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ABSTRACT Pre-pregnancy body mass index and weight gain management are associated with pregnancy
outcomes in expecting women. Poor gestational weight gain (GWG) management could increase the risk
of adverse complications. These risks can be alleviated by lifestyle based interventions if undesired GWG
trend is detected early on in the pregnancy. Current literature lacks analysis of gestational weight gain data
and tracking the pregnancy over time. In this work, we collected longitudinal gestational weight gain data
from women during their pregnancy and model their weight measurements to predict the end-of-pregnancy
weight gain and classify it in accordance with the medically recommended guidelines. The measurement
frequency of the weights is often very variable such that segments of data can be missing and the need
to predict early utilising few data points complicates data modelling. We propose a Bayesian approach to
forecast weight gain while effectively dealing with the limited data availability for early prediction. We
validate on diverse populations from Europe and China. We show that utilising individual’s data only up
to mid-way through the pregnancy, our approach produces mean absolute errors of 2.45 kgs and 2.82 kgs
in forecasting end-of-pregnancy weight gain on these populations respectively, whereas the best of state-
of-the-art yields 8.17 and 6.60 kgs on respective populations. The proposed method can serve as a tool to
keep track of individual’s pregnancy and achieve GWG goals, thus supporting the prevention of excessive
or insufficient weight gain during pregnancy.

INDEX TERMS Gestational Weight Gain, Missing data, Time series

I. INTRODUCTION
In this increasingly obesogenic society, weight management
is a key lifestyle-related condition that affects people of all
ages and ethinicities. One of the most important demographic
groups affected by this is pregnant women. 47% of the
pregnant women gain too much weight over the gestational
period and around 23% tend to gain too little weight during

§Equal contribution

their pregnancy [1]. Institute of Medicine (IOM) updated
the recommended set of guidelines [2] on how much weight
women in different BMI categories should gain during their
pregnancy to encourage optimal health for the mother and her
child (Table 1). With only 30% of the women in the normal
weight category after pregnancy [1], most of the women do
not follow the guidelines or realize too late in the pregnancy
that an intervention or control of the weight gain is necessary.
Risks associated with undesired weight gain: There have
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TABLE 1: 2009 IOM guidelines [2] for weight gain and rate
of weight gain during pregnancy with respect to BMI. The
guidelines assume a weight gain of 0.5 − 2 kg in the first
trimester of pregnancy.

Pre-pregnancy
Body Mass Index
(BMI) category

Mothers of singletons

Total weight gain
(in kgs)

Weight gain
in the first

trimester (kgs)

Rate of weight gain
in the second

and third trimesters (kg/wk)
Underweight

(<(18.5 kg/m2) 12.7− 18.14

0.5− 2

0.45− 0.59

Normal-weight
(18.5− 24.9 kg/m2) 11.34− 15.88 0.36− 0.45

Overweight
(25.0− 29.9 kg/m2) 6.8− 11.34 0.23− 0.32

Obese
( 30.0 kg/m2) 4.99− 9.07 0.18− 0.27

been several studies that associate gestational weight gain
with pregnancy related outcomes. For example, excessive
Gestational Weight Gain (GWG) can pose several short and
long term risks for the mothers such as fetal macrosomia and
postpartum weight retention leading to maternal obesity [3].
Women entering into pregnancies with high pre-pregnancy
Body Mass Index (BMI) are at increased risk for gestational
diabetes [4]. It can also result in large-for-gestational-age
infants and/or caesarean delivery or other labor and delivery
complications [1]. In terms of risks for the offsprings, Oken
et al. [5] and Sridhar et al. [6] found that exceeding the rec-
ommended guidelines was associated with a 46% increase in
odds of having an overweight/obese child after adjusting for
maternal prepregnancy BMI, race/ethnicity, age at delivery,
education, child age, birthweight, gestational age at deliv-
ery, gestational diabetes, parity, infant sex, total metabolic
equivalents, and dietary pattern. Additionally, adverse car-
diovascular diseases in later stages of the offspring’s life is
also reported in [7]. On the contrary, gaining too little weight
during pregnancy is also not considered healthy. Evidence
for a correlation exists between indaequate weight gain and
perinatal mortality. Davis et al. studied over 100,000 records
from the National Center for Health Statistics (NCHS) 2002
Birth Cohort Linked Birth/Infant Death Data and indicated
that inadequate gestational weight gain is highly associated
with increased odds of infant death up to 1 year after death
[8]. Other reported risks include increased risk of preterm
birth or small-for-gestational-age infants [1] or failure to
initiate breastfeeding [2].

