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ABSTRACT
Acceptance sampling plans are used to determine whether production lots can be accepted
or rejected. Existing tools only provide a limited functionality for the two-point design and
the risk analysis of such plans. In this article, a web-based tool is presented to study single-
and double-stage sampling plans. In contrast to existing solutions, the tool is an interactive
applet that is freely available. Analytic properties are derived to support the development of
search strategies for the design of double-stage sampling plans that are more efficient and
accurate in comparison with existing routines. Several case studies are presented.
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Introduction

Acceptance sampling is concerned with the design
and implementation of sampling plans to inspect
incoming or outgoing production lots. A typical appli-
cation of acceptance sampling is the inspection by a
company of a shipment of items from a supplier.
These items are often components or raw material
used in the company’s manufacturing process. A ran-
dom sample is taken from the lot, and based on the
inspection of some quality characteristic a decision is
made to accept or reject the complete lot. The process
of making this decision is also termed lot sentencing.
Acceptance sampling plans can be classified according
to the type of variables that are measured. Quality fea-
tures that are measured on a numerical scale are used
in variables sampling plans, while features that classify
items as defective or non-defective lead to attributes
sampling plans.

The use of acceptance sampling plans for inspection
by attributes dates back to the seminal work of Dodge
and Romig (1941). The basic concepts and models of
variables sampling plans were introduced by Jennett
and Welch (1939). During the past two decades of the
20th century, the research interest in acceptance sam-
pling decreased. The use of acceptance sampling plans

has been criticized as they are described as one-shot
deals to test whether a production lot is conform to
specifications without giving any feedback into either
the production process or engineering design that
would be necessarily for quality improvement
(Montgomery 2013). However, acceptance sampling is
still playing an important role in modern industrial
environments and there has been a resurgence of inter-
est in this field in the 21st century (Collani and G€ob
2008). First, in many cases the producer has become
increasingly removed from the consumer, not only by
distance but also by language, culture and governmental
differences (Schmueli 2016). There is a need for meth-
ods to keep generating pressure on suppliers in order
that they maintain and improve the quality in their
goods. Second, acceptance sampling plans are able to
limit the risk for accepting lots of poor quality. In many
applications the quality of incoming goods affect the
efficiency of the production and the quality of the end
product. For instance, for an egg processing company
the freshness of the incoming eggs is essential to minim-
ize drop-out during peeling of boiled eggs as will be dis-
cussed in more detail in case study II, presented later in
this article. Other examples include the microbiological
inspection of incoming goods in food industry for food
safety and quality (Santos Fern~andez 2016). Finally,
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acceptance sampling can also be adapted to other verifi-
cation problems as, for example, the verification of
probabilistic design requirements using Monte Carlo
simulation (White et al. 2009).

Single sampling plan (SSP) and double sampling plan
(DSP) are among the most widely used acceptance sam-
pling plans. In the procedure of an SSP plan a decision
to accept or reject the lot is based on the result of one
sample. The procedure of a DSP plan allows to take a
second random sample from the lot when the informa-
tion from the first sample raises too much doubt
(Montgomery 2013). Sampling, however, involves the
risk that the sample will not adequately represent an
entire lot. There are two types of risk associated to each
sampling plan: the producer’s (or supplier’s) risk and
the consumer’s (or customer’s) risk. The producer’s risk
reflects the probability to reject an acceptable lot that is
defined as a lot with a proportion nonconforming of at
most an acceptable quality level pAQL: The customer’s
risk reflects the probability to accept an unacceptable lot
that is defined as a lot with a proportion nonconform-
ing of at least a rejectable quality level pRQL: These risks
are analytically studied by the operating characteristic
(OC) curve which shows the probability of accepting a
lot given various proportions nonconforming. A prob-
lem frequently encountered in quality control is the
two-point design of a sampling plan where one is inter-
ested in the determination of sampling plans that reduce
the producer’s and consumer’s risk below some prede-
fined levels a and b, respectively (Taylor 1997). For this
reason, several tables have been presented in the litera-
ture to select sampling plans (Duarte and Saraiva 2013;
Sommers 1981). Commonly used tables are included in
international standards as the ISO standards (and their
ANSI/ASQC/BS or other counterparts (Neubauer and
Luko 2012, 2013)). Such tables, however, are restricted
to a limited number of values for pAQL; pRQL; a and b
and are not accompanied with user-friendly tools to
evaluate the individual sampling plans regarding the
risks associated with sampling error.

Furthermore, a limited number of computer pro-
grams are available to study sampling plans and only
few offer the ability to design DSP as well as SSP
plans. Commercial programs, for example, Minitab,
Inc. (2018), only allow the two-point design of an SSP
plan. Also, easy-to-use Excel sheets are available to
study SSP plans (Bertoni 2016). Kiermeier (2008)
developed an R-package ‘Acceptance Sampling’ that
allows to calculate OC-curves of SSP and DSP plans,
but the functionality of a two-point design is limited
to that of an SSP plan. Furthermore, Cheng and Chen
(2007) developed a computer program that is based

on an evolutionary algorithm (Zelinka 2015) to design
attributes DSP plans. Its interface, however, requires
the interpretation of several parameters and its imple-
mentation is outdated.

The design of two-point sampling plans with an
OC-curve that passes approximately through two
designated points ðpAQL; 1� aÞ and ðpRQL; bÞ can be
described by a system of algebraic equations. Since
such system does not have a closed from solution for
SSP and DSP plans, algorithms have been developed
to search for feasible combinations of the parameters
of the plan that ensure a producer’s and consumer’s
risk below the predefined levels a and b, respectively.
Existing routines to design two-point sampling plans
can be classified into two main approaches: (i) search
routines that perform an exhaustive search to find
appropriate combinations of the parameters of a two-
point sampling plan and (ii) optimization procedures
where some cost function (e.g. the sample size or
average sample number (ASN)) is minimized subject
to the constraints induced by the two-point method.
Optimization procedures have the advantage to be
applicable to other types of sampling plans, for
example, multiple dependent sampling plans
(Balamurali and Jun 2007). However, convergence
may not be guaranteed with such approaches and
finding appropriate starting values may not be evident
for the user (Balamurali and Usha 2013; Duarte and
Saraiva 2013). The focus in this article is on search
routines that do not depend on starting values and
whose implementation will lead to a user-friendly tool
to design and analyze DSP plans as well as SSP plans.

Early development of search routines for the design
of sampling plans were performed with the programing
language FORTRAN (Chow et al. 1972; Hailey 1980). A
general algorithm to develop two-point SSP plans for
inspection by attributes was introduced by Hailey
(1980). For variables SSP plans computational formulas
are available (Schilling and Neubauer 2009). The two-
point design of DSP plans, however, is more complex as
more parameters are involved (two sample sizes n1 and
n2 and two acceptance numbers c1 and c2 to test sample
results). To reduce the number of possible combinations
of parameters, a fixed relationship between the sample
sizes n1 and n2 is often assumed. The most common
constraint that has been used is to require that n2 is a
multiple of n1, that is, n2 ¼ r � n1ðr 2 N0Þ
(Montgomery 2013). For attributes inspection, previous
developed search routines have assumed a Poisson dis-
tribution (Chow et al. 1972). In addition, additional
constraints on the acceptance numbers (c1, c2) have
been studied, for example, c2 � ðr þ 1Þc1 or ðc1; c2Þ ¼
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ð0; 1Þ (Newman and Yu 2018; Olorunniwo and Salas
1982; Vijayaraghavan 2007). For variables inspection,
Sommers (1981) has developed a table of DSP plans
with a minimum ASN at pAQL: Unique DSP plans have
been obtained by minimizing other cost functions as
well, for example, the maximum ASN (Krumbholz and
Rohr 2009; Vangjeli 2012).

In this article, we develop search routines for the
design of attributes and variables DSP plans that min-
imize the ASN at pAQL: For this purpose, it is assumed
that n2 is a multiple of n1. Analytic properties of DSP
plans are derived that are given a mathematical proof
and that will support the development of the search
routines. For attributes inspection, the number of
nonconforming items in a lot is modeled by a bino-
mial distribution. It is shown that several constraints
hold on the parameters of an attributes DSP plan
reducing the number of possible combinations of
parameters that have to be considered during an
exhaustive search routine (Olorunniwo and Salas
1982). For variables inspection, the measurement data
are modeled using a normal distribution with known
standard deviation r. The search routine to design
variables DSP plans is shown to result in more accur-
ate minimum values of the ASN when compared to
the routines introduced by Sommers (1981).
Furthermore, search routines are implemented in a
user-friendly and interactive web tool to design and
analyze SSP and DSP plans. Unlike previous devel-
oped solutions, the tool is an interactive applet that is
easy and freely accessible and that supports the two-
point design of DSP plans for inspection by attributes
as well as variables. Several case studies from food
industry are discussed to illustrate the use of the tool.

