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Abstract

This paper deals with a quality engineering problem introduced by ‘Wa-
terlaboratorium Noord’ (WLN) situated at the Netherlands. Interest lies in
determining an optimal sampling frequency that provides sufficient information
on the water quality in a drinking water purification plant. The water purifica-
tion plant that is studied consists of two aeration and filtration processes and a
clear water reservoir where water is saved until distribution to households. One
of the main processes during these filtration processes is iron removal.

A stochastic model is proposed that describes the decreasing effects on iron
concentration after the filtration processes by multiplicative effects. This model
is combined with an ordinary differential equation to model the amount of iron
in the clear water reservoir that fluctuates due to the quality of the incoming
filtrated water and the varying water demand.

In this way the iron concentration levels in the different compartments of a
water purification plant can be simulated. Range and fluctuations approximate
those of the observed data. Hence a realistic benchmark for detecting anomalies
is obtained.

Keywords: quality engineering, sampling frequency, stochastic model, differ-
ential equation, water quality

1 Introduction

1.1 WLN

The quality of water has an important impact on public health. Whether it is used
for drinking, for food production or just for recreational purposes, contaminated
water can lead to severe health problems (Karanis et al., 2007). Therefore monitoring
and keeping the quality of drinking water at a safe level is of crucial importance for
our society.

The company ‘Waterlaboratorium Noord’ (WLN) takes care for the quality con-
trol of drinking water in Groningen and Drenthe. It monitors and improves the
quality of drinking water provided by the water supply companies ‘Waterbedrijf
Groningen’ and ‘Waterleidingsmaatschappij Overijssel’.

∗Corresponding author
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Figure 1: Illustration of a water purification process when groundwater is used as
source.

Generally water is retrieved as surface water or groundwater. This water needs to
be treated in a purification plant for several reasons, to remove harmful substances,
to ensure it looks clear and to remove pathogenic micro-organisms, to name a few.
This purified clear water is then pumped through a distribution network and finally
flows clearly and steadily into the households. Figure 1 depicts a typical treatment
scheme for groundwater purification.

1.2 Outline of the problem

The main question posed by WLN is the following:

Which monitoring frequency at the various stages in the water purifica-
tion process is required for obtaining sufficient information on the water
quality to prevent contaminated water to be delivered to households?

One of the reasons this question is posed can be found in the Dutch legislation con-
cerning the water quality. This legislation prescribes very strictly the quality control
in the drinking water sources, in the clear water reservoirs and in the distribution
networks. However, for the water inside the water purification plant there is only
a rough guideline saying that the water company has to monitor the purification
process for an ‘adequate process control’. Hence the only demand is that it is being
frequently monitored on several locations spread along the plant such that a suffi-
cient overview of quality can be obtained. At this moment only expert judgement
is used to determine this monitoring frequency.

1.3 Approach

In this paper we restrict attention to a single water treatment plant with groundwater
as a source and two filtration steps. One of the main goals is to detect malfunctions
of the purification process which can result in unacceptable water quality. In an
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attempt to detect such anomalies a model is introduced for predicting iron concen-
trations at each place in the purification process given the iron concentrations in
the groundwater. A next step would be to monitor the differences between these
predictions and the observations to reassure the quality of Dutch water.

Figure 2 shows a schematic overview of the proposed model of the purification
process. The four main locations of the purification process are interpreted as basins
where measurements are taken from. The transitions between the first three basins
are modelled using a stochastic model with a multiplicative effect while the fluctua-
tions of the iron in the clear water before distribution is modelled using a differential
equation. The implementation is performed using the statistical software package R
(R Core Team, 2012).

groundwater
after

first filtration

after

second filtration

clear water

before distribution

Figure 2: Schematic illustration of the water purification process

1.4 Outline of this article

In the next section we detail the data made available by WLN. In section 3 we present
a model that relates the concentration of iron in groundwater to the concentration
in the clear water basin. This model uses both ideas from stochastics and differential
equations for modelling conservation laws. We then move on to the results obtained.
The final section contains conclusions, discussion and recommendations.

2 Available data

The data concern a water treatment plant that uses groundwater and basically
removes substances through aeration and filtration. There are no pathogenic mi-
crobes in the water, because it is pumped up from deep beneath Earth’s surface. The
dataset consists of measurements of concentrations of several ions like e.g. Fe, Mg,
NH4. These measurements have been taken at four places during the purification
process:

1. in the groundwater,

2. after the first filtration,

3. after a second filtration,

4. before the distribution (clear water).