There have been several factors associated with the unde-
sired gestational weight gain such as age, ethnicity, genetics
[9], [3] which are fixed. Apart from these fixed factors,
modifiable factors related to lifestyle such as amount of
physical activity and food intake also show a high correlation
with the gestational weight gain [10]. Several intervention
studies [11], [12] showed that lifestyle based interventions
can improve the outcome of gestational weight gain, if the
intervention is timely, preferably initiated before the start of
the pregnancy [13].

In this work, we aim to reliably predict the gestational
weight gain using the weight measurements from initial days
of the pregnancy. Our proposed approach uses the weight

gain measurements from other subjects in the training data
to generate prior information about the (personal) model of
the test subject. The model is then trained on the available
limited data of the test subject along with the generated prior
information resulting in an increase in the performance of the
overall system, which we discuss later. Our proposed solution
can help prenatal care providers in risk assessment during
a pregnancy and provide adaptive coaching to the mothers.
Moreover, mothers can track the rate of weight gain and
use the model to monitor weight gain, thus reducing GWG
related risks at the end of their pregnancy.

Real life weight measurements are used that are mostly
self-reported (measurements consistent with regular mid-
wife/ hospital visits) by 233 expecting mothers during their
pregnancy in Europe and China. We formulate this as an
absolute weight prediction problem with the end goal of
predicting the weight at the end of the pregnancy and clas-
sifying if the weight is within the IOM recommended guide-
lines or not. We have restricted our analysis to the mothers
with singleton pregnancy for this study. Data from mothers
expecting more than one child is very rare to obtain. Also,
the guidelines for gestational weight gain consider singleton
mothers [2].

Lifestyle interventions can be done in the form of personal
coaching by traditional health-care providers, or eHealth
mobile-application based coaching or a mix of both [14],
[15]. A schematic diagram of the solution following a mix
of both is provided in Fig. 1 where recorded weight mea-
surements are sent for processing along with meta-data and
feedback/alerts can be shared with the individual and/or care-
givers. Recommended weight gain during pregnancy varies

Weight
Gain

GWG Forecast
Model

IoM Guidelines

Below
Normal Normal Above

Normal

FIGURE 1: Schematic diagram of GWG weight estimation

from person to person based on their BMI ranges. Women
with underweight pre-pregnancy BMI are expected to gain
weight at a higher rate than women that were overweight be-
fore pregnancy. This calls for personalization of the learning
method. Additionally, it is important to note that the problem
of estimation is a multi-step forecasting problem, which
means that we train a model using self-reported weights at the
start of the pregnancy period (e.g. first 180 days) and use this
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model to forecast the weight at the end of pregnancy (around
day 270-280).

The primary contributions of this paper are,
• collecting weight gain data from women across time

during the course of their pregnancy in a practical sce-
nario (example, via self reporting),

• building personalised model for GWG trend prediction
using as little personal data as possible,

• unique raw weight gain transformation approach that
reduces inter-BMI class variance for accurate GWG
modelling.

• validating the proposed approach across different ge-
ographical regions and examine the model transfer to
evaluate the generalizability of the approach.

II. RELATED WORKS
Various works [1], [16] study the association of pre-
pregnancy BMI, the amount of weight gain during pregnancy
and the health risks to mothers and infants. Diana et. al.
propose a differential equation model for pregnant women
in different pre-pregnant BMI category that predicts GWG
that results from changes in energy intakes [17]. This method
helps predict the impact of changes in dietary energy intake
on GWG in these BMI categories. Although this tool helps
in understanding the dietary needs, there exists no studies
that helps pregnant women understand and track the absolute
weight gain during their pregnancy in a personalised manner
based on individual’s weight gain data.

Several time series forecasting methods exist in the litera-
ture such as state-space approaches e.g. Kalman filtering [18]
and Autoregressive Integrated Moving Average (ARIMA)
[19] that learn structures from the time series data for few-
step ahead predictions, given sufficient historical personal
data. However, they tend to converge towards the mean as
the forecast horizon increases, thus giving inaccurate predic-
tions [20]. Alternatively, a polynomial model of lower order
(1, 2, or 3) can be used to estimate the end-of-pregnancy
weight gain using weight measurements from the start of the
pregnancy period, if enough reliable weight measurements
collected uniformly over time are available for training. How-
ever, there are two major challenges i) weight measurement
data are often noisy, incomplete, sparse and non-uniformly
sampled due to the self-reported nature, ii) available data
from the initial few days of the pregnancy are often limited,
complicating the training of a model. Polynomial fit using
maximum likelihood estimation (MLE) or ARIMA suffer
from at least one of these challenges. In the recent decade,
deep learning approaches such as Long short-term memory
(LSTM) networks [21] have become popular and they are
known to model the non-linearity among the datasets very
well for forecasting. However, lack of availability of individ-
ual training data pertaining to early prediction in our case,
and high number of trainable parameters associated makes
them unsuitable in the practical scenario at hand. Fig. 2
illustrates the early prediction of weight gain measurements
for two subjects using state-of-the-art methods.

