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Abstract—The recognition of human physical activities and pos-
tures based on sensor data has received much research attention
in several human health and biomedical engineering applications.
In this study, the challenges of class-imbalance and ambiguity
(or confusion) are discussed that frequently arise in data from
human activity recognition (HAR) systems. In order to reduce the
influence of imbalance and ambiguity in HAR problems, a novel
hybrid localised learning approach of K-nearest neighbours least-
squares support vector machine (KNN-LS-SVM) is proposed. The
classifier is applied to different synthetic and real-world datasets
where imbalance and ambiguity are present. In this study, it
is novel to apply a hybrid localised learning algorithm to the
HAR problem. When compared to different global and local
approaches, higher classification performances could be obtained
by using the proposed localised learning approach. Furthermore,
the computational effort could be reduced in an online learning
mode.

Keywords—local learning, class-imbalance, ambiguity, K-nearest
neighbours algorithm, least-squares support vector machine.

I. INTRODUCTION

Recognising human physical activities automatically via
soft computing techniques is at the core of human activity
recognition (HAR) studies. Human physical activities can be
recognised by using computer vision techniques through the
analysis of images and videos or by exploring sensory data
that are obtained by wearable or portable sensors [1]. The
importance of HAR systems is illustrated by the various
amount of applications where they are used, e.g. medical
monitoring [2], healthcare [3], military training, and sports [4].
Moreover, the use of HAR algorithms is enhanced by rapid
advancements in sensor technology that enable to monitor
people in their daily environments, e.g. by using smart-phones
[5] or wearables [6]. In this study, we will focus on the problem
of activity classification based on accelerometer data acquired
through an inertial sensor-based HAR system.

For most of the real-world problems (e.g., HAR), data is not
evenly distributed in the input space [7] which is a challenge to
global learning algorithms in general (e.g., SVM, conventional
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and deep neural networks). In particular, we will discuss the
problems of class-imbalance and ambiguity that frequently
arise in data obtained from HAR systems and how they
can influence the performance of a classifier. Class-imbalance
occurs when instances from some activities are outnumbered
by others. In case of extreme imbalance, the problem of rare
events occurs (e.g. the detection of falls among several daily
activities [8]). Ambiguity or confusion occurs when an activity
is not clearly distinguishable from another one (e.g. eating
might be confused with brushing teeth due to arm motion [9]).
From input space perspective, ambiguity (confusion) could be
a result of the overlap between the different classes or due
to a highly nonlinear decision boundary between two closely
spaced classes.

In order to reduce the influence of these problems (i.e. class-
imbalance and ambiguity) on HAR systems, we introduce a
localised learning approach. This approach is leading to a
novel hybrid algorithm which is obtained from integrating the
K-nearest neighbours (KNN) algorithm into a least-squares
support vector machine (LS-SVM) algorithm, namely KNN-
LS-SVM. In this approach, a classification model is built for
each test example using only the training examples located in
the vicinity of the test example. This novel localised approach
of an LS-SVM algorithm is then applied to HAR problems.
Which is the first time to apply a hybrid localised learning
algorithm to the HAR problem.

In addition to handling the problems of class imbalance
and ambiguity, we will show that the proposed kNN-LS-
SVM has other advantages as well. These advantages include
simplicity of implementation that can lead to a computational
advantage compared to other classifiers (e.g., deep learning
neural networks). Moreover it can deal with non-linearity due
to the use of the LS-SVM method as opposed to a standard
kNN. Our results indicate that the KNN-LS-SVM can be a
suitable approach for the HAR application especially when
applied to online problems and streaming analytics for which
the data size is continuously increasing.

This article is structured as follows. In Section 2, an
overview of related work on classification techniques for HAR
systems and local learning is given. Section 3, gives a gentle
introduction to LS-SVM and KNN-LS-SVM. Performances of
LS-SVM and KNN-LS-SVM are compared in Section 4 using
synthetic datasets. In Section 5, KNN-LS-SVM, as well as
various global and local classifiers, are applied to four real-
world datasets and their performances are compared to those of
a benchmark study of a deep-learning approach. The obtained
results are discussed in section 6. Finally, a conclusion is
presented in Sections 7.
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II. RELATED WORK

In this section, the state-of-the-art of the HAR problem
and localised learning algorithms is introduced. Moreover, the
benchmark study is briefly introduced.

A. State-of-the-art
A variety of classification algorithms have been applied

to the problem of HAR, such as decision trees [10], [11],
Naı̈ve Bayes [10], Bayesian Networks [4], KNN [10], [11],
convolutional neural networks [12], support vector machines
(SVMs) [13], [3], and hidden Markov models (HMMs) [14].
Furthermore, deep learning approaches have recently gained
much research attention [15], [16] and have been applied for
HAR using low-power wearable devices [17], [18]. Moreover,
transfer learning applied to deep neural networks for HAR
application has recently received some attention in order to
transfer models between different subjects. This approach is
presented by Renjie et al. in their study [19] by applying
the maximum mean discrepancy (MMD) algorithm to a two-
layer convolutional neural network. However uncontrolled
environment and online application of such an approach is still
a challenge. Developing HAR models to be compatible with
wearable systems is an important approach that is introduced
by Cheng et al. in their work [20] namely InnoHAR model.
This model is developed by concatenating convolution kernels
of different scales and splicing with max-pooling layers. An
important challenge that they are willing to tackle in their
future work is class-imbalance in real-life human activities.
For the purpose of real-time online data stream processing of
HAR, the recent study by Amin et al. [21] developed a HAR
model based on visual sensory data. The developed model is
an optimised convolutional neural network (CNN) based model
in which, deep features are extracted via a pre-trained CNN.
The extracted features are fed to a deep Autoencoder (DAE)
to learn the temporal behaviour of the signal and finally, the
classification is done via a quadratic SVM.

