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Forecasting Time Series in Healthcare With
Gaussian Processes and Dynamic Time

Warping Based Subset Selection
Chetanya Puri , Member, IEEE, Gerben Kooijman, Bart Vanrumste , Senior Member, IEEE,

and Stijn Luca

Abstract—Modelling real-world time series can be chal-
lenging in the absence of sufficient data. Limited data in
healthcare, can arise for several reasons, namely when the
number of subjects is insufficient or the observed time
series is irregularly sampled at a very low sampling fre-
quency. This is especially true when attempting to develop
personalised models, as there are typically few data points
available for training from an individual subject. Further-
more, the need for early prediction (as is often the case
in healthcare applications) amplifies the problem of limited
availability of data. This article proposes a novel person-
alised technique that can be learned in the absence of suf-
ficient data for early prediction in time series. Our novelty
lies in the development of a subset selection approach to
select time series that share temporal similarities with the
time series of interest, commonly known as the test time
series. Then, a Gaussian processes-based model is learned
using the existing test data and the chosen subset to pro-
duce personalised predictions for the test subject. We will
conduct experiments with univariate and multivariate data
from real-world healthcare applications to show that our
strategy outperforms the state-of-the-art by around 20%.

Index Terms—Forecasting, Gaussian processes,
machine learning, time series analysis.

I. INTRODUCTION

T IME series forecasting is an extensive field of research
for diverse applications with possibilities in economics,

physical or environmental sciences, or healthcare. Traditional
treatment of time series includes multiplicative methods such as
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the auto-regressive integrated moving average model (ARIMA)
and its multivariate treatment or state-space models such as
the Kalman filter and generalised autoregressive conditional
heteroskedasticity (GARCH) process that are additive [1]. These
methods are well suited for modelling time series when the
data are uniformly sampled. However, as the number of time
series in a dataset increases, these methods do not scale well
because each time series must be trained individually. More-
over, it is difficult to model the shared temporal patterns across
various time series in the whole dataset during training and
forecasting.

Modelling real-world healthcare related time series for fore-
casting is often difficult owing to the limited availability of
data due to practical constraints. For example, if a study is
conducted only with a small number of participants, then the
dataset might not always be a complete representation of a given
task. However, limited subjects alone might not be the only issue.
For example, if the time series data is sampled at high-frequency,
such as accelerometer-based human activity recognition, it is
possible to create generalizable, high-performing models even
when insufficient subjects are present [2]. If individual time-
series are sampled at very low sampling rate from a small number
of subjects, the modelling becomes difficult, e.g. modelling daily
weight gain over a period of pregnancy. The problem of limited
subjects and low sampling frequency is further aggravated when
the observed time series, univariate or multivariate, are sporadic
in nature, i.e., they are noisy and contain missing values. Few
examples include sensor failure, data artifacts in climate time
series, or in healthcare use-cases. For example, a patient can
skip regular health check-up appointments for intentional or
unintentional reasons resulting in multiple missing entries in the
electronic health record (EHR) [3]. Furthermore, the individual
forecasts must be performed as quickly as possible so that
timely interventions can be implemented. This further restricts
the availability of the personal data required to learn individual
patterns.

Modern deep learning techniques have gained traction in
time series forecasting because they can utilise multiple time
series from the training data to discover non-linear temporal pat-
terns [4]. However, deep learning models expect huge amounts
of training data to learn these patterns [5], [6]. Additionally,
state-of-the-art deep learning models for time series forecasting
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Fig. 1. An example to illustrate our SS-GP approach. (a) The training and target time series that are considered (the green dotted line shows that
target data is only available until time (t+

d
). (b) The training data that are aligned in time with the target time series. (c) A subset of the training data

that share similar temporal characteristics with the target data (the purple and the dark green curves are therefore discarded). (d) The training data
and the available target data are used to predict a sequence of future values in the target time series (red dotted line).

still suffer when the training data is sporadic in nature and
multi-step forecasting is difficult in the presence of insufficient
time series data [7], [8].

This work will develop methods for forecasting time series
data in healthcare applications where for each participant time
series data is available. Given a target time series (of a test
subject) of non-uniformly sampled instances, the main aim is
to predict future values over a period of time. In particular, we
will treat the following challenges which are often encountered
in healthcare data: (a) time series forecasting when for each
subject the data are non-uniformly sampled and can have a very
low sampling frequency and (b) the estimation of individualised
models while very little individual data are available. Note that
these data-related difficulties are even more challenging when
at the same time the number of subjects is low.

The solution proposed in this paper consists of a subset
selection (SS) approach to select time series from the training
data (of other subjects) that share temporal similarities with
the target time series. This subset of time series is then used
to train a non-parametric Gaussian process (GP) in a Bayesian
way [9]. Modelling unevenly sampled time series with Gaussian
process-based techniques eliminates the need to impute data to
make them uniformly sampled. We will show that this approach
(further referred to as SS-GP) can improve the target series’
forecasting performance, especially when the time series in the
selected subset are aligned in time with the target time series.

Fig. 1 showcases an example: first, the training data are
aligned with the target time series; second, a subset of time series
from the training data is selected that share similar temporal
characteristics with the target time series. The subset is then used
to train a GP for multi-step ahead prediction, i.e., for predicting
a sequence of future values in the target time series.

We experiment with two real-life time-series datasets from
healthcare to prove the efficacy of the proposed solution in
multi-step time series forecasting. We further demonstrate the
implications of limited individual data on training by varying the
availability of data in time and assessing the prediction error. We

empirically show that our approach not only reliably predicts in
the case of missing observations but also accurately predicts
multiple steps ahead in time in the case of limited personal data.

The main contributions of this paper are:
� We propose a new multi-step time series prediction ap-

proach that can handle time series with non-uniformly
sampled time series data in limited datasets.