The data include measurements over a period of 5 years starting from January
2009. The measurement frequency is about 1-2 times a week. Figure 3(a) shows the
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Figure 3: (a) Plots of observed iron concentrations at each location. (b) Plots with
free axes scales to illustrate the fluctuations.

observed iron concentrations on each of the four locations mentioned above. As one
can see the iron concentration decreases after each filtration.

Flushes of the filters at regular times cause fluctuations in the iron concentration
after each filtration as can be seen in figure 3(b). Immediately after a flush the
remaining fraction of iron in the water reaches a peak and subsequently decreases
rapidly back to its original value. The peaks after first and second filtration in figure
3(b) seem to occur periodically, however an exact flush period is not made available.
Figure 4 shows some typical flush curves describing the remaining fraction of iron
in the water as a function of time since the filter has been cleaned. These samples
are taken every 10 minutes during a period of roughly 12 hours. The curve can be
modelled using non-linear regression analysis as will be discussed in the next section.

Fluctuations in the clear water are expected to be lower as the large volume of
the clear water reservoir averages out most of the fluctuations. Fluctuations in this
basin can, among other things, be caused by variations in the water demand.
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In what follows t denotes the inspection time of the measurements, expressed
in hours, since the first available measurement. Note that the time scale t is dif-
ferent than the one used to describe the flush curves. There, the inspection time
is expressed in hours after the last flushing. No link between these time scales is
available, in the sense that for measurements yt and zt taken after first and second
filtration respectively the time that is passed since the last flushing is not known.

3 Modelling the water purification process

3.1 A stochastic model for the first filtration process

The iron concentration in the water just before it enters the first filter is denoted
by Xt and can be modelled using a time series model. However the observations
in the dataset are obtained with 2-4 days in between. Therefore the ‘incoming iron
concentrations’ can assumed to be independent realisations of a random variable
X having density function fX . As a function of time s after flushing the filter is
assumed to have a multiplicative effect on the iron concentration in the water. This
means that the iron concentration in the water measured at time s after flushing is
given by

Ys = X · α(s) (1)

where s ∈ [0, 12] and the cleaning of the filter is assumed to happen every twelve
hours. As noted before, the function α(s) indicates the temporal dependence of
suspension in the water after the first filtration and is measured as the remaining
fraction of iron in the water as a function of time s since the last filter cleaning.
Based on the analysis of this flush curve s 7→ α(s) we assume the following model:

α(s) = a
(

1 +
s

b

)−n
+ c, s ≥ 0. (2)

The function s 7→ α(s) has a horizontal asymptote at y = c. The parameter n
determines the shape (and steepness) of the curve whereas the parameter a deter-
mines the intercept at (0, a+ c). The parameter b on the other hand can be viewed
as a scale parameter. Non-linear regression analyzes were performed to show the
appropriateness of the chosen model in 2, see figure 4.

An optimal fit of the parameters θ = (a, b, c, n) is found using maximum like-
lihood estimation based on the measurements of the iron concentrations in the
groundwater and after first filtration. This estimation is based on the following
assumptions:

1. The ‘incoming iron concentrations’ are assumed to be independent and iden-
tically distributed according to a normal distribution N(µX , σX). Figure 5
indicates that the normality assumption is indeed not violated severely.

2. As noted before, the inspection time s after filtration at which the concen-
tration Ys is measured, is not known. For now this time is modelled by an
uniformly distributed random variable on [0, 12].
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Assuming that the inspection times s for Ys are drawn from a uniform distribu-
tion implies

Y = X · α(12U), (3)

where X ∼ fX and U ∼Unif(0, 1) are independent. Based on the normality assump-
tion it is clear that the distribution of Y will depend on the parameters (µX , σX , θ).

Note that no paired observations are available, in the sense that for a particular
input with concentration X, the corresponding concentration Y is measured. Such
information could improve the model and would be recommended in the future.
For the moment it is assumed that a number of independent realisations of Y is
observed, originating from (3). We now derive the density of Y . First recall the
formula for the probability density of the product Y of two independent continuous
non-negative random variables X and Z:

fY (y) =

∫ ∞
x=0

1

x
fZ

(y
x

)
fX(x) dx. (4)

In order to use this relation to obtain the density of Y in (3), we need the density
of the random variable

Z = α(12U) = a

(
1 +

12U

b

)−n
+ c,
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Figure 4: Flush curves of the first filtration process obtained after flushing the filter.
The time s is expressed in hours after the moment of flushing. The fitted curves
are respectively given by α1(s) = 0.04 + 0.07

(1+s)1.92
and α2(s) = 0.03 + 0.07

(1+s)1.80
, where

b = 1. The cross in the left plot is considered to be an outlier and is not incorporated
in the regression analysis.
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Figure 5: A quantile-quantile plot of the iron concentrations in groundwater with
respect to the normal distribution (left) and a histogram of the iron concentrations
(right).

which is given by:

fZ(z) =
b

12na

(
a

z − c

) 1
n
+1

, z ∈
[
c+

a

(1 + 12/b)n
, c+ a

]
.