From the literature review, there are some challenges that
need to be handled. These challenges are class-imbalance [20],
and applicability to real-world online modelling [19]. These
challenges are motivating us to introduce a machine learning
approach that can provide a high error performance regardless
of the balance degree between the available instances of differ-
ent activities. In addition, a low computational and temporal
cost are desired in order to be suitable for its application in an
online mode. Ultimately, we aim at introducing an approach
that is compatible with streaming data analysis in which the
modelling complexity is not affected by the continuously
increasing size of the dataset.

Localised learning algorithms have been limited studied for
HAR problems. A general framework for local learning was
introduced in [22], where it was demonstrated that a localised
approach might be very efficient to deal with the problems
of imbalance and ambiguity. Among the most common local
learning approaches are KNN algorithms which have been
studied intensively in the context of HAR problems, e.g. [6],
[23]. Zhang et al. [24] introduced a KNN-SVM algorithm that
combined a KNN with an SVM for a visual object recognition

problem. In [25] a more integrated framework, called localised
support vector machine (LSVM), was introduced, which in-
corporates the neighbourhood information directly into SVM
learning. The use of such localised approaches of SVMs,
however, has not yet been studied in the context of HAR
problems, nor its influence on the classification performance
when imbalance or ambiguity is present.

The design of the localised hybrid algorithm KNN-LS-SVM
aims to reduce the influence of imbalance and ambiguity
in HAR problems. The choice of an LS-SVM classifier to
be localised rather than a standard SVM is inspired by its
computational advantage of solving a set of linear equations
instead of solving the quadratic programming problem of
standard SVM [26]. Moreover, an LS-SVM is considered as a
very efficient global machine learning technique in many fields
[27]. Based on synthetic and real-world data, the difference in
performance between a KNN-LS-SVM and its alternative LS-
SVM is illustrated for different degrees of class-imbalance and
ambiguity.

B. Benchmark Study
In their study [18], Ravi et al. developed their model

based on extracting shallow features in addition to deep learnt
features via a CNN for HAR. The raw data from 3-axes
accelerometer are segmented into time-windows with specific
widths. From the extracted segments, deep learnt features and
shallow features are extracted in parallel. Deep learnt features
are extracted from the spectrogram of the segmented signal
via the temporal convolutional layer. All extracted features,
deep learnt and shallow features, are combined and fed to a
fully connected layer whose output is propagated to the soft-
max layer to be classified. The proposed approach in [18]
outperformed other deep learning and ensemble approaches
(MLP, J48 and logistic regression) [17], [28], [29] when
applied to a set of published datasets [30], [31], [32], [33].
Because of its high performance and recency, the approach of
[18] will be the benchmark of our study.

III. LOCAL LEARNING OF SVMS

In this section, we start by reviewing the main concepts
behind SVMs and localised approaches for SVMs. We will
proceed by introducing our hybrid KNN-LS-SVM algorithm.

A. Support vector machines
SVMs are originally presented as binary classifiers, that as-

sign each data instance x ∈ Rd to one of two classes described
by a class label y ∈ {−1, 1} based on the decision boundary
that maximises the margin 2/||w||2 between the two classes as
shown in Figure 1 [34]. Generally, a feature map φ : Rd 7→ Rp
is used to transform the geometric boundary between the two
classes to a linear boundary L : wTφ(x) + b = 0 in feature
space, for some weight vector w ∈ Rp×1 and b ∈ R. The class
of each instance can then be found by y = sgn (w>φ(x) + b),
where sgn refers to the sign function.

The estimation of the boundary L is performed based on a
set of training examples xi (1 ≤ i ≤ N ) with corresponding
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Fig. 1: Schematic representation of a two dimensional dataset
consisting of two linearly separable classes. The dotted lines
indicate the boundaries where the margin is maximised.

class labels yi ∈ {−1, 1}. An optimal boundary is found by
maximising the margin that is defined as the smallest distances
between L and any of the training instances. In particular, one
is interested in constants w and b that minimise a loss-function:

min
w, b; ξ

1

2
w>w+ C

N∑
i=1

ξi, (1)

and are subject to:

yi(w
>φ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N.

The constant C in (1) denotes the penalty term that is used
to penalise missclassification through the slack variables ξi in
the opimisation process.

The so-called kernel-trick avoids the explicit introduction of
a feature map φ and implicitly allows to use feature spaces of
infinite dimensionality. A commonly used kernel is given by
the Gaussian kernel:

k(xi,xj) = exp

(
||xi − xj ||2

2σ2
0

)
,

where σ0 denotes the kernel bandwidth. Both σ0 and C
can be optimised as hyper-parameters in a cross-validation
experiment.

LS-SVMs are obtained by using a least-squares error loss
function [26]:

min
w, b; e

1

2
w>w+

1

2
γ

N∑
i=1

ei
2, (2)

such that

yi(w
>φ(xi) + b) = 1− ei, i = 1, 2, ..., N.