� We design a time series realignment technique that tackles
time series in a training set that were initiated at different
times. In other words, when time t0 of the training time
series is different, realigning them with respect to each
other prior to modelling leads to a more exact pattern
match and a more precise forecast.

� We suggest dynamic subset selection, which takes advan-
tage of shared temporal patterns to dynamically select a
smaller subset of time-series from the training data.

� Finally, we empirically show that the SS-GP approach
outperforms state-of-the-art approaches on two real-world
healthcare datasets where there is a need to predict early
and where missing data are inevitable.

II. RELATED WORK

Time series literature consists of widespread approaches for
forecasting ranging from classical works from the 1960 s to
contemporary works [10], [11]. Classical works like state-space
or autoregressive approaches such as ARIMA for univariate
and VARIMA for multivariate approaches exist that predict
the individual observations in time series [12]. Much of these
approaches are applied in an auto-regressive manner where one
step predictions are achieved by applying the learned model
recursively. This tends to achieve significant errors in prediction
if the forecast horizon is large. Currently, deep learning-based
methods such as recurrent neural networks (RNNs) are popular
due to their automatic feature extraction abilities in sequence
modelling. Improved variants of RNNs that alleviate vanishing
gradient problems such as long-short term memory networks [4]
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and gated recurrent units (GRU) [13] are capable of capturing
long term dependency with uniformly sampled sequence data.
Authors in [14] create a mask where the data is missing and
use this mask along with available data as input thus utilising
missingness in data as informative features to train RNNs and
cope with missingness in the data.

Multiple approaches in deep learning have focused on time
series classification and regression in healthcare ranging from
ECG classification [15] to glucose forecasting [16]. Authors
in [14], [17] have presented works that are able to diagnose a con-
dition, such as sepsis in an intensive care unit environment, by
learning from multivariate clinical data using resources such as
electronic health records (EHRs). The majority of these methods
that can manage missing data have been trained on a significant
amount of data, providing them an advantage. However, when
insufficient training data is available, traditional machine learn-
ing strategies outperform deep learning strategies [18]. There
have not been any systematic work that handles limited data
availability. We attempt to address such deficiency in training
data that stems from either (a) the irregularly sampled time
series, or (b) the limited number of samples of an individual
time series resulting from the necessity to predict as soon as
possible.

Gaussian processes (GPs) provide a framework to model time
series in the presence of such irregularly sampled instances
and can quantify the uncertainty of predictions. For example,
GP models are used in clinical time series classification and
imputation [19].

This work proposes a personalised approach for multi-step
time series forecasting that can handle non-uniformly sampled
time series through Bayesian learning.

III. NOTATION

Let us assume, N subjects are studied and the training data
consists of time series data of K predictor variables denoted by
x at time t for each subject 1 ≤ j ≤ N :

xj
1(t), . . ., x

j
K(t).

Our goal is to make predictions about a response variable yj(t)
based on such feature data. For each subject however the time
series are sampled at i different times, tji , such that,

tj1 < tj2 < · · · < tj
mj ,

where mj denotes the number of measurements of the feature
xj
k(1 ≤ k ≤ K) that are available for the jth subject. Remark

that, for a given subject j, all predictor variables are measured
at the same time instances.

In what follows, the feature data is denoted in matrix notation:

Xj = [xj
k(t

j
i )]ik

denoting a mj ×K matrix of which the kth column contains
the data of the kth feature of the jth subject over all the time
instances.

The measurements of the responses of a subject are collected
in a vector:

yj = [yj(tj1) . . . y
j(tj

mj )].

Note that the response variable for subject j is sampled at the
same time instances as the predictor variables of subject j.

There are two ways that data in time series might go missing:
� missing observations within a time-series: time series in

the jth instance of training or target data might not be
evenly spaced, i.e., tj(i+1) − tji �= λ, ∀i ∈ {1, 2, . . . ,mj −
1}, where λ > 0 is some constant.

� missing observations in different time instants within all
time-series: Time series data of predictor variables are not
sampled at the same times across different subjects, i.e.,
tji is not necessarily equal to tj

′
i , ∀j, j ′ ∈ {1, . . . , N}, i ∈

{1, . . . ,mj}
Suppose, we are interested in predictions for a target subject

(indexed with ‘+’) based on the measurements of the predictor
variables X+ and the measurements of the response variable
available up to some time t+d :

y+ = [y+(t+1 ) y
+(t+2 ) · · · y+(t+d )],

where we assume that t+d << tj
mj , ∀j ∈ {1, . . . , N} i.e., the

available temporal information for a target subject is limited
compared to the number of time instances that are available for
training for other subjects primarily due to the need for early
prediction. The objective is to try to learn a function f , such
that, the future response value at hth time-step can be predicted
as,

y+(d+h) = f

⎛
⎝ Xj ,yj︸ ︷︷ ︸

training data

,X+,y+︸ ︷︷ ︸
target data

⎞
⎠+ εh, (1)

where

εh
i.i.d.∼ N (0, σ2)

is independent and identically distributed (i.i.d) gaussian.
There are two multi-step forecasting strategies, direct vs it-

erative. Note that we use a direct multi-step prediction strategy
where the responses at t+d+1, . . . , t

+
d+h time steps are predicted

using only the available data until time t+d . However, an iterative
multi-step forecasting technique predicts only the next time
occurrence at t+d+1 at a time. Multi-step predictions then can be
made by including the previously predicted value (y+(t+d+1))
of the response variable in the training data to predict the
response at the next time instance and so on until hth time-step
is predicted [20].

IV. STATE-OF-THE-ART

In this section, we provide a brief overview of the existing
techniques.