In this paper, we experiment with parametric Bayesian
regression to model the time series data. In contrast to the pre-
vious work [22], our algorithm incorporates meta-data such
as pre-pregnancy weight and BMI to improve the efficacy.
We also test the generalization capability of our proposed
algorithm on new data from a different geographic region
by training our proposed approach on data from one region
and testing the learned model on another region. We show
that our approach outperforms state-of-the-art in early weight
gain prediction by using data from training subjects to create
an a-priori model estimate and then tuning it to model the test
subject’s limited available personal training observations. To
our knowledge, this is the first study that uses few weight
measurements from the early days of pregnancy to estimate
the end-of-pregnancy weight gain.

III. DATABASE
Data from diverse pregnant women were collected in Europe
(DE) and China (DC). Women that were in their gestational
week 5 or later were recruited randomly from midwife prac-
tices in Europe and private hospitals in China. The details of
these datasets are described below:

1) DE

Two midwife locations recruited 90 participants in Eind-
hoven, The Netherlands over a period of three months.
However, data from only 80 women were considered for the
final analysis as 10 subjects dropped out of the study due to
miscarriage or technical problems. 40% of the women were
experiencing their first pregnancy, while for another 40%
it was their second and 20% had more than two previous
pregnancies. Education level was generally high with more
than 60% having at least college degree. This means that
women with low and no education are under-represented
in this data. This may be relevant as it is well known that
Socio Economic Status (SES) is correlated with nutrition,
weight-gain and lifestyle factors in general. 9% of women re-
ported smoking. The weight data was collected using a WiFi-
connected weight scale, Withings WS301. The participants
were asked to log their weights weekly and the recorded
weight data was sent to the cloud via a mobile application.
Participants were instructed to weight themselves at least
once per week. However, post-hoc analysis shows that partic-
ipants recorded 2.0 ± 1.4 measurements per week. Overall,
86% of participants were adherent to the study measurement
protocol with most of the women measuring more than 1 time
per week.

2) DC

Two hospitals recruited 366 subjects living in Shanghai,
China. After filtering the subjects that had a disease or left
the study in the middle, 153 women’s pregnancy weight gain
data were considered. About 2/3 of subjects were having
their first pregnancy and only few were pregnant for the

1https://www.withings.com/
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FIGURE 2: State-of-the-art methods, MLE with (order = 1, 2, 3), ARIMA, LSTM to predict the end-of-pregnancy weight-gain
for ith subject. The prediction accuracy that can be obtained from the data shown in left subplot is superior to the accuracy
using the data that is shown in the right. The data shown in (a) is of a higher quality at the start of the pregnancy period (i.e.
more uniformly sampled, less sparse).

3rd or 4th time. The overwhelming majority of the subjects
have received at least college degree, which together with a
median household income of 2811 − 4200 US$ per month
indicates their relatively high social-economical status. The
weight data were collected weekly in home as well as on
regular visits to the hospital. The in-hospital weight data was
highly correlated with the in-home collected data, indicating
that the in-home measured data were reliable for further
analysis.

Additional meta-data such as age, height and pre-
pregnancy weight were also collected for both the datasets.
The participants provided an informed consent pre-data col-
lection and the study was approved by the Internal Ethics
Committee for Biomedical Experiments of the involved or-
ganizations (ICBE Reference number 2015-0079 and 2017-
0189 for DE and DC respectively).

TABLE 2: Dataset description for data from different geogra-
phies

Dataset
Attribute

DE (80 Subjects)
Mean ± Std

DC (153 Subjects)
Mean ± Std

Age (years) 31± 3.5 32.1± 3.5
Height (meters) 1.69± 0.07 1.64± 0.05

Pre-pregnancy weight (kgs) 69± 15 57.9± 9.7
Pre-pregnancy BMI (kgs/m2) 24± 4 21.4± 3.2

Delivery (days) 277± 10 273.2± 12.2
Weight Gained (kgs) 13.7± 4.7 14.1± 4.3
Number of recorded
weight gain samples 59.83± 41.02 17.2± 7.3

It is important to note that DC is more sparse than DE
in time. The maximum number of samples for an individual
present in DC is 37 and in DE this is 230. This is one of the
reasons why modelling such a data is difficult. The data in
DC shows less variability among individual subjects in terms

of pre-pregnancy BMI class (Table 2).
Table 3 shows the data distribution in our sample dataset

pre and post-pregnancy for under, within and over guidelines.
Interestingly, our sample dataset’s distribution is close to that
in [1], which is obtained from a large population of more
than a million women, with almost half of the women gaining
above the recommended guidelines. This further strengthens
the need for this study.

