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Abstract: Group anomaly detection is a subfield of pattern recognition that aims at detecting
anomalous groups rather than individual anomalous points. However, existing approaches
mainly target the unusual aggregate of points in high-density regions. In this way, unusual
group behavior with a number of points located in low-density regions is not fully detected.
In this paper, we propose a systematic approach based on extreme value theory (EVT),
a field of statistics adept at modeling the tails of a distribution where data are sparse,
and one-class support measure machines (OCSMMs) to quantify anomalous group behavior
comprehensively. First, by applying EVT to a point process model, we construct an analytical
model describing the likelihood of an aggregate within a group with respect to low-density
regions, aimed at capturing anomalous group behavior in such regions. This model is then
combined with a calibrated OCSMM, which provides probabilistic outputs to characterize
anomalous group behavior in high-density regions, enabling improved assessment of
overall anomalous group behavior. Extensive experiments on simulated and real-world
data demonstrate that our method outperforms existing group anomaly detectors across
diverse scenarios, showing its effectiveness in quantifying and interpreting various types
of anomalous group behavior.

Keywords: group anomaly detection; extreme value theory; point processes; one-class
support measure machine; uninorm

MSC: 60G70

1. Introduction
Anomaly detection is a critical task in data analysis that differs substantially from

traditional classification. While classification typically involves the modeling of two or
more classes with labeled data and comparable sample sizes, anomaly detection focuses
on distinguishing between “normal” and “anomalous” samples, often characterized by
an imbalanced class distribution, where anomalous samples are rare. A key assumption
in anomaly detection is that the training data comprise only normal samples (throughout
this paper, the term “normal” consistently signifies what is usual and regular. When
discussing distributions, we employ the term “Gaussian distribution” instead of “normal
distribution”) [1]. Let X = (X1, . . . , Xd) be a multivariate random variable representing d
feature components with distribution function FX . Traditional approaches to anomaly
detection focus on a point model (M(x)) in the feature space of X that captures distribution
characteristics of normal point samples (which typically reside in high-density regions) to
identify anomalies deviating from this model (so-called pointwise anomaly detection).
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Group anomaly detection extends pointwise anomaly detection to scenarios where a
sample is not an individual point (x) but a group of points (x̃ = {x1, . . . , xn}) representing
a sample of the group variable (X̃ = {X1, . . . , Xn}, where X1, . . . , Xn share a common
distribution function (FX)). Group anomalies can arise in diverse contexts, such as irregular
sequences of measured heartbeats [2]. When applied to the detection of wind turbine failures,
group anomalies are observed as shifts of signal sequences [3]. Group anomalies also appear
in the usage patterns of urban bicycle rental systems [4]. Although pointwise anomaly
detectors could theoretically be applied in group scenarios if a representative feature set for the
group variable were extractable [5], these methods face the following significant challenges in
practical applications: (i) Constructing a representative feature set that adequately encapsulates
diverse group-level characteristics is often difficult, especially when the number of training
groups is limited and the variable (X) comprising the group is high-dimensional. (ii) Achieving
interpretability of the group-level feature set in terms of the spatial configuration of points in
the original feature space of X remains nontrivial. As a result, specialized methods for group
anomaly detection have been developed, which bypass group feature extraction and allow for
direct analysis within the original feature space of X.

This paper presents a statistical approach for group anomaly detection, aiming to con-
struct a framework to analytically quantify various types of anomalous group behavior. Given
normal groups in the training set, the points across all normal groups collectively define a
common, potentially complex distribution with a density of y = p(x). Thresholding the
density (p(x)) partitions the feature space of X into high-density and low-density regions,
thereby enabling all possible anomalous group behavior to be systematically classified into
two types: (i) point-based anomalous group behavior, where a group exhibits unusual collective
behavior among its points labeled as belonging to low-density regions, and (ii) distribution-
based anomalous group behavior, referring to a group whose distribution pattern of points labeled
as belonging to high-density regions differs from that in any normal group in the training
set. Such categorization is in line with existing work but is statistically underpinned through
the density function expressed as y = p(x) [6–10]. Figure 1 provides a visual illustration
of the two types of group anomalies. The blue points in the two-dimensional input space
represent points from all normal groups and collectively characterize the underlying point
distribution, where densely clustered areas correspond to high-density regions and sparse ar-
eas indicate low-density regions. Figure 1a shows groups with point-based anomalous group
behavior, where each group with red borders in the test set contains an unusual aggregate of
points located in low-density regions. Figure 1b illustrates groups with distribution-based
anomalous group behavior. Although the purple points are situated in high-density regions,
the groups with purple borders exhibit distribution patterns that substantially differ from any
of the patterns observed among the normal training groups. Groups exhibiting both types of
behavior are considered anomalous on both fronts.

Existing models for group anomaly detection face two critical limitations, which moti-
vate the development of our novel statistical approach. First, while a wide range of popular
models excel at detecting distribution-based anomalous group behavior, they exhibit a
significant weakness in identifying point-based anomalous group behavior. For example,
models like the One-Class Support Measure Machine (OCSMM) [7], Support Measure Data
Description (SMDD) [11], and the neural network model proposed by Chalapathy et al. [8]
primarily assess how the distribution pattern of points (labeled as belonging to high-density
regions) in a test group deviates from that of normal training groups while largely neglect-
ing the crucial aggregation behavior of points in low-density regions within this test group.
In domains like health monitoring, both types of group anomalies are crucial, and the
failure to effectively detect point-based anomalous group behavior can lead to spurious
alarms. Although models like the Mixture of Gaussian Mixture Model (MGMM) [6] and the



Mathematics 2025, 13, 1813 3 of 33

Flexible Genre Model (FGM) [12] attempt to address both types of group anomalies, they
often exhibit higher sensitivity towards distribution-based anomalous group behavior. This
imbalance in sensitivity is further illustrated in Sections 2 and 5.

(a) Point-based group anomalies (b) Distribution-based group anomalies

Figure 1. Illustration of two types of anomalous group behavior. The blue points represent all
individual points from the normal groups in the training set. The red points represent low-density
region points, whereas the purple points are high-density region points. The boundaries of individual
normal groups are not explicitly shown.

The second limitation lies in modeling point-based anomalous group behavior, where
the strategy of most models that combine (pointwise) anomaly scores is flawed. The main
reason is that low-density region points need to be considered as a whole to capture their
aggregate behavior; otherwise, the multiple hypothesis-testing problem will manifest.
The point-based group anomaly detection problem can be stated as follows:

H0. x̃ is a group of points drawn from the distribution of X;

H1. x̃ is an anomalous group with respect to the distribution of X.

Clearly, it is a multiple hypothesis-testing problem where more than one hypothesis is
being tested—more specifically, one hypothesis for each individual point being anomalous or
not. For a group size of n = 1, this simplifies to classic (pointwise) anomaly detection, where
the likelihood (p(x1)) can be directly used as an anomaly score [13]. However, for n > 1,
the risk of wrongly classifying a group (x̃) as anomalous considerably increases. Indeed,
while the type-I error for xi ∈ x̃ can be controlled at a significance level of α, the likelihood
of making at least one type-I error among all n hypotheses corresponds to P(type-I error) =
1− (1− α)n > α. As a result, the decisions made by these models become unreliable.

This work aims to develop an effective method to address the aforementioned limitations
and accurately evaluate the anomalousness of a group. We integrate a likelihood model based
on Extreme Value Theory (EVT) with a calibrated OCSMM within a unified framework. Each
component is designed to specifically target a distinct form of anomalous group behavior,
with the likelihood model being employed to characterize the low-density regions and avoid
the multiple hypothesis-testing problem, whereas the calibrated OCSMM is intended to
capture deviations in the distributional structure of high-density regions across groups. Lever-
aging the complementary information captured by each component, these two components
are subsequently combined through a constructed uninorm to generate an overall anomaly
score. Specifically, the contributions of this paper are described as follows:

1. We offer a novel framework where EVT is applied to a Point Process Model (PPM)
in order to fully capture the spatial configuration that is hidden in the data points
situated in low-density regions.

2. An analytical result is proven to approximate the distribution of the PPM. Based on
this result, a point-based anomaly score is defined to evaluate the anomalous extent
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of a group with respect to low-density regions, effectively addressing the multiple
hypothesis-testing problem.

3. We extend the existing OCSMM framework to yield probabilistic outputs, thereby
enabling the construction of a distribution-based anomaly score that exclusively assesses
the anomalous extent of a group with respect to high-density regions. OCSMM is
chosen for this purpose because it effectively captures the distributional character-
istics of normal groups in high-density regions, without redundantly incorporating
information from low-density regions, thereby avoiding overlap with the previously
constructed point-based anomaly score.

4. A uninorm is constructed to effectively combine the above two scores, each focus-
ing on the anomalous extent of one of the group’s two complementary aspects.
The resulting overall anomaly score provides a comprehensive measure of the
group’s anomalousness.

The remainder of this paper is structured as follows. In Section 2, existing approaches
for group anomaly detection are reviewed and analyzed. Section 3 provides the necessary
knowledge of EVT and PPM, which is crucial for constructing our model. Subsequently,
Section 4 introduces our novel method for group anomaly detection. In Section 5, the method
is evaluated on both synthetic and real-world datasets. Section 6 concludes this paper.

2. Related Work
As our study is concerned with group anomaly detection, we focus our literature

review on this area rather than (pointwise) anomaly detection methods. Following classic
pointwise anomaly detection, early developments in group anomaly detection methods
combined the individual predicted scores generated by pointwise anomaly detectors into
a single score for a statistical decision [14]. For instance, in the image analysis research
of Hazel [15], a pointwise detector was used to identify anomalous pixels that were subse-
quently gathered into anomalous groups. Das et al. [16] classified groups according to a high
fraction of individual anomalous points within a group. Belhadi et al. [17] combined differ-
ent data mining techniques to identify groups of sequence outliers. Mohod and Janeja [18]
adapted density-based clustering methods to discover spatially anomalous groups (win-
dows) of arbitrary shape. Das et al. [19] also introduced a group anomaly detection
framework based on scan statistics to detect clusters with increased counts of spatial data.
More recently, Pehlivanian and Neill [20] extended scan statistics to detect contiguous
group anomalies in ordered data. However, scan statistics are based on the number of
instances within a region but discard their relative location in space. Moreover, these
methods are ineffective in addressing the multiple hypothesis-testing problem.