A. Subset Selection

Despite its simplicity, the k-nearest neighbours technique
remains the benchmark for the classification of univariate time
series [21]. In the case of multivariate time series, we employ
k-means based clustering to create k profiles among the given
dataset of time series grouping them by similar patterns. We
further discuss the implementation details in Section VI-B2.
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B. Time Series Forecasting

Maximum Likelihood Estimation (MLE): A pth-order poly-
nomial can be estimated with coefficients β = [β0 β1 · · · βp]

T

such that y+(t) = β0 + β1t+ β2t
2 + · · ·+ βpt

p. The training
can be done by maximizing the likelihood over the avail-
able responses y+ = [y+(t+1 ) y

+(t+2 ) . . . , y
+(t+d )], �(w) =

P (y+|β),

β̂MLE = argmax
β

P (y+|β) =
d∏

i=1

p(y+(t+i )|t+i ;β). (2)

(2) is the model created using only a few observations from
the target data up to the time t+d days. This method results in
personalised models and predictions, but the limited availability
of data can hamper inference. This article will show how to
properly use data from other subjects to address this issue.

Maximum-a-posteriori estimation (MAP) [22]: The maxi-
mum likelihood estimate of β̂ may be found using the avail-
able training data (of other subjects). As an a-priori estimate,
the distribution of these coefficient estimates, p(β), obtained
from the N participants in the training data may be used. The
maximum-a-posteriori estimate of the coefficients, p(β|y+) is
calculated by combining the likelihood learned from the target
data with the prior distribution learned from the training data
using Bayes theorem:

β̂MAP = argmax
β

p(β|y+) =
P (y+|β)p(β)

P (y+)
. (3)

At time t+m, the prediction is given by β̂MAP [t
+
m t+2

m . . . , t+p
m ]T .

In both MLE and MAP, the parameter p is selected based on the
application of interest, which should be known in advance.

ARIMA: is a method for forecasting time series data based
on correlations in historical data [12]. Time series samples
must be consistently spaced when utilising ARIMA algo-
rithms for forecasting. Personal training data can be made
uniform using linear interpolation between samples. For a
uniformly sampled target time series response variable, an
ARIMA model of order (p, d, q) capable of modelling y+ =
[y+(t+1 ) y

+(t+2 ) · · · y+(t+d )] is defined by the equation:

φ(B)(1−B)dy+(t) = θ(B)w(t), (4)

where y+(t) and w(t) represent time series and random error at
time t respectively. B is a backward shift operator defined by
By+(t) = y+(t− 1), d is the order of differencing. φ(B)and
θ(B) are autoregressive (AR) and moving averages (MA) oper-
ators of orders p and q, respectively, and are defined as,

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p

θ(B) = 1− θ1B − θ2B
2 − · · · − θpB

q, (5)

where φ1, φ2, . . ., φp are the autoregressive coefficients and
θ1, θ2, . . .θq are the moving average coefficients.

LSTM: Long Short-Term Memory (LSTM) networks are a
particular case of Recurrent Neural Networks (RNN) with the
ability to model temporal dependencies from the past and have
shown outstanding prediction performance [4]. This is done by
using forget, memory and output gate that control the flow of the

data during learning. This makes it easier to decide whether the
data in each LSTM cell should be discarded, filtered, or added
to the next cell [4].

Gaussian Processes: The Gaussian Processes (GP) are non-
parametric models appropriate for sparsely available data. GP is
a collection of random variables, such that the joint distribution
of every finite set of them is Gaussian (multivariate) [9]. We are
given a training data Xs for N subjects:1

Xs =

⎡
⎢⎢⎢⎢⎣
X1

X2

...

XN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1(t

1
1) x1

2(t
1
1) · · · x1

K(t11)

x1
1(t

1
2) x1

2(t
1
2) · · · x1

K(t12)
...

...
. . .

x1
1(t

1
m1) x1

2(t
1
m1) · · · x1

K(t1m1)

x2
1(t

2
1) x2

2(t
2
1) · · · x2

K(t21)
...

...
. . .

x2
1(t

2
m2) x2

2(t
2
m2) · · · x2

K(t2m2)
...

...
. . .

xN
1 (tNmN ) xN

2 (tNmN ) · · · xN
K(tNmN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)
and ys = [y1 y2 · · · yN ]�. f is defined from (1) as f(x) ∼
GP(m(x), k(x,x′)) with mean and covariance functions m(x)
and k(x,x′) respectively. The covariance function encodes all
the assumptions of the data such that two independent obser-
vations closer to each other have similar outputs. This nearness
is used to model the structure of the multivariate time series,
given that the covariance remains positive semi-definite [9].
We chose a squared exponential covariance function based on
the assumption that the data have independent and identically
distributed gaussian noise with variance σ2

n,

k(x,x′) = σ2
f exp

(
− 1

2l2
|x− x′|2

)
(7)

Given ys = [y1(t11) . . . , y
1(t1m1) · · · yN (tN1 ) · · · yN (tNmN )]�

and K as a matrix Kab = k(xa,xb), ∀xa,xb ∈ Xs using (7),
and following the optimisation procedure from [9], the hyperpa-
rameters {σf , l, σn} are estimated by maximising the marginal
likelihood p(ys|Xs; {σf , l, σn}). The prediction at time t+

m+

for the observation xm+ = [x+
k (t

+
m+)]m+k is given by the mean

function, μ and variance function, σ2,

μxm+ = k�
+(K+ σ2

nI)
−1ys

σxm+ = k(xm+ ,xm+)− k�
+(K+ σ2

nI)
−1k+ (8)

where k(xm+) is denoted as k+, and k(xm+) =
[k(xm+ x1

1) . . . , k(xm+ xN
mN )]�.