Note that the study of variables inspection plans is
restricted to the case where one specification limit is
defined and where measurements are drawn from a
normal distribution with known variance. Extensions
of the properties and design to the case of double spe-
cification limits or to the case where quality features
are studied that follow other probability distributions
(e.g., an exponential distribution) can be a subject of
further research. The remainder of the article is struc-
tured as follows. Firstly, the reader is introduced to
the necessary terminology and notations of acceptance
sampling. Subsequently, several analytic properties of
the OC-curves of DSP plans are derived. Moreover,
search routines to develop two-point DSP plans are
presented. Next, these routines, together with proce-
dures to design SSP plans, are implemented in a web-
based tool that is illustrated by several case studies.
Finally, a conclusion is made.

Background on acceptance sampling

Firstly, an introduction is given to the risk analysis of
acceptance sampling plans using OC-curves. Next, a
general background on SSP and DSP plans is given.

Risk analysis and OC-curves

Sampling plans are subject to sampling error and there-
fore induce risks. A fundamental tool to describe the risks
associated to a sampling plan P is the OC-curve
p 7! /ðp;PÞ which relates the proportion nonconform-
ing present in the lot to the probability of acceptance of a
lot using the plan P: The statistical design of a sampling
plan is based on two specific points on the OC-curve:

(1) The producer’s risk point denoted as
ðpAQL; 1� aÞ: The acceptable quality level pAQL
represents the maximal proportion nonconform-
ing that is allowed to accept a lot. Therefore, from
the producer’s side, a lot with p< pAQL should be
accepted with a high probability 1� a: The risk a
of rejecting an acceptable lot with p< pAQL is
termed the producer’s risk.

(2) The consumer’s risk point denoted as ðpRQL; bÞ:
The rejectable quality level pRQL represents the
minimal proportion nonconforming that is
required to reject the lot. From the consumer’s
side a lot with p> pRQL is not acceptable and
should be rejected with a high probability 1�b:
The risk b to accept a rejectable lot with p> pRQL
is termed the consumer’s risk.

Ideally the quality engineer would like to set pAQL ¼
pRQL to design a sampling plan that would accept all lots
with p< pAQL and reject all lots with p> pRQL:
However, such ideal plan can only be realized by 100%
inspection, if the inspection would be error-free.
Therefore, one sets pRQL> pAQL and a sampling plan is
designed such that the OC-curve passes approximately
through the points ðpAQL; 1� aÞ and ðpRQL; bÞ:

/ pAQL;Pð Þ � 1� a;

/ pRQL;Pð Þ � b:

(
[1]

The ideal OC-curve of a 100% inspection plan can be
approached by increasing the sample size(s) of the sam-
pling plan. The slope of the OC-curve is a measure for
the discriminating power of the plan. In the next section,
we will illustrate these principles on SSP and DSP plans.

QUALITY ENGINEERING 3



Single sampling plans

An SSP plan for inspection by attributes is a proced-
ure in which a decision is made to accept or reject a
lot of size N based on the number of nonconforming
items of a random sample of size n<N taken from it.
Such a sampling plan is defined by two integers (n, c),
with c< n, and where n denotes the sample size and c
denotes the maximal number of nonconforming items
c that are allowed in order to accept the lot under
inspection (the so-called acceptance number).

When the lot size is large (nN < 0:1), the number of
nonconforming items D that is found in samples of size
n drawn from the lot follows approximately a binomial
distribution, that is, D�Bðn; pÞ where p denotes an
(unknown) lot fraction nonconforming p. The OC-
curve p 7! /ssp

a ðp; n; cÞ of an SSP-(n, c) plan is given by:

/ssp
a p; n; cð Þ ¼ P D � cð Þ

¼
Xc
j¼0

n!
j! n � jð Þ! pj 1� pð Þn� j [2]

and a statistical design is a solution of the system of
Eq. [1] that is given by:

Xc
j¼0

n!
j! n � jð Þ! pjAQL 1� pAQLð Þn� j � 1� a;

Xc
j¼0

n!
j! n � jð Þ! pjRQL 1� pRQLð Þn� j � b:

8>>>>><
>>>>>:

[3]

Figure 1(a) shows how the OC-curves of attributes
SSP plans change when the sample size n and the
acceptance number c change. The OC-curve becomes
more like the idealized OC-curve when the sample
size n increases. Plans with a lower acceptance num-
ber c provide more discriminating power at lower
proportions nonconforming. Minimal sample sizes

can be achieved by considering zero acceptance num-
ber sampling plans ðn; 0Þ (Hahn 1974).

When a continuous variable X in a lot of size N is
inspected, one can use an SSP plan for inspection by
variables. Such plan assumes that the variable X fol-
lows a normal distribution Nðl; r2Þ with mean l and
a known standard deviation r. When an upper-speci-
fication limit U on the variable X is defined, a single
lot is accepted under the condition U � �Xn

r � k; where k
is a continuous acceptance constant indicating the
minimal standardized distance between the sample
mean �Xn �Nðl; r2n Þ and the upper-specification limit
U. Similarly, when a lower-specification limit L is
used, the condition is given by

�Xn � L
r � k: In both

cases the OC-curve for a variables SSP-(n, k) plan is
defined by:

/ssp
v p; n; kð Þ ¼ P Z � ffiffiffi

n
p

Zp � k
� �� �

; [4]

where Zp ¼ U� 1ð1� pÞ and U denotes the cumulative
distribution function of a variable Z following a stand-
ard normal distribution N(0, 1).

Figure 1(b) shows how the OC-curves of variables
SSP plans change as the sample size n and the accept-
ance constant k change. A higher acceptance constant
implies a higher discriminative power at lower pro-
portions nonconforming. Larger sample sizes result in
a better protection of producers and consumers and
lead to OC-curves that become more like the idealized
OC-curve.

In case the measurements show a strong deviation
from normality, cautionary is required in applying
formula [4]. Alternative variables SSP�ðn; kÞ plans
exist for exponential, gamma and Weibull distribu-
tions. An overview is given by White and
Johnson (2013).

Figure 1. OC-curves of several sampling plans where Pa denotes the acceptance probability: (a) attributes sampling plans and (b)
variables sampling plans. The idealized OC-curves corresponding with complete inspection are shown in gray.
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Double sampling plans

A DSP plan allows to take a second random sample
when the information from the first sample raises to
much doubt about the decision whether to accept or
reject the lot. When a second sample is taken, the
information from the first and second sample is com-
bined in order to decide whether to accept or reject
the lot.

Following Montgomery (2013), a DSP plan for
attributes inspection is defined by four parameters
ðn1; n2; c1; c2Þ with c1 < c2 and operates as follows:

(1) Stage I. A random sample of size n1 is taken
from the lot. If the number of nonconforming
items D1 that is found in the first sample does
not exceed the first sample acceptance number
c1, the lot is accepted; If D1 exceeds the second
sample acceptance number c2, the lot is rejected.

(2) Stage II. If c1 <D1 � c2; a second sample of size
n2 is taken from the lot. In this case the total
number of nonconforming items D1 and D2 that
is found in stage 1 and stage 2, respectively, is
considered. When this total amount D ¼
D1 þ D2 does not exceed the acceptance number
c2, the lot is accepted; Otherwise, it is rejected.

The OC-curve of a DSP-ðn1; n2; c1; c2Þ plan is given
by:

/dsp
a p;n1;n2;c1;c2ð Þ¼P D1�c1ð Þ

þ
Xc2

j¼c1þ1

P D1¼ jð ÞP D2�c2�jð Þ: [5]

In contrast to an SSP plan, the total number of
inspected items is not constant, but depends on the
number of nonconforming items found in the first sam-
ple. The probability of drawing a second sample varies
with the proportion nonconforming that determines
the ASN. The ASN of a DSP plan is determined by:

ASN ¼ n1PI þ n1 þ n2ð Þ 1� PIð Þ; [6]

where PI is the probability that the lot is accepted or
rejected on the first sample, that is, PI ¼ PðD1 �
c1Þ þ PðD1 > c2Þ: The ASN curve shows the ASN as a
function of the lot fraction nonconforming p.