With the advancement of statistical techniques, there is a growing interest in detecting
unusual group behavior, especially in high-density regions. Some representative models
have been proposed. Muandet and Schölkopf [7] introduced OCSMM, which extends
the One-Class Support Vector Machine (OCSVM) [21] to groups. By adapting the kernel
in OCSVM for the mapping of points into feature space to the kernel mean embedding
mapping of groups into feature space, OCSMM extracts distribution information from
normal groups and separates them from the origin. SMDD [11] also utilizes the kernel mean
embedding technique, but it is based on the idea of constructing a minimum enclosing
ball [22]. Ting et al. [23] proposed the isolation distribution kernel to quantify distribution
similarities within groups. Fisch et al. [24] introduced a statistical approach for detecting
both collective and point anomalies with a linear computational cost. Other approaches,
such as those proposed by Yu et al. [25], Song et al. [9], and Chalapathy et al. [8], are tailored
for specific application areas. However, these models consistently fail to handle scenarios
where both point-based and distribution-based anomalous group behavior occur within
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the same group. Some efforts have been made to detect both types of anomalous group
behavior, such as MGMM [6] and FGM [12], which are strongly related to the topic model
of Latent Dirichlet Allocation (LDA) [26]. Topic models are often used in natural language
processing to classify a collection of documents, each of which is typically concerned with
multiple topics and where each topic is represented by a cluster of multiple words. MGMM
considers each group as a mixture of Gaussian-distributed topics, while FGM defines
flexible structures called “genres” to model topic distributions. Scores are then defined to
measure point-based and distribution-based anomalous group behavior and combined
using a weight function. However, these models tend to focus primarily on the distribution
of points in high-density regions, as the topic generation process is less affected by points
in low-density regions, particularly when these points are sparse. As a result, they exhibit
significant bias in detecting point-based anomalous group behavior.

In recent years, to develop a suitable model for point-based anomalous group behavior,
researchers have explored considering low-density region points as an integral component.
Luca et al. [2,27,28] investigated the use of EVT to extract features characterizing the
aggregate of points in low-density regions (also termed extreme risk regions) of p(x). This
involves summarizing aggregation information from extreme points in terms of the mean,
maximum excess of p(x), or the number of extremes with respect to some threshold. While
these models address the multivariate hypothesis-testing problem by employing such
features to characterize aggregated extreme behavior, questions remain about how to
identify a comprehensive feature set that effectively captures this behavior.

3. Background Knowledge
In this section, the necessary concepts of EVT and the related PPM are introduced,

which play an essential role in the remainder of the paper. For more details about the
proofs of the presented theorems, we refer to [29]. The key notations and abbreviations
used throughout this paper are summarized in Table 1.

Table 1. Summary of notations and abbreviations.

Symbol/Abbreviation Definition

X, x A d-dimensional random variable and a sample thereof

p(x) Estimated probability density at point x

Y, y A 1-dimensional random variable defined as Y = p(X) and a sample thereof

Z, z A 1-dimensional random variable defined as Z = − log Y = − log p(X) and a sample
thereof

x̃ = {x1, . . . , xn} A group sample consisting of n point samples

ỹ = {y1, . . . , yn} A transformed group sample obtained from x̃, where yi = p(xi)

z̃ = {z1, . . . , zn} A transformed group sample obtained from x̃, where zi = − log p(xi)

un Threshold used to determine exceedances for Z

cn Location parameter for the right tail of Z

dn Scale parameter for the right tail of Z

u Normalized un, where u = un−cn
dn

z̃exc Set of exceedances within group z̃

fn(z̃exc) Likelihood of the exceedance pattern in group z̃

Vexc
n Likelihood variable, where Vexc

n = fn(z̃exc)

G(vexc) Analytical cumulative distribution function of the likelihood, where G(vexc) =
lim

n→+∞
P(Vexc

n ≤ vexc)
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Table 1. Cont.

Symbol/Abbreviation Definition

B = {x̃l+1, . . . , x̃l+h} A set of h simulated anomalous groups used for calibration

γ Kernel bandwidth in OCSMM

U3Π(a, b) 3Π operator

Uano(a, b) A constructed uninorm used in the final combination

e Threshold in uninorm Uano(a, b)

A = {x̃1, . . . , x̃l} A training set of groups consisting of l normal group samples

T = {x̃(t)1 , . . . , x̃(t)l′ } A test set consisting of l′ group samples

α(x̃) Point-based group anomaly score for group sample x̃

β(x̃) Distribution-based group anomaly score for group sample x̃

ϕ(x̃) EVSMM score for group sample x̃

EVT Extreme Value Theory

OCSVM One-Class Support Vector Machine

OCSMM One-Class Support Measure Machine

PPM Point Process Model

SMDD Support Measure Data Description

MGMM Mixture of Gaussian Mixture Model

3.1. Extreme Value Theory

EVT is a statistical discipline with the objective of modeling the stochastic behavior of
a univariate process at unusually large (or small) levels. It has already been proven useful
in many applications, such as reliability analysis, structural health monitoring, meteorology,
and financial risk assessment [30–32].

The central result in EVT is the Fisher–Tippett theorem concerning the limiting distri-
bution of

Mn = max{Z1, Z2, . . . , Zn} , as n → +∞ ,

where Z1, Z2, . . . , Zn are i.i.d. univariate random variables with a common distribution
function (FZ).

Theorem 1 (Fisher-Tippet-Gnedenko). If there exist sequences of normalizing constants cn and
dn such that the following convergence in distribution holds:

P
(

Mn − cn

dn
≤ z
)
→ Gξ(z) , as n → +∞ , (1)

then the non-degenerate limiting distribution (Gξ(z)) is a member of the so-called Generalized
Extreme Value (GEV) family of distributions:

Gξ(z) =

 exp
{
−[1 + ξz]−

1
ξ

}
, if ξ ̸= 0

exp{− exp(−z)} , if ξ = 0 .
(2)

If ξ ̸= 0, then the domain of the distribution is restricted to the set expressed as {z | 1 + ξz > 0}.

If the shape parameter (ξ) is negative, zero, or positive, then the corresponding
distributions (Gξ) belongs to the Weibull, Gumbel, or Fréchet family, respectively. Thus,
the shape parameter (ξ) thus determines the behavior in the tails of the distribution (FZ).
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The GEV family provides a model for block maxima, i.e., maxima of a sequence
({Z1, Z2, . . . , Zn}). However, for relatively large n values, few block maxima are available
from the data, which can lead to unreliable estimates of ξ [30]. To overcome this problem,
the peaks-over-threshold method can be used, which avoids the need for blocking. This
method infers a model from all observations that exceed some high threshold.

Theorem 2 (Pickands-Balkema-De Haan). For a given u ∈ R sufficiently close to 0, the se-
quence of thresholds expressed as un = cn + udn is considered, where cn and dn denote the
normalizing constants as defined in (1). If (1) holds for some member (Gξ(z)) of the GEV family,
then the distribution of the exceedances (Z − un), conditional on Z > un, satisfies the following
limiting property:

lim
n→+∞

P
(

Z − un

a(un)
< z | Z > un

)
= Hξ(z) , (3)

where a(un) is the scale parameter for exceedances relative to the threshold (un). The distribution
expressed as

Hξ(z) =

 1 −
(

1 + ξ
1+ξu z

)− 1
ξ , if ξ ̸= 0

1 − e−z , if ξ = 0
(4)

denotes the family of Generalized Pareto Distributions (GPDs) with z ≥ 0 in the case of ξ ≥ 0 and
0 ≤ z ≤ − 1

ξ in the case of ξ < 0.

These two classical models represent the cornerstone of Extreme Value Theory. When
the prior distribution of Z is unknown, the three parameters, i.e., the shape parameter (ξ)
and the normalizing constants (cn and dn), need to be estimated for practical applications.
For a range of commonly encountered distributions, such as the gamma, exponential,
Gaussian, and beta distributions, Embrechts et al. [29] presented direct sample estimation
formulas for the ξ, cn, and dn parameters. In cases where populations have the extreme
value distribution of the Gumbel case (ξ = 0), the scale parameter (a(un) = dn) and the
normalizing constants (cn and dn) can be estimated as follows [29]:

cn = inf
{

z | P(Z ≤ z) ≥ 1 − 1
n

}
, dn = E(Z − cn | Z > cn) , (5)

where the latter is the mean excess function.

3.2. Point Process Model

A (spatial) PPM in Euclidean space can be viewed as a random variable (X̃) defined
over all possible point patterns in some subspace (D) of Rd (d ∈ N0), where a realized point
pattern is given by [33] x̃ = {x1, x2, . . .} , xi ∈ Rd . A PPM integrates stochastic information
about the number of points and their individual locations in the feature space. It can be
shown that the stochastic properties of a PPM are fully characterized by so-called counting
measures with respect to the corresponding subsets [34], which are obtained by mapping a
pattern (x̃) to the number of points that fall in a subset (A) of Rd:

NA(x̃) = ∑
i≥1

χA(xi) , (6)

where χA(xi) = 1 for xi ∈ A and χA(xi) = 0 for xi /∈ A. An important concept associated
with a counting measure is its expectation (Λ(A) = E(NA(X̃)) ). Clearly, a realization
(x̃) can be fully reconstructed by considering the counting measures corresponding to all
possible subsets (A) of Rd.
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The PPM can be used to elegantly characterize the extremes in a way that unifies the
models presented in Theorems 1 and 2 [30].

Theorem 3 (Point Process Characterization). When the limiting distribution (3) of the block
maxima of the univariate random variable (Z) holds, the PPM of patterns consisting of exceedances
of the block {Z1, . . . , Zn} with respect to the threshold (un), i.e.,

Z̃exc
n = {Z1, Z2, . . . , Zn} ∩ [un,+∞) ,

converges to a Poisson point process as n → +∞. The corresponding counting measure (NA(Z̃exc
n ))

converges in distribution to a Poisson distribution:

lim
n→+∞

P(NA(Z̃exc
n ) = k) =

λk

k!
e−λ , (7)

where λ = E(NA(Z̃exc
n )) is the expectation of the counting measure.

