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ABSTRACT Systems consisting of multiple components can experience downtime during their operational
lifetime due to issues with one or more of these components. For instance, accurately predicting the
remaining time before a battery depletes its total energy is crucial for systems like a Base Transceiver
Station. This paper addresses how long the battery will sustain a Base Transceiver Station under varying
load conditions with the associated uncertainty when the external power source is interrupted. A customized
approach using battery modeling and load forecasting is designed to predict the remaining usable time
of the battery. In total, 7 Base Transceiver Stations are considered and clustered into 3 groups based
on their installed battery capacity. First, a battery model is developed employing the modified Shepard
model using real-life measured battery discharge data. Since the load currents are unknown beforehand,
they are forecasted using a time series modeling approach. The resulting uncertainty from both models
is then quantified using a prediction interval. Using our approach, the averaged Mean Absolute Error of
the remaining usable time estimates is 12.61 minutes for all discharges. The associated uncertainty with
these estimation using the 95% prediction interval is 26.43 minutes. The estimation errors are relatively
small compared to true discharge times, as some batteries can provide energy close to 15 hours. The overall
estimation results closely matched the measured values, providing valuable insights for proactive planning
and management of potential failures.

INDEX TERMS Base transceiver station, battery models, load forecasting, remaining usable time,
uncertainty quantification, predictive maintenance.

I. INTRODUCTION
As a telecom network infrastructure expands, the task of
monitoring and maintaining becomes increasingly challeng-
ing due to the growing number of fault indicating alarms
generated every day. Diagnosing and clearing those alarms
from different subsystems of the network by corrective

The associate editor coordinating the review of this manuscript and

approving it for publication was Gaetano Zizzo .

maintenance activities require considerable effort and
resources. A Base Transceiver Station (BTS) is a crucial
infrastructural unit in mobile networks that facilitates
wireless communication between user equipment and the
mobile network. The BTS system constitutes a number
of different components which should be continuously
monitored and proper corrective action should be taken in
case a fault occurs. Without proactive actions, the service to
customers can be interrupted.
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The disconnect of the power system as a result of frequent
external power blackouts accounts for the largest share of
BTS service interruptions for a telecom service provider in
Addis Ababa, Ethiopia. Thus, anticipating and predicting
upcoming service interruptions due to power system issues
and taking corrective actions will help ensure the quality of
service, leading to increased revenue. An interruption in BTS
service due to the power system occurs as a result of a series
of interconnected issues. An external power disconnect or
failure of the main power unit component will activate the
secondary power source (a generator) of the site. During the
transition to the secondary power source or in the event of its
complete failure to provide power, the BTS load is transferred
to a battery bank. When the power monitoring system
generates an alarm about an external power interruption
and a secondary power source malfunction, an engineer is
responsible for estimating the time frame during which the
site can remain operational before the service is completely
interrupted. Based on this estimate, a decision can be made
to wait for external power to return (depending on the utility
company’s response) or, if possible, perform maintenance
to fix the secondary power system before the battery bank
is depleted. This decision is not automated and depends on
detailed knowledge of the site and the experience of the
engineer. Even an experienced engineer can only have a rough
estimate of how long the battery will sustain the site load
before a service interruption occurs. This is because complete
information on the battery’s present effective capacity, state-
of-charge (SoC), and expected BTS load characteristics are
not readily available. In the event of a power outage at
multiple BTS sites, it is even more critical to have detailed
information on the different site availability windows to
prioritize interventions.

In this work, an automated estimate of the remaining
usable time (RUT) is addressed before the depletion of the
energy of the BTS batteries. The proposed method predicts
the battery bank voltage progression under varying forecasted
load currents until it reaches a voltage level that corresponds
to an energy level that causes service interruption. The
time until this point is the estimated RUT. To obtain the
RUT estimate, the uncertainties related to the load forecast
and voltage progression prediction are taken into account,
as shown in Figure 1. The RUT estimation is initiated at
t = t0 using the battery capacity depletion data until that point
and a mathematical model. At t = te, the battery reaches a
cut-off voltage. The RUT is defined as te−t0 and is stochastic
in nature. To characterize the uncertainty of the estimated
RUT, a Probability Density Function (PDF) of the RUT is
determined. Instead of providing a single value, it is desirable
to present a RUT prediction interval [1] within the bounds
of the lower (tle) and upper (tue) quantile ranges.
The literature in this area mainly focuses on predicting

the remaining useful life of a battery [2], [3], [4]. However,
reliably monitoring and accurately forecasting the battery
capacity over a short time horizon is also crucial in battery-
powered systems. Several existing techniques for predicting

FIGURE 1. Typical predicted battery voltage discharge curves with 95%
prediction interval.

