ω̂i = [ω̂i1, ω̂i2, .... ˆωiN ]T , such that ω̂ik ≤ ˆωik+1∀k =
1, 2, ..N , ii) find turning points at location ‘k’, such that,
(ω̂ik−1 − ω̂ik−2) ≤ (ω̂ik − ω̂ik−1) ≥ (ω̂ik+1 − ω̂ik), iii)
chose the value at the first turning point ‘ω̂k’ as our threshold
for finding the closest time series set X̂ . Fig. 2a shows the
DTW distance measures from i = 1th subject to the rest of
the subjects. Fig. 2b shows the GWG trend for the closest
subjects found using the proposed heuristic in the training
phase (yellow region) which is similar in the test region (to
be forecasted).

III. EXPERIMENTS AND DISCUSSION

A. Data

The weight data was collected from 80 women using a
WiFi-connected weight scale, Withings WS301. Two mid-

1https://www.withings.com/
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(a) Closest time series calcu-
lated using heuristics on DTW
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ity for GPR forecasting

Fig. 2: DTW distance as a measure of finding dis-similarity
among time series and applying heuristics to find subset from
population that are closest to individual data

wife practices in Eindhoven, The Netherlands recruited par-
ticipants that were older than 18 years old and were in their
gestational week 10 or earlier. The participants were asked to
log their weights weekly and the recorded weight data was
sent to the cloud via a mobile application. The participants
provided an informed consent pre-data collection and the
study was approved by Philips’ Internal Ethics Committee
for Biomedical Experiments (ICBE). The participants were
31 ± 3.5 years old (Mean±SD), and 1.69 ± 0.07 meters
tall. Self-reported pre-pregnancy weight was 69 ± 15 kg
resulting in an average pre-pregnancy BMI of 24±4 kg/m2.
The delivery was around 277 ± 10 days and they gained
13.7 ± 4.7 kg during this time. Table II shows the data
distribution of our sample dataset pre and post-pregnancy
for under/within/over guidelines. Interestingly, our sample
dataset’s distribution is close to that in [1], which is obtained
from a large population of more than a million women, with
almost half of the women gaining above the recommended
guidelines. This further strengthens the need for this study.

TABLE II: Change in distribution before and after pregnancy

Pre-pregBMI Class #Sub Distribution post-pregnancy
Underweight Normal Overweight

Underweight 3 1 2 0
Normal 45 11 15 19

Overweight 32 4 8 20
80 subjects(Class %) 16(20%) 25(31.2%) 39(48.8%)

B. Results

We perform leave-one-out cross validation for evaluation,
where training data in each iteration consists of weight gain
data from N-1 population subjects and self-training data from
the test subject. We normalise the absolute weight data by
subtracting pre-pregnancy weight to get weight-gain data.
Fig. 3 shows the progression of actual weight gain and
best/worst predictions obtained using our approach. Next,
we present a comparison of the two approaches among
themselves and show that both outperform the state-of-the-art
ARIMA approach and polynomial fitting. The performance
of regression was computed using Mean Absolute Error
(MAE), MAE = 1

N

∑
N |y(tim)− yref (tim)|.
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(a) Worst prediction using para-
metric approach, i = 45

(b) Best prediction using para-
metric approach, i = 16

(c) Worst prediction using non-
parametric approach, i = 55

(d) Best prediction using non-
parametric approach, i = 40

Fig. 3: Parametric and non-parametric approach to forecast weight gain with best and worst predictions alongside the actual
weight gain data and recommended guidelines with number of training days = 140 for ith subject(s). 95% confidence
interval also plotted for non-parametric approach, GPR in the predictions. (Images best viewed when zoomed 200%)

We experiment with first, second and third order poly-
nomial based parametric approach to fit our weight-gain
data. The intercept term can be omitted prior to fitting the
model as the data is normalised to pass through the origin.
We chose third order polynomial for parametric approach
as it obtains the minimum prediction error among all other
orders. The non-parametric gaussian process regression along
with dynamic selection of the heuristic discussed in section
II-B.1 obtains significantly accurate weight-gain predictions
without fixing any parameter a-priori.