For the Gumbel case, where ξ = 0, it can be shown that λ = lim
n→+∞

nP(Z > un) = e−u.

4. A Statistical Framework for Modeling Group Behavior
This section introduces the Extreme Value Support Measure Machine (EVSMM),

a novel statistical method for comprehensively quantifying how anomalous a group is
compared to normal training groups. The foundation of EVSMM involves characterizing
the group-level normal behavior of normal training groups within the d-dimensional point
feature space (Rd). We quantitatively analyze group behavior by modeling the statistical
characteristics of two complementary parts within the group: the low-density region and
the high-density region. The EVSMM operates through a two-step process. First, two scores
are constructed to quantify how unusual the parts of a group situated in the low-density
and high-density regions are. Second, an effective way to combine these two scores is
proposed by using a constructed uninorm aggregation function, whose roots trace back to
the fusion of certainty factors in highly successful early-day expert systems. The following
sections detail the rationale and necessity behind the construction steps of EVSMM.

4.1. Two Key Scores

We start with the construction of two scores to quantify the anomaly extent of a group’s
low-density and high-density regions.

4.1.1. PPM of Exceedances

In this section, we propose a PPM framework that models the spatial configuration of
exceedances with respect to a decision boundary in its full generality. We then derive an
asymptotic distribution, valid as n → +∞, which is used as an approximation to model the
aggregate of exceedances.

Let X be a d-dimensional random variable, with no distributional assumptions im-
posed on X. Consider a training set of normal groups (A = {x̃1, . . . , x̃l}), where each group
(x̃ℓ = {x1, x2, . . . , xnℓ

} ⊂ Rd) has a varying size (nℓ), with E(nℓ) = n. The objective is to
comprehensively quantify the unusual behavior of a group with respect to low-density
regions, which entails characterizing the aggregate behavior of exceedances, as determined
by a certain number of exceedances, and their various locations within low-density regions.
The aggregate of exceedances within group x̃ is given by

{x ∈ x̃ | p(x) ≤ e−un}
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for large values of un. The low-density regions are defined by the decision boundary
(p(x) ≤ e−un , where un is the threshold in the peak over threshold model introduced in
Theorem 2).

As previously described, this study begins by analyzing the distribution of points
across all training groups, which describes the probability space of d-dimensional vari-
able X. As our framework is not restricted to a particular density estimator, any suitable
method could be adopted to estimate the probability density function (p(x)). To illustrate
this flexibility, We mention several representative alternatives, such as parametric models
like Gaussian Mixture Models (GMMs), non-parametric approaches like Projection Pursuit
Density Estimation (PPDE), and random projection-based techniques for high-dimensional
data. In our experiments, we adopt Kernel Density Estimation (KDE), a widely used non-
parametric method that does not require prior assumptions about the data distribution. We
explicitly clarify that KDE is used solely as an example and is not necessarily the optimal
choice for all scenarios. Next, the transformation of Y = p(X) is applied, mapping the
multivariate random variable (X) to the univariate random variable (Y). Consequently,
within each group (x̃), sample xi is transformed into sample yi within ỹ as follows:

ỹ = {y1, y2, . . . , yn} = {p(x1), p(x2), . . . , p(xn)} .

Therefore, the exceedances of x̃, whether they are extremely large (the right tail) or small
(the left tail) values in the case of a univariate X or occupy diverse locations within low-
density regions in the case of a multivariate X, correspond solely to the left tail of Y. As Y
is the probability density, it is bounded below by zero, which guarantees the existence
of an extreme value distribution in its left tail. Moreover, Clifton et al. [35] proved that
the distribution of minima (yext := min{y1, y2, . . . , yn}) can be approximated by a Weibull
distribution. A Weibull distribution, with a lower bound at zero, describes the behavior of
small values of densities near zero [30]. To correct the skewness in the distribution of Y
near zero, a logarithmic transformation (Z = − log(Y)) is applied:

z̃ = {z1, z2, . . . , zn} = {− log(y1),− log(y2), . . . ,− log(yn)}

mapping the short tail of the Weibull distribution near zero to the right tail of a Gumbel
distribution for maxima:

P(max{Z1, . . . , Zn} ≤ z) ≈ G(z) , as n → +∞ ,

where G(z) denotes a cumulative distribution within the Gumbel family. In this way,
the multivariate, complex, low-density regions ({x | p(x) ≤ e−un}) are transformed into
regions {z | z ≥ un} on the real line. The significance of transforming X to Z not only
lies in mapping low-density regions from a high-dimensional space to the right tail in
a one-dimensional space but also in making it possible to exploit the well-established
theoretical results for the Gumbel case (ξ = 0) in EVT. Within a group (z̃ = {z1, z2, . . . , zn})
of n observations of Z, we study those points that exceed the threshold (un) and consider
them as an aggregate:

z̃exc =
{

zexc
1 , . . . , zexc

Kn

}
,

where Kn denotes the number of exceedances in z̃ w.r.t. un. In what follows, we derive an
analytical result to determine the asymptotic distribution of such aggregate of exceedances
as n → +∞. Note that, although i.i.d. random variables are considered, the results can be
applied to time series data by considering the residuals after fitting a time series model.

To tackle the above problem in its full generality, z̃exc is viewed as a realized non-empty
point pattern of a PPM. First, the probabilistic model of individual exceedances is derived
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using the limiting property (3) in Theorem 2 for ξ = 0 (i.e., the Gumbel case). As a result,
for large n, the likelihood of an exceedance zexc

i can be approximated by:

pn(zexc
i ) ≈ 1

dn
e−

zexc
i −un

dn , (8)

where un = cn + udn and cn and dn are defined in (5). Second, the aggregating behavior
of these exceedances is analyzed. The aggregate of exceedances with respect to low-
density regions is fully characterized by the counting measure introduced in Section 3.2.
From Section 3.1, it follows that

P(Kn = k) ≈ λk

k!
e−λ ,

where λ = e−u and u ≥ 0. These approximations motivate the definition of a probability
measure, referred to as the PPM of exceedances, with the following likelihood:

fn(z̃exc) := k!µn
k

k

∏
i=1

1
dn

e−
zexc
i −un

dn , (9)

where k denotes the observed size of z̃exc and µn
k = P(Kn = k). In the theorem below, we

prove that the distribution of the likelihoods ( fn(z̃exc)) is asymptotically given by a random
variable (Vexc) of mixed type. Random variables of mixed type are neither discrete nor
continuous but are a mixture of both [36]. The discrete component results from the likelihoods
(µn

0 > 0) that describe cases when there are no exceedances in z̃. This corresponds to a
discontinuity in the CDF that can be described using the Heaviside step function:

H(v) =

{
1 , if v ≥ 0
0 , if v < 0 .

(10)

Theorem 4. Consider a random variable (Z) that satisfies the following limiting property:

lim
n→+∞

P
(

Z − un

dn
< z | Z > un

)
= 1 − e−z , (11)

where un = cn + udn, with u ≥ 0, is determined by a sequence of thresholds in which

cn = inf
{

z | P(Z ≤ z) ≥ 1 − 1
n

}
,

dn = E(Z − cn | Z > cn) .
(12)

The random variables (Vexc
n ) of likelihoods ( fn(z̃exc)), as defined in (9), converge in distribution to a

random variable (Vexc) with the CDF:

G(vexc) = µ0H(vexc − µ0) + ∑
k≥1

µk

[
1 − Ek,1

(
− log

vexc(dn)
k

k!µk

)]
, (13)

where Ek,1 denotes the CDF of an Erlang distribution with shape parameter k and scale 1 and
µk =

λk

k! e−λ. In particular, it holds that

lim
n→+∞

P(Vexc
n ≤ vexc) = G(vexc) . (14)

Proof. First, we determine the distribution of Wexc
n = − log(Vexc

n ) given the number of
exceedances (Kn = k). We have
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Wexc = − log( fn(z̃exc))

= − log(k!µn
k ) + k log(dn) +

k

∑
i=1

zexc
i − un

dn
.

According to (11), the rescaled exceedances ( Zexc
i −un

dn
) converge in distribution to an expo-

nential random variable with a scale of σ = 1 as n → +∞. Therefore, according to the
continuous mapping theorem (stating that convergence is preserved by a continuous trans-
formation [29]), the sum of k such independent exceedances converges to the distribution
of a sum of k exponential random variables with a scale of σ = 1. Thus, the limiting
distribution of W∗

n := Wexc
n + log(k!µn

k )− k log(dn), conditioned on Kn = k > 0, is given
by an Erlang distribution with shape parameter k and rate parameter 1.

The cumulative distribution function of Wexc
n can be found using the law of to-

tal probability:

Ḡ(wexc) = lim
n→+∞

P(Wexc
n < wexc)

= lim
n→+∞ ∑

k≥0
µn

k P(Wexc
n < wexc | k)

= ∑
k≥0

µk lim
n→+∞

P(W∗
n < wexc + log(k!µn

k )− k log(dn) | k)

= µ0H(wexc + log(µ0)) + ∑
k≥1

µkEk,1(wexc + log(k!µk)− k log(dn)) .

(15)

The latter part is the limiting CDF of Wexc
n , which we denote as Ḡ(wexc). Transforming back

to the original distribution by means of Vexc = e−Wexc
, one obtains the desired result for

G(vexc):

G(vexc) = lim
n→+∞

P(Vexc
n ≤ vexc)

= 1 − Ḡ(− log(vexc))

= ∑
k≥0

µk − [µ0H(− log(vexc) + log(µ0)) + ∑
k≥1

µkEk,1(− log(vexc) + log(k!µk)− k log(dn))]

= µ0(1 − H(− log(vexc) + log(µ0))) + ∑
k≥1

µk(1 − Ek,1(− log(vexc) + log(k!µk)− k log(dn)))

= µ0H(vexc − µ0) + ∑
k≥1

µk

[
1 − Ek,1

(
− log

vexc(dn)
k

k!µk

)]
.