the remaining capacity of lead-acid and lithium-ion batteries
discharged with a variable current are based on variants of
Peukert’s empirical equation [5]. In [6] the authors present
exponential decay equations that model the behavior of the
battery capacity drop with the discharge current and show
that these equations have a superior accuracy compared to
the empirical Peukert equation. A closed-form analytical
expression for predicting the remaining capacity of a lithium-
ion battery is presented by [7]. Chemical kinetics [8],
[9] based models are also usable for short-term capacity
prediction. Approaches such as [10], [11], and [12] use an
equivalent circuit model and state-space equations to build a
Kalman filter to fuse model predictions and measurements
for enhanced capacity estimation. When there is a large pool
of battery data available, deep learning-based approaches can
be applied such as in [13], [14], [15], and [16]. In the context
of telecommunication power systems, there are studies that
estimate the SoC of a battery [17], [18]. Furthermore, other
works use SoC estimates to determine RUT under constant
load current discharges in controlled environments [19].
In this work, we developed a novel method not addressed
in the existing literature to automatically estimate the RUT
of a lead-acid battery in real-world situations where the load
currents vary over time and are unknown for future time
steps. Furthermore, the uncertainty of the RUT estimation is
quantified by providing a prediction interval and the method
is empirically evaluated using real-life data.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the proposed methodology that involves
a battery modeling algorithm and a load forecasting model
to estimate the RUT. Section III discusses the examined use-
case scenario, focusing on the BTS power unit, the collected
data, and its properties. Section IV presents and discusses
the implementation of the proposed methodology and the
results obtained from the RUT estimation approach. Finally,
in Section V, we formulate a conclusion by summarizing the
results from the conducted set of experiments.

II. METHODOLOGY
In this work, we propose an approach to estimate the RUT
and quantify the uncertainty of this estimate by computing
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a prediction interval. To accomplish this task, two main
components are required: a) a battery model that can keep
track of the SoC of a battery and the voltage progression, and
b) a load forecasting model that predicts future (unknown)
loads. In both parts, uncertainties are present, and both will
be quantified.

A. BATTERY MODEL
The battery modeling literature discusses various approaches
for modeling SoC and voltage progression in batteries,
including physics-based, data-driven, and hybrid methods
[20], [21], [22]. This work adopts a physics-based modeling
approach that requires fewer data compared to a data-
driven approach. Within this category, electrochemical and
equivalent circuit models are the most prevalent where a
more detailed exploration and review is given in [23], [24],
and [25]. The proposed approach uses a battery model based
on the Shepherd equation, but is flexible and can also use
other models. Shepherd developed a mathematical equation
to describe the electrochemical behavior of a battery directly
in terms of terminal voltage, open circuit voltage, internal
resistance, discharge current, and SoC [26]. A modified
version of this equation, known as the modified Shepherd
equation [27], is used to determine the battery discharge
voltage, and is expressed as follows:

v̂batt(t) = V0−K ·
QB

QB −
∫ t
0 ibatt(t) dt

ibatt(t)

− Riibatt(t)+ Ae−B
∫ t
0 ibatt(t) dt , (1)

where v̂batt is the (predicted) battery voltage (in volts), ibatt is
the battery current (in amperes), V0 is the open circuit voltage
at full capacity (in volts), K is the polarization constant (in
volts per ampere-hour), QB is the maximum battery capacity
(in ampere-hour),

∫ t
o ibatt dt is the discharged battery capacity

(in ampere-hour), A is the exponential zone amplitude (in
volts), B is the exponential capacity (in inverse ampere-
hours), and Ri is the internal resistance (in ohms).

In Figure 2, a prototypical battery discharge curve is pre-
sented. It contains three main sections: an initial exponential
region, a nominal region, and a final exponential region,
typical features observed in the discharge profiles of this
work. Each of these sections are represented by the last three
terms in Equation (1).

The SoC estimation uses the Coulomb counting
method [28] at time t and is expressed as:

SoC(t) = SoCinit −
1
QB

∫ t

0
ibatt(t) dt. (2)

where SoCinit is the initial SoC.
After selecting the battery modeling approach, the model

parameters need to be determined. If the required parameters
cannot be obtained from the manufacturer’s datasheet, a data-
driven approach is necessary to determine the parameter
values by using the collected battery-related data. The model
parameters V0, QB, and Ri are assumed to be deterministic.

FIGURE 2. A typical pattern of a discharge curve [27].

V0 is the open-circuit voltage and is obtained from the battery
voltage measured at full capacity.QB is obtained by summing
up the total charge exhausted when the battery goes through
a full discharge and Ri is also calculated using:

Ri =
1
n
·

n∑
j=1

vbatt(j)− vbatt(j− 1)
ibatt(j)

(3)

where n is the number of data sample points in a discharge
curve, vbatt(j) and ibatt(j) are the observed voltage and current
values at sample step j.

To determine the remaining parameters K , A, and B,
a least-squares optimization procedure is used; such that the
mean squared error between the model’s estimated output
voltages and those measured during real battery discharges
is minimized:

θ∗ = argmin
θ

n∑
j=1

(vbatt(j)− v̂batt(ibatt(j); θ ))2 (4)

where θ represents the set of parameters (K , A, and B) of
the model that need to be optimized, θ∗ are the optimized
parameter values, and v̂batt(ibatt(j); θ ) is the predicted battery
voltage when the battery parameters θ are known.

In the context of battery modeling, there are several
alternative approaches available to the modified Shepherd
mathematical model. With recent advances in computa-
tional power and access to large datasets, data-driven deep
learning architectures have become increasingly popular.
These methods have significantly enhanced the performance
of battery modeling [29]. However, in our specific case,
the number of discharge events is relatively small. As a
consequence, the complexity of the deep learning model
must be kept relatively low. In the experimental section,
a conventional feedforward neural network (FNN) [30] was
evaluated for predicting battery voltage. This prediction is
based on the estimated SoC, which is calculated using the
Coulomb counting method. The feedforward network serves
as a baseline model, enabling a performance comparison
with themodified Shepherdmodel. This comparison provides
valuable insights into the strengths and limitations of the latter
approach.
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To quantify the uncertainty in estimated battery voltages,
a bootstrapping approach [31] is used. Instead of estimating
the parameters of the batterymodel once, the parameters θ are
estimated multiple times using subsamples of available data.
In this way, each parameter can be described by a distribution
of parameter values. During model inference, parameter
values can be sampled from the parameter distributions to
obtain a distribution of model outputs (battery voltages)
that quantifies the uncertainty of the model output. Since a
discharge curve comprises three main sections, as shown in
Figure 2, stratified sampling is a suitable method to obtain
model parameters from discharge curves. This approach
ensures a balanced representation of each section within
the sample sets, producing sample discharges that closely
match the observed ones, and thus improving the accuracy
of parameter estimation.