This optimisation procedure introduces errors ei such that 1−
ei is proportional to the signed distance of xi from the decision
boundary. In fact, the non-negative slack variable constraint is
removed and the solution of the optimisation problem can be
obtained by a set of linear equations, reducing computational
effort [26].

B. localised LS-SVMs and KNN-LS-SVMs
In many HAR problems data are not evenly distributed in the

input space. The presence of underrepresented data and severe
class distribution skews affects the performance of learning
algorithms that underly the HAR system [35]. Furthermore,
the quality of a classifier further decreases when patterns are
ambiguous, i.e., when they are not clearly belonging to one
class or the other (i.e., ambiguity). Local learning approaches
try to overcome such problems by building models that fit the
data in the local neighbourhood around a test example and by
locally adjusting to the properties of the data [22].

A well-known example of a local learning method is given
by the KNN algorithm [36]. While nearest neighbours classi-
fiers are very natural local learning methods, they suffer from
the problem of high variance in the case of limited sampling.
The use of a localised SVM can overcome such disadvantage
as they often perform better than other classification methods
in the neighbourhood consisting of a small number of examples
(k << N ) [24].

Furthermore, the complexity of global SVMs rapidly grows
as the size of training instances increases. Besides, deter-
mining the right hyperparameters (kernel width and penalty
term) of these models in a cross-validation experiment is
computationally expensive. Local SVMs attempt to overcome
these disadvantages by building small SVM models based
on data in the local neighbourhood around a test example.
This computational advantage is of particular importance in
an online learning mode where one is interested to cheaply
update the HAR model with the additional knowledge of a
new data point. When using a global model, the model has to
be recomputed from scratch, while for a local model only the
training instances in the vicinity of the test examples matter.

While global SVMs consider the same weight for all train-
ing instances in the optimisation process (2), local learning
approaches allow that the training samples near a test point
are more influential than others. localised approaches of SVMs
[25], [37] are based on weighting functions λ(xs,xi) that
express the similarity between the features vectors of the i-
th data point xi and a test instance xs. For an LS-SVM, this
leads to the following cost function:

min
w, b; e

1

2
w>w +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i , (3)

such that

yi(w
>φ(xi) + b) = 1− ei, i = 1, 2, ..., N.

Weighted least-squares support vector machines [38] use a
similar approach, but here a different weighting function can
be used for any given test point xs. In [37] the use of
continuous similarity functions were studied including the
Gaussian similarity criterion given by:

λ(xs,xi) = exp

(
−||φ(xs)− φ(xi)||22

h2

)
,

where ||.||2 denotes the Euclidean norm and h denotes a
bandwidth parameter to be tuned. In this work we will study
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a binary valued similarity criterion:

λ(xs,xi) =

{
1 if ||φ(xs)− φ(xi)||2 ≤ rs

0 otherwise,

where rs is the K-th smallest distance among {||φ(xs) −
φ(xj)||; 1 ≤ j ≤ N}. This formulation leads to the hybrid
KNN-LS-SVM method that we will apply on HAR problems.
In particular a classification model is built for each test exam-
ple using only the training examples located in the vicinity of
the test example [39].

In contrast to the localised LS-SVM proposed in [37], a
KNN-LS-SVM has the additional advantage of sparseness.
Indeed, for an LS-SVM or the localised version that uses a
continuous similarity function all input data is required to
construct the separating hyperplane [38]. This can be seen by
solving the optimisation problem (2). Using the method of the
Lagrangian multipliers, we find:

L(w, b, e;α) = 1

2
‖w‖22 +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i−

N∑
i=1

αi(yi[w
>φ(xi) + b]− 1 + ei),

where αi are the Lagrangian multipliers. The optimality con-
ditions are found by setting the first order partial derivatives
to zero:

∂L
∂w

= 0⇒ w =
N∑
i=1

αiyiφ(xi),

∂L
∂b

= 0→
N∑
i=1

αiyi = 0,

∂L
∂e

= 0⇒ αi = γλ(xs,xi)ei,

∂L
∂α

= 0⇒ yi(w
>φ(xi)− b) = 1− ei,∀1 ≤ i ≤ N.

From the third condition, it is clear that the support values αi
are weighted by the similarity function and are zero when
λ(xs,xi) = 0. Thus, for a KNN-LS-SVM the sparseness
characteristic is returned to the LS-SVM. In an online learning
mode, this sparseness will result in a computational advantage
compared to LS-SVM, as we will show in Section V.
As shown in Figure 2, the algorithm of KNN-LS-SVM is
implemented as follows:

1) Given a test example xs, compute distances to all training
examples and pick the nearest K neighbours;

2) If all K neighbours would have the same label, assign
the same label to xs.

3) Else, train the LS-SVM model with the K nearest neigh-
bours.

4) Use the resulting classifier to label xs.
The parameter K and the distance metric (e.g. Euclidean,
Mahalanobis or Chebyshev) are additional hyperparameters
next to the kernel width σ0 and the penalty term γ that are
optimized in a cross validation approach.

Fig. 2: A flow chart illustrating the localised learning algorithm
of KNN-LS-SVM.

IV. SIMULATION EXPERIMENTS

The objective in this section is to present the problems of
class-imbalance and ambiguity, that frequently arise in HAR
problems, with controlled synthetic datasets. The generated
synthetic datasets are two dimensional in order to simplify
and visualise the problems which is not possible with high
dimensional real-world datasets.