Autoregressive Gaussian Processes (AR-GP) [20]: Peterson
et al. [20] employ auto-regressive Gaussian processes (AR-GP)
to predict the cognitive decline of Alzheimer’s disease patients
over the next four time steps. This is further discussed in Sec-
tion VI-B2. They start by building a population-level forecast
model using data from training subjects. They use domain-
adaptive GPs to sequentially adapt the GP posterior for the

1The superscript represents the jth subject and not the exponent.
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Fig. 2. Normalised Euclidean distances between (a) similar time se-
ries and (b) dissimilar time series. The reference time series that is
considered is shown in dark green.

test subject using the available data from the test subject. In
contrast to our direct technique for multi-step prediction, this
is accomplished via an iterative strategy by utilising the data up
until time t− 1 to predict the response at time t. The predictions
made are then used again with training data to predict time instant
t+ 1 and so on.

V. METHODOLOGY

In this section, the subset selection (SS) based gaussian
process (GP) approach (SS-GP) is introduced. First, a novel
approach for SS is described. Second, we develop an algorithm
to align the time series in the subset with a target time series.

A. Dynamic Subset Selection

Given a discrete time seriesyref , and a collection of N time se-
riesyj(1 ≤ j ≤ N)we want to find a time seriesysim ∈ yj that
is closest to yref , i.e. dist(ysim,yref ) < dist(yj ,yref )∀j ∈
{1, N} [23]. The closeness is calculated by matching time points
in two time series based on a distance metric dist. For example,
to calculate the Euclidean distance between two equal-length
time series yp = [yp1 , y

p
2 , . . . , y

p
m] and yq = [yq1, y

q
2, . . . , y

q
m] a

one-to-one matching is performed to calculate the distance as
dist(yp,yq) =

√∑m
t=1(y

p
t − yqt )

2. Fig. 2 shows examples of
one-to-one time-point matching with Euclidean distance (dotted
line) with Fig. 2(a) exhibiting more similarity with a Euclidean
distance of 0.1 as compared to Fig. 2(b) that has a Euclidean
distance of 5.1 compared to a reference time series.

1) Distance Measurement: Remember that our goal is to
make predictions of the response variable y+(t) for t > t+d .
Our aim in this section is to find a subset of response vari-
ables yj(t) (1 ≤ j ≤ M ) that show similar temporal charac-
teristics with y+(t) for t < t+d . This will lead to a subset
X̂ = {(X1,y1), . . . , (XM ,yM )} with M << N of the train-
ing dataset {Xs, ys} that is used in a non-parametric GP ap-
proach for predicting y+(t). For this purpose, we start by cal-
culating the distances between target response time series data
y+ = [y+(t+1 ) y

+(t+2 ) · · · y+(t+d )] and training data’s response
variable (nearest to the allowed time point, i.e. ‘≤ t+d ’). Let’s de-
note this distance vector as Ω+ = [ω1+ ω2+ · · · ωN+]

T , where
ωj+ = dist([yj(tj1) · · · yj(tjd)], [y+(t+1 ) · · · y+(t+d )]). In con-
trast to equal-length time series in Fig. 2, it is difficult to
determine the Euclidean distance (dissimilarity) between two
time series with unequal lengths. Therefore, we use Dynamic
time warping (DTW) [24] as a distance metric dist in our study

Fig. 3. DTW distances between time series with different lengths. The
matched points are indicated by a dotted line. The reference time series
is shown in dark green. In (a) the DTW distance is 170 and the time
series are more dissimilar than in (b) where the DTW distance is 6.9.

that allows one-to-many matching and thus subsumes Euclidean
distance. DTW distance has an ability to match time series of
different lengths and is robust to shifting and scaling along the
time axis [25]. It matches two time series by (i) calculating a
local cost matrix between each pair of elements between these
time series, and then the goal of minimising the overall cost
(distance) is achieved by (ii) finding an optimal alignment that
runs along a low cost “valley” within the cost matrix [26]. Fig. 3
illustrates that DTW first aligns the time series. Points of the
time series that are matched are connected by a dotted line. The
final distance is computed by taking the sum of the Euclidean
distances between the matched points. Clearly, the reference
time series (in green) is more similar in trend to the time series
shown in Fig. 3(b) compared to the one shown in Fig. 3(a).

Since we are calculating the DTW distances in the output
space, i.e., between the response time series’ (yj), the distance
measurement is applicable in settings where the input time series
is multivariate. As long as the output time series is univariate the
DTW distance can be calculated as proposed, which is the case
in many healthcare applications. For a multidimensional DTW
treatment, the reader is referred to [27].

2) Subset Selection: After calculating the distance vector
Ω+ of length N between a target time series y+ and other time
series’ (yj), the nearest subjects are determined by dynamically
calculating a cut-off point for the target time series in the
following way:

i) Arrange elements by their closeness to the target time
series: sort the distance vector Ω+ in increasing or-
der as Ω̂+ = [ω̂1+ ω̂2+ · · · ω̂N+]

�, such that ω̂k+ ≤
ω̂(k+1)+∀k ∈ {1, 2, . . . , N}.

ii) Select cut-off for subset selection when the rate of
change of DTW distance is high: calculate ‘turning
points’ at index ‘k’ such that the absolute rate of
change of DTW distance is highest in the local neigh-
bourhood (±1 index), (ω̂(k−1)+ − ω̂(k−2)+) ≤ (ω̂k+ −
ω̂(k−1)+) ≥ (ω̂(k+1)+ − ω̂k+).

iii) Choose a turning point for subset selection: choose the
value at the first turning point ‘ω̂k’ as our threshold ωth

for finding the closest time series set X̂ . The closest
selected subset consists of all time series whose DTW
distance is less than this threshold compared to the target
time series.

Note that more turning points can be calculated by choosing
the next minimum as described further.
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Fig. 4. (a) DTW distances, dissimilarity measures between time series, plotted in ascending order with some possible choices of threshold values.
(b) Proposed heuristic is used to calculate the closest subset on the training part (in yellow, t < t+

d
) and the test part for subject 1. This illustration

is from the gestational weight gain prediction use-case explained in Section VI-B1.