B. LOAD FORECASTING MODEL
To estimate the RUT using the battery discharge curve under
varying load conditions, it is essential to develop a load
forecasting model based on historical measurements. When
external power is disconnected, the battery takes over and
supplies the load. As a result, forecasting the load current
is equivalent to forecasting the battery current (ibatt). This
task involves time-series forecasting, a technique used for
decision making based on forecasted values.

Depending on the task required, forecasting techniques
can have different timescales: very short (up to an hour),
short (up to six hours) and longer (one or more days)
forecasts. Regression and/or multiple regression models are
still widely used and efficient for long- and very-long-term
forecasts [32]. Autoregressive (AR) models, artificial neural
networks (ANNs) and support vector machines (SVMs) are
the preferred models for making short-term and very short-
term forecasts. AR models require to properly select the
lagged inputs to identify the correctmodel orders, a procedure
that demands a certain level of skill and expertise. Moreover,
they make explicit assumptions about the nature of the
system under examination. On the other hand, ANNs and
their variants have been used in many contexts where the
temporal dependency in the data is an important implicit
feature in the model design. Contrarily to other linear models
adopted for prediction, ANNs can learn functions of arbitrary
complexity, and they can deal with time series properties such
as exponential effects and nonlinear interactions between
latent variables. However, if the temporal dependencies of
the data are prevalently contained in a finite and short time
interval, the use of ANNs can become unnecessary [33].
In addition, compared to AR models, ANN models require
a larger data set for training.

In this work, a daily cyclic load pattern is observed that
is determined by a large pool of users (e.g., of a mobile
network). Due to the relatively limited amount of available
real-life data and the expected short-time discharge load
forecasts, a SARIMAX (Seasonal Autoregressive Integrated

Moving Average with Exogenous Regressors) model is
used [34]. The SARIMAX model is generally denoted as
(p, d, q)(P,D,Q, s), where p, d, q and P,D,Q are nonneg-
ative integers that refer to the polynomial order of the
autoregressive (AR), integrated (I) and moving average (MA)
parts of the non-seasonal and seasonal components of the
model, respectively, and s is the length of the seasonal cycle.
It is mathematically formulated as [35]:

yt = c+
p∑
i=1

φiyt−i +
q∑
j=1

θjϵt−j +

P∑
k=1

8kyt−k·s

+

Q∑
l=1

2lϵt−l·s +

K∑
m=1

βmXm + ϵt (5)

where:
• yt : is the forecast value at time t .
• c: constant term (intercept).
• φi: coefficients for autoregressive terms.
• θj: coefficients for moving average terms.
• ϵt−j: lagged noise terms.
• 8k : coefficients for seasonal autoregressive terms.
• 2l : coefficients for the seasonal moving average terms.
• ϵt−l·s: noise terms lagged by multiples of the seasonality
period s.

• βm: coefficients for exogenous variables.
• Xm: exogenous variables.
• ϵt : noise (white noise).

When applying AR-based models in forecasting, uncertainty
arises from the estimation of the model parameters. Fur-
thermore, when making forecasts in future time horizon,
additional uncertainty arises from the inherent randomness
in future observations. Thus, in this work, these uncertainties
are quantified by a prediction interval.

C. RUT ESTIMATION
To estimate the RUT and its associated uncertainty, quan-
tified by a prediction interval, it is necessary to properly
combine the battery voltage and the forecast load currents.
A prediction interval provides an estimated range within
which future observations are expected to fall with a specified
probability, given the existing data and model assumptions.
Thus, they will provide a quantifiable measure of the
uncertainty associated with individual RUT estimates. This
approach is summarized in Algorithm 1 and illustrated in
Figure 3.
The threshold voltage specified as T in Figure 3, represents

the minimum voltage level at which the battery can no longer
sustain the load, leading to the disconnection of the load at
that point. From the simulated data in H (see Algorithm 1),
themeanRUT (RUTmean), as well as a prediction interval, can
be estimated. The endpoints of the prediction interval can be
computed by using appropriate quantiles [1]:

Prediction Interval = [Qα/2,Q1−α/2], (6)

where Qα/2 and Q1−α/2 are the α/2 and 1− α/2 quantiles of
the distribution, respectively. They determine the lower and
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Algorithm 1 RUT Estimation With Prediction Interval
1: H← ∅.
2: Estimate future load currents using Equation (5) at time

steps h = 0, . . . , l − 1.
3: K ← k // k being the sample size of the load currents.
4: while K ̸= 0 do
5: Draw a sample from all l current distributions to have

∀h, îbatt(t + h).
6: Z ← z // z being the sample size for the parameters

of the battery model.
7: while Z ̸= 0 do
8: Draw a sample for each battery model parameter

from the battery model parameter distributions
obtained by Equation (4).