In this section, the performance of our KNN-LS-SVM
method is compared with that of a global LS-SVM using
three synthetic datasets. Two challenges are presented where
global classifiers perform suboptimally: class-imbalance and
ambiguity (or confusion). This is the first time to illustrate
the problems of class-imbalance and ambiguity with synthetic
data in the context of localised learning. Results are presented
using the F1 score that is defined as the harmonic average of
precision and recall:

F1 = 2
precision · recall
precision+ recall

.

In a two-class setting, recall and precision are defined as
follows:

1) Recall is the ratio of instances that are correctly classified
as positive to all positive instances;

2) Precision is the ratio of the instances that are correctly
classified as positive to all instances classified as positive.

In case of multi-class setting, recall and precision are calcu-
lated based on one-vs-all approach (one class is positive and
all other classes are negative).

The training of a local learning model requires the training
of a local model for each individual test point. The selection
of the hyperparameters of these local models is based on a
cross-validation experiment where the accuracy (i.e. the ratio
of correctly classified instances) is maximised. Accuracy-based
model selection can handle the different distributions of the
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classes that can be present in a local region [32], [31]. In
contrast with the global learning algorithms where the F1-
score is recommended for hyperparameters selection in case
of class-imbalance, accuracy provides a balanced performance
to the local learning algorithms as the majority/minority ratios
changes in the local scale.

A. Class-imbalance
Learning from imbalanced data is still a focus of intense

research, treating the problem of skewed class-distributions
[40], [41]. It occurs when representatives of some classes
appear much more frequently which poses a difficulty for
learning algorithms, as they will be biased towards the majority
group. In this section we study the use of a local learning
method to deal with such imbalance.

A synthetic dataset is constructed consisting of data gen-
erated from two planar Gaussian distributions X+ and X−,
that respectively represent a positive and a negative class,
see Figure 3a. The distributions are centred at respectively
m+ = (12 ,

1
2 ) and m− = (− 1

2 ,−
1
2 ), with identical isotropic

covariance matrices Σ+ = Σ− = 0.35I2, where I2 denotes the
identity matrix in R2×2. Experiments were performed where
a number of N = 400 instances were simulated and the
percentage p+ of instances in the positive class X+ varied
in the range p+ ∈ {50%, 25%, 12.5%, 5, 2.5%, 1.25%} with
a number of instances {200, 100, 50, 20, 10, 5} respectively.
Both, an LS-SVM and a KNN-LS-SVM were trained with
a Gaussian kernel. The models depend on hyperparameters
(kernel width, penalty term and number of neighbours), the
value of which are estimated in a 10-fold cross-validation
experiment, where 80% of the simulated instances were used
for training and 20% for testing. Figure 4a shows the F1-
scores averaged over the folds as a function of the imbalance
percentage.

Clearly, the classifiers perform equally well when classes
are balanced. However when there is class-imbalance the
localised KNN-LS-SVM outperforms the global LS-SVM.
Furthermore, the difference in performance tends to increase
with an increasing degree of class-imbalance. At the per-
centages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25%, the use of
a KNN-LS-SVM results in a mean increasing difference in
F1-score of respectively 0.71%, 1.17%, 2.74%, 7.74%, 16.00%
and 19.68%. A statistical comparison of the F1 scores using
a paired t-test resulted in one-sided p-values: 0.4200, 0.4000,
0.2000, 0.0219, 0.0278, and 0.0276 respectively which show
that the differences corresponding to an imbalance percentage
at and above 5% were statistically significant with a signifi-
cance level of 0.05.

The performance in case of class-imbalance can be further
studied by changing the intra-class variance while fixing the
inter-class variance leading to overlapping classes as shown in
Figures 3b and 3c. Figures 4a, 4b, and 4c show respectively
the difference in F1-scores when Σ+ = 2Σ− = 0.70I2
(i.e., the variances of the positive class are as twice as
large than the variances of the negative class) and when
Σ+ = 1

2Σ− = 0.35I2 (i.e., the variances of the positive class
are as half as large than the variances of the negative class).

(a) (b)

(c)

Fig. 3: Two-dimensional datasets consisting of two classes
with data generated from Gaussian distributions X+ ∼
N(m+,Σ+) and X− ∼ N(m−,Σ−) with m+ = ( 12 ,

1
2 ),

m− = (− 1
2 ,−

1
2 ) and different covariance matrices: (a)

Σ+ = Σ− = 0.35I2, (b) Σ+ = 2Σ− = 0.70I2 and (c)
Σ+ = 1

2Σ− = 0.35I2.

Clearly, the overall performance of both classifier decreases,
when compared to the case where Σ+ = Σ−. The localised
method, however, still outperforms the global LS-SVM for
lower percentages p+. In case, Σ+ = 2Σ−, there is a differ-
ence in F1-score of −1.17%, 3.30%, 8.82%, 12.45%, 51.59%,
and 44.93% at the percentages 50%, 25%, 12.5%, 5%, 2.5%,
and 1.25% respectively. A paired t-test showed that the
differences were significant at the 0.05 level for imbalance
percentages above 25% (with one-sided p-values 0.1310,
0.1300, 0.0236, 0.0296, 0.0204, and 0.0495 at the percent-
ages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25% respectively).
In case, Σ+ = 1

2Σ−, the performance curves of both
classifiers remarkably decrease due to the overlap between
the two classes. However, the KNN-LS-SVM still out-
performs the LS-SVM with a difference in F1-score of
0.48%, 1.72%, 34.92%, 14.91%, 26.85%, and 40.00% at the
percentages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25% respec-
tively. The one-sided p-values of a paired t-test are 0.3500,
0.2445, 0.0034, 0.1498, 0.0160, and 0.0088 at the different
imbalance percentages respectively. Thus, only at imbalance
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percentages 12.5%, 2.5% and 1.25% a significant difference
at the 0.05 level was found. The significance is missed at the
imbalance percentage of 5%, however the outperformance of
the KNN-LS-SVM still present. Conclusively, the performance
of the classifiers is not only influenced by the class-distribution
imbalance but also by the intra-class variance and besides the
inter-class variance in the input space.