For variables inspection, we follow Sommers (1981)
and define a DSP plan by four parameters
ðn1; n2; k1; k2Þ with k1 < k2 and with the following
operating procedure:

(1) Stage I. A random sample of size n1 is taken
from the lot. When the standardized difference

between the sample mean and the lower (or
upper) specification limit, that is,

V ¼
�Xn� L

r
or V ¼ U � �Xn

r

� �

exceeds the second sample acceptance constant
k2, the lot is accepted; When it does not exceed
the first sample acceptance constant k1, the lot
is rejected;

(2) Stage II. When k1 <V � k2; a second sample of
size n2 is taken. In this case the mean of all
measurements �XT from the samples taken in
stages 1 and 2 is considered. When the standar-
dized difference between this overall mean and
the lower (or upper) specification limit is lower
than the constant k1, the lot is rejected.
Otherwise, it is accepted.

The OC-curve of a DSP-ðn1; n2; k1; k2Þ plan is given
by:

/dsp
v p;n1;n2;k1;k2ð Þ¼P Z� ffiffiffiffiffi

n1
p

Zp�k2
� �� �þP2; [7]

where Z�Nð0;1Þ and P2 is a cumulative probability
associated to a bivariate normal distribution
ðW1;W2Þ�Nð0;RÞ with:

R¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1þn2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1þn2

r
1

0
BBB@

1
CCCA; [8]

and

P2¼PðW1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2

p
Zp�k1
� �

;ffiffiffiffiffi
n1

p
Zp�k2
� ��W2� ffiffiffiffiffi

n1
p

Zp�k1
� �Þ: [9]

The dependency between the variables W1 and W2 in

the expression of /dsp
v is due to the dependency of the

result in the second stage and the result in the first
stage. Indeed, the decision in the second stage is based

on �XT ¼ n1 �X 1þn2 �X 2
n1þn2

and therefore depends on the result

of the sample taken in the first stage (Sommers 1981).
The expression for the ASN curve is based on [6].

The probability PI is now given by:

PI¼P Z� ffiffiffiffiffi
n1

p
Zp�k2
� �� ��P Z� ffiffiffiffiffi

n1
p

Zp�k1
� �� �

[10]

Search procedures for double sampling plans

In this section, we provide the reader with algorithms
to design DSP plans. A statistical design relies on a
solution of the system of Eq. [1] that ensures that the
OC-curve passes approximately through the two

QUALITY ENGINEERING 5



points ðpAQL; 1� aÞ and ðpRQL; bÞ: As the parameters
of DSP plans are non-negative integers, one can rely
on mixed integer non-linear programing techniques.
However, convergence may not be guaranteed by such
approaches and finding appropriate starting values
may not be evident for the user (Duarte and Saraiva
2013). Alternatively, routines can be developed that
list all possible parameter combinations of DSP plans
that solve [1]. To keep the computation time limited,
an additional constraint is chosen on the sample sizes
of the plans requiring that n2 is a multiple of n1. A
unique sampling plan is returned by minimizing the
ASN at pAQL:

Design of two-point attributes double
sampling plans

Let us first recall some properties of the design of
an SSP-(n, c) plan. Geometrically, a two-point SSP-
(n, c) plan with an OC-curve that approximately
passes through the points ðpAQL; 1� aÞ and ðpRQL; bÞ
will be situated in a region of the nc-plane consist-
ing of all the points (n, c) that satisfy nlðcÞ � n �
nuðcÞ with:

nl cð Þ ¼ inf nj/ssp
a pRQL; n; cð Þ � b

	 

and

nu cð Þ ¼ sup nj/ssp
a pAQL; n; cð Þ � 1� a

	 

;

[11]

and where nl and nu are non-decreasing as a function
of c. If nuðcÞ< nlðcÞ; there does not exist a two-point
SSP-(n, c) plan for the points ðpAQL; 1� aÞ and
ðpRQL; bÞ: In what follows, c� denotes the minimal
acceptance number such that nlðc�Þ � nuðc�Þ: Setting
n� ¼ nlðc�Þ leads to the two-point SSP-ðn�; c�Þ plan
with minimum sample size n� (Luca 2018).

In the following property, the effect is studied
of changes in sample sizes or acceptance numbers
on the OC-curve of a two-point DSP-ðn1; n2; c1; c2Þ
plan. A proof is given in Appendix A. The prop-
erty will support the development of an efficient
search procedure for the design of a two-point
DSP plan.

Property 1. Consider a DSP-ðn1; n2; c1; c2Þ plan and
it’s corresponding OC-curve:

p 7! /dsp
a p; n1; n2; c1; c2ð Þ:

(i) /dsp
a ðp; n1; n2; c1; c2Þ is strictly increasing as a

function of c1 and c2:
(ii) /dsp

a ðp; n1; n2; c1; c2Þ is strictly decreasing as a
function of n1 and n2.

(iii) The OC-curve of a DSP-ðn1; n2; c1; c2Þ plan is
situated between the OC-curves of an

SSP-(n1, c1) and an SSP-(n1, c2) plan:

8p : /ssp
a p; n1; c1ð Þ � /dsp

a p; n1; n2; c1; c2ð Þ
� /ssp

a p; n1; c2ð Þ:

In particular, if c ¼ c1 ¼ c2, the DSP-
ðn1; n2; c1; c2Þ plan is equivalent with an SSP-
ðn1; cÞ plan and:

8p : /dsp
a p; n1; n2; c1; c2ð Þ ¼ /ssp

a p; n1; c1ð Þ:
(iv) Consider the SSP-ðn�; c�Þ plan with an OC-curve

passing through ðpAQL; 1� aÞ and ðpRQL; bÞ and
with a minimum sample size n� and an accept-
ance number c�. Several constraints hold on the
matching two-point DSP-ðn1; n2; c1; c2Þ plan
with a minimum sample size n1: n1 þ n2 �
nlðc2Þ; c2 � c� and n1 � n� for c1 � c�.
Furthermore, as c1 " c� (i.e. c1 approaches c�

from the left-hand side) the matching two-point
DSP-ðn1; n2; c1; c2Þ plan with a minimum sample
size n1 will degenerate to the SSP-ðn�; c�Þ plan
(i.e. c1 ¼ c2 ¼ c� and n1 ¼ n�; n2 ¼ 0).

In Algorithm 1, we present the pseudo-code of a search
procedure for a two-point DSP-ðn1; n2; c1; c2Þ plan with
n2 ¼ rn1 (r 2 N0) and with a minimum ASN such that
the OC-curve passes through two specified points
ðpAQL; 1� aÞ and ðpRQL; bÞ: The first step in designing
a two-point attributes DSP-ðn1; n2; c1; c2Þ plan is to
search the corresponding SSP-ðn�; c�Þ plan with an
OC-curve that passes through the two points
ðpAQL; 1� aÞ and ðpRQL; bÞ: From Property 1 (iv), it
follows that an exhaustive search on the parameters
ðn1; n2; c1; c2Þ can be restricted to acceptance numbers
(c1, c2) satisfying c1 < c� � c2: The latter restriction
leads to a more efficient search when compared to
existing procedures that test every combination of the
acceptance numbers c1 and c2 (Olorunniwo and Salas
1982). Furthermore, because c2 � c�; one finds n1 þ
n2 � nlðc2Þ � n� such that n1 � b n�

rþ1c:
The search strategy of Algorithm 1 (see Figure 2) cal-

culates for each first sample acceptance number c1 < c� a
corresponding second sample acceptance number c2 �
c� > c1 and sample sizes n1 > c2; n2 ¼ r � n1 that are
required to assure that as well the producers as the con-
sumers are protected. For a given c1, one starts with ini-
tialization by considering the sampling plan with n1 and
c2 as small as possible. When â � a and b̂ � b the while
loops between line 10 and line 26 are not entered and
the sampling plan ð2; 2; 0; 1Þ is chosen. When the con-
sumer’s risk is lower than the requested limit b and the
producer’s risk is higher than a, an increase of the
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acceptance number c2 is considered (which increases the
consumer’s risk but lowers the producer’s risk due to
Property 1(i)) while keeping the sample size as low
as possible (such that the producer’s risk is at its
minimum) until the producer’s risk is lower than a
or the customer’s risk exceeds b. At the end of the
while loop starting at rule 10 of Algorithm 1, either
â � a and b̂ � b leading to the desired sampling
plan or b̂>b: In the latter, one enters the while
loop at rule 15 where the sample size is increased
when the producer’s risk is lower than a (Property
1(ii)). At rule 20 the desired plan is found or â> a
such that the acceptance number c2 has to be
increased to reduce the producer’s risk. The while
loop that started at line 15 continues when b̂> b:
Next, c1 is increased and the while loop over i that
started at line 5 restarts a next iteration.