As a brief summary, we propose the likelihood measure (vexc) to evaluate group
samples. The likelihood measure of a group is constructed based on the pattern of its
exceedances—taking into account both the individual locations of low-density regions and
their aggregate behavior. The derived analytical form (G(vexc)) describes the distribution
of this likelihood measure and plays a central role in quantifying the group’s probabilis-
tic anomaly extent. Notably, similar to the Central Limit Theorem, a key advantage of
EVT—the foundation of our framework—is that, while the asymptotic theory requires
large n values, in practice, the method often performs well even for moderate values of
n. To validate the analytical expression in (13), we conducted a simulation experiment.
For this purpose, we generated 2000 groups from a one-dimensional standard Gaussian
distribution (N(0, 1)), with each group size sampled from a Poisson distribution with a
mean of 50. In practice, such group size selection entails a trade-off between bias and
variance, as a small group size leads to an estimation bias, whereas a large group size
results in an increased estimation variance. Next, the likelihood (vexc = fn(z̃exc)) is cal-
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culated for each group with respect to an aggregate of exceedances, and the CDF of the
likelihood is examined. The empirical CDF of vexc is then compared with the asymptotic
CDF given by (13). As shown in Figure 2, the empirical CDF approximates the analytical
CDF quite well.

Figure 2. Comparison between the empirical distribution (yellow curve) and the analytical expression
(green curve) of the likelihood (vexc). The empirical CDF, based on 2000 simulated groups, closely
matches the asymptotic CDF derived in Theorem 4. This result supports the practical validity of the
analytical formulation.

Based on the above analytical result, the first score is constructed using the expression
of CDF G(vexc) in (13), which assesses the anomaly extent of a group (x̃ = {x1, . . . , xn})
with respect to low-density regions. Addressing the multiple-hypothesis problem is critical,
because as the number of points forming a group increases, the exceedances are expected
to become more extreme, and their number is expected to grow. The proposed likelihood
concept encompasses both the probability of each individual exceedance location and the
probability of the size of the aggregate of exceedances within a group. Through the likeli-
hood concept, all exceedances within a group are treated as a unified whole. Accordingly,
the first score, termed the point-based group anomaly score, is defined as follows:

α(x̃) = 1 − G(vexc) , (16)

where vexc denotes the likelihood, as defined in (9), of the aggregate of exceedances
(zi = − log p(xi)) with respect to the threshold (un). A high anomaly score (α(x̃)) in-
dicates that there is a small probability of observing a group with a lower likelihood of
the aggregate of exceedances than vexc in any other group. We summarize the practical
implementation of the model in Algorithm 1.

4.1.2. A Calibrated OCSMM Model

In this section, we construct the distribution-based group anomaly score by calibrating
the OCSMM to quantify the anomaly extent of the group with respect to high-density
regions. Basically, the OCSMM extends OCSVM by classifying groups (x̃) instead of
individual points (x) [37]. The core concept behind OCSMM involves applying the kernel
trick to map the mean embeddings of training groups into a feature space, where they are
separated from the origin by a hyperplane. For more details about OCSMM, we refer to
Appendix A.
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Algorithm 1 PPM of exceedances: point-based group anomaly score.

Input: A set of normal groups A = {x̃1, . . . , x̃l}; a test group set T = {x̃(t)1 , . . . , x̃(t)l′ }; the
expected group size n;

Output: The point-based anomaly score α(T) of the test group set T.
1: Select an appropriate density estimator to estimate p(x) based on all point samples x

from the normal groups in A. Dimensionality reduction may optionally be applied
prior to estimation, depending on the chosen estimator.

2: Apply the transformations Y = p(X) and Z = − log(Y) to all point samples x (collected
from the normal groups in A), yielding samples z of the variable Z.

3: Use the mean residual life plot based on the sample z to select a threshold un for the
variable Z.

4: Estimate the location parameter cn and scale parameter dn based on samples z using
Equation (5), and compute the normalized threshold u = un−cn

dn
.

5: for each x̃(t)j in the test group set T do

6: Transform each point xi ∈ x̃(t)j to zi = − log p(xi), and obtain z̃(t)j .

7: Extract the exceedances z̃exc = {zi ∈ z̃(t)j : zi > un} and compute the likelihood
vexc = fn(z̃exc) using Equation (9).

8: According to Theorem 4, compute the point-based anomaly score as α(x̃(t)j ) = 1 −
G(vexc).

9: end for
10: Obtain the point-based group anomaly scores α(T) for the test set as α(T) =

{α(x̃(t)1 ), . . . , α(x̃(t)l′ )}.

There are several key reasons for selecting OCSMM. First, it is specifically designed
to capture the distribution characteristics within each normal group and demonstrates
robustness to outliers in low-density regions, providing a stable and reliable representation
of distribution information for the training group set with respect to high-density regions.
This capability complements the model proposed in the previous section, which focuses
on low-density regions. Second, OCSMM leverages the kernel trick, enabling efficient
modeling of the decision boundaries for complex group structures. By using the mean
kernel embeddings, OCSMM computes inner products in high-dimensional spaces without
requiring explicit group feature transformations. Third, OCSMM is firmly grounded in
statistical learning theory, kernel mean embedding theory, and optimization theory. Its
formulation as a convex optimization problem, with clearly defined constraints, ensures
that a unique global optimum can be reliably determined.

Although OCSMM provides a flexible and mathematically robust framework, its
output is inherently binary, producing classifications without any probability estimates.
While the decision function generates continuous scores, classification is determined solely
by the sign of the output. These scores indicate relative distances from the decision
boundary, but they do not provide a direct probabilistic interpretation.

As far as we are aware, there has been no prior research specifically focused on
the probabilistic calibration of OCSMM. A critical challenge in this process is generating
anomalous group samples, a necessary step for calibration due to the inherent scarcity
of anomalous samples in both classical anomaly detection and group anomaly detection
tasks. The following section details our calibration procedure, including the choice of the
calibration method and the steps for generating anomalous groups.

We argue that, among various calibration methods, sigmoid fitting is particularly
suitable for calibrating OCSMM. Unlike binning methods and isotonic regression, which
often introduce discontinuities and risk overfitting, sigmoid fitting is specifically designed
for binary classification problems and performs robustly on imbalanced data. In addition,
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sigmoid fitting offers flexibility and computational efficiency, which makes it advantageous
for handling large datasets. Furthermore, sigmoid fitting assumes a monotonic relationship
between decision scores and class probabilities, an assumption that aligns well with the
behavior of OCSMM’s decision scores. Based on these considerations, sigmoid fitting was
chosen as the calibration method.

The decision function of the OCSMM model trained on the training group set is
denoted as γ(x̃). Let β(x̃) represent the calibrated score of a group (x̃) based on the output
of γ(x̃). Then, sigmoid fitting is performed as follows:

P(β(x̃) = 1 | x̃) ≈ Jg,q(γ(x̃)) ≡ 1
1 + exp(gγ(x̃) + q)

, (17)

where g and q are parameters estimated by solving the following regularized, unconstrained
optimization problem:

max
g,q

l∗

∑
j=1

ζ j log
(

Jj
)
+
(
1 − ζ j

)
log
(
1 − Jj

)
, (18)

where Jj = Jg,q
(
γ(x̃j)

)
and

ζ j =

{
N++1
N++2 , if β j = 1

1
N−+2 , if β j = −1

,

for j = 1, . . . , l∗. The numbers of samples labeled as 1 (βj = 1) and −1 (βj = −1) are denoted
by N+ and N−, respectively. For calibration related to a pointwise classifier (e.g., SVM or
OCSVM), Platt used the Levenberg–Marquardt (LM) algorithm to solve (18) [38]. Later, this
was improved by Lin et al. [39], who demonstrated that (18) is a convex optimization problem
and presented a more robust algorithm with proven theoretical convergence to solve it.

To calibrate the group classifier OCSMM, it is essential to generate anomalous groups
rather than individual anomalous points. Inspired by previous work on anomalous
points [40–42], we adapted these ideas for groups. To generate anomalous points, the central
assumption is that, spatially, all such points lie outside high-density regions. Building upon
this assumption, previous studies have focused on constructing anomalous points for an opti-
mal calibration, where a threshold on the density (y = p(x)) is determined to classify a point
as anomalous or not. However, anomalous groups cannot be generated by the same approach
as anomalous points, as they exhibit more complex structural behavior. Unlike anomalous
points, anomalous groups may not only deviate spatially from high-density regions but
can also significantly overlap with normal groups. These simulated groups are specifically
constructed to introduce mild deviations from normal patterns near the decision boundary,
serving as informative references for the calibration of the OCSMM score. Based on the above
analysis, we propose the following algorithm for the generation of anomalous groups.

Algorithm 2 starts by generating the group centers. A key difference between
Algorithm 2 and the pointwise calibration methods discussed earlier is that the threshold,
a hyperparameter used to define the boundary of high-density regions, is removed. This
modification allows group centers to be located in both high-density and low-density re-
gions. The next step focuses on ensuring that anomalous groups exhibit as much diversity
in their distribution characteristics as possible. To achieve this, the covariance matrix is
generated randomly under constraints derived from the covariance matrices of the normal
groups in the training set. Then, a new anomalous group for the calibration is generated by
sampling from a multivariate Gaussian distribution, using the group center as the location
and the generated covariance matrix as the scale.
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Algorithm 2 Generation of a set of anomalous groups (B) for the calibration.

Input: A set of normal groups A = {x̃1, . . . , x̃l}; the number of anomalous groups h; the
expected size λ(l) of each anomalous group;

Output: A set of anomalous groups B of size h.
1: Compute the centers c1, c2, . . . , cl and covariance matrices v1, v2, . . . , vl of the normal

groups in the training set. Compute the center c∗ of all the centers c1, c2, . . . , cl and the
average Euclidean distance r from the centers c1, c2, . . . , cl to c∗.

2: Generate a set of h points B =
{

bl+1, . . . , bj, . . . , bl+h
}

uniformly within a hypersphere
with center c∗ and radius 2r.

3: for each bj in B do
4: Identify the nearest normal group in A, where the distance ∆bj is computed as

the minimal Euclidean distance between bj and the centers in A. A symmetric
covariance matrix vbj is generated based on the covariance matrix of the nearest
group. Each element is randomly sampled from a uniform distribution between 0 and
the corresponding element of the nearest group’s covariance matrix. The resulting
matrix is symmetrized by adding it to its transpose and dividing by two.