B. Ambiguity
Ambiguity (or confusion) arises when regions exist in data

space that are occupied by more than one class or when classes
are very closely spaced [42]. In such cases, a global classifier
will fit highly nonlinear boundaries that can become very
complex on input space. A local learning algorithm attempts to
locally adjust the complexity of the boundary to the properties
of the data in each area of the input space.

In this section, we will study a simulated experiment where
ambiguity occurs proportionally with the class-imbalance due
to the discontinuity of the different classes’ patterns and that
is inspired from a general representation of Bottou & Vapnik
[22], see Figure 5a. The data of 1000 instances is generated
by mapping two variables x1 and x2 that are distributed
according to a standard normal distribution N(0, 1) to an
univariate score z = sin(x1) ∗ sin(x2) + x1. By setting
specific ranges on the distribution of z different degrees
of imbalance can be achieved. Where the percentage p+
of instances in the positive class X+ varied in the range
p+ ∈ {50%, 33%, 20%, 10%, 5%, 2.5%, 1.25%} with number
of instances {500, 333, 200, 100, 50, 25, 12} respectively. To
simulate the set of p+ of instances the range on z was chosen
as:

0.5 < |z| < b, such that P (0.5 < |z| < b) = p+.

Hence, by varying b, the width of the positive class pattern
and the number of the positive instances varies proportionally.
Figure 5a shows an example of the boundary between the
classes for p+ = 50%. The positive class is scattered in two
stripes and surrounded by negative observations on both sides.

Figure 5b shows a comparison of the F1-scores between
an LS-SVM and a KNN-LS-SVM algorithm applied on the
data set. For each percentage p+, a 10-fold cross-validation
experiment, similar as in Section IV-A, was performed. At the
percentages 50%, 33%, 20% and 10%, the performance of both
local and global classifiers is more or less the same. However,
the use of a KNN-LS-SVM at the imbalance percentages
of 5%, 2.5% and 1.25% lead to an increase in F1-score of
10.86, 19.28 and 20.05% respectively. A paired t-test showed
that these differences were all significant at a 0.05 levels
(with one-sided p-values below 0.05) with one-sided p-values
of 0.0245, 0.0150 and 0.0100 for p+ ∈ 5%, 2.5%, 1.25%
respectively. Clearly, the F1-score rapidly decreases as the
imbalance percentage increases. For higher imbalance percent-
ages, the number of available instances from the positive class
decreases making it hard for both classifiers to model the
complex boundary between the classes. Ultimately, as shown
in Figures 4 and 5, the KNN-LS-SVM can handle overlapping
and nonlinearity problems together with class imbalance more
efficiently than standard KNN.

(a)

(b)

(c)

Fig. 4: (a) Averaged F1-scores of a KNN-LS-SVM, KNN,
and an LS-SVM obtained from a 10-fold cross-validation
experiment using the synthetic dataset shown in Figure 3a and
using different percentages p+ of instances from the positive
class.(b) F1-scores of KNN-LS-SVM, KNN, and LS-SVM at
different degrees of imbalance when Σ+ = 2Σ− = 0.70I2. (c)
F1-scores of KNN-LS-SVM, KNN, and LS-SVM at different
degrees of imbalance when Σ+ = 1

2Σ− = 0.35I2 and aver-
aged over the runs of a 10-fold cross-validation experiment.The
labels (*) indicated on top of the horizontal axis refer to the
imbalance percentages where the difference in performance
scores between KNN-LS-SVM and LS-SVM is statistically
significant at the 0.05 level.

V. REAL-WORLD DATA

As illustrated in section IV, class-imbalance is considered a
challenge to global learning algorithms under some conditions
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(a)

(b)

Fig. 5: (a) Two-dimensional non-linearly separable dataset of
two classes where p+ = 50%. (b) F1-scores of the KNN-
LS-SVM, KNN, and LS-SVM averaged over the runs of a
10-fold cross-validation experiment. Performance scores are
obtained by using the synthetic dataset describing confu-
sion where the degree of imbalance is varied in the range
{50%, 33%, 20%, 10%, 5%, 2.5%, 1.25%}. The labels (*) in-
dicated on top of the horizontal axis refer to the imbalance
percentages where the difference in performance scores be-
tween KNN-LS-SVM and LS-SVM is statistically significant
at the 0.05 level.

such as the imbalance ratio, the overlap between different
classes, inter-class and intra-class variances, and ambiguity.

In this section, four real-world datasets are used to compare
the performances of a KNN-LS-SVM to an LS-SVM [43],
KNN, KNN-SVM [24], Profile SVM (PSVM) [25], Stacked
Autoencoders (Stack-AE) [44]. Moreover, we compare our
results with the results of a recent study of HAR that is
based on the use of deep learning techniques [18]. Through
the rest of the study, we will refer to the proposed algorithm
of the benchmark study [18] as Ravi (2017). Finally, the time

performance of a KNN-LS-SVM is compared to those of the
already mentioned classifiers except for Ravi (2017) due to the
dedicated platform used in their study [18].