TABLE 3: End of pregnancy weight class with respect to
IOM guidelines for both datasets (represented as DE(DC))

Pre-pregnancy
BMI class #Sub Distribution post-pregnancy

Underweight Normal Overweight
Underweight 3 (23) 1 (5) 2 (13) 0 (5)

Normal 45 (110) 11 (15) 15 (50) 19 (45)
Overweight 32 (20) 4 (3) 8 (5) 20 (12)

80 (153) subjects 16 (23) 25 (68) 39 (62)
(Class %) 20% (15.1%) 31.2% (44.4%) 48.8% (40.5%)

IV. METHODS
Notation. We are given a population of N − 1 sub-
jects that, by means of self-reporting tools, acquired N −
1 time series of gestational weight gain measurements
as X = {(x1,y1), · · · -(xN−1,yN−1)}, where xi =
[ti1, t

i
2, t

i
3, · · · , timi

] represents the input gestational days up
to delivery day timi

and yi = [yi1, y
i
2, y

i
3, · · · , yimi

] represents
the output weight gain for ith subject, where yik = y(tik). It
is important to note here that ti1 does not necessarily equal
tj1, i, j ∈ {1, 2, · · · , N − 1}. This is because each subject
acquires measurements at different times according to their
personal preferences and adherence to data collection.

Additionally, we are given individual weight measure-
ments from test subject’s (N th subject) initial t+d days of
pregnancy data, D = {(t+1 , y

+
1 ), (t+2 , y

+
2 ), · · · , (t+d , y

+
d )}.
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We call this the personal-training data. Weight gain data
from N − 1 training subjects over entire gestational period
is called the public-training data.

The objective is to try to learn function(s) f from given
public and individual training data, such that,

y+
i = f(t+i ) + εi (1)

where εi ∼ N (0, σ2) is independent and identically dis-
tributed (i.i.d) according to a Gaussian.

Our parametric approach learns parameters’ information
a-priori from the public-training data. We then use this gener-
ated prior-knowledge along with the personal-training data to
build personalised models and learn f . The individual weight
gain in future at delivery time t+m is forecasted using the
learned model f and y+

m = y(t+m) ≈ f(t+m).
Firstly, before we discuss the parametric regression, we

introduce a pre-processing technique for transformation of
input data using IOM guidelines.

A. TRANSFORMATION USING IOM GUIDELINES
We subtract the pre-pregnancy weight to calculate the weight
gain data. After using pre-pregnancy weight to standardize
the data, we propose to transform the obtained weight gain
data by introducing a non-linear trend controlled by a sub-
ject’s pre-pregnancy BMI. This trend is based on the pre-
pregnancy-BMI classes and their respective expected rate of
weight gains in accordance with IOM guidelines. Lower and
upper guidelines are obtained using linear interpolation based
on the total weight gain and the rate of weight gain that
are suggested by the IOM guidelines (Table 1). For the ith

subject with pre-pregnancy BMI class bmii at time tk, this
means that the following extrapolation is proposed.

Lbmi(tk) =



(
∆min ∗ tk

90

)
0 ≤ tk ≤ 90,

∆min+

(
(αbmii

min −∆min)∗(tk−90)
tmax−90

)
90 ≤ tk ≤ tmax

(2)

Ubmi(tk) =



(
∆max ∗ tk

90

)
0 ≤ tk ≤ 90,

∆max+

(
(αbmii

max−∆max)∗(tk−90)
tmax−90

)
90 ≤ tk ≤ tmax

(3)

ρbmi(tk) =
Ubmii(tk)− Lbmii(tk)

2
(4)

where bmii = {‘underweight’,‘normal’,‘overweight’,‘obese’}
is calculated using pre-pregnancy BMI, ∆min = 0.5 kgs,
∆max = 2 kgs are the first trimester (90 days) minimum
and maximum gains respectively according to the guidelines
(Table 1). αbmimin and αbmimax are the minimum and maximum
allowed weight gains during second and third trimester in
IOM guidelines (Table 1). For example, for bmi = ‘under-
weight’ class, αunderweightmin = 12.7, αunderweightmax = 18.14.
Assuming tmax = 280 days as the day of delivery, Fig. 3
show the guidelines and ρbmi for different BMI classes fol-
lowing eqn. (2), (3) and (4) respectively. The transform and
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FIGURE 3: Transforming the weight gain data using extrap-
olated guidelines based on different BMI classes

inverse-transform weight-gain operation can be performed
respectively using eqn. (4) as follows:-

ytransform(tik) = y(tik)× ρbmi(tik) (5)

ydetransform(tik) =
ytransform(tik)