5: Use bj as the center and the covariance matrix vbj to generate a group x̃bj of points
randomly from a multivariate Gaussian distribution, with the number of points
drawn from a Poisson distribution with mean λ(l).

6: end for
7: Obtain a set of anomalous groups B =

{
x̃l+1, . . . , x̃bj , . . . , x̃l+h

}
.

Algorithm 2 avoids generating extreme groups that would be too easily detected and elim-
inates the need for the intricate threshold determination step required in methods of generating
anomalous points. This design provides a pragmatic approach to addressing the scarcity of
labeled group anomalies and aims to improve probabilistic interpretability rather than explic-
itly simulating specific unknown anomalous behavior. After obtaining the anomalous groups,
the sigmoid calibration technique is applied. We then define a distribution-based anomaly
score as the calibrated OCSMM score (β(x̃)) to quantify how anomalous the high-density
region of a group is. The overall steps for obtaining the distribution-based anomaly score
(β(x̃)) using calibrated OCSMM are summarized in Algorithm 3.

Algorithm 3 The calibrated OCSMM: distribution-based group anomaly score.

Input: A set of normal groups A = {x̃1, . . . , x̃l}; a test group set T = {x̃(t)1 , . . . , x̃(t)l′ }; the
number of anomalous groups h; the expected size n of each group;

Output: The distribution-based anomaly score β(T) of the test group set T.
1: Train an OCSMM model based on the normal group set A = {x̃1, . . . , x̃l}.
2: Using Algorithm 2, generate h anomalous groups, B =

{
x̃l+1, . . . , x̃bj , . . . , x̃l+h

}
,

with each group size drawn from a Poisson distribution with expectation parame-
ter n.

3: Compute the OCSMM scores for the normal groups, γ(A) = {γ(x̃1), . . . , γ(x̃l)},
and the anomalous groups, γ(B) = {γ(x̃l+1), . . . , γ(x̃bj), . . . , γ(x̃l+h)}, using the deci-
sion function γ(·) of the trained OCSMM model.

4: Fit a sigmoid model to γ(A) and γ(B) by estimating the parameters g and q.
5: Apply the trained OCSMM model to compute the OCSMM scores for the test set, γ(T),

and then use the trained sigmoid model to obtain the calibrated scores as β(T) =

{β(x̃(t)1 ), . . . , β(x̃(t)l′ )}.

4.2. Extreme Value Support Measure Machine

In previous sections, we introduced two group anomaly scores to evaluate two comple-
mentary parts of the group: a point-based anomaly score for a group’s low-density region,
denoted as α(x̃), and a distribution-based anomaly score for a group’s high-density region,
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denoted as β(x̃). Specifically, α(x̃) assesses the anomalousness of the aggregate entity
of exceedances within the low-density regions. In contrast, β(x̃) evaluates whether the
distributional characteristics of points, considered as an aggregate within the high-density
regions, deviate significantly from those observed in the training groups. The next step is
to develop an integrated framework that effectively leverages both probabilistic scores to
capture the overall level of anomalousness.

For this purpose, we take inspiration from the way certainty factors are combined, en-
countered in the early days of expert systems such as PROSPECTOR [43] and MYCIN [44]
capable of reasoning under uncertainty. Functions such as Van Melle’s combining func-
tion [45], typically of type [−1, 1]2 → [−1, 1], are well thought-out functions designed
for that purpose. Only in the 1990s [45], after linearly rescaling to functions of type
[0, 1]2 → [0, 1] was it realized that they were examples of a broader class of aggregation
functions on the unit interval called uninorms. Uninorms operate on the unit interval of
[0, 1], providing a systematic way to combine probabilistic scores. In our case, the two
probabilistic scores, each within the range of [0, 1], align particularly well with uninorms,
which are binary operations capable of meeting these engineering demands.

We now argue that uninorms with a neutral element (e), which acts as a hyperparameter,
are ideally suited for our purpose. In engineering applications with multiple measures
assessing different aspects of a system, it is essential that when more than one measure
exceeds a given threshold (triggering alarms for specific aspects), the overall measure should
reflect a more severe status of the system. For instance, in health monitoring, when a patient
exhibits multiple anomalous health indicators, we tend to consider the overall health condition
to be worse. Constructing a single measure that exceeds any anomalous health indicator when
assessed on the same scale provides more informative insights into the patient’s condition. In
such cases, traditional weighting methods, such as weighted averaging and t-conorms (e.g.,
maximum), either dilute dominant signals or fail to model mutual reinforcement. Uninorms
offer a principled mechanism to capture both synergistic and antagonistic effects, which is
critical in group anomaly scenarios involving dual sources of evidence.

A uninorm is a symmetric, associative, increasing binary operation on [0, 1] with a
neutral element (e ∈ [0, 1]). The case of e = 1 corresponds to the well-known t-norms
(including the minimum operation), and the case e = 0 corresponds to the well-known
t-conorms (including the maximum operation). Due to its associativity, any uninorm (U) is
either conjunctive (i.e., U(0, 1) = U(1, 0) = 0) or disjunctive (i.e., U(0, 1) = U(1, 0) = 0).
The structure of a uninorm with a neutral element (e) is expressed as follows [46]: on [0, e]2,
it behaves as a rescaled t-norm, taking values below the minimum; on [e, 1]2, it behaves
as a rescaled t-conorm, taking values above the maximum; an on the remaining parts of
the unit square (i.e., [0, e]× [e, 1] ∪ [e, 1]× [0, e]), it behaves as a compensatory (also called
averaging) operator, taking values between the minimum and the maximum. Given a
t-norm and a t-conorm, one can always build a uninorm by considering the minimum or
maximum (one of the two extremes) as a compensatory operator.

In our case, suppose that exactly one of the anomaly scores takes a value higher than e;
then, one would consider this an indication of the group being anomalous, irrespective of
the other score and, thus, consider it as the overall anomaly score. Hence, to construct a
uninorm, we consider the maximum as compensatory operator a viable choice. However,
if both anomaly scores exceed e, then they could be seen as reinforcing one another and
act synergistically, yielding an overall score exceeding the maximum of the individual
scores. Similarly, if both anomaly scores take a value lower than e, then they should act
antagonistically, yielding an overall score lower than their minimum. The symmetry of the
uninorm expresses that both anomaly scores play the same role.
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The most famous uninorm exhibiting the desired synergistic and antagonistic behavior
is the 3Π operator U3Π : [0, 1]2 → [0, 1] with neutral element 1

2 :

U3Π(a, b) =
ab

ab + (1 − a)(1 − b)

with either U3Π(0, 1) = U3Π(1, 0) = 0 or U3Π(0, 1) = U3Π(1, 0) = 1. This operation is
nothing else but a rescaled version of the function used for combining certainty factors in
the PROSPECTOR rule-based system. Without going into detail, we note that all members
of the important class of representable uninorms are isomorphic to this iconic 3Π operator,
illustrating its central role.

Recalling our argumentation above that, on [0, e]× [e, 1] ∪ [e, 1]× [0, e], the selected
uninorm should preferably act as the maximum, we can modify the 3Π operator (keeping
the underlying t-norm and t-conorm), resulting in the uninorm (Uano) used in our final
aggregation method. It is given by

Uano(a, b) =


2e U3Π( a

2e , b
2e ) , if (a, b) ∈ [0, e]2

e + (1 − e)
[
2U3Π( 1

2 + a−e
2−2e , 1

2 + b−e
2−2e )− 1

]
, if (a, b) ∈ (e, 1]2

max(a, b) , elsewhere .
(19)

The detailed derivation of the uninorm (Uano) based on 3Π operator U3Π is provided
in Appendix A. As a result, the combination of the two anomaly scores is completed. We
present the full procedure of the proposed model EVSMM in Algorithm 4.

Algorithm 4 Extreme value support measure machine (EVSMM).

Input: A set of normal groups A = {x̃1, . . . , x̃l}; A test group set T = {x̃(t)1 , . . . , x̃(t)l′ };
Output: The anomaly scores ϕ(x̃(t)) of the test group set T.

1: Apply KDE on the normal groups in A to have an estimation of the density of each point.
Then transform the normal training groups x̃ to z as shown in Section 4.1. Compute cn,
dn through (5), respectively.

2: Train an OCSMM model based on the training set A. Then apply Algorithm 2 and the
objective function (18) to get a sigmoid model β(x̃) for the calibration of the OCSMM
score.

3: for each x̃(t)j in T do
4: (Probabilistic point-based score) The likelihood of a group w.r.t. an aggregate of

exceedances in low-density regions is obtained from (9). Then anomaly score α(x̃(t)j )

is determined from (16) and (13) based on the analytical asymptotic CDF of the
likelihood.

5: (Probabilistic distribution-based score) Compute the OCSMM score f (x̃(t)j ). Then
calibrate the OCSMM score through the trained sigmoid model (17) to obtain the
probabilistic distribution-based score β(x̃(t)j ).

6: (Final score) Compute the final anomaly score of the group x̃(t)j as ϕ(x̃(t)j ) =

Uano

(
α(x̃(t)j ), β(x̃(t)j )

)
by applying (A4).

7: end for

5. Experiments
In this section, we present extensive experiments to demonstrate the effectiveness

of the proposed EVSMM in detecting unusual group behavior. The performance of the
EVSMM is compared with five other group anomaly detectors: the discriminant SMDD
model (https://github.com/jorjasso/SMDD-group-anomaly-detection, accessed on 28
May 2025) [11], the OCSMM (https://github.com/kdgutier/ocsmm, accessed on 28 May
2025) [7] and its calibrated output based on a sigmoid transformation (Cali-OCSMM),

https://github.com/jorjasso/SMDD-group-anomaly-detection
https://github.com/kdgutier/ocsmm
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the generative MGMM model (https://www.cs.cmu.edu/%7Elxiong/gad/gad.html, ac-
cessed on 28 May 2025) [6], and an extreme value model (EVM) based on Extreme Value
Theory [2].