A. datasets
WISDM v1.1 The first dataset that we will study has been

used to evaluate a system that uses phone-based accelerometers
to perform HAR [32]. Several activities were recorded with
different frequencies of occurrence: walking (38.6%), jogging
(31.2%), walking upstairs (11.2%), walking downstairs (9.1%),
sitting (5.5%), and standing (4.4%). Activities of 36 subjects
were recorded using an impeded accelerometer of a smart-
phone with a sampling rate of 20 Hz and that was located in
the front pocket. In this way, a total number of 1, 048, 576
samples were acquired within approximately 14.56 recording
hours. In a preprocessing phase, features were extracted as will
be discussed later using a non-overlapping sliding window of
10 seconds.

Daphnet FoG This dataset contains annotated readings
of 3 accelerometers attached to Parkinson’s disease patients
that experience freezing of gait (FoG) during walking tasks
[31]. Since freezing of gait occurs rarely compared to other
movement activities, the data is very imbalanced. Only 1/9
of all recorded instances corresponded to the freezing-class.
Sensors were attached to the shank (just above the ankle) and
the thigh (just above the knee) using an elasticised strap and
Velcro. A third sensor was attached to the lower back via a belt.
The number of patients in this study is 10. The sampling rate of
the accelerometers recordings was 64 Hz and the total number
of the acquired samples is 1, 917, 887 within approximately
8.32 recording hours. The features were extracted as will
be discussed later from non-overlapping sliding windows of
length 4 seconds.

WISDM v2.0 This dataset is used to evaluate a system
that uses phone-based accelerometers to perform HAR [33].
Several activities were recorded with different frequencies
of occurrence: walking (42.1%), jogging (14.7%), sitting
(22.3%), standing (9.7%), Lying down (9.3%), and stairs
(1.9%). Activities of 563 subjects were recorded using an
impeded accelerometer of a smartphone with a sampling rate
of 20 Hz and that was located in the front pocket. In this
way, a total number of examples 2, 980, 765 were acquired.
In a preprocessing phase, features were extracted as will be
discussed later using a non-overlapping sliding window of 10
seconds.

Skoda This dataset contains 10 manipulative gestures
(classes) performed in a car maintenance scenario [30]. They
are a subset of the 46 activities performed in the factory in
one of the quality control checkpoints. Data is collected from
one subject, with a sampling rate of 98 Hz. For comparison
purpose, the accelerometer signals from one node are used
(Node 16). The total number of samples is approximately
705, 440 samples. The ten classes will be shown in Classi-
fication Performance section.

B. Classification performance
We compare the classification performances of the KNN-LS-

SVM to the LS-SVM, KNN, KNN-SVM, PSVM, Stacked Au-
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toencoders (Stack-AE) and Ravi (2017). For error performance
evaluation, precision, recall and F1 − score, are presented
for the recognition of the activities present in the studied
datasets. To make a consistent comparison with the recent
study of HAR that is based on a deep learning approach,
we use the same set of features of method Ravi (2017)
[18] to train the KNN-LS-SVM, LS-SVM, KNN, KNN-SVM,
PSVM, and Stack-AE. Several features are used: interquartile
range, amplitude kurtosis, root mean square, variance, mean,
standard deviation, skewness, minimum, median, maximum,
mean-cross, and zero-cross.

Tables I, II,III, and IV show the recall/precision scores of the
KNN-LS-SVM, LS-SVM, KNN, KNN-SVM, PSVM, Stack-
AE and Ravi (2017) applied to the datasets WISDM v1.1,
Daphnet FoG, WISDM v2.0 and Skoda respectively. Figures
6, 7, 8, and 9 show the F1-scores of the classifiers applied to
the real-world datasets.

TABLE I: Classification results of the KNN-LS-SVM, LS-
SVM, Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE
applied to WISDM v1.1.

Walk Jog Sit Stand Walk Up Walk Down

KNN-LS-SVM Recall 99.36 96.70 97.97 99.04 93.88 95.34
Precision 96.99 99.73 99.18 98.10 95.47 96.41

LS-SVM Recall 99.51 99.87 96.25 96.19 94.22 90.39
Precision 98.68 99.87 96.65 96.65 93.55 96.06

Ravi (2017) Recall 99.37 99.40 98.56 97.25 95.13 95.90
Precision 99.37 99.64 97.85 98.15 95.52 94.44

KNN Recall 100 100 100 95.2 96.7 100
Precision 98.9 100 96.77 100 100 100

KNN-SVM Recall 82.7 89.12 86.40 95.23 80.36 74.00
Precision 83.1 96.32 95.00 100 65.22 70.83

PSVM Recall 78.05 96.15 96.30 100 55.56 56.41
Precision 79.60 96.77 100 90.05 47.62 64.71

Stack-AE Recall 98.50 98.70 90.30 89.50 87.30 74.30
Precision 96.60 99.40 87.50 89.50 82.80 92.9

Fig. 6: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM,
Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE applied
to WISDM v1.1

C. Time Performance
To compare the time performance between an LS-SVM and

KNN-LS-SVM, we make use of a non-dedicated platform (i.e.,

TABLE II: Classification results of the KNN-LS-SVM, LS-
SVM, Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE
applied to Daphnet FoG.