Combined with (4), this leads to the following two-parameter model for the observed
concentrations Y1, . . . , YN of iron after the first filter:

fY (y;µX , σX , θ) =
ba1/n

12n

∫ xr

x`

x1/nfX(x, µX , σX) (y − cx)−1−1/n dx

where we make the dependence on the parameters (µX , σX , θ) explicit and where
the integration bounds are given by

x` = x`(y, θ) =
y

c+ a
and xr = xr(y, θ) =

y

c+ a(1 + 12/b)−n
.

Given the observed values y1, . . . , yN of Y , the log likelihood function is given by

`(µX , σX , θ) =

N∑
i=1

log fY (yi;µX , σX , θ). (5)

This function can be maximised numerically using the so-called limited memory
BFGS algorithm (Byrd et al., 1995). This optimisation algorithm allows constraints
on the parameters and is implemented in R under the ‘stats’ package.

3.2 A stochastic model for the second filtration process

We feel the second filtration step can be dealt with in a similar fashion as the first
filtration. Due to time limitations, this step has not been worked out yet. During
the simulation, we simply divide the measurements after the second filtration step
by a fixed number (chosen to match the data on average). Of course, this is a big
simplification that needs to be handled more accurately in future work.
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3.3 Modelling the concentration of iron in the clear water basin

To examine the propagation of the compounds in the water when the water is
transferred between different basins, we developed an ordinary differential equa-
tion model. This model describes how the amount of a contaminant in the water,
in the case under consideration this is iron, changes in the different basins. To illus-
trate the method, we derive the equations for the amount of iron in the clear water
basin, but a similar procedure could be followed for the other basins as well.

We assume that the volume of the clear water basin V (t) changes in time ac-
cording to the following equation:

d

dt
V (t) = c0(t)− f(t), (6)

where c0(t) denotes the volume influx to the clear water basin and f(t) is the water
outflux that typically consists of a constant part and a fluctuating part, as the water
demand is a fluctuating quantity. For example, during day time more water is used
than in the night:

f(t) = 60(83 + 5 sin(2πt/24)).

The numbers in this expression designate that 83 l/s is the typical rate at which
water leaves the clear water reservoir. Furthermore the value of the amplitude of
the sine function is chosen to correspond to the size of the fluctuations of iron
concentrations, which we will see in the next section.

Next, we model the amount of iron, denoted by u(t) in the clear water reservoir.
The governing equation for u(t) is

d

dt
u(t) = c0(t)gin(t)− u(t)f(t)/V (t). (7)

Equation (7) describes the influx of iron with rate c0(t)gin(t) and outflux with
rate u(t)f(t)/V (t). The function gin(t) which models the concentration of iron after
the second filter is not known as a function of time. However from measurements that
were performed at random times a typical size of the fluctuations can be inferred.
Equations (6) and (7) can be solved in time using a simple Euler forward method
which works as the system considered consists of linear equations (Xie, 2010).

3.4 Assessing the fit of the model

To assess the fit of the model a simulation was performed. Results of this simulation
can then be compared with the given observations of the clear water.

We propose to model the iron concentration in the groundwater by a stationary
autoregressive time series model of order 1:

Xt = µX + r(Xt−1 − µX) + εt, (8)

where {εt}t is a sequence of independent N(0, σ2ε) distributed random variable. As-
suming |r| < 1 ensures that the (causal) stationary distribution of (8) exists uniquely
and is normally distributed. As no data at this time are available to fit this model,
we somewhat arbitrarily chose r = 0.8. This choice implies positive dependence of

8



Final publication can be found in the ‘swi-2014-delft-proceedings’, ISBN:
978-94-6186-306-5, available online on http://fa.its.tudelft.nl/ groenevelt/swi/.

iron concentrations in the groundwater over different lags. We simulated 106 points
with a time step of dt = 0.5. This corresponds to a simulation of 5.7 years of data
which approximates the period over which the observed data of WLN is taken. Us-
ing our model one is able to predict the outcome when this data is considered to be
the iron concentration of the groundwater.