9: Calculate ∀h, v̂batt(t + h) using Equation (1).
10: Find smallest future time step h′ where v̂batt(t +

h′)) < T .
11: H← h′ ∪H.
12: Z ← Z − 1.
13: end while
14: K ← K − 1.
15: end while
16: n← kz.
17: Using H calculate RUTmean± Prediction Interval,

RUTME and RUTMPE

FIGURE 3. The devised RUT estimation approach.

upper bounds of the interval, respectively. These quantiles
correspond to the critical values that enclose the middle 1−α

portion of the distribution. A value of α = 0.05 is used
to construct a 95% prediction interval. The lower bound of
the interval corresponds to the α/2 = 0.025(2.5%) quantile
of the distribution, and the upper bound corresponds to the
1− α/2 = 0.975(97.5%) quantile.

Furthermore, two additional metrics are also used to
evaluate model performance: the mean error (ME) defined in
Equation (7) and the mean percentage error (MPE) defined in

Equation (8).

ME =
1
n

n∑
j=1

(
pRUTj − tRUT

)
(7)

MPE =
1
n

n∑
j=1

(
pRUTj − tRUT

tRUT

)
× 100 (8)

where tRUT is the true RUT and pRUTj is the predicted RUT
for sample discharge j.

ME measures the magnitude of RUT errors in the set
of estimations. A positive ME value indicates an overes-
timation by the model, while a negative value indicates
an underestimation. MPE measures the average percentage
error between the predicted and actual values. It is scale-
independent and provides insight into the accuracy of the
estimation in percentage terms.

III. USE-CASE: RUT ESTIMATION IN BTS
A. BTS POWER SYSTEM
A BTS system is composed of various components including
cellular network equipment, transmission equipment (used as
a backbone or link to other BTSs), and power supply unit
equipment. The power supply unit is responsible for provid-
ing the electrical power required to the different subsystems.
This work focuses primarily on service interruptions caused
by issues within the power supply unit.

The schematic architecture of the power supply unit is
shown in Figure 4. Energy is sourced from theAC distribution
unit, which distributes AC power from the commercial
power system, the generator, renewable energy sources,
or any combination of these three to the rectifiers. The
AC distribution unit includes automatic transfer switches,
a surge arrestor power protection unit, and an AC bus-bar.
The current measured on the AC bus-bar is denoted as iAC (t).
Using the rectifier banks, AC is converted to DC in the
DC distribution unit. The latter unit distributes DC power
from the rectifiers or battery bank to different attached DC
loads. The voltage and current measured on the DC bus-
bar are vDC (t) and iDC (t), respectively. The voltage and
current measured in the battery bank are vbatt(t) and ibatt(t),
respectively. The type of battery used in the BTS power
systems is a lead-acid battery. A real-time monitoring unit
monitors the operational status and environmental condition
(such as the battery temperature Tbatt(t), the total discharge of
the batteryQd,tot(t), and the total battery cycle timesNcycles(t)
of the system using different sensors and measurement tools.

A number of different faults can arise in the power system
unit of a BTS, which can cause service interruption. In the
event of a power outage from both the primary and secondary
sources, the BTS battery serves as the final backup to prevent
load disconnect and service interruption. A disconnect occurs
when the battery voltage drops below a pre-defined threshold.
This scenario is deemed critical and has the potential to result
in a partial or complete interruption of service if no timely
intervention measures are implemented.
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FIGURE 4. BTS power system architecture [36].

B. BTS DATA
The dataset used in this work is obtained from the BTS power
unit monitoring system [36]. Time series data is collected
for 7 BTS sites for 16 weeks (from April to July 2019). The
data set contains 8 signals (iAC (t), vDC (t), iDC (t), vbatt(t),
ibatt(t), Tbatt(t), Qd,tot(t) and Ncycles(t)) with a five-minute
sampling period. In Figure 5, an example dataset for a single
BTS is provided, showing the 8 signals during the collection
period.

FIGURE 5. BTS power system data.

To streamline the analysis and minimize the number
of battery models required, BTS units are organized into
clusters. The clusters are formed based on the total installed
capacity of the battery bank in each BTS. As a result, three
distinct clusters are created, with each BTS assigned to one
of these groups. The estimated battery capacity is determined

by measuring the battery discharges starting from a fully
charged state until they reach a voltage level that causes the
load to disconnect. The characteristics of the 3 clusters are
summarized in Table 1. In addition to the number of BTSs
in the clusters, we also list the capacity of the battery bank
and the number of discharges recorded within the observation
window that led to service interruption.

TABLE 1. Characteristics of created BTS clusters.

In one BTS within cluster C3, frequent interruptions were
observed. Although these interruptions did not often lead
to service outages, they did accelerate the aging process of
the battery, resulting in a gradual reduction in its capacity
over time. As the battery cycle time increases, its capacity
decreases. This trend is observed in Figure 6, which shows
the variation in discharge capacities over time. In a cluster,
discharge profiles with similar capacities, inferred from the
cycle times, are assumed to come from batteries of the
same age and are used in battery modeling phase. Although
there are existing battery models that account for the effects
of aging, this study does not include aging as a factor.
Consequently, discharges associated with aged batteries have
been excluded from this analysis.

Furthermore, when analyzing the data, it was observed
that at lower battery SoCs, the initial discharge voltages
were unexpectedly close to fully charged levels, despite
lower voltages being anticipated. This is shown in Figure 7,
which plots the battery voltage against the normalized SoC.
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FIGURE 6. Capacity degradation or aging of a single BTS battery bank.