The intuition for turning points is represented in Fig. 4(a),
which shows the DTW distances measures between response
variables of target and the training time series in ascending order.
The possible choices of thresholds calculated as defined by turn-
ing points occur at locations ωthL

, ωthU
, ω′

thL
, · · ·ω′′′

thL
. Note

that ωthL
represents the point where the first minimum occurs

in the rate of change in DTW distances. Similarly, multiple such
turning points exist that can be used as thresholds represented
with the prime (′) symbol. Intuitively, ωthU

can be considered as
another appropriate choice for threshold. However, the first value
of turning point, ωthL

is chosen as the preferred threshold. It
selects the “smallest” most informative subset from the training
data to capture the trend while keeping the variability among the
selected subset to a minimum as compared to other thresholds.
For the sake of simplicity, Fig. 4(b) shows a univariate time series
of subject 1 from a dataset (explained in Section VI-B1) and
the selected closest subset according to the proposed heuristics.
Using the proposed heuristics, the subjects that are closer in
the training phase (coloured in red) show a similar trend in the
forecasting phase.

Using the SS approach proposed above, we can find a subset
X̂ from {Xs,ys}. The subset X̂ contains time series that are
similar to the target time series and are therefore expected to
contain the most essential information for forecasting the target
time series data. The subset X̂ will be used to train a non-
parametric GP in the proposed SS-GP approach. The compu-
tational complexity of a GPs depends on the number of training
points n according to O(n3). Restricting the training of the
GPs to the subset X̂ will considerably reduce the computational
complexity (as compared to a training on the complete data set
Xs) becausen(X̂ ) << n(Xs). Moreover, we will show through
our case studies that an increase in prediction performance can
be obtained.

Additionally, such a localised non-parametric distance-based
approach allows for the selection of neighbours based on the
temporal nature of the data. This makes our approach generally

Algorithm 1: Temporal realignment for target data.
1: procedure TEMPORAL REALIGNMENT

2: Input : y+ = [y+(t+1 ) y
+(t+2 ) y

+(t+3 ) · · · y+(t+d )]
3: lags = [−τd, . . . ,−τ1, 0, τ1, τ2, . . . , τd]
4: Output : τoptimalN×1

5: for i = 1 to N do
6: yi = [yi(ti1) y

i(ti2) · · · yi(tid)]
7: minDist = Inf
8: for iter = 1 to 2d+ 1 do
9: τ = lags(iter)

10: curDist = dist(y+,yi
(t+τ))

11: if curDist < minDist then
12: τoptimal(i) = τ

applicable with other learning methods where priors are formed
based on the available closest time series data.

B. Collective Temporal Realignment

Typically, it is assumed that the time series in the training data
are available from some fixed time t = t0. However, in practical
scenarios, the time series in the dataset may have different onsets
and rates of progression.

Dynamic time warping (DTW) accounts for the similarity in
amplitude among time series by calculating the distance between
them. It realigns the two time series non-linearly, onto a common
set of instants such that the sum of the Euclidean distances
between the corresponding points, is smallest. We propose a time
series alignment based on the shape of the response variable.
We try to find a time instant τoptimal with respect to the target
response series such that when the response time series in the
training dataset are lagged/led by τoptimal, their shape most
resembles that of the target’s response time-series. For a given
target response variable (y+), we realign the time series in Xs
in time.
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We hypothesise that readjusting the training data with respect
to the target data will result in better subset selection. The
approach is as follows,

1) Given target data observations of the response variable
until time td, calculate distance from lagged/led versions
of N time series in the training data using the metric√(∑d

n=1 y
+(t+n )− yi(tin+τ )

)2

2) For the jth time series in the training data, the value of
τk+ that minimises the above metric is τoptimal(j)

3) We then create lagged/led versions of predictor and re-
sponse variables in the jth training data using τoptimal(j)
for the given target time series. This gives us the temporal
fitted lagged/led version of Xsaligned.

Dynamic nearest neighbour selection is then applied to get X̂ .
After temporal realignment and dynamic subset selection based
on the available target data (y) in the training and test dataset
we apply Gaussian processes based prediction on {X̂ ,X+} as
it is most resilient to the missing data in time series. We use the
selected M << N time series that are in the closest subset of a
given time series along with (8).

Mean Absolute Error (MAE) is used as the performance
metric to evaluate the regression performance.

MAE =
1

N

N∑
j=1

|y(tjmj
)− ypred(t

j
mj

)|

.

VI. EXPERIMENTS

We start by describing the setup of our experiments and
the methods that we use to benchmark the proposed SS-GP
approach. Furthermore, we give a detailed description of the
use cases we will treat.

A. Baseline

Parametric: We fit a 3rd order polynomial on the response
variable varying with time. First, an MLE estimate is made on all
the subjects in training data. These model estimates are used as
prior distribution to calculate a maximum-a-posteriori estimate
(explained in Section IV-B) to learn a final model. The response
variable for a given test subject is then predicted using this final
model at a given time instant. This is done in a leave-one-subject-
out fashion so that each subject’s data is estimated once. A 3rd
order polynomial is used as it provides the least mean absolute
error among other orders (1 to 5) of polynomials for both the
data sets.

ARIMA: ARIMA has a limitation that it only works well with
uniformly sampled data. This is difficult when data are missing.
We fit an ARIMA(p, d, q) model on the response variable of the
target data as follows i) linearly interpolating the data to make the
data evenly-spaced in time, ii) tuning the hyperparameters [28]
to find an optimal autoregressive order, degree of differencing,
and moving average order by performing a grid search, iii) using
the optimised hyperparameters over the training part to forecast
at a time instant (given data until day td). This is done for each
test subject.

LSTM: We evaluate an LSTM-based regression network with
200 hidden units. The training is done using Adam’s optimisa-
tion to minimise the mean absolute error [29].