ρbmi(tik)
(6)

It should be noted that we are introducing a non-linear trend
in our pre-processing approach by multiplication with ρ(t)
instead of standard division based normalisation. As Fig.
3a and Table 1 suggests, an underweight woman is allowed
a larger weight-gain bandwidth than an obese woman. We
multiply the original weight gain data with this bandwidth
factor ρ calculated based on pre-pregnancy BMI class that
allows an underweight woman to have a wider window of
weight gain than an obese woman (Fig. 3b ). Such scaling
ensures that the data across different subjects and BMIs are
closer to each other in transformed space for a better fit. Fig.
4 shows how original and transformed data scale across each
BMI class among all the subjects in dataset DE .

B. REGRESSION
We can fit a pth-order polynomial with f = w0 + w1t +
w2t

2+· · ·+wptp in eq. (1) and estimate the coefficients w =
[w0, w1, · · · , wp]T by maximizing the likelihood (L) over an
individual’s personal-training data D, L(w) = P (D|w),

ŵMLE = argmax
w

P (D|w) =
d∏
i=1

p(y+
i |t

+
i ;w) (7)

Eq. (7) refers to the model learnt from the individual’s
sparse limited observations up to given td days. Next,
we exploit the public-training data and find the maximum
likelihood point estimates (MLE) of ŵi for each individ-
ual time series in the public-training data following eq.
(7). If we assume gaussianity over the distribution of w
such that w ∼ N (µŵ,Σŵ), we can find a closed-form
solution of maximum-a-posterior (MAP), wMAP analyti-
cally. Here, µŵ = mean([ŵ1, ŵ2, · · · , ŵN−1]T ), Σŵ =
cov([ŵ1, ŵ2, · · · , ŵN−1]T ) are mean and covariances of
the polynomial coefficients ŵ1, ŵ2, · · · , ŵN−1 that are
each obtained using the individual gestational weight gain
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FIGURE 4: Pre-pregnancy based BMI class based transfor-
mation of subjects’ weight gain from dataset DE .

data from each of the N − 1 subjects in the public-training
data. This distribution over the MLE estimates of the coef-
ficients, p(w) is acquired from the N − 1 subjects in the
public-training data as an a-priori estimate. The likelihood
learnt from the self-training data and the a-priori distribution
learnt from the population data are then combined using
bayes theorem to calculate the maximum-a-posteriori (MAP)
estimate of the coefficients p(w|D).

ŵMAP = argmax
w

p(w|D) = argmax
w

P (D|w)p(w)

P (D)
(8)

We can ignore P (D) in eqn. (8) as it doesn’t depend on w.
The forecast at time t+m is given by ŵMAP [t+m t

+
m

2 · · · t+m
p
]T .

C. CLASSIFICATION USING GUIDELINES
We further extend the prediction results for better interpre-
tation by classifying the predicted weight gain into three
classes, ‘underweight’, ‘normal’, and ‘overweight’ repre-
sented as integer values ‘-1’, ‘0’ and ‘1’ respectively. For
this purpose, we compare the predicted weight gain with
the recommended weight-gain guidelines at the delivery day
td to get the 3-class classification output. Following eq. (2)
and (3), classification function c(ti, yi(ti)) for ith subject is
defined as a function of time ti and weight gain value yi(ti):

c(ti, yi(ti)) =


− 1 yi(ti) < Lbmii(t

i),
0 Lbmii(t

i) ≤ yi(ti) < Ubmii(t
i),

1 Ubmii(t
i) ≤ yi(ti)

(9)

V. EXPERIMENTS
We experiment with 1st to 5th order to fit our weight-gain
data. We empirically chose a third order polynomial as it
obtains the minimum prediction error among all other orders
in cross-validation. However, with transformation based pre-
processing, we choose order 2 for modelling ytransformed as
the transformation itself adds to the non-linearity by order 1.

A. STATE-OF-THE-ART
ARIMA. This is a time series forecasting approach [19]
that exploits correlations in historical data. Forecasting using
ARIMA methods requires uniformly spaced samples of the
time series. We introduce uniformity in personal training
data by linear interpolation between samples. We fit an
ARIMA(p,d,q) model by i) enforcing equi-spaced sampling
by linear interpolation, ii) performing a grid search over
the hyperparameters [23] to find an optimal autoregressive
order, degree of differencing, and moving average order,
iii) forecasting multi-steps ahead in time to find the end-
of-pregnancy gestational weight gain using the optimised
hyperparameters over the training part (GWG data until day
td).