Discharges are plotted until the first load disconnect voltage
point of 46.2V . The normalized SoC at time t is calculated
by dividing SoC(t) by the maximum SoC of the battery
(QB). This voltage-to-SoC discrepancy is attributed to the
smoothing effect of the rectifier, which prevents a sharp
voltage drop. As the battery approaches full discharge, this
effect diminishes and the bus-bar voltagemirrors the battery’s
terminal voltage. Since RUT estimation is based on voltage
values near full discharge, the proposed battery modeling
approach remains valid.

FIGURE 7. BTS battery discharge voltages starting from different SoC
values.

IV. EXPERIMENTS AND RESULTS
This section starts by describing the process used to obtain
the parameters of the battery model using the available real-
life data. Then, the load forecasting model is developed along
with its associated parameters. Finally, the outcomes of both
models are combined to estimate the RUT. For clarity, only
intermediate results of the plots for cluster C1 are presented.
The final RUT estimates with associated prediction intervals
and model performance metrics are provided for all three
clusters.

A. BATTERY MODEL PARAMETER IDENTIFICATION
The battery model used in Equation (1) has the following
parameters that need to be identified: V0, K , QB, A, B,
and Ri. For the use case scenario considered in this work,
it was not possible to identify parameters through controlled
experiments, and detailed specifications for the batteries were

also lacking. To identify the parameters (K , A, and B) for each
cluster, a Leave-One-Out Cross-Validation approach [37] is
applied to the discharge data records collected during the
operation of the BTS. Thismethod is especially suitable given
the small number of discharges per cluster. For a cluster
with n discharges, the model is trained on n − 1 discharges,
leaving one discharge out as the test set. This process is
repeated n times, and each discharge is used as a test set
once. The parameter values are determined using the least
squares optimization approach introduced in subsection II-A.
The parameter V0 is obtained from the voltage measurement
when the battery is fully charged. The internal resistance Ri is
calculated using Equation (3) and is assumed to be constant.
Therefore, it does not vary with the changing load current.
The values of these deterministic parameters are given in
Table 2.

TABLE 2. V0, QB and Ri values of the BTSs in each clusters.

The SoC of a battery is an important parameter for
accurately predicting the voltage progression. From the
available battery data, Equation (2) is used as the SoC
estimation approach in this work. The accuracy of this
method relies primarily on a precise measurement of the
battery current and an accurate estimation of the initial
SoC. The battery currents are part of the BTS data, but
the initial SoC values are not provided. When the battery
is neither charging nor discharging and the external power
is ON, it is assumed to be fully charged. This point serves
as a reference to calculate the progression of the SoC
during charging and discharging using the coulomb counting
method. However, this approach may not always yield an
accurate initial estimate, potentially due to the long sampling
time of 5 minutes used during data collection. To address
this issue, we use the voltage disconnect point (46.2V ) of the
discharge as a reference. By aligning the discharge curves
at this point, we ensure that they have similar SoC values.
Next, we calculate the initial SoC at the start of the discharge
by decrementing the SoC backward using the observed load
current up to that moment. This method results in a more
accurate initial SoC estimate, which is essential to calculate
voltage progression using the modified Shepard model.

When complete discharge curves are available, such as
in the case of training discharges, they can be aligned to
determine the initial SoC. In scenarios where full discharge
curves are not available, as in the case of test discharges,
the suboptimal initial SoC values obtained by the Coulomb
counting method can be used instead. Alternatively, if the
operator collects additional data about the battery, more
accurate methods can be applied [28]. This work first obtains
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the initial SoC of all discharges using the alignment method
and uses it as input to the battery model.

To quantify the uncertainty of the battery model parameter
estimates, a bootstrap method with stratified sampling was
used. Stratified sampling was applied for each training
discharge curve by dividing the voltage range into three
intervals: vbatt > 48.5, 48.5 ≥ vbatt ≥ 47, and vbatt <

47. New discharge curves were generated by sampling an
amount of data proportional to the number of samples present
in each respective interval. The number of samples in an
observed discharge varies depending on the initial SoC
values and the magnitude of the discharge load current.
An Average Discharge Length (ADL) is calculated from
the training discharges by taking the average number of
discharge samples. This ADL is then used as a reference
for generating stratified samples. To capture the variability
in discharge lengths and create a more representative data
set, the number of samples generated is varied between
0.75ADL and 1.25ADL. In the experiments, a stratified
sampling approach was used to generate 2500 discharge
curves. These curves were then used to identify 2500 sets
of parameters for the battery model, employing Equation (1)
and the least squares approach described in Equation (4). The
model parameters obtained are illustrated in the histograms
presented in Figure 8. The parameter distributions obtained
are skewed. The distribution of A andK takes values typically
observed in lead-acid batteries. The distribution of B is
skewed towards zero. This parameter represents the sharp
exponential decline in the second exponential section of the
battery discharge shown in Figure 2. This exponential decline
is minimal in both the sampled and real-life discharge data,
as can be seen in Figure 8, resulting in B values that are close
to zero. The performance of the model parameters obtained
is evaluated in subsection IV-C1.

FIGURE 8. Stratified sampling of training data and generation of battery
model parameters.