5.1. Experiments on Synthetic Data

We performed an experiment using synthetic data with a set-up comparable to the
one used in [6–9,11]. Following these references, the normal groups are simulated from
two Gaussian mixture distributions in the plane that each consists of four components.
The mixing proportions for the Gaussian mixtures are expressed as (0.22, 0.64, 0.03, 0.11)
and (0.22, 0.03, 0.64, 0.11). To generate a normal group, probabilities (0.48, 0.52) are assigned
to determine which Gaussian mixing proportion is applied. The selected Gaussian mixing
proportion is then used to generate the group. The components of both mixtures are cen-
tered at (−1,−1), (1,−1), (0, 1), and (1, 1) and share the covariance matrix (Σ = 0.15 × I2,
where I2 is the 2 × 2 identity matrix).

Three types of anomalous groups are considered: (i) point-based anomalous groups,
(ii) distribution-based anomalous groups, and (iii) groups that are anomalous as a mixture
of unusual low-density and high-density regions. The threshold for identifying low-density
regions is determined based on a mean residual plot. To generate groups with varying
extents of point-based anomalous behavior, the number of low-density regions is randomly
chosen according to a Poisson distribution with a mean of λext = 3, truncated at zero to
ensure the presence of at least one anomalous point. For a more detailed investigation of
the impact of λext, additional experiments were conducted with varying λext values (as
presented later). These experiments reveal that as λext increases, other group anomaly
detectors, such as MGMM, begin to achieve performance comparable to that of our model.
This phenomenon occurs because an increase in the number of exceedances gradually
transforms point-based anomalous group behavior into distribution-based anomalous
group behavior. Groups exhibiting various distribution-based anomalous behaviors are
simulated through a Gaussian mixture distribution with the same centers as the normal
groups but different mixing proportions. The proportions (0.6, 0.1, 0.07, 0.23), as used in [7],
are complemented by including three additional configurations: (0.80, 0.01, 0.06, 0.13),
(0, 0, 0.06, 0.94), and (0.64, 0.22, 0.03, 0.11). A mixed anomalous group contains both an
aggregate of points in low-density regions and an aggregate of points randomly simulated
from unusual mixing proportions in high-density regions.

To evaluate our method with varying extents of distribution-based and point-based
anomalous behavior, nine distinct cases were designed to ensure a diverse representation
of anomalous group configurations in the test set. The corresponding experiments consider
varying fractions of the three types of anomalous groups, defined as [1 : 0 : 0], [0 : 1 : 0],
[0 : 0 : 1], [0.5 : 0.5 : 0], [0 : 0.5 : 0.5], [0.5 : 0 : 0.5], [0.5 : 0.25 : 0.25], [0.25 : 0.5 : 0.25],
and [0.25 : 0.25 : 0.5] (the first component representing point-based anomalous groups,
the second representing distribution-based groups, and the third representing a mixture
thereof). In each of the experiments, we injected 60 anomalous groups into the test set
according to the corresponding proportions.

We used 1000 normal groups for training. The training involves a 10-fold cross-
validation: in each run, the dataset is randomly partitioned into ten parts, of which seven
are used for training, two for hyperparameter optimization in a validation step,and one for
testing. In the proposed EVSMM approach, two hyperparameters are subject to tuning: γ in
the Cali-OCSMM model, controlling the kernel width, and e, the threshold in the uninorm
that determines the aggregation behavior when combining anomaly scores designed to
evaluate complementary aspects of the group. These hyperparameters are optimized using
a grid search strategy guided by nested cross-validation, where γ ∈ {0.5, 0.8, 1.1, 1.4}

https://www.cs.cmu.edu/%7Elxiong/gad/gad.html
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and e ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The group size is simulated using a Poisson
distribution with a mean of λ(l) = 50. Model performance is analyzed based on the
ROC curve and the AUC metric. The detailed results are presented in Figures 3–5 and
Appendix A.

Figure 3. Average AUC scores (10-fold cross-validation) for nine synthetic cases. EVSMM consistently
achieves strong performance across all cases, while EVM excels in detecting point-based group
anomalies. In contrast, OCSMM, MGMM, and SMDD are more effective for distribution-based group
anomalies, as reflected in cases with higher proportions of such groups.

Figure 4. Variance of AUC scores (logarithmic scale) based on 10-fold cross-validation for nine
synthetic cases. EVSMM exhibits stable performance with low variance across most cases. MGMM
shows lower variance than EVSMM in cases with few point-based group anomalies.

To ensure robust performance, γ and e were jointly tuned via grid search, using AUC
as the selection criterion within a nested 10-fold cross-validation framework. Across all
folds and experimental cases, the optimal γ value consistently converged to 1.4. As a result,
only the values of e are reported in Table 2, which summarizes the fold-wise optimal e for
each synthetic anomaly case. The final row reports the optimal value of e for each case
based on its frequency across folds.

In contrast to the other approaches, from the results shown in Figure 3, it follows
that EVSMM achieves consistently competitive performance across all cases. MGMM
is also relatively effective compared to other models, achieving AUC scores exceeding
0.75 in eight out of nine cases. However, it is observed that MGMM is less performant
in evaluating point-based anomalous groups that have a limited number of exceedances.
Although MGMM is designed to detect group anomalies of different types, its ability to
detect point-based anomalous group behavior requires a sufficient number of exceedances,
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as examined further through experiments with varying λext values. Based on the results
in the cases of [1 : 0 : 0] and [0 : 1 : 0], it is clear that the EVM is particularly suited to
effectively detect point-based group anomalies. Although half of the groups in the case
of [0.5 : 0 : 0.5] exhibit varying extents of distribution-based anomalous group behavior,
EVM stands out for its ability to quantify point-based anomalous group behavior across
all groups. However, when compared with the outcomes from the case of [0 : 0.5 : 0.5], it
becomes evident that EVM is unable to address the distribution-based anomalous group
behavior present in half of the groups in the case of [0.5 : 0 : 0.5]. SMDD, MGMM,
and OCSMM are particularly suited for groups with an unusual aggregate of points in
high-density regions, as shown in the cases of [0 : 1 : 0] and [0 : 0.5 : 0.5], where every group
exhibits a varying extent of distribution-based anomalous behavior, resulting in higher
AUC values for the these models. Also in the cases of [0.25 : 0.5 : 0.25] and [0.25 : 0.25 : 0.5],
with a high proportion of distribution-based group anomalies, three models show their
detection capabilities. In Appendix A, we show comprehensive ROC curves for all nine
cases, allowing for comparison of the performances of various approaches.

Table 2. Values of hyperparameter e across 10-fold cross-validation for synthetic data cases.

Fold

Case
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Fold 1 0.4 0.1 0.1 0.1 0.1 0.1 0.7 0.2 0.4

Fold 2 0.2 0.6 0.8 0.8 0.1 0.1 0.6 0.1 0.1

Fold 3 0.5 0.1 0.2 0.7 0.3 0.1 0.8 0.1 0.3

Fold 4 0.1 0.6 0.1 0.2 0.2 0.7 0.2 0.1 0.1

Fold 5 0.1 0.1 0.1 0.1 0.5 0.7 0.8 0.1 0.5

Fold 6 0.2 0.1 0.4 0.7 0.3 0.8 0.1 0.2 0.1

Fold 7 0.2 0.7 0.1 0.2 0.9 0.1 0.1 0.2 0.1

Fold 8 0.6 0.6 0.8 0.1 0.8 0.6 0.7 0.1 0.7

Fold 9 0.5 0.1 0.9 0.9 0.8 0.2 0.9 0.2 0.1

Fold 10 0.2 0.6 0.9 0.1 0.9 0.1 0.6 0.1 0.2

Optimal 0.2 0.1 0.1 0.1 0.3 0.1 0.7 0.1 0.1

Figure 4 shows the variance of the AUC scores on a logarithmic scale. Overall, EVSMM
shows a satisfactory stability of AUC scores. In cases with a relatively low proportion of
point-based group anomalies, MGMM has a lower variance than EVSMM. OCSMM and
Cali-OCSMM have the same variance in all cases, confirming that the sigmoid calibration
is effective. Appendix A shows an alternative graphical representation using box plots to
compare the AUC scores among various methods for each case.

Furthermore, we conducted an experiment focused exclusively on point-based group
anomalies, specifically by varying the number of points located in low-density regions
within groups. In our previous experiments, we assumed that the number of points in
low-density regions is governed by a Poisson distribution with an expectation parameter
of λext = 3. Here, we vary this parameter from 0 to 10 and look at the effect on the
performance of MGMM, EVM, and EVSMM, all of which possess the ability to evaluate
point-based anomalous group behavior. Figure 5 reveals that as the number of points
in low-density regions increases, the performance of MGMM becomes comparable with
that of EVM and EVSMM. However, when the number is lower, MGMM fails to quantify
point-based anomalous behavior. This can be attributed to the gradual transition of point-
based anomalous group behavior into distribution-based anomalous group behavior as
the number of exceedances increases. As indicated the previous results, although the
overall performance of MGMM is not as strong as that of EVSMM, MGMM exhibits greater
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sensitivity to this transition compared to other models that excel in detecting distribution-
based group anomalies.

Figure 5. Average AUC score (10-fold cross-validation) for the synthetic data where the mean number
(λext) of anomalous points in each group is varied between 0 and 10. EVSMM and EVM maintain
stable performance across the entire range, and MGMM shows clear performance improvement as
λext increases, reflecting its sensitivity to the number of exceedances when quantifying point-based
group anomalies.

5.2. Experiments on the Sloan Digital Sky Survey Data

In this section, we evaluate the EVSMM on the Sloan Digital Sky Survey (SDSS)
dataset. This dataset includes information on millions of celestial objects, such as stars,
galaxies, and various other astronomical phenomena. It provides detailed measurements
of the positions, brightness, and spectra of these objects. Our focus is on studying a
subset of galaxies that consists of a large volume of 4000-dimensional spectra of about
7 × 105 galaxies. We adopt the 1000-dimensional feature vectors derived from the original
4000-dimensional spectra, as provided in the publicly available benchmark dataset used in
prior studies [6,7,9,11]. We then apply principal component analysis (PCA) to further reduce
the data to four dimensions. The resulting four principal components retain approximately
85% of the total variance. Specifically, PC1, PC2, PC3, and PC4 account for 77.2%, 5.8%, 1.6%,
and 0.5% of the total variance, respectively. This reduced representation is subsequently
used as input for density estimation. Specifically, KDE is performed on the resulting
four-dimensional features, thereby mitigating the impact of high dimensionality on the
estimation process.

