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Abstract—Gait speed and transfer times are measures of
functional ability in elderly. Currently data acquired by systems
that measure either gait speed or transfer times in the homes
of elderly people require reviewing by health care workers. This
reviewing can be a time consuming process. To alleviate this
burden statistical process control methods are presented that can
automatically detect both positive and negative changes in trans-
fer times. Three SPC techniques tabular CUSUM, standardized
CUSUM and EWMA were evaluated on simulated transfer times.
After parameter optimization of the methods under evaluation
it was concluded that EWMA was the better suited method for
the desired application.**

I. INTRODUCTION

Because a decline in gait speed has a predictive value for
a broad array of adverse events such as physical functional
decline [1], [2], cognitive impairment [3], [4] and fall incidents
[3], [4] it is often used as a parameter when monitoring the
health of elderly people [1], [2].

Gait speed and transfer times can be continuously monitored
by wearable sensors such as accelerometers and gyroscopes
[5] or by contactless sensors, such as motion detection systems
[6], radar [7] and cameras [8]. Although these systems provide
accurate patient measurements, health care workers are forced
to review these data for each patient which can be very time
consuming. A system that can automatically detect changes in
these measurements is therefore needed.

For this automatic change detection three statistical pro-
cess control (SPC) techniques, tabular CUSUM, standardized
CUSUM and EWMA, were evaluated. Simulated datasets,
generated based on the properties of real life acquired data,
were used to optimize and validate each technique.

In the remainder of the paper, first the different datasets for
both training and validation are discussed, followed by a gen-
eral description of the experimental setup. Subsequently the
results are presented and discussed and a general conclusion
is provided.

II. RELATED WORK

The monitoring of health-related variables for individual pa-
tients using SPC was first suggested by Alemi and Neuhauser
in 2004 [9]. Since then SPC techniques have been used for
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quality monitoring of several hospital performance measures
such as post operation infection rates, waiting times or the
number of fall incidents [10], [11] among others. The use of
SPC techniques for the monitoring of gait quality parameters
however is new.

III. DATASETS AND EXPERIMENTAL SETUP

Parameters of the proposed SPC techniques were optimized
using a grid search technique. For this purpose two simulated
datasets were generated: a training dataset to optimize the SPC
parameters for the desired application and a validation dataset.
The results obtained after this parameter tuning were compared
with those obtained when parameters were chosen according
to a rule of tumb [13].

A. The datasets

In [8] real life datasets were acquired trough installation of
wall-mounted cameras in the homes of four elderly persons
for periods varying from 8 to 12 weeks. From this data it was
clear that a log logistic model was a realistic assumption for
the transfer times.

Three key aspects were taken into account when generating
simulated transfer times. First the location and scale parame-
ters (µ and σ resp.) of the log-logistic distributions from which
the simulated transfer times were sampled were determined,
based on the in [8] acquired real life data, through maximum
likelihood estimation for both a stable and an unstable gait
model. A stable gait model was defined with a µ of 1.504 and
σ of 0.155. An unstable gait model had a µ of 2.097 and σ
of 0.204 (figure 1 shows the real life dataset of the participant
with a stable gait pattern and fitted log logistic function).
Next the number of measurements per day were determined
by sampling a Poisson distribution. Lastly linear interpolation
was used to calculate intermediate model parameters for each
day in the transition period when transitioning from a stable
to unstable model and vice versa. Four basic simulation
scenario’s were defined: a scenario for which the gait pattern
remains stable during the whole measurement period, one
where the gait pattern remains unstable, one where the gait
pattern is stable for several weeks at the beginning of the
measurement period and transitions during four weeks to an
unstable pattern and vice versa. Although we are aware that
shorter (for instance after an acute event) and longer transition
periods are possible the length of this transition period was
again based on the in [8] acquired data

Each basic scenario was generated 20 times for the training
set, resulting in a trainings set consisting of 80 simulation sets.
For the validation set the basic scenarios were again generated



Fig. 1. Histogram of real life measured transfer times of a participant with
a stable gait pattern and fitted log logistic function

20 times, again resulting in a validation set consisting of 80
simulation sets.

Since the distribution of the transfer times is skewed a
median was calculated for each day. These medians are used
as input for the control charts.

B. Experimental setup

1) Statistical process control techniques: In the
presented study several control charts were evaluated that are
widely known in the area of SPC [13]. These control charts
aim to detect trends in the performance of a process and can
trigger an alert when variations, not inherent to the process,
occur.

There are a multitude of different types of control charts
available. However since the evaluated control charts should
be able to detect small shifts in the data and should perform
well with skewed distributed data the study focussed on
the Cumulative sum (CUSUM) chart and the Exponentially
weighted moving average (EWMA) chart [13].