The alternative FNN architecture based battery model
comprises two dense layers: the first with 64 neurons and the

second with 16 neurons, both employing the Leaky ReLU
activation function. The network’s final output is a single
voltage estimate. Key hyperparameters include the Adam
optimizer with a learning rate of 1× 10−3, an early stopping
criterion with a patience of 10 epochs, a batch size of 16 and a
dropout rate of 0.1. The model’s training strategy is a ‘‘leave-
one-out’’ approach, where one discharge event is set aside
for testing while the remaining discharge events are used for
training. This strategy enables effective model training and
evaluation for battery voltage predictions from the data.

B. LOAD FORECASTING MODEL ARCHITECTURE AND
PARAMETER IDENTIFICATION
To predict the voltage progression of a BTS battery using
the parameters of the battery model, it is necessary to have
the load current values provided by the battery îbatt(t + h)
over the prediction time horizon h = 1, . . . , l. The future
load currents are unknown at the beginning of the discharge
process. Therefore, it is necessary to forecast them to predict
the voltage progression.

In a BTS power unit, the measured load signifies the
total amount of energy required by individual components
within the system. A significant portion of the energy
demand comes from the mobile network equipment, which
is the main customer service provider unit. As can be
observed in Figure 9, the load profile exhibits a cyclic pattern
with a daily seasonal trend over time, which is closely
related to the number of users and devices connected to the
system and their activities. Given the load characteristics
and the insights presented in Section II-B, a SARIMAX
model is adopted to forecast the load currents. During an
external power outage, the battery supplies energy to the
communication module load and to the control units of the
Battery Management System (BMS). This is evident from
the increased load current observed after the disconnection,
as shown in Figure 9. When an external power source is
available, the BMS operates in a low-power idle mode. The
proposed model intends to account for the additional energy
requirement imposed by the BMS while forecasting through
an exogenous variable. The exogenous variable is derived
from data about the external power source. It is set a value
of 0 when the BTS load is supplied by the external power
source. On the other hand, it is set to 1 during power outages
and the battery supplies energy to the load.

FIGURE 9. BTS load characteristics.
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When a discharge event occurs in a BTS, the parameters
of the SARIMAX model (p, d, q)(P,D,Q) need to be
determined to forecast the expected load current. To train
this model, historical load current data observed until the
moment of discharge is used. The load characteristics of a
BTS during discharge times differ from those during non-
discharge times. Thus, the accuracy of the model depends on
the amount of historical discharge time load characteristics
observed, as it is crucial to capture the load characteristics
of future discharge events. For the initial discharges of a
BTS, limited previous discharge load characteristic data are
available. To address this issue, the load time series data
are adjusted by repositioning the initial discharges to a
position after the last recorded discharge in the collected data.
This method is similar to the leave-one-out approach. For n
discharges in a BTS, each discharge will have n−1 preceding
discharges in the training historical data after the adjustment.
Given the daily seasonality of the BTS load characteristics,
when a discharge occurrence is relocated to the end, the new
position in time is kept on the same day of the week and
at a time similar to the original discharge. This adjustment
method is illustrated in Figure 10. The initial load section that
contains a discharge is swapped with the corresponding later
section, ensuring that multiple discharge events are available
for model training before making a forecast.

FIGURE 10. Discharge load current repositioning approach to incorporate
discharge time load characteristics in training.

Then, the obtained training dataset is used to determine the
parameters of the SARIMAX model. This is implemented
through a stepwise approach (as provided by the pmdarima
library [38]), which searches through multiple combinations
of order parameters to select the model that minimizes
the Akaike Information Criterion (AIC) score. Figure 11
illustrates three load forecasts generated by this approach,
including confidence intervals, from different clusters and
BTSs. The forecasts show a low RMSE and closely match
the actual load currents.

Based on the best AIC score for the first fore-
casted discharge in Figure 11, the SARIMAX model
of (5, 0, 2)(1, 0, 1)72 is obtained and the parameters are
provided in Table 3. Given the importance of the daily
seasonality trend of the load characteristics in the forecasting,
it was found that the differencing orders d and D which
provides the minimum AIC value for all discharge load
forecasts were zero. For computational efficiency, the original
5-minute sampling time is changed to 20 minutes when

building the SARIMAX model. This adjustment results in
a daily seasonality of 72 samples (3 samples per hour × 24).

TABLE 3. Sample SARIMAX model coefficients for a discharge time load
forecast.

In Table 4 the performance of the models for each cluster is
represented by the RMSE. We can observe from these results
that the forecasting models in each cluster have a comparable
and consistent performance. The forecasts obtained closely
follow the observed load currents, and the confidence interval
of the model output gets larger as expected when the
forecasting time interval increases, as can be observed from
Figure 11. As is typical with forecastingmodels, the degree of
uncertainty tends to grow as the time horizon for the forecast
increases.

TABLE 4. RMSE values of forecasted loads per cluster.

C. RUT ESTIMATION
In this section, the developed battery model and the load
forecasting model are combined to estimate the RUT
until the battery voltage threshold reaches 46.2V, which is
insufficient to provide full service. Three different scenarios
have been designed and experiments corresponding to each
scenario were conducted, as illustrated in Figure 12. In these
experiments, the RUT is estimated using sampled parameters
from the battery model and: 1) actual load measurements,
2) samples from load measurements observed from the
historical data around a similar time to the current discharge,
and 3) samples from the forecasted load distribution. The
first experiment examines the suitability of the developed
battery models using true load currents as input. In the second
experiment, we assume that the load currents during the
current discharge will exhibit characteristics similar to the
load currents observed in previously collected data around
the same time. Therefore, we sampled these historic load
currents to use as input to estimate future discharge voltages.
Lastly, we evaluate the proposed integrated approach, which
combines the estimated battery model with forecasted load
currents using SARIMAX time series forecasting. We then
compare and discuss the performance of these three experi-
ments.