It is important to note that our parametric and non-
paramteric approaches find closeness of self-training phase of
the test subject to the population data in parameters or data-
space respectively. Hence, our approaches implicitly assume
that subjects (test and calculated population subset) similar
in their training phase (i.e available weight gain data till
some day) behave or show the same trend during the test
phase with slight variability. Both the parametric and non-
parametric approaches produce worst results shown in Fig. 3
when this assumption does not hold. This happens because
the trend of the weight gain of test subject is similar to that
of closest selected subset from population data during the
allowed training day, but is completely different in test phase.
For example, in Fig. 3c, the selected closest subset and self-
training data are very close till the training day, but the test
subject shows very different trend during the later stages of
pregnancy. In such cases, more self-training data can improve
the predictions.

C. Effect of number of training days

We study the impact of availability of weight gain data
for training as the pregnancy progresses and suggest a good
choice of training day empirically. Fig. 4 shows that the
prediction error reduces as the training data availability
increases. However, in order to maximise the utility of the
proposed weight-gain estimator, the training should be done
as early as possible into the gestational age. We chose
day ‘140’ as the sweet spot because it is midway through
the pregnancy where prediction capability is strong and the
intervention is in time.
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Fig. 4: Prediction error improves as more self-training data
becomes available for both the approaches.

D. State-of-the-art

We compare the proposed techniques with the state-of-
the-art ARIMA approach for time series forecasting [6].
Forecasting using ARIMA methods require uniformly spaced
samples of the time series. We introduce uniformity by linear
interpolation between samples. We fit an ARIMA(p,d,q)
model by i) enforcing equi-spaced sampling by linear in-
terpolation, ii) performing a grid search over the hyperpa-
rameters [11] to find an optimal autoregressive order, degree
of differencing, and moving average order, iii) forecasting
multi-steps ahead in time to find the end-of-pregnancy gesta-
tional weight gain using the optimised hyperparameters over
the training part (GWG data until day td). Fig. 5 shows
that our proposed method outperforms the state-of-the-art
approach in early detection and performs very closely when
abundant self-training data until the start of third trimester
is available. We also tested polynomial fitting approach
following maximum likelihood estimation (MLE) with first
to third order polynomial and order = 2 produces best results
(among the orders 1 to 3). The MAE of our proposed
parametric and non-parametric approach is 2.572 kgs and
2.890 kgs respectively ‘mid-way’ through pregnancy (day
140), whereas state-of-the-art ARIMA and MLE produce
high MAE of 8.168 kgs and 16.22 kgs respectively.

E. Classification with respect to guidelines

In order to further assess our method, we classify the
predicted weight gain with respect to the recommended
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Fig. 5: Comparison of proposed approach with state-of-
the-art. Proposed approach outperforms ARIMA for early
intervention when training data is less and is close when
abundant training data is available.

guidelines into three classes, ‘underweight’, ‘normal’, ‘over-
weight’. In Fig. 6 and 7, we show the accuracy and F1-scores
of the various methods considered. Our approach gives a
maximum of 63.5% prediction accuracy at day ‘140’ for
early intervention as compared to state-of-the-art, which is
only 53.75% accurate. Fig. 7 also shows F1 scores for each
individual class and also average F1-score across all classes.

ARIMA models the time series based on the historical
data. As more and more self-training data becomes available,
ARIMA based personalised models forecast better than our
proposed model, which uses a-priori population data. How-
ever, in the absence of enough self-training data our proposed
model out-performs the state-of-the-art approach, which is
imperative for early detection of GWG trend in reducing
related risks. Fig. 6 and 7 show that our approach predicts
better than the state-of-the-art when training from data using
120-160 days, predicts close to state-of-the-art when data is
between 161-230 days and under-performs during the last
stages of the pregnancy.

Fig. 6: Prediction accuracy of the proposed approach with
respect to the state-of-the-art

IV. CONCLUSION

We have proposed a novel excessive Gestational weight
gain estimator for expecting mothers that can predict the
weight gain trend in time. This can help to provide proper
interventions by pre-natal care providers and to reduce risks
of adverse maternal and neonatal effects of excessive or inad-
equate GWG. We show that our proposed algorithm outper-
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Fig. 7: Comparison of the class-wise F1-score of our ap-
proach with the state-of-the-art

forms the state-of-the-art approach in early intervention by
utilising the power of combining a-priori information learnt
from population and tuning the personal model accordingly.
In the future, we would like to improve the predictions
by adding additional information such as meta-data and/or
fusing the two proposed approaches.
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