Non-Freezing Freezing

KNN-LS-SVM Recall 97.79 72.92
Precision 97.18 77.55

LS-SVM Recall 98.31 62.66
Precision 95.96 79.89

Ravi (2017) Recall 98.15 59.92
Precision 97.40 67.89

KNN Recall 98.88 82.85
Precision 98.34 82.32

KNN-SVM Recall 97.80 60.00
Precision 96.23 72.00

PSVM Recall 91.94 54.72
Precision 94.63 43.88

Stack-AE Recall 97.00 70.12
Precision 96.6 72.93

Fig. 7: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM,
Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE applied
to Daphnet FoG

TABLE III: Classification results of the KNN-LS-SVM, LS-
SVM, Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE
applied to WISDM v2.0.

Walk Jog Sit Stand Lying Down Stairs

KNN-LS-SVM Recall 97.00 98.00 91.79 78.00 85.82 95.00
Precision 96.60 97.41 86.62 92.00 88.80 97.96

LS-SVM Recall 97.94 94.39 89.00 63.23 82.48 88.90
Precision 95.96 98.54 80.59 92.45 83.09 88.90

Ravi (2017) Recall 97.19 97.73 89.28 82.11 85.80 76.98
Precision 97.17 98.01 87.32 82.05 88.65 85.00

KNN Recall 96.53 92.83 82.46 66.20 42.45 61.76
Precision 91.84 96.92 69.80 75.81 75.64 70.00

KNN-SVM Recall 97.96 97.29 84.79 74.63 86.99 96.15
Precision 96.64 98.17 88.81 79.37 76.98 96.17

PSVM Recall 83.54 71.36 51.00 32.12 76.19 32.00
Precision 90.88 56.72 72.11 70.97 34.78 15.69

Stack-AE Recall 95.43 95.75 76.01 70.31 80.39 29.63
Precision 92.79 96.21 79.22 73.77 70.29 100
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Fig. 8: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM,
Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE applied
to WISDM v2.0

Fig. 9: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM,
Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE applied
to Skoda dataset

System Type x64-based PC, Processor Intel(R) Core(TM) i7-
6820HQ CPU @ 2.70GHz, 2701 MHz, 4 Core(s), 8 Logical
Processor(s), Installed Physical Memory (RAM) 8,00 GB).

We compare the elapsed time that is required to run the
algorithms in an online mode. In an online mode instances
are evaluated one by one. For global classifiers, we measure
the test time of one instance as in practice one model is
trained and applied for all test instances. However, for the
localised models (i.e. KNN, KNN-SVM and KNN-LS-SVM),
the measured time includes both training and testing time. For
PSVM, local models are trained offline by the training data
points of each profile that result from partitioning the training
set. Hence, the measured time for PSVM is test time only. The
elapsed test times for each classifier applied to each dataset are
depicted in Table V.

VI. DISCUSSION

Applying the various classifiers on WISDM v1.1, we obtain
the results shown in Table I and Figure 6. Notice that class-
imbalance is not dominant in this dataset, except for Sitting
and Standing activities (5.5 and 4.4% respectively). The best

TABLE IV: Classification results of the KNN-LS-SVM, LS-
SVM, Ravi (2017), KNN, KNN-SVM, PSVM, and Stack-AE
applied to Skoda dataset.

Write Open hood Close hood Check gaps
Front

Open Left
Front

KNN-LS-SVM
Recall 100 93.62 88.90 100 100

Precision 100 93.62 81.84 93.33 100
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 100 91.30 97.50 100 100
Precision 100 100 100 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

LS-SVM
Recall 100 96.97 95.08 94.59 89.47

Precision 98.33 92.75 96.67 100 77.27
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 73.33 97.37 96.55 100 100
Precision 91.67 100 96.55 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

Ravi (2017)
Recall 91.34 97.78 94.44 92.79 100

Precision 96.67 97.78 89.47 91.15 100
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 80.00 94.20 97.59 98.04 100
Precision 88.89 92.86 98.78 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

KNN
Recall 90.00 91.67 82.35 87.50 80.00

Precision 100 84.62 82.35 87.50 80.00
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 85.1 77.80 94.44 100 100
Precision 85.71 70.00 94.44 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

KNN-SVM
Recall 100 100 87.5 66.67 100

Precision 100 75.00 87.50 100 100
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 100 77.78 100 100 100
Precision 100 100 88.90 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

PSVM
Recall 100 100 80.00 100 100

Precision 85.71 64.29 61.54 100 100
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 75.00 44.44 50.00 90.00 100
Precision 100 100 100 81.82 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

Stack-AE
Recall 100 86.96 88.89 91.67 100

Precision 95.65 86.96 92.31 100 87.50
Close Left

Front
Close Both

Left
Check Trunk

Gaps
Open and

Close Trunk Check Steering

Recall 83.33 94.12 96.30 100 100
Precision 100 94.12 96.30 100 93.75

TABLE V: The time performance of the classifiers KNN-
LS-SVM, LS-SVM, KNN, KNN-SVM, PSVM, and Stack-AE
applied to WISDM v1.1, Daphnet FoG, WISDM v2.0 and
Skoda Datasets. The depicted results represent the consumed
time in seconds to classify a single test point.