Table 5 provides the detailed RUT estimation performance
for each discharge using the three experiments. For each
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FIGURE 11. SARIMAX-based load forecasting visualization for selected discharges.

FIGURE 12. RUT experimental setups.

experiment, the RUTmean estimation error is provided along
with the corresponding 95% prediction interval to quantify
uncertainty. In addition, the MPE results quantify the relative
mean error of the RUT estimate with respect to the actual
RUT value. Finally, the averages of the absolute mean values
of all three metrics are presented.

1) ESTIMATION USING TRUE DISCHARGE LOAD CURRENTS
This section describes a baseline scenario in which the
RUT estimate is obtained by using the proposed battery
models and the measured load currents as input. It should be
noted that this scenario serves merely as a baseline because
in reality the load currents will not be known at future
time steps beforehand. A PDF plot is used to visualize the
distribution of the RUT estimate error for each discharge
within a cluster. This plot provides a summary of the essential
statistical measures of the 95% prediction interval. The mean
of the error distribution is considered the most likely RUT
estimation error, while the 2.5% Lower Quantile (LQ) and
the 97.5% Upper Quantile (UQ) represent the bounds of the
estimation error, representing the uncertainty of the battery
model.

Figure 13 illustrates the PDF of errors, defined as the
difference between the estimated mean and the actual
measured RUT, for four discharges within cluster C1. Using
the modified Shepherd battery modeling approach, the errors
are generally close to zero. However, the mean is slightly

shifted below zero, indicating a tendency to underestimate
the RUT. The highest value ME is an underestimation of
the RUT by −13.03 minutes for discharge D6, as can be
seen in Table 5. Typically, a fully charged battery of this
BTS can sustain the load for nearly 4 hours. Therefore,
an estimation error of −13.03 minutes or less is relatively
minimal. Furthermore, the prediction interval length for this
scenario in cluster C1 is atmost 15minutes, indicating limited
variability in the RUT estimations.

Overall, the worst performance of this approach, using the
relative MPE metric, is an underestimation of −9.72% for
discharge D7 in cluster C1, an overestimation of 1.67% for
discharge D3 in cluster C2, and an overestimation of−1.52%
for discharge D10 in cluster C3. TheMPE results are less than
5% of the actual discharge times for 90% of the discharges.
The average absolute ME for all discharges is 4.2 minutes
with a mean prediction interval of 16.19 minutes.

FIGURE 13. PDF of RUT estimation errors in cluster C1 using Modified
Shephard battery model. Estimates are based on the measured load
current. The bounds represent the 95% prediction interval.

In comparison, Figure 14 shows the PDF of the RUT esti-
mation errors for the four discharges in cluster C1, using the
alternative FNN approach discussed in subsection II-A. This
battery modeling method tends to significantly overestimate
the RUT.

In general, the worst performance of this FNN battery
modeling approach, using the relative MPE metric, is an
overestimation of 15.88% for discharge D7 in cluster C1,
an overestimation of 10.2% for discharge D3 in cluster C2,
and an underestimation of 10.77% for discharge D6 in cluster
C3. Only 20% of the discharges have an MPE less than 5%
of the actual discharge times, which represents a significant
decrease compared to the modified Shephard model results.
This disparity results from the limited number of discharge
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FIGURE 14. PDF of RUT estimation errors in cluster C1 using FNN battery
model. Estimates are based on the measured load current.

profiles available for training, which has a far greater
impact on the FNN approach than on the modified Shepard
mathematical modeling approach. Given the superior overall
performance of the modified Shepherd model compared to
the FNN approach, it has been selected as the preferred
battery model for the subsequent experimental results.

2) ESTIMATION USING SAMPLES FROM BOTH BATTERY
MODEL PARAMETERS AND PREVIOUS OBSERVED LOAD
CURRENTS
In this scenario, the RUT estimation is performed by sampling
parameters from both the battery model and the historical
load currents of the BTS. To obtain the historical load
currents, we consider the start time of the discharge and
extract load currents from the preceding days around this
time. This approach is based on the observation that the load
of a BTS follows a daily cyclic pattern, suggesting that the
upcoming discharge will exhibit similar load characteristics
to those observed in historical data at the same time of
day. This assumption serves as a baseline when actual or
forecasted load data are unavailable. Initially, we define an
approximate time range for the current discharge. Using this
range, we extracted the corresponding load currents from the
historical data. These extracted currents are then combined
to form a load current set, from which samples will be drawn
to estimate the voltage progression of the discharge until the
battery voltage drops below the specified threshold.

The results of this approach, as illustrated in Figure 15
for cluster C1, indicate a significant overestimation of the
RUT of the batteries. As evident in Table 5, the highest ME
for this cluster is an overestimation of 39.67 minutes for
discharge D5. The average absolute ME for all discharges
is 47.46 minutes, with a mean prediction interval of
18.81 minutes. The worst performance of this approach,
based on the MPE metric, includes an overestimation of
26.44% for discharge D5 in cluster C1, 14.18% for discharge
D2 in cluster C2, and 18.42% for discharge D7 in cluster C3.
The MPE is less than 5% of the actual discharge times for
only 9.52% of all discharges, and the average absolute MPE
value is 13.47%.