CUSUM charts calculate the cumulative sum of the devia-
tions of the transfer times from the target value. The deviations
above the target value are accumulated in the positive CUSUM
whereas the deviations below the target value are accumulated
in the negative CUSUM. Using this method both the infor-
mation contained in the current point and contained in the
previous points are taken into account, therefore facilitating
the detection of smaller shifts.

The literature differentiates between Tabular CUSUM and
Standardized CUSUM. With the tabular CUSUM the positive
and negative CUSUM values are calculated using formulas as

C+
i = max[0, xi − (µ0 +K) + C+

(i−1)] (1)

and
C−

i = max[0, (µ0 −K)− xi + C−
(i−1)] (2)

In both formulas µ0 is defined as the target value. K is referred
to as the allowance or the slack value of µ0 and is expressed
in terms of the standard deviation σ of the data:

K =
k

2
σ (3)

As seen in formulas (1) and (2) both positive and negative
CUSUMs accumulate deviations from the target value that are
greater than K. Both quantities are reset to zero when they
become negative. An alarm is triggered if either exceed the
Upper Control Limit (UCL) or Lower Control Limit (LCL):

UCL = LCL = hσ (4)

Both h and k are the parameters to optimize for an effective
detection.

Standardized CUSUM uses similar formulas to those of the
tabular CUSUM chart. The current measurement however is
standardized first using formula

yi =
xi − µ0

σ
(5)

. After this standardization a tabular CUSUM chart can be
applied on these standardized values.

The Exponentially weighted moving average (EWMA) con-
trol chart, is often presented as an alternative to the CUSUM
chart when interested in detecting small shifts [13]. It accumu-
lates the exponentially weighted moving average of all prior
sample means. The exponentially weighted moving average is
calculated as:

zi = λxi + (1− λ)z(i−1) (6)

with λ the weighing factor chosen between 0 and 1. The
starting value of z0 is chosen the same as the central value
µ0.

Upper and lower control limit are calculated as:

UCL = µ0 + Lσ

√
λ

2− λ
[1− (1− λ)2i] (7)

and

LCL = µ0 − Lσ

√
λ

2− λ
[1− (1− λ)2i] (8)

with L determining the width of the control limits. Both L and
λ are the parameters to optimize for an effective detection.

An important task for both types of control charts was to
find the range of natural variation in the transfer times. To
determine this range an initialisation period of 14 days was
defined. The mean of the measurements conducted in this
period was used as the target value or the central line of the
control chart and the standard deviation was used to define the
Upper and Lower Control Limit using (4), (7) and (8).

2) Evaluation criteria: To assess the results of the
different control charts three evaluation criteria were chosen.
They were averaged over multiple scenarios of simulation data
of the same type (e.g. the results of all the scenarios which
contain a stable to unstable transition are averaged). These
criteria are:



TABLE I
INITIAL AND OPTIMIZED CONTROL CHART PARAMETERS

Tabular CUSUM Standardized CUSUM EWMA
Init Opt Init Opt Init Opt

h 3.00 3.00 3.00 2.96
k 0.50 0.92 0.50 1.00
L 3.00 2.92
λ 0.15 0.04

1) Detection Rate (DR)
The detection rate is the percentage of the detected
transitions from both a stable to an unstable gait pattern
and vice versa. As an undetected transition can have seri-
ous medical consequences the detection rate is therefore
deemed the most important parameter.

2) Average Run Length
The Average Run Length (ARL) is the number of days
needed to detect a transition. This time needs to be kept
as short as possible to enable health care workers to
respond quickly to changes in transfer times.

3) Average number of false alerts per week(FP)
This is the number of alerts triggered when there is no
transition ongoing.

An alert is triggered when the calculated sample statistic,
either the positive/negative CUSUM value or the EWMA
value, are outside the control limits for at least 2 consecutive
days. This is in line with the Western Electric rules, a set
of decision rules used for the detection of out-of-control
conditions on control charts [12]. An alert is deemed a correct
detection if it occurs during or after the transition period. An
alert is classified as a false alert if it presents itself at least two
days prior to the transition period. If first sample is outside
the control limits on the day prior to the transition period and
on the second sample is still outside the control limits on the
first day of the transition period this is however classified as
a correct detection.

3) Optimization of the SPC parameters:
The initial control chart parameters for both CUSUM charts
and EWMA were chosen based on a rule of thumb [13]. To
improve the results these parameters were further optimized
in a grid search for each control chart type individually by
maximizing:

O = 0.5×DR+ 0.4×ARL+ 0.1× FP (9)

with
• O = optimization parameter
• DR = normalized detection rate
• ARL = normalized average run length
• FP = normalized false positive rate

as a function of the control chart parameters. Tabel I gives an
overview of the initial and optimized control chart parameters.