Xiong et al. [6] were the first to utilize the SDSS dataset for group anomaly detection.
They identified 505 spatial groups of galaxies using a constructed neighborhood graph,
where each connected component in the graph represents a group. Then, they conducted
group anomaly detection on these 505 groups without prior knowledge of any group
anomaly labels. The results gained positive recognition from astronomers. Furthermore,
in order to ensure a statistically meaningful comparison among various methods, artificial
anomaly injections were employed to address the absence of labels, a method that was
commonly adopted in subsequent research [6,7,9,11,47].

Building on the injection method used in previous studies, we increased the complex-
ity of the injected anomalous groups to avoid configurations that are trivial to distinguish.
Point-based, distribution-based, and mixed anomalous groups are constructed by ran-
domly selecting existing points from the training group set. Specifically, point-based group
anomalies are generated by aggregating galaxies located in low-density regions, with ag-
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gregate sizes following a Poisson distribution with λext = 3, whereas distribution-based
group anomalies are constructed by randomly selecting galaxies from high-density re-
gions, with the constraint that the selected galaxies are not all drawn from the same group.
We consider six cases, where, in each case, a total of 50 anomalous groups are injected
with proportions of point-based, distribution-based, and mixed anomalous groups set to
[0.5 : 0.5 : 0], [0 : 0.5 : 0.5], [0.5 : 0 : 0.5], [0.5 : 0.25 : 0.25], and [0.25 : 0.5 : 0.25], respectively.

During a nested 10-fold cross-validation procedure, the optimal value of γ was consis-
tently selected as 1.4 across all folds. The corresponding values of e selected in each fold are
reported in Table 3. This table shows the fold-wise tuning results for each SDSS anomaly
case, and the final row presents the most frequently selected value across folds.

As shown in Figure 6, EVSMM demonstrates consistently high AUC scores across
all cases, outperforming achieving performance comparable to that of other methods. In
Figure 7, which shows the variance of the AUC scores on a logarithmic scale, we observe
that EVSMM stands out for both high AUC scores and low variance, showcasing its ability
to effectively and reliably handle various types of group anomalies. While MGMM achieves
high AUC scores in many cases, its performance is less stable in configurations dominated
by point-based group anomalies, as reflected in its higher variance. EVM and Cali-OCSMM
perform well at detecting distribution-based group anomalies but exhibit less stability
compared to EVSMM. On this real-world dataset, we observe that SMDD exhibits notable
variability in its AUC score variances across different data configurations. This may suggest
that, compared to other methods, the stability of SMDD is more affected by the dataset
properties, resulting in marked discrepancies in variance values.

Table 3. Values of hyperparameter e across 10-fold cross-validation for SDSS data cases.

Fold

Case
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fold 1 0.5 0.1 0.9 0.9 0.5 0.1

Fold 2 0.7 0.1 0.9 0.9 0.9 0.9

Fold 3 0.9 0.2 0.9 0.9 0.9 0.1

Fold 4 0.6 0.1 0.8 0.6 0.9 0.9

Fold 5 0.8 0.4 0.9 0.9 0.1 0.9

Fold 6 0.6 0.7 0.3 0.9 0.9 0.1

Fold 7 0.9 0.1 0.1 0.9 0.9 0.1

Fold 8 0.1 0.1 0.1 0.1 0.1 0.1

Fold 9 0.3 0.1 0.9 0.9 0.4 0.9

Fold 10 0.8 0.1 0.9 0.9 0.7 0.9

Optimal 0.9 0.1 0.9 0.9 0.9 0.1

The performances of OCSMM and Cali-OCSMM are very similar, indicating that the
calibration method for the OCSMM is effective for the SDSS data. In Appendix A, we show
the ROC curves and box plots of the AUC scores for each case. These results highlight
the effectiveness and robustness of EVSMM, particularly in scenarios with mixed anomaly
types with varying extents of anomalous behavior. While MGMM shows strong potential,
its sensitivity to specific configurations (e.g., [0.5 : 0 : 0.5], [0.5 : 0.25 : 0.25]) warrants
further investigation to enhance its stability and performance.
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Figure 6. Average of the AUC scores (10-fold cross-validation) for the SDSS data across different
anomaly configurations. EVSMM consistently achieves high AUC values and outperforms other meth-
ods across all cases. MGMM shows uneven performance depending on the anomaly configuration.

Figure 7. Variance of the AUC scores (shown on a logarithmic scale) (10-fold cross-validation) for
the SDSS data. EVSMM consistently exhibits a low variance, indicating strong stability across all
cases. SMDD shows fluctuating variances, particularly under configurations involving point-based
or mixed group anomalies.

6. Conclusions and Future Work
In this work, we have proposed an efficient method for comprehensively detecting

group anomalies, termed EVSMM. The method integrates a PPM based on EVT and a
calibrated OCSMM, which evaluate complementary aspects of the target group, with the
scores subsequently being integrated using a constructed uninorm. Indeed, through the
PPM, we formally construct the likelihood for an aggregate of low-density regions within
a group and, more importantly, derive the analytical distribution of the likelihood. The
calibrated OCSMM quantifies the aggregate of points within high-density regions, address-
ing the limitation of its raw output, which provides only classification without probability
estimates. Through this calibration, a novel approach is introduced for generating diverse
anomalous groups, which offers a reference for future research on the calibration and
validation of group models. A uninorm is constructed to combine two anomaly scores
with the ability to locally synergize, antagonize, and weigh these scores relative to the
threshold e.

Extensive experiments show that existing group anomaly detection approaches, such
as OCSMM, MGMM, and SMDD, are mainly focused on the detection of distribution-based
group anomalies but lack the ability to comprehensively quantify diverse group anomalies.
Alternative approaches that are built upon methods centered around the detection of
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individual anomalous points tend to inaccurately model point-based anomalous group
behavior and face challenges managing the multiple-hypothesis problem. The proposed
EVSMM effectively quantifies various anomalous group behaviors and, unlike existing
methods, provides a probability-based anomaly score that enhances interpretability and
utility in practical applications.

Future work opens several promising and exciting directions. One direction lies in
extending our model beyond anomaly detection to risk prediction tasks in climate-related
applications. For example, EVSMM can be applied to evaluate heat waves, which are
defined as consecutive periods of high temperatures. Each period can be treated as a
group, with its severity assessed based on the joint characteristics of duration and intensity.
In addition to retrospective evaluation, the model can be used for risk assessment of future
extreme events. Another relevant direction is the assessment of persistent extreme rainfall,
where clusters of intense precipitation across consecutive time intervals can be modeled as
groups using high-resolution precipitation data. The model can further support prediction
by estimating the likelihood of future events under varying environmental conditions.
These applications demonstrate how group-level modeling can be leveraged not only for
anomaly detection but also for probabilistic risk assessment in climate science. Another
focus will be a deeper investigation into the performance of our model in group anomaly
detection tasks. This involves two aspects. On the one hand, we should keep exploring the
model’s ability to detect varying extents of anomalous behavior, extending research beyond
evaluating the test-set accuracy. Specifically, our plan is to study the relationship between
the entropy of groups and the anomaly scores to gain further insights into its capabilities.
On the other hand, we intend to explore more meaningful real-world group anomaly
detection tasks to assess the practical utility and robustness of our approach. One particular
aspect that can be studied is the robustness of the method against noisy data. Since the
likelihood of a group is evaluated based on the entire aggregate of exceedances, we expect
that, to some extent, noisy observations—such as random low-density points scattered
in otherwise normal groups—do not affect the distribution of the likelihood substantially
unless their number exceeds a statistically meaningful level. However, further investigation
could provide deeper insight into the precise effect of noisy data on the detection of the
different types of group anomalies examined in this work. These directions are expected to
provide a clearer understanding of the model’s strengths and uncover novel applications.
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Appendix A
This section includes examples of uninorms and the derivation of uninorm Uano based

on 3Π operator U3Π, as well as additional concepts of OCSVM and OCSMM and detailed
descriptions of experiments.

Appendix A.1

This subsection first presents several examples of uninorms. Subsequently, the deriva-
tion of uniform Uano constructed based on U3Π is provided.

Appendix A.1.1. Examples of uninorms

Uninorms are examples of a broader class of aggregation functions on the unit interval.
The study of aggregation functions is one of the most important subfields of fuzzy set
theory [48,49]. Most common aggregation functions are increasing n-ary operations on
a real interval that also satisfy some boundary conditions. Of particular importance are
associative binary aggregation functions on the real unit interval, as they can be extended
unambiguously to a higher number of arguments. Additionally, such associative operations
are assumed to be symmetric and have a neutral element. This leads to the concept of
a uninorm [50], a symmetric, associative, increasing binary operation on [0, 1] with a
neutral element (e ∈ [0, 1]). The case of e = 1 corresponds to the well-known t-norms
(including the minimum operation), and the case of e = 0 corresponds to the well-known
t-conorms (including the maximum operation). Due to its associativity, any uninorm (U) is
either conjunctive (i.e., U(0, 1) = U(1, 0) = 0) or disjunctive (i.e., U(0, 1) = U(1, 0) = 0).
The structure of a uninorm with a neutral element (e) is expressed as follows [46]: on [0, e]2,
it behaves as a rescaled t-norm, taking values below the minimum; on [e, 1]2, it behaves
as a rescaled t-conorm, taking values above the maximum; and on the remaining parts
of the unit square (i.e., [0, e] × [e, 1] ∪ [e, 1] × [0, e]), it behaves as a compensatory (also
called averaging) operator, taking values between the minimum and the maximum. Given
a t-norm and a t-conorm, one can always build a uninorm by considering minimum or
maximum (one of the two extremes) as a compensatory operator.

Some basic examples of uninorms with neutral element (e ∈ [0, 1]) are the following:

(i) The function expressed as R∗ : [0, 1]2 → [0, 1], defined as

R∗(a, b) =

{
max(a, b) , if (a, b) ∈ [e, 1]2

min(a, b) , elsewhere.