LSTM. We evaluate LSTM based regression network with
200 hidden units by training them to minimise the mean
absolute error using the ‘adam’ optimization method [24].

MLE. We also tested a polynomial fitting approach fol-
lowing maximum likelihood estimation (MLE) with different
order polynomials. Order 2 produces best results (among the
orders 1 to 5).

B. EVALUATION METRIC
The performance of regression was computed using Mean
Absolute Error (MAE),

MAE =
1

N

N∑
i=1

|y(timi
)− ypred(timi

)|

We use accuracy acc as the desired metric for evaluating
classification performance defined using eq. (9) as

acc =
1

N

N∑
i=1

I

(
c
(
timi

, yipred(t
i
mi

)
)

= c
(
timi

, yi(timi
)
))

=
#correct predictions in recommended guidelines

#total subjects
(10)

where I is the indicator function such that I(A) = 1, if
event A occurs and 0 otherwise and timi

is the delivery day
for ith subject. Accuracy acc at a time tj is the accuracy
(averaged over N users) calculated using eq. (10) when
personal-training data for the ith subject is considered to be
available only until the day tj . Next, we calculate the normal-
ized area under the accuracy curve (AuAC) to evaluate the
performance of a given approach with respect to the available
training data between days T0 to T1 as

AuACT1−T0
=

∫ T1

T0
acc(t) dt∫ T1

T0
1 dt

=

∫ T1

T0
acc(t) dt

T1 − T0
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We omit T0 from the notationAuACT1−T0
and useAuACT1

to denote AuAC until day T1 for simplicity as T0 = 120
is fixed in our analysis. This is because atleast one subject
exists with no recorded weight gain measurement before day
120. Fig. 5 shows two exemplary curves A and B with B
being better at early prediction than A, hence AuACB160 >
AuACA160.

150 200 250 300
Time

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

AuACB160

AuACA160

A
B

FIGURE 5:AuAC for two exemplary accuracy curves A and
B. The higher the accuracy with respect to time, the higher
the AuAC.

VI. RESULTS
We evaluate the performance of the described approaches
in terms of MAE and accuracy of the predicted weight
gain (class) against the actual end-of-pregnancy weight gain
(class). In order to validate the performance, we perform
leave-one-subject-out cross validation, where training dataset
in each iteration consists of public-training data (weight-gain
from N −1 subjects) and personal-training data from the test
subject as defined in section IV. We experiment by varying
the amount of available personal-training data until a certain
day in pregnancy and perform cross-validation to evaluate
the performance of different approaches against training data
availability. We also present performance measures for early
prediction by taking day ‘140’ as the early threshold as it is
mid-way through the pregnancy. Finally, we study the effects
of transferring model learnt from one geographic region to
infer the data from subjects in another geographic region.

A. WEIGHT GAIN TREND VISUALISATION
We predict the trend of weight gain on both the datasets DE
and DC and present in Fig. 6 how such a prediction looks
like with limited training data. Fig. 6 shows the personal-
training data up to 140 days into the pregnancy and the best
and worst prediction results in terms of mean absolute error
alongside the actual weight gain measurements during the
later stages of pregnancy using the proposed approach with

transformation. Since we are concerned about the end-of-
pregnancy weight gain, we calculate the MAE right before
the delivery date between actual and predicted weight gain
while also show the predicted trend of weight gain for these
subjects. The errors in prediction for the (best, worst) cases
among the DE and DC are (0.93, 9.24) and (0.03, 11.42)
kgs respectively. One can see that in Fig. 6(c) and (d), there
is only single training observation before day 140. In Table
4 the confusion matrix for predicting different classes ac-
cording to recommended guidelines on the both the datasets
with training data until day 140. Also, Table 4(c) shows the
confusion matrix based on model learnt from datasetDE and
tested on DC .

100 150 200 250

Gestational Age [days]

78
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86

90

W
ei

gh
t[

kg
s]

100 150 200 250
78

82

86

90

Guidelines
Personal training Data

Ground Truth
Predicted (proposed)

100 150 200 250

55
60
65
70
75

100 150 200 250
60

65

70

75

80

(a) (b)

(c) (d)

FIGURE 6: Proposed approach with transformation (PT ) to
forecast weight gain with best (a), (c) and worst (b), (d) pre-
dictions with the actual weight gain data and recommended
guidelines with number of training days = 140 on dataset
DE (a), (b) and DC (c), (d).

TABLE 4: Confusion matrices for classification of end-of-
pregnancy weight gain (underweight(u), normal(n) and over-
weight(o)) based on personal-training data up to only 140
days into the pregnancy using proposed method (PT ) in (a)
LOOCV for dataset DE , (b) LOOCV for dataset DC and (c)
transferring model learn on dataset DE to dataset DC .