At the end, the procedure has calculated a series of
DSP-ðn1; n2; c1; c2Þ plans with 0 � c1 � c� and n2 ¼
r � n1 and with OC-curves that pass through the two

points ðpAQL; 1� aÞ and ðpRQL; bÞ: Using Eq. [6], the
sampling plan with the minimum ASN can be returned.

Remark that Algorithm 1 can be adapted to the
hypergeometric case where the lot size N is an add-
itional parameter. Indeed, the dependency on the
sample sizes and criteria of the acceptance probability
related to a hypergeometric distribution is similar to
the dependency on the sample sizes and criteria of the
acceptance probability of a binomial distribution such
that Property 1 will also hold for the hypergeometric
case. Furthermore, other constraints on the sample
sizes can be considered by replacing f ðn0Þ ¼ r � n0 in
Algorithm 1 by another function f.

Design of two-point variables double
sampling plans

The following property studies the effect of the
changes in the parameters of a two-point variables
DSP-ðn1; n2; k1; k2Þ plan on its OC-curve. Due to the

Figure 2. Algorithms for the design of two-point DSP plans. The parameters of the procedures determine the producer’s and con-
sumer’s risk point. A constraint n2 ¼ rn1 on the sample sizes can be chosen by specifying r 2 N0:
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scalar nature of the criteria (k1, k2), the proof of
Property 2 requires a different reasoning than the
proof of Property 1 (see Appendix A).

Property 2. Consider a variables DSP-ðn1; n2; k1; k2Þ
plan and it’s corresponding OC-curve:

p 7! /dsp
v p; n1; n2; k1; k2ð Þ:

(i) /dsp
v ðp; n1; n2; k1; k2Þ is strictly decreasing as a

function of k1 and k2.
(ii) There exist p0; p1 2�0; 1½ such that

/dsp
v ðp; n1; n2; k1; k2Þ strictly increases as a func-

tion of n1 and n2 for p 2 ½0; p0½ and strictly
decreases as a function of n1 and n2 for
p 2�p1; 1�. In particular, an increase in sample
size leads to a decrease in producer’s and con-
sumer’s risk for pAQL 2�0; p0½ and pRQL 2�p1; 1½:

(iii) The OC-curve of a DSP-ðn1; n2; k1; k2Þ plan is
situated between the OC-curves of an SSP-(n1,
k1) and an SSP-(n1, k2) plan:

8p : /ssp
a p; n1; k2ð Þ � /dsp

a p; n1; n2; k1; k2ð Þ
� /ssp

a p; n1; k1ð Þ:
If k1 ¼ k2, the DSP-ðn1; n2; k1; k2Þ plan is
equivalent with an SSP-(n1, k1) plan and:

8p : /dsp
v p; n1; n2; k1; k2ð Þ ¼ /ssp

v p; n1; k1ð Þ:
(iv) Consider the SSP-ðn�; k�Þ plan with an OC-curve

passing through ðpAQL; 1� aÞ and ðpRQL; bÞ and
with a minimum sample size n� and an accept-
ance constant k�. Several constraints hold on the
matching two-point DSP-ðn1; n2; k1; k2Þ plan
with a minimum sample size n1: k1 � k� � k2
and n1 � n� for k2 � k�. Furthermore, as
k2 # k�, the matching DSP-ðn1; n2; k1; k2Þ plan
with a minimum sample size n1 will degenerate

to the SSP-ðn�; k�Þ plan (i.e. k1 ¼ k2 ¼ k�

and n1 ¼ n�; n2 ¼ 0).

The procedure to calculate a DSP plan for variables
inspection is given in Algorithm 2. As with attributes
inspection, the procedure starts with the design of an
SSP-ðn�; k�Þ plan with an OC-curve that passes
through two points ðpAQL; 1� aÞ and ðpRQL; bÞ such
that n� becomes an upper bound of n1 (Property
2(iv)). For each n1 < n�; criteria (k1, k2) are calculated
that guarantee a producer’s risk and a consumer’s risk
of at most a and b, respectively. For this purpose, an
SSP-ðn1; k�1Þ plan is calculated to find an upper bound
on k1 that corresponds to a producer’s risk a
(Property 2(ii)). Consequently, a grid search is per-
formed to find appropriate values for k1 and k2 in the
repeat loop starting at rule 7. By lowering k1, the con-
sumer’s risk increases which can be compensated by
an increase in k2 such that the consumer’s risk is at
most b (Property 2(i)). At the same time, it is
checked whether the producer’s risk stays below a.
When n1 is chosen too low, the consumer’s risk will
be too high and no solution won’t be found for k2 2
½0; 5� such that the loop terminates (Property 2(ii)).
Choosing a range of ½0; 5� for k2 enables to find solu-
tions for a wide range of values for the parameters of
DSP plans (see Table B1 in Appendix B). Finally, the
plan is returned with the minimum ASN by use of
[6] and [10].

Tabulated single and double sampling plans

To illustrate the use of Algorithms 1 and 2, we pre-
sent a table of matching SSP and DSP plans for varia-
bles and attributes inspection in Appendix B. The SSP
plans are calculated using the search routines
described by Kiermeier (2008). The DSP plans are cal-
culated by minimizing the ASN at pAQL: The plans
are matched such that the OC-curves pass through
the two points ðpAQL; 0:95Þ and ðpRQL; 0:1Þ:

The DSP plans for inspection by variables are
defined following the principles of Sommers (1981).
In contrast to the procedure proposed by Sommers
(1981), the use of Algorithm 2 resulted in more accur-
ate minima of the ASN at pAQL: To illustrate this,
Figure 3 shows the ASN at pAQL as a function of the
sample size n1 ¼ n2 of the DSP-ðn1; n2; k1; k2Þ plans
that pass through the two points ðpAQL; 0:95Þ and
ðpRQL; 0:1Þ: The curves correspond to several choices
of pAQL and pRQL: The gray dots indicate the plans
tabulated by Sommers (1981), while the black dots
indicate the plans obtained by using Algorithm 2.

Figure 3. The ASN at pAQL as a function of the sample size n1
¼ n2 for several two-point DSP-ðn1; n2; k1; k2Þ plans that pass
through two points ðpAQL; 0:95Þ and ðpRQL; 0:1Þ: The dotted
identity line correspond to an SSP-(n1, k1) where ASN ¼ n1:
The gray and black dots correspond to the plans obtained by
Sommers (1981) and Algorithm 2, respectively.
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Clearly, the use of Algorithm 2 results in sample sizes
that correspond more accurately to a minimum of the
ASN curve.

A web tool to design and study
sampling plans

In this section a web tool is presented to develop and
study SSP and DSP plans. The web tool is available at
https://www.acceptancesampling.com/ and aims at
providing a user-friendly way to develop and analyze
two-point sampling plans. The tool is organized in
two sheets: one sheet for attributes inspection and one
sheet for variables inspection (Figure 4). Routines
underlying the statistical computations were imple-
mented in R (R Core Team 2018). The web interface
is based on the PHP-language and the HTML-library
bootstrap (Duckett 2014; Spurlock 2013). The use of
four different types of sampling plans was
implemented:

i. SSP plans for inspection by attributes based on
the binomial distribution.

ii. SSP plans for inspection by variables based on a
normal distribution with a known standard devi-
ation r.

iii. DSP plans for inspection by attributes based on
the binomial distribution.

iv. DSP plans for inspection by variables based on a
normal distribution with a known standard devi-
ation r.

Each sheet consists of a left and a right panel of
which the structure and functionality are very similar
across the different types of plans to enhance user-
friendliness.