WISDM v1.1 Daphnet FoG WISDM v2.0 Skoda
KNN-LS-SVM 0.0126 0.0014 0.0089 0.0035
LS-SVM 0.0321 0.0062 0.0887 0.2283
KNN 25.32 34.00 19.77 16.822
KNN-SVM 19.78 14.017 20.10 12.88
PSVM 0.0290 0.0032 0.0111 0.0036
Stack-AE 0.0166 0.0171 0.0205 0.0248
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performance is that of the KNN classifier for all activities
except for Standing. The main drawback of the KNN classifier
is the temporal complexity to get the optimum hyperparameters
(i.e. K-number and distance metric). To obtain such good
results, as shown in Table V, it takes approximately 25 seconds
for one test point which is 2500 times the required time by
KNN-LS-SVM. Moreover, KNN-LS-SVM provides the best
performance for the minority classes of Sitting and Standing.
We can notice here that KNN-LS-SVM is providing a perfor-
mance that compromises between the superior performance
of KNN with an expensive temporal complexity and LS-
SVM with an acceptable error and time performance. The
algorithm of KNN-LS-SVM is relying on KNN, but both
the number K and the distance metric are globally optimised
independently of the test set. For this dataset, we can claim
that the error performance of KNN-LS-SVM is comparable in
case of balanced activities and better for unbalanced activities.
Moreover, KNN is not applicable to the online application as
25 seconds to classify a single point is more than the window
size of 10 seconds that is used in this dataset.

For Daphnet FoG dataset, the class-imbalance is the domi-
nant characteristic with a class-imbalance ratio of 1 to 9. As
shown in Figure 7 and both Table I and Table V, KNN provides
the best error performance and worst time performance due
to hyperparameter optimisation. The second best error perfor-
mance is the one of KNN-LS-SVM with best time performance
which is 4 ∗ 10−4 times that of KNN. The average run-time
of KNN to classify one test point is 34 seconds which is not
applicable for online classification as the window size for this
dataset is only 4 seconds.

For WISDM v2.0, KNN-LS-SVM approximately provides
the best error and time performance over all activities espe-
cially the extremely minor activity of Stairs (1.9%). The only
competitive classifier is the KNN-SVM. However, its temporal
and computational complexity is much higher than that of the
KNN-LS-SVM. The superiority of the KNN-SVM and KNN-
LS-SVM which are both based on an RBF kernel can be due
to the presence of strong nonlinearity and overlapping classes
in this dataset.

By applying the various classifiers to the Skoda dataset with
10 classes, KNN-LS-SVM provides the best performance for 6
classes. This dataset does not suffer class-imbalance such that
KNN-LS-SVM is competing with the other global and local
classifiers in the error performance. However, it outperforms
the other classifiers in the time performance.

Ultimately, from Table V, it is obvious that KNN-LS-SVM
provides the best time performance over all real-world datasets
compared to the other classifiers which are implemented on the
same platform while at the same time providing robustness
against class imbalance.

VII. CONCLUSION

In this paper, we discussed the problems of class-imbalance
and ambiguity that frequently arise in data obtained from HAR
systems. A novel hybrid localised learning approach of KNN-
LS-SVM is proposed to tackle these problems. Moreover,
for the first time, these problems are analysed with synthetic

datasets in the context of localised learning with a detailed
illustration of the KNN-LS-SVM algorithm. In contrast to the
already existing literature on HAR that mainly focuses on the
use of global learning methods, we applied for the first time
a hybrid localised learning algorithm to the problem of HAR.
Furthermore, we compared the performance of the KNN-LS-
SVM with other global and local learning techniques and the
benchmark study of [18].

A localised method has the advantage to locally adjust the
complexity of the decision boundary to the properties of the
data in each area of the input space. The choice of LS-SVM
instead of a standard SVM to be localised was motivated
by the relatively computational simplicity of the LS-SVM
compared to SVM [43]. This choice was further supported
by the increased time performance in an online mode such
that the KNN-LS-SVM has much potential to be suitable for
online and streaming analytics problems in which the data size
is continuously increasing.

Experiments using the synthetic data showed that the local
classifier (i.e. KNN-LS-SVM) can be more robust against
class-imbalance and ambiguity compared to a global classifier
(i.e. LS-SVM). This was also confirmed by our experiments
on the real-world data sets where the highest difference in
the performance was obtained when the class-distribution was
highly skewed.

The proposed algorithm is applicable to HAR applications
as human health monitoring, e.g. fall detection, independent
living of elderly, freezing of gait detection for Parkinson’s
patients, among others [45], [46], [31]. Experiments with real-
world data illustrated the potential of the use of the localized
approach for online and streaming analytics problems in HAR
applications especially when applied to middle-sized data sets.

Moreover, the proposed localised approach has applica-
tion potential to medical diagnostic problems that can suffer
from class-imbalance problems, e.g. abnormality detection via
screening, cancerous cells detection and Hyperthyroid diagno-
sis [47], [48], [49].

Finally, the proposed localised algorithm outperformed the
benchmark global models under the following data-based
conditions:
• The data sets contained up to 15, 000 data points.
• The imbalance percentages p+ where the KNN-LS-SVM

outperformed the LS-SVM ranged from 1.25% to 12.5%.
• Comparable performances were found for percentages

p+ given by 25% and 50%.
• The Fisher discriminant ratio that describes the overlap

between classes could take values up to 4.08.
The Fisher discriminant ratio is defined as:

f =
(m+ −m−)2

(σ2
+ + σ2

−)
,

where m+,m− are the means of the positive and negative
classes respectively. And σ+, σ− are the standard deviations
of the positive and negative classes respectively.

In future research, we plan to apply and validate the method
further in the context of real-time activity tracking of hospi-
talised patients.
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