The corresponding concentrations after first filtration are obtained by applying
formula (1) using ratios α(s) evaluated at 106 equidistant times with a time leap of dt
starting from s = 0. The concentrations after the second filtration were obtained in
a similar way applying the same multiplicative procedure on the iron concentration
after the first filtration. This resulted in a discrete time series consisting of 106

points that can be used as input for gin(t) of the differential equation in (7). The
initial conditions to solve the differential equations were chosen to correspond to the
stationary state values of u(t) and V (t):{

u(0) = 0.015V (0) mg
V (0) = 7500000 l

(9)

Finally a number of 70 points are randomly chosen from the simulated 106 points
and compared with the observations of WLN.

4 Results

In the non-linear regression analysis of the flush curves, the parameter b in (2) could
be set to 1 while keeping a satisfactory curve fitting. The parameters (µX , σX , a, c, n)
were estimated by maximizing the log likelihood function (5):

µ̂X = 16.62, σ̂X = 0.88, â = 0.38, ĉ = 0.01, n̂ = 1.1496307

Figure 6(a) shows the fit of the density distribution fY to the observed iron concen-
trations after the first filtration. A slight underestimation of the variance is noted.
Figure 6(b) shows the flush curve that is obtained using the estimated parameters
(â, ĉ, n̂).

Figure 6(c) shows the simulated concentrations of iron in each basin using the
time series data generated from (8). The x-axis shows the indices of the simulated
data corresponding to some moment in time where the origin t = 0 has to be
interpreted as the first inspection time available in the dataset of WLN.

As one can see the ranges of the simulated data in the first three basins of our
model approximate those of the observed data in figure 3. Furthermore the decrease
of the iron concentrations after first and second filtration is clear. The clear water
contains an iron concentration of 0.015 at t = 0 as induced by (9). The figure shows
an initial increase of the iron concentrations.

Figure 6 shows the complete simulated time series of iron concentrations in the
clear water basin. After some time period the iron concentrations fluctuate around
a stationary value of approximately 0.02. This corresponds with the observed data
in the clear water basin shown in figure 3(b). This is, of course, in accordance
with expectations as the large volume of the reservoir averages out most of the
flucatuations.
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The observations in figure 3 are sampled at irregular moments in time and with
an irregular frequency, typically given by 1-2 times a week at different weekdays.
Because of the flush activities the sampled observations reach a peak when taken at
a moment short after flushing. This happens typically when a sample is taken within
an hour after flushing, see figure 6(b). In a later time period, when the last flush
occured more than 3 hours ago, more steady concentrations are observed. Hence
the observed fluctuations depicted in figure 3 are inherent to the sampling method.
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Figure 6: (a) Complete simulated time series of iron concentrations in the clear
water basin.
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Figure 7: (a) Plots of simulated observed data in each basin. (b) Plots with free
axes scales to illustrate the fluctuations.

This sampling method can be mimicked by randomly choosing a number of N
observations from the time series obtained for the clear water basin (figure 7). To
make a consistent comparison with the observed data, N is chosen to equal the
number of observations available from the clear water basin, i.e. N = 70. In
this way we were able to simulate fluctuations in the iron concentrations that are
approximately of the same magnitude as the measured fluctuations.

5 Discussion

In this section we first summarize the conclusions that we may draw from our re-
sults. We then present recommendations to WLN for further actions to address the
problem at hand. Finally, we suggest some further lines of research.

5.1 Conclusions

At this stage of research, the model as presented in section 3 may be too simple
to realistically model the water purification process. This is partly due to time
constraints for building the model, but also due to the nature of the available data
right now. Presently, the data provided by WLN only allows for a rough calibra-
tion of the model parameters. More accurate estimation may be accomplished in
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the future by setting up a specific measurement scheme with the purpose of model
calibration in mind. Once such measurements have been obtained and the model is
sufficiently refined (i.e. realistically modelling the characteristics of the water pu-
rification process), process inherent variation can be estimated. The latter directly
gives information on the required monitoring frequency: wildly fluctuating iron con-
centrations will require a relative high monitoring frequency, whereas a process with
low variability may allow for less measurements taken over time.

To develop an effective and efficient monitoring procedure it is necessarily to
properly define the process to be monitored and the desired performance of the
monitoring procedure. These descriptions come from operational and legal con-
straints, but must be translated into statistical descriptions in order to be able to
provide a sound basis for the assessment of a monitoring procedure.

A proper definition of the monitored process includes a description of the avail-
able data, a list of variables to be monitored, a description of an acceptable or
“in-control” situation and the sampling strategy (Hawkins and Olwell, 1998; Kenett
and Zacks, 1998). In this application the variables that are monitored are the con-
centrations of ions (e.g. iron). In this case an “in-control” situation for each variable
is defined by so-called control limits. These control limits are driven by the natural
variability of the concentration in the drinking water. For instance, in the case at
hand one would desire that the iron concentration in the clear water remains at a
constant (probably low) level while fluctuations are limited.