Introducing the panels of the web tool

The interface consists of a left panel that shows the
parameters of a plan and a right panel that visualizes
a plan by the OC-curve or the ASN curve (Figure 4).
In particular, the left panel shows the sample sizes
and relevant criteria of the sampling plan together
with the risks related to sampling error. To increase
the ease of interpretability for practitioners the terms
supplier’s risk and customer’s risk are used. A typical
application of the tool is the inspection by a company
(the customer) of an incoming lot from a supplier.
Furthermore, the quality levels can be specified: the
acceptable quality level, abbreviated as AQL and the
rejectable quality level, abbreviated as RQL. A help
page is available at the top right corner to introduce
the user to the functionality of the tool and the ter-
minology that is used.

The use of the left panel is implemented in two
directions: (i) one can calculate a sampling plan given

Figure 4. The interface of our web tool that consists of a left panel to set the sampling plan parameters and a right panel to visu-
alize the plan with an OC-curve and an ASN curve. The selection of the main sheet determines the type of inspection: attributes
inspection or variables inspection. The left panel allows to implement single-stage and double-stage sampling plans.
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the parameters ðpAQL; aÞ and ðpRQL; bÞ or (ii) the risks
a and b are calculated given the sampling plan and
the quality levels pAQL and pRQL: The sampling plans
are obtained by an implementation of Algorithms 1
and 2. Risks can be calculated using formulas [2], [4],
[5], [7], and [9].

The layout of the left panel depends on the type of
sampling plan (Figure 5). For a variables SSP-(n, k)
plan, lot acceptance can also be described by an upper
bound M on an unbiased estimate of the lot fraction
nonconforming (the so-called M-method). When the
standard deviation is known, this upper bound may
be found by PðZ � k

ffiffiffiffiffiffiffiffi
n

n� 1

p Þ for Z�Nð0; 1Þ (Schilling
and Neubauer 2009).

When the sampling plans at the left panel are
entered, the right panel visualizes the plan by an OC-
curve or a plot of the ASN as a function of the lot
fraction nonconforming. As well the acceptable quality
level pAQL as the rejectable quality level pRQL are indi-
cated on the OC-curve by vertical lines. The accept-
ance probability at pAQL should be approximately
1� a; the acceptance probability at pRQL should be
approximately the customer’s risk b. The ASN curves
are calculated using formulas [6] and [10]. For the
SSP plans, the ASN curve will be given by a horizon-
tal line. For a DSP plan, the lots will usually be
accepted in the first stage when the quality is very

good and rejected in the first stage when the quality is
very bad. When lots are of intermediate quality, a
second sample will be required and the total number
of items that need to be inspected will increase.

Case studies

We discuss three case studies at three different com-
panies that are active in the food industry: (i) an apple
juice company, (ii) a cheese company, and (iii) a com-
pany that processes eggs.

Case study I An apple juice company inspects a lot of
150,000 apples. Each lot is conforming or noncon-
forming towards the amount of rotten apples (an
apple is rotten when patulin is present). The company
uses an SSP plan by attributes with sample size n¼ 50
and an acceptance number c¼ 2 and is interested
whether a DSP plan is more appealing concerning
average inspection effort.

The company has agreed with local farmers to set
the acceptable quality level pAQL to 1% and the reject-
able quality level to pRQL ¼ 9%: The company is inter-
ested in an answer on the following questions:

(i) What is the supplier’s and customer’s risk of
the SSP-(50, 2) plan?

Figure 5. Left panels of the interface: (a) the parameters of a DSP-ðn1; n2; c1; c2Þ plan for inspection by attributes, (b) the parame-
ters of an SSP-(n, k) plan for inspection by variables, and (c) the parameters of a DSP-ðn1; n2; k1; k2Þ for inspection by variables.
The panel in (a) is part of the main sheet entitled sampling plans for attributes inspection as shown in Figure 4. The panels in (b)
and (c) are part of the main sheet entitled sampling plans for variables inspection.
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(ii) Which two-point SSP plan corresponds to a
supplier’s and customer’s risk of 5 and 10%,
respectively?

(iii) Which corresponding two-point DSP plan can
be used and will this plan lead to a decrease of
the ASN at an operating proportion noncon-
forming of p ¼ pAQL ¼ 1%?

To answer question 1, the left panel of the attrib-
utes inspection sheet can be used. The supplier’s risk
and customer’s risks of the operating attributes SSP-
(50, 2) plan are returned as 1.38 and 16.05%, respect-
ively after entering the sampling plan parameters.
Switching to the calculation of an SSP (Figure 4), the
web tool advices an SSP-(58, 2) answering question 2.
For a DSP plan, sample sizes n1 ¼ n2 ¼ 32 and crite-
ria ðc1; c2Þ ¼ ð0; 2Þ are advised (Figure 5(a)). An ASN
of approximately 41 is returned by reading the value
of the ASN curve (complete inspection) corresponding
to p ¼ pAQL:

Case study II An outgoing shipment of 2500 pieces
of cheese is inspected. The pH of such a shipment
should be at most U¼ 7.00. The quality levels pAQL
and pRQL are set to 0.06% (6 out of 10,000) and 0.5%,
respectively. The company is interested in the follow-
ing questions:

(i) Which two-point SSP and DSP plan is appropri-
ate to limit producer’s and customer’s risk
to 5%?

(ii) What is the maximum sampling effort that can
be expected when the DSP plan is used?

Figure 5(b) and 5(c) shows how to obtain the desired
SSP and DSP plan, respectively. For an SSP plan, a sam-
ple size of n¼ 25 and an acceptance constant k¼ 2.91 is
advised. Equivalently, an estimation of the lot fraction
nonconforming should be below M ¼ 0:07% in order
to accept the lot. For a DSP plan, the sample sizes are
given by n1 ¼ n2 ¼ 18 and the criteria in the first and
second stage are given by k1 ¼ 2:85 and k2 ¼ 3:02;
respectively. The corresponding ASN curve shows a
maximum sample size of approximately 23 at p ¼
0:17% which gives an indication of the maximum sam-
pling effort that can be expected (Figure 6(a)).

Case study III A food company that is specialized in
egg processing daily receives multiple shipments of
eggs that are being cooked and peeled. The freshness
of the eggs is essential to minimize drop-out during
peeling. For this purpose, the Haugh unit is measured,
which is a measure of egg protein quality that is based
on the height of the thick albumen (egg white) that
immediately surrounds the yolk. Testing is destructive
as the Haugh unit can only be measured by breaking
the egg. The frequency of shipments is 4 per day
where each lot consists of 324,000 eggs. The company
and supplier who delivers the eggs agree to set the
quality levels pAQL and pRQL as 0.04 and 0.2%, respect-
ively. The supplier’s and customer’s risk are set to 5
and 10%, respectively. A lower specification limit of
L¼ 65 is set to the measured Haugh unit.

The use of the tables of the ISO 3951-1 results in an
SSP-ð40; 2:97Þ (standard inspection level II, r-method).
Associated supplier’s and customer’s risk are given by
0.77 and 28.07%, respectively (Figure 6(b)). The focal

Figure 6. (a) The ASN curve of a DSP-ð18; 18; 2:85; 3:02Þ for variables inspection. (b) The risks associated to an individual ISO
3951-1 SSP-ð40; 2:97Þ plan for inspection by variables.
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point of the ISO 3951-1 standard is the acceptable qual-
ity level which ranges from 0.01% to 10%. To control
the customer’s risk up to a certain level, three general
levels are available. The use of level III results in a sam-
ple size of n¼ 50 and an acceptance constant of
k¼ 3.01 and reduces the customer’s risk to 17.56%.
However, by use of the web tool one can achieve a two-
point SSP-ð39; 3:09Þ plan corresponding to a supplier’s
and customer’s risk not exceeding 5 and 10%, respect-
ively. Alternatively, a matching two-point DSP-
ð28; 28; 3:04; 3:18Þ can be used.

Conclusion

In this article, we introduced novel search routines for
the design of DSP plans for inspection by attributes
and variables. Analytic properties of DSP plans were
derived that were given a mathematical proof. We
found that several constraints hold on the sample sizes
and the criteria of two-point attributes DSP plans
leading to a more efficient search routine compared
to existing ones. For variables DSP plans, a routine
was developed that lead to more accurate sample sizes
when compared to existing tables and routines.