IV. RESULTS
Table II presents the results of our analysis when the

parameter choice was first based on a rule of thumb, as well
as the optimized and validation results.

A considerably longer ARL is present in the results of the
standardized CUSUM chart as compared to those of the tabular
CUSUM and EWMA control charts. Although the overall
detection rate of standardized CUSUM is slightly higher than
the detection rate of the tabular CUSUM control chart the
average number of false alerts per week of the standerdized
CUSUM chart is 3 times higher than that of the tabular
CUSUM chart. This longer ARL and high number of false
alerts per week make the standerdized CUSUM chart less
suitable than the tabular CUSUM chart.

Although the average number of false alerts per week and
the ARL from the EWMA chart are similar to those of the
tabular CUSUM chart the overall detection rate of the EWMA
chart is notably higher than the detection rate of the tabular
CUSUM chart. The EWMA chart is therefore the most suited
for this application.

V. DISCUSSION

This study reports on the performance of the tabular
CUSUM, standardized CUSUM and EWMA control charts to
automatically detect changes in the health of older adults using
transfer times. The best performing method was the EWMA
control chart. After optimization the selected method had an
average detection rate of 82% and an average run length of
9.64 days with the transition period of 28 days. Both results
were obtained using the validation dataset. Confirming the
suitability of the presented method for the desired application.

However from the results obtained through validation it can
be seen that small number of transitions remain undetected and
on average one false alert is triggered every 20 days. If the
control limits are widened, the number of false alerts would
decrease. This would however elongate the ARL and possibly
decrease the detection rate. Similarly when the control limits
are tightened the opposite happens. Furthermore since a false
alert is triggered when the measurements of two subsequent
days are substantially different to those of the previous days it
could indicate that some health problem is apparent during
those days. A compromise was therefore sought between
detection rate, ARL and false alerts.

Also, when a person has a very stable gait only small
variations in the measured transfer times will occur. The UCL
and LCL will therefore ly close together causing the average
number of false alerts to rise. Worse when a person has a
very unstable gait and thus a wide variation in transfer times
important negative variations may remain unnoticed as the
UCL and LCL will ly further from each other..

The previously mentioned shortcomings could however be
countered by applying more of the Western Electric zoning
rules. These rules describe when an alarm should be triggered
even though a point lies between the control limits depending
on the distance to the central value and the location of the
previous points. UCL and LCL can therefore ly further away
from each other reducing the number of false alerts but still
detecting possible changes in transfer times.

The major strength of the presented method is that it is a
generic method. Although the in this paper presented research



TABLE II
RESULTS FROM TABULAR CUSUM, STANDARDIZED CUSUM AND EWMA USING INITIAL PARAMETERS ON THE TRAINING DATASET AND OPTIMIZED

PARAMETERS FOR BOTH TRAINING AND VALIDATION DATASETS

TCia TCob TCvc SCid SCoe SCvf Eig Eoh Evi

Detection Rate
HU 10% 35% 35% 40% 65% 55% 85% 90% 70%
UH 70% 100% 95% 70% 95% 75% 90% 100% 95%

Average Run Length
mean std mean std mean std mean std mean std mean std mean std mean std mean std

SUj 2.50 2.12 2.14 1.86 1.86 2.67 6.38 4.34 5.85 4.83 8.27 4.61 2.94 2.36 3.56 2.50 3.07 3.05
USk 5.29 5.38 9.20 11.37 12.21 9.50 17.21 13.30 16.89 8.11 23.80 14.07 12.017 5.98 12.30 8.84 16.21 9.76

Number of false alerts per week
mean std mean std mean std mean std mean std mean std mean std mean std mean std

Sl 0.01 0.04 0.00 0.00 0.01 0.02 0.19 0.16 0.23 0.14 0.27 0.30 0.00 0.00 0.00 0.00 0.00 0.00
Um 0.06 0.08 0.01 0.03 0.03 0.04 0.13 0.11 0.07 0.08 0.09 0.13 0.00 0.00 0.01 0.04 0.01 0.05
SU 0.10 0.05 0.06 0.05 0.04 0.04 0.15 0.12 0.18 0.13 0.16 0.12 0.02 0.04 0.01 0.03 0.01 0.02
US 0.05 0.06 0.01 0.04 0.01 0.02 0.08 0.10 0.08 0.12 0.04 0.53 0.00 0.02 0.00 0.02 0.04 0.01
Notes
a Tabular CUSUM results on the training dataset using parameters as suggested in the literature
b Tabular CUSUM results on the training dataset using optimized parameters
c Tabular CUSUM results on the validation dataset using optimized parameters
d Standardized CUSUM results on the training dataset using parameters as suggested in the literature
e Standardized CUSUM results on the training dataset using optimized parameters
f Standardized CUSUM results on the validation dataset using optimized parameters
g EWMA results on the training dataset using parameters as suggested in the literature
h EWMA results on the training dataset using optimized parameters
i EWMA results on the validation dataset using optimized parameters
j The gait pattern is stable at the beginning of the measurement period and transitions to an unstable pattern
k The gait pattern is unstable at the beginning of the measurement period and transitions to an stable pattern
l The gait pattern is Stable during the whole measurement period
m The gait pattern is Unstable during the whole measurement period