DE DC fDE
→ fDC

Pred Pred Pred
u n o u n o u n o

True
u 8 6 2

True
u 1 22 0

True
u 14 8 0

n 4 15 6 n 0 49 19 n 7 48 10
o 1 7 31 o 1 23 38 o 3 26 31

(a) (b) (c)

Next, we perform LOOCV over all the subjects in each
of the dataset by varying the availability of personal-training
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data before a given day in gestational age and calculate the
performance averaged over all the subjects.

B. COMPARISON WITH STATE-OF-THE-ART
To compare the performance of the proposed approach with
the state-of-the-art methods, we study Mean absolute error
(MAE) and accuracy (acc) against different amount of avail-
able personal-data. Fig. 7 shows that our proposed method
outperforms the state-of-the-art approach in early detection
(until day 160). All the improvements of the proposed
method PT are statistically significant based on a paired t-
test with equal variances and p < 0.05 on both the datasets
DC and DE compared to state-of-the-art.

Furthermore, ARIMA models’ results are statistically in-
significant as compared to proposed method for available
training data from day 170 to 210 for both the datasets.
Additionally, from Fig. 7, it can be observed that the MAE
reduces and accuracy increases with increasing availability
of personal-data. Paired t-test with equal variances suggest
that these improvements are statistically significant only for
datasetDE when sufficient training data is available (day 190
onwards) and is never statistically significant for DC .

Next, in addition to accuracy we try to quantify the per-
formance of all the approaches against different availability
of training data using a single metric by calculating AuAC
between day 120 to day 140. These values for different
methods are presented in Table 5. Also, the accuracy score
with training data until day ‘140’ reported in Table 5 suggests
an improvement of around 25.9% and 31.1% over the best of
state-of-the-art for datasets DE and DC respectively.

TABLE 5: MAE(t140)‡, AuAC†140 and acc(t140)† for pro-
posed technique v/s state-of-the-art (Best values in bold,
‡Lower is better, † Higher is better).

Method Proposed State-of-the-art
PT P ARIMA LSTM MLE

Dataset DE DC DE DC DE DC DE DC DE DC

MAE(t140)‡ 2.45 2.60 2.82 2.57 16.22 6.60 12.10 16.01 8.17 54.76
AuAC†

140 0.65 0.53 0.59 0.56 0.43 0.33 0.43 0.22 0.51 0.32
acc(t140)† 0.68 0.59 0.61 0.46 0.51 0.45 0.43 0.35 0.54 0.41

C. EFFECT OF MODEL TRANSFER BETWEEN
DATASETS
We test the proposed approach in two settings to test the
model transfer as follows, i) we train the MAP model on DE
and test the model learnt on DC , ii) we perform leave-one-
out cross validation (LOOCV) onDC . Fig. 8 shows the com-
parison of model transfer with or without the transformation
based processing step.It can be observed in Fig. 8 that accu-
racy of model transfer based on PT is greater than LOOCV
until day 160 i.e in early prediction. However, accuracy of
the proposed MAP approach without the transformation is
almost always better with model transfer.

VII. DISCUSSION
Predicting weight gain reliably in pregnant women as early
as possible is at the heart of this study. In this study, we

experiment by first collecting weight-gain datasets in two dif-
ferent geographies and building prediction models that utilise
prior information generated from public-training dataset to
tune the personal-model for accurate estimation of the end-
of-pregnancy weight gain. The total percentage of the most
represented class post-pregnancy is set as a baseline for
comparing prediction accuracy. According to Table 3, this
baseline is 0.49 for DE and 0.44 for DC marked in Fig. 7.

With limited amount of available personal-training data for
prediction of weight gain, our MAP based bayesian approach
forms an a-priori estimate of model coefficients based on
public-training data model coefficients. This addition of prior
in the model also acts as a type of regularization. This results
in high performance gains in early prediction of around
25.9% and 31.1% over the best of state-of-the-art for datasets
DE and DC respectively. Additionally, including the trans-
formation based processing step improves the performance
further (Table 5). This is because our transformation step
introduces a non-linearity in time based on pre-pregnancy
BMI that scales each subject’s raw weight gain data with
respect to the allowed rate of weight gain thus scaling each
time series to similar range. Also, the polynomial fit for
transformed time-series is done with one lower order (p = 2)
than the ordinary MAP fit (p = 3) which improves the
generalization ability of the fit. It is evident from Fig. 6(b),
the worst result occurs when the person’s weight gain trend is
different from any of the available subjects in public-training
data and the personal-training data (until day 140) is also
insufficient to capture this trend. We think that there are
two ways in which this can be addressed 1) increasing the
amount of personal-training data and/or 2) increasing the size
of public-training data by adding more subjects that reduces
the variance of the model. Fig. 6(c) and (d) show the best and
worst result on datasetDC . It can be observed that in both the
cases only a single personal-training observation is present
before day 140 with it being present close to test data in time
in the best case (Fig. 6(c)) and being further away in time
to the forecast horizon in the worst case (Fig. 6(d)). One can
infer that the points close in time to the forecast horizon have
more importance in reliable prediction than the ones farther
away in time.