Furthermore, we introduced and discussed a user-
friendly and interactive web tool to design and ana-
lyze SSP and DSP plans and that is freely available at
www.acceptancesampling.com. In comparison with
existing solutions the tool is an interactive applet that
supports a two-point design of DSP plans as well as
SSP plans. The use of the web tool was demonstrated
on several case studies. In comparison with inter-
national standards the tool can be used to obtain a
statistical interpretation of the sampling plans in
terms of the consumer’s and the producer’s risks.

Several interesting future research directions are
possible. First, extensions of our search routines to
the design of sampling plans with more than two
stages can be studied. Second, the design of variables
DSP plans can be extended to the case of unknown
variance or double specification limits. Third, algo-
rithms can be developed that are independent of con-
straints on the sample sizes n1 and n2.
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Appendix A: Proofs

Proof of Property 1

(i) Due to Eq. [5]:

/dsp
a pRQL; n1; n2; c1 þ 1; c2ð Þ�/dsp

a pRQL; n1; n2; c1; c2ð Þ
¼ P D1 ¼ c1 þ 1ð Þ�P D1 ¼ c1 þ 1ð ÞP D2 � c2 � c1 � 1ð Þ> 0

and

/dsp
a pRQL; n1; n2; c1; c2 þ 1ð Þ�/dsp

a pRQL; n1; n2; c1; c2ð Þ

¼
Xc2þ1

j¼c1þ1

P D1 ¼ jð ÞP D2 � c2 þ 1� jð Þ

�
Xc2

j¼c1þ1

P D1 ¼ jð ÞP D2 � c2 � jð Þ

¼
Xc2

j¼c1þ1

P D1 ¼ jð Þ P D2 � c2 � jþ 1ð Þ� P D2 � c2 � jð Þð Þ

þ P D1 ¼ c2 þ 1ð ÞP D2 ¼ 0ð Þ> 0

showing that /dsp
a ðp; n1; n2; c1; c2Þ is strictly increasing as a

function of c1 and c2.

(ii) Due to the properties of the binomial distribution the
probabilities PðD1 � c1Þ and PðD1 ¼ jÞ in [5] decrease
as a function of n1. Furthermore, the probabilities
PðD2 � c2 � jÞ decrease as a function of n2.

(iii) From the operating procedure of a DSP plan, we know
that when the number of nonconforming items D1 in
the first sample is situated between c1 and c2, the lot
sentencing depends on a second sample taken from the
lot. Clearly, for an SSP-(n1, c2), the lot is always
accepted for c1 <D1 � c2 such that the acceptance
probability of the plan will increase with respect to a
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DSP-ðn1; n2; c1; c2Þ: For an SSP-(n1, c1), the lot is always
rejected for c1 <D1 � c2 such that the acceptance prob-
ability will decrease. When c1 ¼ c2, the condition to
enter the second stage of a DSP cannot be satisfied
anymore resulting in an SSP-(n1, c1) procedure. The
summation in [5] disappears and simplifies to PðD1 �
c1Þ which is the acceptance probability of the SSP-(n1,
c1) plan.

(iv) First, note that, due to Property (ii), we can find
(analogously as in [11]) a lower - and an upper bound
on the sample size n1 that depend on the other param-
eters n2; c1; c2:

n1l n2; c1; c2ð Þ ¼ inf n1j/dsp
a pRQL; n1; n2; c1; c2ð Þ � b

n o
and

n1u n2; c1; c2ð Þ ¼ sup n1j/dsp
a pAQL; n1; n2; c1; c2ð Þ � 1� a

n o
:

[A.1]

To prove the constraint n1 þ n2 � nlðc2Þ; we consider a
two-point DSP-ðn1; n2; c1; c2Þ and verify that:

b � /dsp
a pRQL; n1; n2; c1; c2ð Þ

¼ P D1 � c1ð Þ þ
Xc2

j¼c1þ1

P D1 ¼ jð ÞP D2 � c2 � jð Þ

¼
Xc1
j¼0

P D1 ¼ jð Þ þ
Xc2

j¼c1þ1

P D1 ¼ jð ÞP D2 � c2 � jð Þ

�
Xc1
j¼0

P D1 ¼ jð ÞP D2 � c2 � jð Þ þ
Xc2

j¼c1þ1

P D1 ¼ jð ÞP D2 � c2 � jð Þ

¼
Xc2
j¼0

P D1 ¼ jð ÞP D2 � c2 � jð Þ
¼ P D1 þ D2 � c2ð Þ
¼ /ssp

a pRQL; n1 þ n2; c2ð Þ;

such that n1 þ n2 � nlðc2Þ by the definition of nlðc2Þ
given in [11]. Note that, for j � c1; PðD2 � c2 � jÞ ! 1
as c2 ! n2 þ j: Therefore, for fixed n2, n1lðn2; c1; c2Þ þ n2
tends to nlðc2Þ as c2 tends to n2 þ c1: Similarly, by
replacing pRQL by pAQL in the above inequality, one can
show that n1uðn2; c1; c2Þ þ n2 tends to nuðc2Þ as c2 tends
to n2 þ c1:

We proceed by proving that c2 � c�: For c1 � c�; this is
obvious as c1 � c2: Consider some fixed first sample accept-
ance number c1 < c� and let c2 � c1 and n2 � 0: Clearly, if
c2 ¼ c1, then nlðc1Þ ¼ n1lðn2; c1; c2Þ and nuðc1Þ ¼
n1uðn2; c1; c2Þ due to Property 1(iii). Therefore, as
c1 < c�; n1lðn2; c1; c1Þ> n1uðn2; c1; c1Þ: For large c2,
n1lðn2; c1; c2Þ þ n2 tends to nlðc2Þ and n1uðn2; c1; c2Þ þ n2

tends to nuðc2Þ such that n1lðn2; c1; c2Þ< n1uðn2; c1; c2Þ for
large c2. Denote �c as the minimum number c2 such that
n1lðn2; c1; c2Þ< n1uðn2; c1; c2Þ: For n2 ¼ 0; a two-point DSP-
ðn1; n2; c1; c2Þ is equivalent with an SSP-(n1, c2) plan for
which nlðc2Þ< nuðc2Þ when c2 � c�: Thus, for n2 ¼ 0; the
minimum acceptance number �c is given by c�: For choices
n2 > 0; the minimum value �c for c2 cannot be smaller than
c� in order to maintain a producer’s risk of at most a
(Property 1(i)). Therefore, �c � c�: In Figure A1, the inter-
section of the curves n1lðn2; c1; c2Þ and n1uðn2; c1; c2Þ is illus-
trated for fixed choices of c1 and n2.

For any DSP plan with c1 ¼ c� and c2 � c� a sample size
n1 � n� is required to keep the consumer’s risk below b.
Indeed, the consumer’s risk of any DSP-ðn�; n2; c�; c2Þ plan
will be higher than that of an SSP-ðn�; c�Þ plan as (due to (i)):

/dsp
a pRQL; n

�; n2; c�; c2ð Þ � /dsp
a pRQL; n

�; n2; c�; c�ð Þ
¼ /ssp

a pRQL; n
�; c�ð Þ	b:

[A.2]

Therefore, due to (ii), a consumer’s risk lower than b
can only be obtained for sample sizes n1 � n� when c1 ¼
c�: Thus, as c1 approaches c�; a minimum sample size n1 is
achieved by the SSP-ðn�; c�Þ plan. Finally, a two-point DSP
with an OC-curve passing through ðpAQL; 1� aÞ and
ðpRQL;bÞ obviously exists for n1 � n� and c1 � c� � c2 as
the SSP-ðn�; c�Þ is one such plan with n2 ¼ 0 and c1 ¼ c2 ¼
c�: As n2 increases, the consumer’s risk decreases and the
minimum sample size n1 won’t exceed n�:

Proof of Property 2

In the following lemma, we derive some important inte-
grals of the density function of the bivariate normal distri-
bution that will be required to prove Property 2.