However it seems that the current approach performed by WLN is based on the
monitoring of univariate variables evaluated relative to specification limits. These
specification limits describe the maximal allowable deviation from a desired value
of the variable, called the target value. In contrast to the control limits these speci-
fications are determined externally and are not related to the natural variability of
the variables. Therefore these specifications mostly allow a variability that is larger
than the variability naturally induced by an in-control system. For instance a mal-
functioning filter or a slow but persistent increasing value of a certain concentration
does not have to lead to exceedances of the specification limits. Hence information
about inherent changes of the water quality and the filtration processes can be lost
using this approach.

The importantace of the distinction between specification and control limits is
widely known in the literature of statistical process control (Montgomery, 2013).
To illustrate this difference further we can say that a purification process performs
within specifications when the water quality is acceptable from a public health point
of view. However at the same time the water company may suffer from excessive costs
due to an out-of-control process caused by some malfunctioning. When one is aware
of such malfunctioning preventive maintenance actions or increasing surveillance
could be performed without interrupting purification. In this way unnecessarily
costs can be avoided.

Furthermore, the performance of the monitoring procedure is mainly determined
by the time that is needed to detect a malfunctioning or contamination. Using proper
inherent control limits of a process that is in a steady state one can objectively
determine appropriate sampling frequencies that assure the desired performance
(Montgomery, 2013). However, due to flushing in the normal state after the first
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filtration, the process is not in a steady state. On the contrary it rather shows cyclic
behaviour. Therefore, the effect of flushing for a single location was modelled with
a simple stochastic model obtaining a reasonable agreement with actual data from
iron concentrations. Monitoring using this model is then in fact monitoring a profile
(Noorossana et al., 2012). In order to connect flows from one filter to another, we
set up a system of coupled differential equations obtained from simple conservation
laws.

Finally, remark that one should also take into account that the lab needs time
to perform analyses. Thus demanding detection of abnormal levels of certain ion
concentrations within e.g. 2 hours is not feasible when the water quality analysis in
the lab takes 1 day. Another important aspect is to determinine optimal measure-
ment locations in the purification plant. It may seem optimal to monitor as much
as possible upstream in the purification plant to assure on-time detection. However,
in this way one may fail to detect anomalies downstream. Thus, it is sensible to
monitor at several locations.

To summarize, the main conclusions are:

(i) monitoring is now performed by checking individual specification limits, and
thus fails to take into account deviations from normal process deviations

(ii) the cyclic concentration levels due to flushing may be modelled adequately by
a simple model so that we have a realistic benchmark for detecting anomalies

(iii) the flows from one filter to another may be modelled by a system of coupled
differential equations obtained from simple conservation laws

5.2 Recommendations

We start with some recommendations on monitoring in general.

1. Change the monitoring procedure from checking specification limits to check-
ing inherent concentration fluctuations in order to obtain a more responsive
monitoring system (and thus have a well-grounded justification for the asso-
ciated sampling frequency). These statistical limits will be more strict than
the chemical/health limits, thus there is no risk for exceeding chemical/health
limits.

2. Specify detection performance for all concentrations, taking into account pro-
cessing time of analytical analyses in the lab and out-of-control scenarios like
trends (see e.g., Frisén (2003) for a discussion of different performance metrics).

3. Study correlations between concentrations of different ions so that one may
use the available data more efficiently.

4. Synchronize timing of measurements between compartments in a purification
plant in order to track the flow water drops and thus improve detection per-
formance.

5. Reduce variance in the beginning by blending the right wells.
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6. Perform a pilot study with in-line measurements on all measurement locations
in one purification plant in order to improve the models of this paper.

The following recommendations concern modelling the effects of flushing.

1. Measure the incoming iron concentration together with corresponding (time-
aligned) iron concentration after flushing ; this allows for much more accurate
modelling.

2. Keep track of the actual mixture of incoming water sources since this has an
impact on the distribution of the incoming iron concentrations.

5.3 Future Research

The study in this paper was restricted to the monitoring of iron concentrations due
to time limitations. In future research other parameters could be studied as well.
Furthermore, the model has to be completed to describe the second filtration pro-
cess. As a next step simulations could be performed where anomalies are artificially
implemented. Such simulations would be useful in finding an optimal monitoring
frequency that enables us to detect a small (to be determined) shift (with a certain
probability). Finally, it would be interesting to adapt our model to include corre-
lations between different ions. In this way an alarm system can be build to detect
dangers of combined high levels.
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