used transfer times as gait measure it could be applied to
gait speed or other quality characteristics as well. A new
optimization phase will be necessary to find the optimal values
for both λ and L.

VI. FUTURE WORK

Further research will include the validation of the results
on real life data and assessing the effects of a change in
transition period length on the presented results. Moreover, as
it is possible that two trends present themselves subsequently
in the transfer times improvements will be made to the control
charts to enable the detection of subsequent trends in the
transfer times.

ACKNOWLEDGMENT

This work was funded through the ingenieurs@WZC
project which was funded by ’Provincie Vlaams-Brabant’.
Project partners are OCMW Leuven, KU Leuven, AdvISe
and InnovAGE. The authors would like to acknowledge the
following projects: iMinds FallRisk project, IWT-ERASME
AMACS project, IWT Tetra Fallcam project, ICT cost action
AAAPELE and the ProFouND network.

REFERENCES

[1] L.J. Viccaro, S. Perera and S.A. Studenski, Is Timed Up and Go better
than gait speed in predicting health, function and falls in older adults?
Journal of the American Geriatrics Society, 59, (2011), 887-892.

[2] N.M. Peel, S.S. Kuys and K. Klein, Gait speed as a measure in geriatric
assessment in clinical settings: a systematic review, The Journal of
Gerontology: Biological Sciences and Medical Sciences, 68(1), (2012),
39-46.

[3] I. Bautmans, B. Jansen, B. Van Keymolen and T. Mets, Reliability and
clinical correlates of 3D-accelerometry based gait analysis outcomes
according to age and fall-risk, Gait and Posture, 33, (2011), 366-372.

[4] M.E. Taylor, M.M. Ketels, K. Delbare, S.R. Lord, A.S. Mikolaizak and
J.C.T. Close, Gait impairment and falls in cognitively impaired older
adults: an explanatory model of sensorimotor and neuropsychological
mediators, Age and Ageing, 41, (2012), 665-669.

[5] S. Hagler, D. Austin, T.L. Hayes, J. Kaye and M. Pavel, Unobtrusive
and ubiquitous in-home monitoring: a methodology for continuous
assessment of gait velocity in elders, IEEE Transactions on Biomedical
Engineering, 57(4), (2010), 813-820.

[6] T.L. Hayes, S. Hagler, D. Austin, J. Kaye and M. Pavel, Unobtrusive
assessment of walking speed in the home using inexpensive PIR sensors,
Engineering in Medicine and Biology Society, 2009. EMBC 2009.
Annual International Conference of the IEEE, (2009), 7248-7251.

[7] C.E. Phillips, J. Keller, M. Popescu, M. Skubic, M.J. Rantz, P.E. Cuddihy
and T. Yardibi, Radar walk detection in the apartments of elderly,
Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, (2012), 5863-5866.

[8] G. Baldewijns, G. Debard, M. Mertens, E. Devriendt, K. Milisen, J.
Tournoy, T. Croonenborghs and B. Vanrumste, Semi-automated Video-
based In-home Fall Risk Assessment, Association for the Advancement
of Assistive Technology in Europe (AAATE 2013), (2013)

[9] F. Alemi and D. Neuhauser, Time-Between Control Charts for Monitor-
ing Asthma Attacks, Joint Commission Journal on Quality and Patient
Safety 2, (2004), 95-102.

[10] K.Y. Lee and C. McGreevey, Using Control Charts to Assess Perfor-
mance Measurement Data, Journal on Quality Improvement 28, (2003),
90-101.

[11] J.C. Benneyan, R.C. Lloyd and P.E. Plsek, Statistical Process Control
as a Tool for Research and Healthcare Improvement Quality and Safety
in Health Care 12, (2003), 458-464.



[12] D. Noskievicova, Complex Control Chart Interpretation, International
Journal of Engineering Business Management vol5:13, (2013)

[13] D.C. Montgomery, Introduction to Statistical Process Control, John
Wiley & Sons, 6th edition, (2009), 399-432.