Lemma A.1. Consider the density function f(u, v) of the
bivariate normal distribution Nð0;RÞ with covariance R as
in [8]:

f u;vð Þ¼ 1
2p

ffiffiffiffiffi
N
n2

r
exp � N

2n2
u2 � 2

ffiffiffiffiffi
n1
N

r
uvþv2

 !" #
; [A.3]

with N¼n1þn2. For each u02R and v02R, the following
identities apply:ða

�1
f u;v0ð Þdu¼ 1ffiffiffiffiffi

2p
p P Z�

ffiffiffiffiffi
N
n2

r
a�

ffiffiffiffiffi
n1
N

r
v0

" # !
e�

v2
0
2 [A.4]

and:

Figure A1. Examples of curves nlðc2Þ and nuðc2Þ as defined in [11] for an SSP-ðn; c2Þ plan and n1lðn2; c1; c2Þ and nuðn2; c1; c2Þ as
defined in [A.1] for a DSP-ðn1; n2; c1; c2Þ plan with fixed choices of c1 and n2: (a) c1 ¼ 0 and n2 ¼ 50; with pAQL ¼ 1% and pRQL ¼
10%; (b) c1 ¼ 10 and n2 ¼ 350; with pAQL ¼ 2% and pRQL ¼ 4%: Risks are set to a ¼ b ¼ 5%: The gray and black dotted lines
correspond to the curves nlðc2Þ� n2 and nuðc2Þ� n2 respectively to which n1lðn2; c1; c2Þ and nuðn2; c1; c2Þ converge for large c2.
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ða
�1

f u0;vð Þdv¼ 1ffiffiffiffiffi
2p

p P Z�
ffiffiffiffiffi
N
n2

r
a�

ffiffiffiffiffi
n1
N

r
u0

" # !
e�

u2
0
2 [A.5]

Proof. The expression of f(u, v) can be integrated with
respect to the variable v and using a substitution
w ¼

ffiffiffiffi
N
n2

q
ðu � ffiffiffiffin1

N

p
v0Þ:ða

�1
f u; v0ð Þdu ¼ 1

2p

ffiffiffiffiffi
N
n2

r  ða
�1

exp � N
2n2

u2 � 2

ffiffiffiffiffi
n1
N

r
uv0

 !" #
du

!
e�

N
2n2

v20

¼ 1
2p

ffiffiffiffiffi
N
n2

r  ða
�1

exp � N
2n2

u �
ffiffiffiffiffi
n1
N

r
v0

 !2
2
4

3
5du

!
e

n1
2n2

v20e�
N
2n2

v20

¼ 1
2p

ð ffiffiffi
N
n2

p
a�

ffiffiffi
n1
N

p
v0

� �
�1

e�
w2
2 dw

 !
e�

v2
0
2

¼ 1ffiffiffiffiffi
2p

p P Z �
ffiffiffiffiffi
N
n2

r
a �

ffiffiffiffiffi
n1
N

r
u0

" # !
e�

v2
0
2

The identity [A.5] immediately follows by applying the
symmetry property of f(u, v) about the line v¼ u, that
is, f ðu; vÞ ¼ f ðv; uÞ: w

We now proceed by proving Property 2:

i. Clearly when the acceptance constant k1 increases the
size of the probability event in [9] reduces implying a
decrease in the expression of the acceptance probability
/dsp
v in [7]. Moreover, for criteria k2 < k02; and denoting

u ¼ ffiffiffiffiffi
n1

p ðZp � k2Þ; u0 ¼ ffiffiffiffiffi
n1

p ðZp � k02Þ; and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p ðZp � k1Þ; one obtains:

/dsp
v p; n1; n2; k1; k02
� ��/dsp

v p; n1; n2; k1; k2ð Þ
¼ � P u0 � Z � uð Þ þ P W1 � v; u0 � W2 � uð Þ
< � P u0 � Z � uð Þ þ P u0 � W2 � uð Þ
¼ � P u0 � Z � uð Þ þ P u0 � Z � uð Þ ¼ 0

as the marginal distribution of W2 is a standard normal dis-
tribution N(0, 1).

ii. To study the dependency on n1 and n2, we consider the
expression of the OC-curve defined by Eqs. [7] and [9]

/dsp
v p;n1;n2;k1;k2ð Þ¼ 1ffiffiffiffiffi

2p
p

ðffiffiffiffin1p
Zp�k2ð Þ

�1
e�

u2
2 du

þ
ðffiffiffiNp
Zp�k1ð Þ

�1

ðffiffiffiffin1p
Zp�k1ð Þ

ffiffiffiffi
n1

p
Zp�k2ð Þ

f u;vð Þdudv

[A.6]

with f(u, v), the density function of the bivariate normal
distribution Nð0;RÞ as defined in [A.3] and N ¼ n1 þ n2:
The boundaries as well as the integrand f(u, v) in [A.6]
depend on the sample sizes n1 and n2 leading to complex
expressions of the derivatives with respect to n1 and n2.
Instead, we will study the slopes:

@/dsp
v

@p
p; n1; n2; k1; k2ð Þ;

using Lemma A.1 and we will show that these are increas-
ing with respect to n1 and n2 for proportions nonconform-
ing near zero and near 1. In particular for n1 < n01 and
some k1; k2; n2; we will show that there exists some p0 > 0
(resp. p1 < 1) such that for p in �0; p0½ (resp. for p in �p1; 1½):

@/dsp
v

@p
p; n1; n2; k1; k2ð Þ< @/dsp

v

@p
p; n01; n2; k1; k2
� �

[A.7]

and therefore by integration over ½0; p� (resp. ½p; 1�), one
obtains for p in �0; p0½ (resp. for p in �p1; 1½):

/dsp
v p;n1;n2;k1;k2ð Þ</dsp

v p;n01;n2;k1;k2
� �

�
resp:/dsp

v p;n1;n2;k1;k2ð Þ>/dsp
v p;n01;n2;k1;k2
� ��

:
[A.8]

Moreover, due to the continuity of the OC-curves of DSP
plans, the OC-curves of the DSP-ðn1; n2; k1; k2Þ and DSP-
ðn01; n2; k1; k2Þ will intersect somewhere in �0; 1½: A similar
reasoning can be used to study the dependency on n2.

We proceed by proving the inequalities in [A.7]. The
slope of the first term is given by:

@

@p
P Z� ffiffiffiffiffi

n1
p

Zp�k2
� �� �� �¼� ffiffiffiffiffi

n1
p

e�
n1
2 Zp�k2ð Þ2e

Z2p
2 ; [A.9]

where we used (inverse function theorem (Adams and
Essex 2009)):

@Zp

@p
¼�

ffiffiffiffiffi
2p

p
e
Z2p
2 : [A.10]

To study the dependency on n1 of this slope, we calculate
the following second order partial derivative using [A.9]:

@2

@n1@p
P Z � ffiffiffiffiffi

n1
p

Zp � k2
� �� �� �

¼ � 1
2
ffiffiffiffiffi
n1

p þ
ffiffiffiffiffi
n1

p
2

Zp � k2
� �2 !

e�
n1
2 Zp � k2ð Þ2e

Z2p
2 ;

[A.11]

which is clearly positive when
ffiffiffiffi
n1

p
2 ðZp � k2Þ2 > 1

2
ffiffiffiffi
n1

p ; which
holds for p close to zero (resp. close to 1) because
ðZp � k2Þ2 ! þ1 as p ! 0 (resp. p ! 1). Note that the
definition of the acceptance probability
/dsp
v ðp; n1; n2; k1; k2Þ can be extended to allow positive real

numbers n1 and n2 such that partial derivatives to n1 and
n2 are well-defined.

Taking the derivative of the second term in [A.6], which
we denote as P2, leads to:

@P2
@p

¼ @

@p

ð ffiffiffiNp
Zp � k1ð Þ

�1

ð ffiffiffiffin1p
Zp � k1ð Þffiffiffiffi

n1
p

Zp � k2ð Þ
f u; vð Þdudv

0
@

1
A

¼
�� ð ffiffiffiNp ðZp � k1Þ

�1
ðpð ffiffiffiffiffi

n1
p ðZp � k1Þ; vÞ

� pð ffiffiffiffiffi
n1

p ðZp � k2Þ; vÞÞdv
� ffiffiffiffiffi

n1
p

þ
ð ffiffiffiffin1p

Zp � k1ð Þffiffiffiffi
n1

p
Zp � k2ð Þ

p u;
ffiffiffiffi
N

p
Zp � k1
� �� �

du

 ! ffiffiffiffi
N

p �
@Zp

@p

¼ f0 � g0 þ h0;

where, based on Lemma A.1, we defined:
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f0 ¼ 1ffiffiffiffiffi
2p

p P Z � ffiffiffiffiffi
n2

p
Zp � k1
� �� � ffiffiffiffiffi

n1
p

e�
n1
2 Zp � k1ð Þ2 @Zp

@p
;

g0 ¼ 1ffiffiffiffiffi
2p

p P Z � ffiffiffiffiffi
n2

p
Zp � k1
� �þ n1ffiffiffiffiffi

n2
p k2 � k1ð Þ

� �
ffiffiffiffiffi
n1

p
e�

n1
2 Zp � k2ð Þ2 @Zp

@p
;

h0 ¼ 1ffiffiffiffiffi
2p

p P �
ffiffiffiffiffi
N
n2

r ffiffiffiffiffi
n1

p
k2 � k1ð Þ � Z � 0

 !