AR-GP: AR-GP are trained to forecast the response variable
using the input and response features until time t. For each
subject, the missing observations are filled using the forward
filling approach, where data from a previous observation are
carried over to the following observation. When the training
matrix is completed, the parameters of AR-GPs are learned by
minimising the negative log-likelihood [20].

AR-GP + MICE: Multivariate imputation by chained equa-
tions (MICE) is an imputation strategy for matrix comple-
tion [30]. It works by iteratively building predictive models
to fill each specified variable in the matrix. Each variable is
imputed using other variables in the dataset and the iterations
are run until convergence is met. AR-GP works by first forward
filling the data to complete the matrix for training. We also use
the state-of-the-art MICE approach to impute the data and then
apply AR-GP to compare the performance.

We evaluate these methods on different univariate and mul-
tivariate real-life datasets in a leave-one-subject-out cross-
validation scenario. A detailed explanation of how the proposed
model is compared with baselines in different datasets is de-
scribed as follows.

B. Datasets

Health progression modelling requires longitudinal data from
a person that can provide long-term predictions for disease status
of an individual. Often, this data exists in the form of electronic
health records or sequence readings collected over time. Current
state-of the-art methods such as deep learning methods provide
accurate models of individuals’ health status in case of Big Data
sets where both the number of individuals and the number of
individual measurements through time are large [31]. However,
in the presence of limited training data (small N and t+d ≈ 0),
such as when early disease discovery is of utmost importance,
such approaches produce sub-optimal results. Our framework
for time series-prediction in the absence of missing or limited
data can enhance health prediction capabilities. Hence, we select
two datasets from real life presented as follows:

1) Gestational Weight Gain: One health demographic is
managing gestational weight gain among women. Approxi-
mately 70% of pregnant women gain either too little or too much
weight at the end of their pregnancy in accordance with the In-
stitute of Medicine recommended guidelines [32]. Inappropriate
weight gain during pregnancy has been associated with short-
and long-term health complications to the mother and baby.
Thus, early recognition of signs of weight gain during pregnancy
is essential [22]. In this study, data were collected from diverse
subjects in Europe where 80 women in their fifth week of
pregnancy or later were recruited from midwife practices in
Eindhoven, The Netherlands. The weight data were collected
by a WiFi-connected scale, Withings WS30.2 The dataset is de-
scribed in Table I. Note that this is a case of univariate time series

2[Online]. Available: https://www.withings.com/

https://www.withings.com/
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TABLE I
DATASET DESCRIPTION FOR UNIVARIATE GESTATIONAL WEIGHT GAIN DATA

data where only one variable (weight gain) is measured with
respect to time. A mobile application allowed participants to log
their weights weekly, and the weight data was sent to the cloud.

The participants provided an informed consent pre-data col-
lection and the study was approved by the Internal Ethics Com-
mittee for Biomedical Experiments of the involved organisations
(ICBE Reference number 2015-0079 respectively).

We model the weight (gain) y as a function of time,
(tj1, t

j
2, . . . , t

j
m) using the proposed approach. We achieve this

by first normalising measured weight with pre-pregnancy weight
to obtain weight gain data and then fitting various forecasting
approaches. For the parametric approaches, we utilise the com-
plete data from N − 1 subjects to generate a prior to estimate a
MAP model. We experiment with first, second and third-order
polynomial based parametric approaches to fit our time-series
data. In cross-validation, we obtain the polynomial order (= 3)
empirically for the parametric approach, which has the lowest
prediction error among all other orders.

For the proposed non-parametric approach, we use the data
from N − 1 subjects as training data in addition to the avail-
able target data of the remaining subject to train the Gaussian
processes in the baseline setting. Dynamic subset selection is
performed on the training data with respect to the available target
data.

2) Alzheimer’s Disease Prediction: Another health compli-
cation is Alzheimer’s disease (AD). AD is a neurodegenerative
disorder and the most common form of dementia. Prediction
of this progressive disorder’s symptom onset at early stages is
urgent and complex [33]. The design of clinical trials and devel-
oping therapeutic interventions depends on accurately detecting
patients at the early stages of the disease where treatments are
most likely to be effective. The clinical status of an Alzheimer’s
patient is based on commonly used cognitive scores namely,
the mini mental state examination (MMSE) [34], the Washing-
ton University Clinical Dementia Rating Sum of Boxes score
(CDRSB) [35], and the AD Assessment Scale-Cognitive subtest
(ADAS-Cog13) [36].

To this end, we use the data collected as part of the TADPOLE
challenge [37] by the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) consortium3 [38]. The data from 1737 patients

3[Online]. Available: http://adni.loni.usc.edu/

taken every six months over the course of 120 months consists
of different modalities such as (1) various features extracted
from imaging modalities like magnetic resource imaging (MRI),
positron emission tomography (PET) and diffusion tensor imag-
ing (DTI), (2) cerebro-spinal fluid (CSF) markers of amyloid
beta and tau-deposition; (3) cognitive assessments measured in
the presence of a clinical expert; (4) genetic information such
as alipoprotein E4 (APOE4) status from DNA samples and (5)
general demographic information [37]. Around 266 features
were extracted based on these modalities and merged together
over time to form a coherent numerical multivariate time series
feature set. Since the complete dataset has a lot of missing
visits, we follow the state-of-the-art approach for Alzheimer’s
disease marker forecast [20] and selected a smaller dataset of
95 subjects such that data from at least ten visits is present and
missing data is no more than 82.5% of the feature set. This
helps in benchmarking our proposed approach with the AR-GP
approach [20].

In the case of this multivariate time series data, our experimen-
tation to predict a cognitive score (MMSE, ADAS or CDRSB)
using 266 features that vary with time is as follows:

1) Collective temporal realignment: The Alzheimer’s
study [38] recruited patients that were already going
through some stage of cognitive decline. Since the disease
progression in every individual differs in their onset, the
target time series (y) for each of the patients had a differ-
ent t0. Therefore, we calculate the value of τoptimal(j)
using the response variable of the target data and the
response variable of the jth subject in the training data.
This lag is calculated for all the subjects in the training
data with respect to a given target subject. Based on the
calculated τoptimal(j), lagged/led versions of the predic-
tor (Xj) and the response (yj) are created to be used for
further training.