The semantics are described as follows: considering e as a threshold of satisfaction,
the evaluation in the case of two evaluations meeting the threshold results in the
highest score or the lowest score otherwise.

(ii) The function expressed as R∗ : [0, 1]2 → [0, 1], defined as

R∗(a, b) =

{
min(a, b) , if (a, b) ∈ [0, e]2

max(a, b) , elsewhere.

The semantics are described as follows: considering e as a threshold of satisfaction,
the evaluation in the case of two evaluations not meeting the threshold results in the
lowest score or the highest score otherwise.
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Appendix A.1.2. Derivation of uninorm Uano based on U3Π

The most famous uninorm with the desired synergistic and antagonistic behavior is
3Π operator U3Π : [0, 1]2 → [0, 1] with neutral element 1

2 :

U3Π(a, b) =
ab

ab + (1 − a)(1 − b)

with either U3Π(0, 1) = U3Π(1, 0) = 0 or U3Π(0, 1) = U3Π(1, 0) = 1.

Proposition A1. Consider a uninorm (U) with a neutral element (e ∈ (0, 1)). The operations
(TU , SU : [0, 1]2 → [0, 1]) defined by [51]

TU(a, b) =
1
e

U(ea, eb) ,

SU(a, b) =
1

1 − e

(
U
(
e + (1 − e)a, e + (1 − e)b

)
− e
)

,
(A1)

are a t-norm and a t-conorm, respectively.

According to Proposition A1, we obtain the following t-norm and t-conorm induced
by U3Π:

TU3π
(a, b) = 2U3π(

a
2

,
b
2
) ,

SU3π
(a, b) = 2U3π

(1
2
+

a
2

,
1
2
+

b
2
)
− 1 ,

(A2)

Proposition A2. Consider a t-norm (T), a t-conorm (S), and e ∈ (0, 1). The operation (UT,S,e :
[0, 1]2 → [0, 1]) defined by [51]

UT,S,e(a, b) =


eT( a

e , b
e ) , if (a, b) ∈ [0, e]2

e + (1 − e)S( a−e
1−e , b−e

1−e ) , if (a, b) ∈ (e, 1]2

max(a, b) , elsewhere .
(A3)

is a uninorm with a neutral element (e).

According to Proposition A2, the uninorm (Uano) induced by TU3π
and SU3π

is ex-
pressed as follows:

Uano(a, b) =


2e U3Π( a

2e , b
2e ) , if (a, b) ∈ [0, e]2

e + (1 − e)
(

2U3Π( 1
2 + a−e

2−2e , 1
2 + b−e

2−2e )− 1
)

, if (a, b) ∈ (e, 1]2

max(a, b) , elsewhere .

(A4)

Appendix A.2. OCSVM and OCSMM

The goal of an OCSVM is to map the data into a feature space where they can be sepa-
rated from the origin by some hyperplane. In order to find this hyperplane, an optimization
problem is formulated, aiming to maximize the margin between the hyperplane and the
origin. In particular, consider a training set of N instances ({x1, . . . , xN} ⊂ Rd) that can
be considered as i.i.d. realizations of a random variable (X). To estimate the support of X
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(i.e., the region in space where the bulk of the data reside), Schölkopf et al. [21] proposed
the following optimization problem:

min
w,δ,ρ

1
2
∥w∥2 − ρ +

1
νN

N

∑
i=1

δi

s.t. ⟨w, τ(xi)⟩ ≥ ρ − δi , i = 1, . . . , N

δi ≥ 0 , i = 1, . . . , N ,

(A5)

where τ(xi) is a feature map projecting each xi into a high-dimensional space. The slack
variables (δi) allow points to be at the wrong side of the hyperplane, although this is
discouraged by the penalizing factor (1/ν) in the cost function. The offset (ρ) represents the
distance from the origin to the hyperplane in the transformed feature space and is adjusted
during optimization to maximize the margin while ensuring that the majority of the data
lies on or beyond the hyperplane.

The solution of the constrained optimization problem (A5) results in a decision func-
tion ( f (x) = ⟨w, τ(x)⟩ − ρ) that can be used to classify a data point as being anomalous
or not. In particular, a new data point (x∗) is classified as normal only when f (x∗) ≥ 0.
Through maximization of a Lagrangian function subject to the so-called Karush–Kuhn–
Tucker conditions, the decision function can be computed in terms of a kernel function that
operates on pairs of instances:

f (x∗) =
m

∑
i=1

αiκ(xi, x∗)− ρ ,

where m is the number of support vectors (m ≪ N) and αi represents the Lagrange
multipliers associated with the support vectors. The kernel function is defined as follows:

κ(xi, x∗) = ⟨τ(xi), τ(x∗)⟩ , (A6)

allowing the computation of inner products in the high-dimensional feature space (τ(·))
without explicitly performing the mapping. This property, known as the kernel trick,
significantly reduces computational complexity and enables the model to handle non-linear
patterns in the input space effectively. A commonly used kernel is the Gaussian kernel,
which has already been successfully applied to many practical problems.

The OCSMM is an extension of the OCSVM for the classification of a group
(x̃ = {x1, . . . , xn}) of i.i.d. realizations of a random variable (X) instead of the classifi-
cation of individual points only [37]. We denote a probability distribution that represents
a group associated with random variable X as P. The OCSMM is applied to a space of
probability distributions, aiming to separate the probability distributions representing
normal groups from the probability distributions representing anomalous groups. To do so,
probability distributions are represented as expectation functions in a reproducing kernel
Hilbert space (H) [52,53]. Formally, we denote a data space (e.g., Rd) as X and let PX be
the set of all probability distributions (P) on X . Consider a distribution (P) on PX . Then,
all l i.i.d. realizations of P are denoted as P1, . . . ,Pl , and suppose nj i.i.d. samples are
available from each distribution (Pj). The kernel meaning embedding (µ : PX → H) is
defined with respect to a kernel, i.e., X ×X → R, as follows:

P 7−→
∫
X

κ(x, ·)dP(x) , (A7)
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and we denote µ(Pj) as µPj . Intuitively, the mean embedding provides a feature represen-
tation of the probability distributions in PX . One can show that the scalar product on H is
given by

⟨µPj , µPt⟩H =
∫∫

κ(x, y)dPj(x)dPt(y) .

The optimization problem of OCSMM can be formulated in H as follows:

min
w,δ,ρ

1
2
∥w∥2

H − ρ +
1
νl

l

∑
j=1

δj

s.t. ⟨w, µPj⟩H ≥ ρ − δj , j = 1, . . . l

δj ≥ 0 , j = 1, . . . , l ,

(A8)

where the slack variables (δj) describe margin errors. The ν hyperparameter is a penalty
parameter controlling the proportion of anomalous groups. When ν is small, the number
of anomalous groups is small compared to the number of normal groups. A large ν value
implies that there is a considerable number of anomalous groups. In the anomaly detection
task, anomalous behavior is always rare, such that ν should be set to a small value.

Similarly to OCSVM, the optimization problem in (A8) can be solved using the method
of Lagrange multipliers, leading to a kernel representation of the decision function given by

f (P) = ⟨w, µP⟩H − ρ =
m

∑
j=1

αjK
(
P̂j,P

)
− ρ , (A9)

where the kernel (K) applied to two distributions (Pj and Pt) is given by

K
(
Pj,Pt

)
= ⟨µPj , µPt⟩H .

For two groups of points ({x(j)
1 , . . . x(j)

nj } and {x(t)1 , . . . x(t)nt }) coming from distributions Pj

and Pt, respectively, the empirical form of K can be obtained as follows:

K
(
P̂j, P̂t

)
=

1
nj · nt

nj

∑
r=1

nt

∑
s=1

κ(x(j)
r , x(t)s ) . (A10)

Appendix A.3. Detailed Description of Experiments

In this section, we present ROC curves to compare the performances of the various
methods applied to the synthetic data and the SDSS data. Furthermore, we show box plots
of the AUC scores obtained in the different runs of the 10-fold cross-validation.

The Receiver Operating Characteristic (ROC) plot is a widely used tool to evaluate
the performance of a classifiers. It shows the True-Positive Rate (TPR) as a function of
the False-Positive Rate (FPR) for various classification thresholds. This provides a visual
representation of the trade-offs between TPR (also known as sensitivity) and specificity.
An ROC curve is a graphical evaluation tool that avoids the choice of a classification
threshold, which generally depends on the specific needs of an application. Based on the
ROC curve, one can calculate the Area Under the Curve (AUC) which is a performance
metric of the classifier algorithm. The AUC score is equal to the probability that a randomly
selected positive example is ranked higher by the classifier than a randomly selected
negative example. A good classifier has an AUC close to 1.0, while a random classifier has
an AUC near 0.5. The AUC score indicates the classifier’s ability to distinguish between
positive and negative classes, where higher scores indicate better performance.
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The ROC plots shown in Figures A1 and A3 display the performance of our method
compared to other methods for group anomaly detection on the synthetic data and the SDSS
data. The ROC curves of our method, represented in blue, consistently demonstrate supe-
rior detection performance across all cases, as evidenced by their higher true-positive rates
(TPRs) and lower false-positive rates (FPRs) compared to competing methods. The optimal
thresholds of the models are determined by selecting the largest TPR while minimizing
the FPR.

Figures A2 and A4 show box plots of the AUC scores for the synthetic data and the
SDSS data in the different runs of the 10-fold cross-validation experiments. The results
underscore the reliable performance of our method, EVSMM, as reflected by its consistently
high AUC scores and narrow variability across all cases. Furthermore, the box plots reveal
that EVSMM exhibits lower variance in AUC scores compared to other methods, such
as MGMM, which also performs quite well in overall AUC scores, as shown previously
in Figures A1 and A3. This demonstrates not only EVSMM’s effectiveness in detecting
anomalies but also its robustness and reliability compared to other methods.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure A1. The ROC curves of the experiments on synthetic data.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure A2. Box plots of the AUC scores across different runs of the experiments on synthetic data.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure A3. ROC curves of the experiments on the SDSS data.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure A4. Box plots of the AUC scores across different runs of the experiments on the SDSS data.
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