ffiffiffiffi
N

p
e�

N
2 Zp � k1ð Þ2 @Zp

@p
:

The functions f0, g0 and h0 increase as a function of n1
for p near zero. Indeed, the dependency of the exponential
factors are similar to [A.9] while the probabilistic factors
clearly increase as a function of n1. We now obtain:

@2/dsp
v

@n1@p
¼ @f0

@n1
þ @h0
@n1

þ @2

@n1@p
P Z � ffiffiffiffiffi

n1
p

Zp � k2
� �� �� � � @g0

@n1

" #
;

[A.12]

where @f0
@n1

and @h0
@n1

are positive for p near zero. Furthermore,
by using [A.11] and [A.10], we find:

@2

@n1@p
P Z � ffiffiffiffiffi

n1
p

Zp � k2
� �� �� �� @g0

@n1

¼ � 1� bp
2
ffiffiffiffiffi
n1

p þ 1 � bp
� � ffiffiffi

n
p

1

2
Zp � k2
� �2 þ ffiffiffiffiffi

n1
p @bp

@n1

 !

e�
n1
2 Zp � k2ð Þ2e

Z2p
2 [A.13]

where we defined the probability:

bp ¼ P Z � ffiffiffiffiffi
n2

p
Zp � k1
� �þ n1ffiffiffiffiffi

n2
p k2 � k1ð Þ

� �
:

Clearly bp increases as a function of n1 such that
@bp
@n1

� 0: For p near zero, one can suppose thatffiffiffiffi
n1

p
2 ðZp � k2Þ2 > 1

2
ffiffiffiffi
n1

p implying that the expression in

[A.13] is positive. From [A.12], we conclude that
@2/dsp

v
@n1@p

� 0 for p near zero. Also, proportions noncon-

forming p near 1 lead to positive expressions in [A.13]
and [A.12] such that the inequalities in [A.7] hold. A
similar reasoning can be used to prove that the slopes
@/dsp

v
@p are increasing as a function of n2 for p near 0

(resp. near 1).

(iii) The proof proceeds completely similar to the proof of
Property 1(iii).

(iv) Following the same lines as in the proof of Property
1(iv), one obtains for k1 < k� (due to (ii), assuming
pRQL > p1):

/dsp
v pRQL; n

�; n2; k1; k�ð Þ>/dsp
v pRQL; n

�; n2; k�; k�ð Þ
¼ /ssp

v pRQL; n
�; k�ð Þ	b:

Only a sample size n1 of at least n� can result in a
consumer’s risk below b, when k2 ¼ k�: Therefore, as
k2 # k�; a minimum sample size n1 is achieved by the
SSP-ðn�; k�Þ plan. Furthermore, a two-point DSP with
an OC-curve passing through ðpAQL; 1� aÞ and ðpRQL; bÞ
obviously exists for n1 � n� as the SSP-ðn�; k�Þ is one
such plan with n2 ¼ 0 and k1 ¼ k2 ¼ k�: As n2
increases, the consumer’s risk decreases and the min-
imum sample size n1 won’t exceed n�:

To prove that k1 � k� � k2; we show that both k1 �
k2 � k� and k� � k1 � k2 are not possible. Indeed, for k1 �
k2 � k� and n1 � n�; one finds (due to (i) and (ii), assum-
ing pRQL > p1):

/dsp
v pRQL; n1; n2; k1; k2ð Þ � /dsp

v pRQL; n1; n2; k
�; k�ð Þ

¼ /ssp
a pRQL; n1; k

�ð Þ � b

such that the consumer’s risk exceeds b. Similar, for k� �
k1 � k2 and n1 � n�; one finds (due to (i), (ii) and (iii) and
assuming pAQL < p0):

/dsp
v pAQL; n1; n2; k1; k2ð Þ

� /dsp
v pAQL; n�; n2; k1; k2ð Þ � /ssp

a pAQL; n�; k1ð Þ
� /ssp

a pAQL; n�; k�ð Þ
� 1� a

such that the producer’s risk exceeds a.
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Appendix B: Table of matching single and
double sampling plans

Table B1. Table of two-point SSP and DSP plans indexed by pAQL and pRQL:
SSP-(n, c) DSP-ðn1; n2; c1; c2Þ SSP-(n, k) DSP-ðn1; n2; k1; k2Þ

pAQL pRQL n c n1 c1 c2 ASN n k n1 k1 k2 ASN

0.001 0.003 3922 7 2391 3 8 2913.4 74 2.90 54 2.86 2.96 60.8
0.004 2317 5 1384 2 5 1604.8 45 2.85 33 2.80 2.93 37.1
0.005 1335 3 692 0 3 1033.9 33 2.80 24 2.75 2.90 26.9
0.006 1112 3 681 1 3 779 26 2.77 19 2.71 2.87 21.3
0.007 759 2 416 0 2 554 22 2.74 16 2.67 2.84 17.8

0.002 0.006 1960 7 1195 3 8 1455.8 64 2.67 47 2.63 2.74 53.2
0.008 1158 5 692 2 5 802.4 39 2.61 29 2.57 2.70 32.4
0.01 667 3 346 0 3 517 29 2.57 21 2.51 2.66 23.4
0.012 555 3 340 1 3 388.8 23 2.54 17 2.47 2.62 18.6
0.014 379 2 208 0 2 277 19 2.50 14 2.43 2.6 15.4

0.005 0.015 783 7 477 3 8 580.5 53 2.35 39 2.31 2.42 43.3
0.02 462 5 276 2 5 319.7 32 2.29 23 2.23 2.39 26.2
0.025 266 3 138 0 3 206.2 23 2.23 17 2.17 2.33 18.8
0.03 221 3 135 1 3 154.2 18 2.19 13 2.11 2.33 14.8
0.035 151 2 83 0 2 110.5 15 2.15 11 2.07 2.27 12.2

0.01 0.03 390 7 238 3 8 289.3 44 2.08 32 2.03 2.16 35.9
0.04 198 4 137 2 5 158.4 26 2.00 19 1.94 2.12 21.5
0.05 132 3 69 0 3 103.2 19 1.95 14 1.88 2.05 15.4
0.06 110 3 67 1 3 76.4 15 1.90 11 1.82 2.00 12.0
0.07 75 2 41 0 2 54.5 12 1.85 9 1.77 1.98 9.90

0.02 0.04 616 18 331 7 19 445 94 1.88 69 1.85 1.94 77.6
0.05 306 10 175 4 11 222.8 52 1.83 38 1.78 1.90 42.6
0.06 194 7 118 3 8 142.9 35 1.78 26 1.73 1.85 28.7
0.07 131 5 82 2 6 100.4 26 1.73 19 1.67 1.84 21.3
0.08 98 4 68 2 5 78.4 21 1.69 15 1.62 1.81 16.9

0.03 0.05 807 32 415 10 33 706.2 154 1.75 114 1.72 1.79 128.1
0.06 410 18 243 9 20 290.9 81 1.70 60 1.67 1.76 67.1
0.07 252 12 130 4 12 175.7 53 1.65 39 1.61 1.72 43.5
0.08 175 9 93 3 9 121.3 38 1.61 28 1.57 1.70 31.5
0.09 129 7 68 2 7 90.7 30 1.58 22 1.52 1.67 24.5

0.05 0.07 1196 72 598 10 72 1196 300 1.55 222 1.53 1.58 249.5
0.08 572 37 286 10 37 529.1 149 1.51 111 1.49 1.55 124.1
0.09 348 24 185 10 25 244.5 93 1.47 69 1.44 1.53 77.1
0.1 233 17 127 7 18 165.5 65 1.44 48 1.40 1.51 54.0
0.11 170 13 94 5 14 125 49 1.41 36 1.37 1.49 40.8

Double-stage plans are chosen such that the ASN at pAQL is minimized and n1 ¼ n2. Producer’s and consumer’s risk are set to a ¼ 5% and b ¼ 10%;
respectively.
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