2) Subset selection based on the response variable y: Based
on the available target data (X,y) from a given test subject
until month td, we find the subjects in the training dataset
with a similar cognitive decline. This is done by applying
the subset selection approach explained in Section V-A
onyj . Note that we apply subset selection on the response
variable instead of X since it gives us similar subjects in
output space.
We also compared the performance of our subset selection
approach with a k-means clustering approach. Clusters
were obtained using the input features of the multivariate
time series. For a given test subject, the subjects in the
closest cluster are considered as training data. These
training subjects along with the available test subject’s
data are used to train a non-parametric GP as follows: (1)
the missing values are forward filled (2) K clusters with
centroids {ck} are created using k-means clustering with
training data matrix until month td (3) calculate distance
dk = dist(X+, ck) of the test subject’s predictor vari-
ables data X+ from each centroid {ck} and the optimal
profile (subset) is selected as cluster copt = ci such that,
di < dj , ∀i �= j ∈ [1,K] In what follows, we will refer
to this method as the “K-means + GP” approach.

http://adni.loni.usc.edu/
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Disease progression Estimation: We perform non-parametric
regression using Gaussian processes on the input feature set X.
First, given a test subject’s response variable y+, a time aligned
training data is made that consists of a lagged version of Xs
and ys. Subsequently, subset selection is performed by finding
subjects in the training data whose response variable (yj) is
close to the test subject’s response variable (y+). Once a subset
is selected, GP based regression is performed on [X ,X+] using
(7) and (8). We perform leave-one-subject out cross-validation
on the dataset.

In both cases, developing models to automatically predict
Alzheimer disease-related metrics or gestational weight gain is
of utmost importance to intervene appropriately and in time.
This makes the availability of the target data another challenge.
To test how well these methods can perform with limited target
data, we experiment by varying the amount of available target
data with respect to time, i.e, 0 ≤ t+d ≤ t+m.

Remark that, in the case of gestational weight gain prediction,
the objective is to predict a single observation in time, i.e., the
end-of-pregnancy weight gain. The performance is measured by
predicting the end-of-pregnancy (≈ 270 day) weight gain for a
test subject when data was available until 120, 130, 140, . . . , 260
days.

In the case of Alzheimer’s disease, however, we are also
interested in the disease’s trajectory, not merely an ultimate
endpoint prediction. Two subsequent visits are spaced an average
of 6 months apart, and we will predict the disease progression
for each month despite having little data (i.e., only observations
from the first 30 months are used in the training phase to predict
progression up to month 120).

We evaluate and present the results related to the performance
of different approaches across time with different availabilities
of the target data. We also benchmark our proposed approach
with the K-means + GP approach and the AR-GP approach [20],
the latter of which is considered as a state-of-the-art approach
for predicting cognitive decline of Alzheimer’s patients.

VII. RESULTS & DISCUSSION

A. Gestational Weight Gain Prediction

We study the performance of various forecasting algorithms
when predicting the weight gain of a target subject for the end
of the pregnancy while the time series data of weight gain of
the target subject are only available up to time t+d . The most
crucial aspect of gestational weight gain prediction is whether
the weight at the end of the pregnancy is in the range recom-
mended by the IOM guidelines [32]. Therefore, we investigate
the weight gain prediction ability of forecasting algorithms that
are trained with changing availability of a target individual’s
data (i.e, varying t+d ). The results can be found in Fig. 5, which
shows the prediction error averaged over all the subjects as a
function of the moment t+d . The prediction error reduces when
more training data is available. Also, it can be observed in Fig. 5
that the GP approach performs worse than the SS-GP approach.
Based on a paired t-test, which assumes equal variances, we
found that all differences between performances of the SS-GP
model and the other models are statistically significant at a

Fig. 5. MAE of predicted weight on delivery day (multiple steps ahead
in time) with respect to different approaches. MAE reduces as more
training data becomes available.

significance level of 5%. Only for the SS-GP and the MAP
model performances, no statistically significant difference was
found. This is not unexpected because of the simplicity of the
dataset. For t+d > 220, the performance of ARIMA significantly
outperforms the performance of all other approaches. However
t+d = 220 is too close to the horizon to result in effective inter-
vention. Note that the average delivery day is around day 277.
The benefit of using our SS-GP approach is further illustrated
in Fig. 6.

In Fig. 6(a), we show the performance of GPs when all training
data is used to make predictions for a target subject. Since the
training data consists of subjects with various rates of weight
gain, the predicted trend in the target subject is influenced by
all the measurements in the training data at a given time. The
variability in the prediction is reduced by selecting a subset of
time series from the training data that share similar patterns with
the target data. These subjects are then used to forecast the target
data, as shown in Fig. 6(b).

B. Alzheimer’s Disease Prediction

Unlike the gestational weight gain use case, where the final ob-
jective was to predict the end-of-pregnancy weight gain because
the data was recorded daily, we aim to predict the progression of
Alzheimer’s disease at each visit, since these visits are separated
by six months or more. For this purpose, we will study the
performance of several methods for predicting three metrics
for cognitive decline that are commonly used by clinicians and
that were introduced in Section VI-B2: MMSE, ADAS13, and
CDRSB.