There is a significant increase in the RUT estimation
error for this scenario compared to the first scenario. This
increase is due to historical sampled load currents, even
though the same battery model parameters are used. The

FIGURE 15. PDF of RUT estimation errors in cluster C1. Estimates are
based on sampled load currents from previous observed load currents.
The bounds represent the 95% prediction interval.

load currents were drawn from historical data, but they are
not fully representative of the expected load characteristics
during the discharge time, even if taken at the same times
of the day. As a result, the load current samples taken for
the considered discharge may not accurately represent the
expected load characteristics. These samples often havemuch
smaller values compared to the actual discharge-time load
currents, leading to a substantial overestimation of the RUT
values.

3) ESTIMATION USING SAMPLES FROM BOTH BATTERY
MODEL PARAMETERS AND FORECASTED DISCHARGE LOAD
CURRENTS
In this scenario, the RUT estimation is performed by sampling
from the distributions of the parameters of the battery model
and forecasted load currents. Two models, the battery model
and the load forecasting model, are devised to produce
the RUT estimates. Consequently, the uncertainty in the
estimation arises from both the battery model and the load
forecasting model. This is evident from the larger overall
mean prediction interval of 26.43 minutes shown in Table 5,
which is higher than the uncertainty observed in the initial
two scenarios.

Regarding the mean RUT estimation error, we expect this
scenario to perform less effectively compared to scenario 1,
which uses the true load current. This is observed in the
overall ME and relative MPE metrics. In this scenario, the
values of ME and MPE are 12.61 minutes and 3.15%,
respectively, which are higher than the values obtained in
scenario 1, which are 4.20 minutes and 1.78%. However,
when examining individual discharges, the RUT estimates
in this scenario may not always perform worse than in
Scenario 1. Focusing on cluster 1, discharges D2, D6, and
D7 demonstrate this behavior, as presented in Table 5. This
occurs because the battery model might underestimate the
RUT when predicting with the true load currents. However,
if the forecasted load for a discharge is lower than the actual
load currents, this can lead to an overestimation of the RUT.
When RUT estimations are made using an underestimating
battery model in combination with lower-than-actual load
forecasts, the accuracy of the estimations improves. This
behavior is observed in multiple discharges from all clusters.
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TABLE 5. RUT estimation error of all discharges.

FIGURE 16. PDF of RUT estimation errors in cluster C1. Estimates are
based on samples from the distribution of the forecasted load current.
The bounds represent the 95% prediction interval.

If this scenario achieves better RUT estimations compared
to scenario 2, we can infer that the forecasting method
devised here provides a more accurate prediction of future
discharge load currents. This method performs better than
the straightforward approach of assuming that future load
currents will resemble the previous load currents in the
historical load data and using samples from it. Figure 16
presents the improved results of RUT estimation using
this approach, highlighting the improvements compared to
Figure 15, for some discharges in cluster C1. The averaged
absolute ME and relative MPE metrics for this scenario
are 12.61 minutes and 3.15%, respectively, which are
significantly lower than the metrics obtained in Scenario 2,
whichwere 47.46minutes and 13.47%. This indicates that the
estimation error with the new approach is roughly a quarter
of that of Scenario 2.

V. CONCLUSION
Abattery in a BTS system is a critical component, and it keeps
the system afloat in a standalone manner or in conjunction
with other external power sources. This work addresses the
issue of estimating the energy depletion time under different
load conditions. This is achieved using a battery model and
also by forecasting future loads during a discharge state.

The baseline scenario, devised to validate the batterymodel
using modified Shepherd equations, demonstrated good
RUT performance with an average absolute MPE of 1.78%
compared to the actual observed values. This corresponds to
a relative error of less than 2%. Considering that the primary
data available about batteries are their discharge curves
and limited specifications, the proposed battery modeling
approach is well-suited for the use case scenario. In reality,
the load currents are not known in advance and must be
estimated. A simple and straightforward method relies on
the assumption that future discharge loads will be similar
to the load currents observed previously at the same time
as the current discharge. Samples were then taken from
these previous observations. These samples are then used
to determine the voltage progression of the battery during
discharge. When estimating the RUT using this approach, the
average absolute MPE increased to 13.47%, which is more
than seven times the baseline scenario. Thus, to improve the
RUT estimation, we developed a load forecasting model in
addition to the battery model. Using the SARIMAX model
to forecast the discharge load current, chosen based on the
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initial analysis of the BTS load characteristics, we observed
improved performance. The average absolute MPE was
reduced to 3.48%. However, one drawback is the increased
uncertainty in RUT estimation because the approach now
requires two models. This uncertainty was quantified using
a prediction interval, showing an increase from 16.19 in the
baseline case to 18.81 in the second scenario, and ultimately
to 26.43 minutes for the proposed approach. Overall, the
estimates are considered satisfactory given that the batteries
can sustain the load for hours.

For the telecom operator examined in this study, the
implementation of an automated framework to address BTS
power interruptions has the potential to substantially improve
the development of effective intervention strategies. The
findings of this research serve as a valuable supplementary
tool for the operator’s engineering team, particularly for
those who currently rely heavily on their experience when
making critical decisions. A notable limitation of this work
is the limited dataset provided by the operator, which
precluded the application of state-of-the-art deep learning
methodologies. However, with continued data collection in
the future, it will be possible to construct more robust models,
further enhancing the accuracy and reliability of the RUT
estimation process.
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