Table 4(a) and (b) suggest that most of the prediction errors
are to the neighbouring classes. The accuracy is lowest for
the underweight class as it is the most under-represented
class (Table 3) in our dataset. Fig. 7a,c and Fig. 7b,d show
the mean absolute error in prediction and the accuracy for
different datasets averaged over all the subjects. Fig. 7 shows
that the prediction error reduces and accuracy improves as
the personal-training data availability increases.

Although at a glance at Fig. 7(a), it might look like
ARIMA’s MAE for dataset DC is less than proposed PT
when training data is available as early as day 170. However,
as described in subsection VI-B the low mean absolute error
is statistically insignificant as compared to PT until day 210.
As more personal-training data is available by day 210 for
datasetDC and by day 240 for datasetDE , the personal mod-
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FIGURE 7: Peformance scores (mean absolute error and accuracy) for the proposed approach with respect to state-of-the-art
on DE and DC . A single (abscissa, ordinate) pair in the figure represent the performance score (ordinate) averaged over all the
subjects with respect to availability of training data until a certain day (abscissa). MAE reduces (a,c) and accuracy increases
(b,d) as availability of training data increases. Majority label percentage in respective datasets is taken as the accuracy baseline.

els based on ARIMA tend to become more accurate than the
proposed approach. Although, this could be of importance
in problems with low forecast-horizon, but in cases where
early forecast is needed such as ours, proposed approach
outperforms ARIMA.

LSTM based deep learning approaches train well when
lots of training data is available. In our case, this availabil-
ity of personal-training data is not present because of two
reasons i) the data is sampled irregularly and has a very low
sampling frequency and ii) early intervention requires using
as little personal-training data as possible. We believe that
even when more subjects participate, our approach will scale
better than LSTM based approach because of the aforemen-

tioned reasons.

Fig. 8 shows that model ‘Transfer’ works better than
‘LOOCV’ irrespective of pre-processing. Table 4(c) shows
that there is a huge improvevment in predicting the class
“underweight” with this model transfer without compro-
mising the performance of other classes. The dataset DE
exhibits more variability in terms of capturing weight-gain
trend among different BMI classes with pre-pregnancy BMI
ranging from 20 to 28 kg/m2. This might be one of the
causes that model trained on this dataset generalizes well on
DC .

Our proposed bayesian approach with pre-processing has
a prediction MAE of only 2.45 kgs (DE) and 2.82 kgs (DC)
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FIGURE 8: Prediction accuracy comparison of model trained
on DE and tested on DC . Accuracy with model transfer is
greater than accuracy with LOOCV in early prediction.

and a classification accuracy of 67.5% (DE) and 58.9%
(DC) at day ‘140’(mid way through the pregnancy) for early
intervention as compared to state-of-the-art approaches, best
of which has an MAE of 8.17 (DE) and 6.60 kgs (DC)
and an accuracy up to 53.8% (DE) and 44.8% (DC). Fig. 7
shows that our approach predicts better than the state-of-the-
art when training from data using 120-240 days, and predicts
close to state-of-the-art during the very last few days of the
pregnancy. AuAC140 can be thought of as an early inter-
vention score that measures how accurate the classification
performance is with varying amount of training data from
day 120 until day 140. In other words, the early prediction
performance of our technique with transformation has an
AuAC140 of 0.65 (DE) and 0.53 (DC). Another key step in
this work was to apply model transfer to test the generalisa-
tion capability of the model between two different geographic
regions that further improves the prediction capability on the
sparser dataset DC .

VIII. CONCLUSION
In this study, we propose an efficient early-weight gain pre-
diction system in pregnant women. We validate and show the
efficacy of our proposed approach over this unique dataset
from two diverse geographical regions. Our approach utilises
the power of combining a-priori information learnt from the
public-training data and tunes the parameters of personal
training data based on this prior information. Additionally,
we incorporate a pre-processing step to scale our data us-
ing meta-data such as pre-pregnancy weight and BMI to
achieve additional boost in our performance. Our results
show the reliable estimation of end-of-pregnancy weight gain
that can help to provide proper interventions by pre-natal
care providers and to reduce risks of adverse maternal and
neonatal effects of excessive or inadequate GWG.
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