Following our realignment approach, we first calculate the
optimal τ for each response time series (cognitive score) in
the training dataset with respect to the available response data
from the test subject. We compute the standard deviation at a
particular time instant for all response time series in the training
data that are aligned with respect to the target subject. This
standard deviation should be smaller than when no alignment is
performed. We experimented with all the subjects in a leave one
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Fig. 6. Prediction error (i = 1th subject) is (a) high (low confidence)
when the complete training dataset is considered due to inter-subject
differences but (b) reduces using close subset selection based on
heuristics. The prediction confidence (grey) also increases using the SS
approach.

out fashion. In Fig. 7 each line depicts the standard deviation
of the ADAS13 matrix created using aligned versions of the
time series for a given test subject. By computing the standard
deviation without alignment, a baseline was established. We
observed that >80% of the subjects have a standard deviation
less (more desirable) than the baseline when adjusted for the
alignment using our temporal realignment approach. This shows
that most of the subjects are adjusted in time with respect to
disease progression after realignment.

To predict the Alzheimer’s disease progression, we varied the
availability of target data from month 30 until month 108. Fig. 8
shows the cross-validation results, averaged over all subjects,
for the prediction of ADAS13 using our SS-GP approach. Each
line in Fig. 8 corresponds to a different number of available
measurements for the test subject. Given the available training
data until a specific month, each point on this line represents the
prediction error in forecasting cognitive score for the month
depicted on the x-axis, averaged over all subjects. One can
observe from Fig. 8 that there is an increasing trend in prediction
error when the forecast horizon increases. For example, given

Fig. 7. Standard deviation (std) of the cognitive decline (ADAS13) after
the proposed alignment for each subject (in black). The closer the std is
to the x-axis, the more similar the subjects’ time series are.

Fig. 8. Mean absolute error measured with respect to different data
available in time for different steps in time prediction for ADAS13. The
average MAE for a specific month is lower when the data availability is
higher.

the training data availability until month 30 (orange line with +
marker), the mean absolute error when predicting for month 60
is higher than for month 36. Additionally, Fig. 8 shows that
the prediction performance improves as more data from the
test subject becomes available for training. For instance, for the
predictions at month 48, the MAE obtained when training data
are available up till month 42 is smaller than the MAE obtained
when training data are available up till month 30. The other
metrics for cognitive decline (MMSE and CDRSB) were found
to show similar patterns in prediction performance.

As seen in Fig. 8, the worst result is observed when the
available training data is highly limited, and the forecast horizon
is set far in time. This occurs when training data are only
available until month 30 and forecasts are made up till month
120. Since we need to predict as early as possible, we present
the results for all further experiments when training data are
only available until month 30, and the forecast horizon stretches
from month 36 to month 120. Using training data up till month
30 ensures us that during training at least one data point of each
subject is included.
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Fig. 9. Proposed approach achieves lowest MAE on the metrics (a)
MMSE and (b) ADAS13 and comparable MAE with k-means based
clustering on (c) CDRSB.

Furthermore, at month 114, a peak in MAE is observed in
Fig. 8. This is due to the fact that, at month 114, no measurements
of the target variable are available for a lot of subjects.

Fig. 9 shows the forecast performance for the three cognitive
metrics for different subset selection strategies and different re-
gression approaches. For the AR-GP approach a forward filling
approach is used to deal with missing data [20]. However, we
also studied the performance of the AR-GP approach when a
state-of-the-art imputation technique is used instead, i.e. a multi-
variate imputation by chained equations (MICE) for matrix com-
pletion [30]. We refer to this combination as AR-GP + MICE.

Note that on average, a 1-3 point decrease in Mini Mental
State Examination [39], a 1-2 point increase in Clinical De-
mentia Scale sum of boxes [39], and a 3-3.1 point increase
in Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-
Cog) [40] are indicative of a meaningful decline.

The differences between the proposed and compared mod-
els are statistically significant (p < 0.05) based on a paired
t-test with equal variances. However, compared to the SS-GP
approach, no statistical difference is found with the MAP ap-
proach when predicting MMSE and with the K-means + GP
approach when predicting ADAS13 or CDRSB. Thus, we can
conclude that our method performs consistently (equal if not
better) across all metrics of cognitive decline when compared
with the state-of-the-arts.

VIII. CONCLUSION

In this article, we proposed a novel approach, termed the
SS-GP approach, for forecasting time series that are not nec-
essarily uniformly sampled. For this purpose, we combined the
non-parametric GP regression with a subset selection procedure
that selects a set of time series from the data that closely resem-
bles the test subject’s data. Our subset selection procedure is
robust as it selects the subset size dynamically based on temporal
similarities between the time series in the subset and the test time
series. The temporal similarity is measured with a DTW distance
that can be computed between time series with a different length.
We validated this method on two use cases and compared it with
several other approaches.

Firstly, on the univariate gestational weight gain dataset, our
approach performs similar to a parametric polynomial fitting
which is not unexpected because of the simplicity of the data
set. However, the SS-GP is able to reduce the variability in
predictions because predictions are only based on time series
data that share similar patterns with the data of the test subject.

Secondly, for a more complex data set consisting of
multivariate time series data to predict cognitive decline of
Alzheimer’s patients our SS-GP approach is able to outperform
state-of-the-art approaches such as the AR-GP approach [20].
In particular, the SS-GP approach, improves prediction results
when the forecast horizon is long and only a limited amount of
data is available.

IX. LIMITATIONS & FUTURE WORK

Although effective in regression when data is missing, Gaus-
sian Processes (GPs) have a high computational complexity of
O(n3). Our subset selection is a local approximation technique
that decreases complexity by including only the most useful
training points (<< n) that are close to the test point. However,
the collective realignment technique has a high time complexity
because it determines the ideal alignment for a specific test time
series by comparing it to all the time series in the training dataset.
In future research, we would like to experiment with another
scalable sparse approximation of GPs developed in [41] that
can further reduce the time complexity.

In addition, the proposed approach is only tested on data sets
from healthcare considering the necessity that arises in this
domain from data acquisition limitations. In an environment
where data acquisition is costly, it would be beneficial to evaluate
our method on more data sets and application domains where
time series can be sparsely sampled, such as process quality
monitoring in industries.
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