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ABSTRACT
The purpose of acceptance sampling is to develop decision rules to accept or reject
production lots based on sample data. When testing is destructive or expensive,
dependent sampling procedures cumulate results from several preceding lots. This
chaining of past lot results reduces the required size of the samples. A large part
of these procedures only chain past lot results when defects are found in the cur-
rent sample. However, such selective use of past lot results only achieves a limited
reduction of sample sizes. In this article, a modified approach for chaining past lot
results is proposed that is less selective in its use of quality history and, as a result,
requires a smaller sample size than the one required for commonly used dependent
sampling procedures, such as multiple dependent sampling plans and chain sampling
plans of Dodge. The proposed plans are applicable for inspection by attributes and
inspection by variables. Several properties of their operating characteristic-curves
are derived, and search procedures are given to select such modified chain sampling
plans by using the two-point method.
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1. Introduction

One of the oldest aspects of quality assurance is concerned with inspection and decision
making regarding products. In the 1930s and 1940s acceptance sampling was developed
for inspection of incoming or receiving inspection [4]. Acceptance sampling describes
decision rules for acceptance or rejection of a batch or lot based on the inspection and
classification of a sample of units that are selected at random. It is used by industries
worldwide for assuring the quality of incoming and outgoing goods. It can be used in
contracting and sub-contracting, in which the contractor wants to assure the quality
of the incoming goods or services, e.g., a food company that processes eggs inspects
the quality of each shipment that is received from a local farmer. Acceptance sampling
is also commonly used by suppliers or manufacturers themselves as a tool for audit or
compliance, e.g., a well-known vendor of child safety car seats inspects the quality of
its products using acceptance sampling [18]. Civilian standards as ISO standards (and
their ANSI/ASQC/BS/Military Standards or other counterparts) are commonly used
tools to implement acceptance sampling schemes in practice. These standards dictate
the sample size to be drawn from each batch and the requirements that the sample
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must meet to assure that the entire batch is of acceptable quality [13].
A single sampling (SSP) plan is a procedure where lot sentencing is based on the

inspection of one random sample. Clearly, such sampling plans involve the risk that the
sample will not adequately reflect the quality of the lot. The statistical design of a SSP
plan is based on its operating characteristic (OC) curve, which shows the probability
of accepting a lot given various proportions defective. The so-called two-point method
requires that the OC-curve p 7→ φ(p,P) of a plan P passes approximately through
two designated points: (pAQL, 1−α) and (pRQL, β). In this way, the producer’s risk to
reject a (good) lot with p < pAQL is smaller than α and the consumer’s risk to accept
a (bad) lot with p > pRQL is smaller than β. The shape of the OC-curve determines
the discriminative power of the sampling plan. An ideal OC-curve would accept all
lots with p < pAQL and would reject all lots with p > pAQL. Ideal OC-curves can
almost never be obtained in practice, such that an approximation is desired. Good
approximation can be obtained by increasing the sample size, but this will not be
possible when testing is costly or destructive.

An alternative solution is to rely on conditional sampling procedures which are
shown to require a smaller sample size than traditional SSP plans [2, 20]. In these
procedures, acceptance or rejection of a lot is based not only on the sample from that
lot, but also on sample results from past or future lots. In this article, dependent or
chain sampling plans will be studied that make use of past lot results. In multiple
dependent state sampling (MDS) plans, past sample results are used when the quality
of the current lot is doubtful. Such plans are developed for inspection by attributes
[2, 20] and inspection by variables [1]. The design and construction of such plans is
discussed in [2, 10]. Variables sampling plans may also incorporate capability indices to
account for sampling error when estimating sample means [14, 22]. The chain sampling
plans of Dodge, known as ChSP-1 plans, provide an alternative to zero-acceptance
number plans to prevent a pathological shape of the OC-curve that is convex for all
quality levels [6]. ChSP-1 plans were developed for inspection by variables as well as
inspection by attributes [5, 11]. Tables and procedures to select ChSP-1 plans are
studied in [3, 9, 15].

A large part of existing dependent procedures, however, only chain past lot results
when defective units are found in the current lot. For instance, a classical ChSP-1 plan
only chains past lot results when a defective unit is observed in the current sample.
This means that the available historical evidence of quality is not fully utilized. For
this reason, a modification of ChSP-1 plans was introduced in [8], termed MChSP-1
plans. These plans explore quality history even when no nonconformities are observed
and result in a lower sample size than the one required for ChSP-1 plans. However the
plans can only be used for inspection by attributes and their selection is only studied
under the condition of a Poisson model.

This article provides extensions of MChSP-1 plans, termed modified chain sampling
(MChSP) plans, that are applicable to both attributes and variables inspection. The
attributes sampling plans will be based on the binomial model, and the variables
sampling plans will use a quality characteristic following a normal distribution with
known variance. Furthermore, MChSP-1 plans will be studied under the condition
of a binomial model. Search procedures are developed that allow the design of such
plans and several analytic properties of their OC-curves are derived. In particular, it
will be shown that the OC-curve of a MChSP plan always has an inflection point.
This property will ensure the discriminative power of MChSP plans [7]. Furthermore,
the performance of MChSP plans will be investigated and compared with ChSP-1,
MChSP-1 and MDS plans in terms of required sample sizes. As with other dependent
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sampling procedures, we assume that lots are submitted substantially in the order of
production with an unknown but constant proportion defective.

Because of their selective use of past lot results, most existing dependent procedures
only achieve a limited reduction of sample sizes. This implies that similar sample sizes
are obtained when the number i of chained results increases. In fact, minimal sample
sizes for ChSP-1 and MDS plans are achieved for 1 ≤ i ≤ 5 [1, 10]. A further increase
in i will not result in a reduction of the sample size. The proposed MChSP plans do
allow to reduce the sample size by increasing the number of chained lot results.

The remainder of the paper is structured as follows. In Section 2, an introduction to
single and dependent sampling procedures is given. In Section 3 the proposed MChSP
plans are introduced and several analytic properties of their OC-curves are derived.
In Section 4, search procedures are provided for the selection of these plans, and
a parameter sensitivity analysis is presented. Section 5 is devoted to a comparison
between the performance of several dependent sampling plans. In Section 6, the use
of MChSP plans is illustrated by a case study. Finally, conclusions are presented in
Section 7.

2. Preliminaries

Depending upon the type of data, acceptance sampling plans can be divided into two
classes. In attributes sampling plans measures are used that classify items as being
defective or non-defective. In variables sampling plans quality features are measured
on a numerical scale. In this section, an overview is given of the single and dependent
sampling plans that will be used in this article.

The fundamental tool in the analysis and design of sampling plans is the OC-curve
p 7→ φ(p,P) which relates the lot fraction defective to the lot acceptance probability
of the plan P. The two-point method for selecting a sampling plan requires that this
curve passes approximately through two designated points (pAQL, 1−α) and (pRQL, β)
such that: {

φ(pAQL,P) ≥ 1− α
φ(pRQL,P) ≤ β.

(1)

A SSP plan by attributes is a procedure in which decision is made to accept or
reject a lot of size N based on the number of defective units of a random sample of
size n < N taken from it. Such a sampling plan is defined by two integers (n, c) where
n denotes the sample size and c denotes the maximum number of defective units c
that are allowed in order to accept the lot under inspection (the so-called criterion).
When the lot size is large ( nN < 0.1), the number of defective units Dn,p that is found in
samples of size n drawn from the lot follows approximately a binomial distribution, i.e.,
Dn,p ∼ B(n, p), where p denotes the (unknown) lot fraction defective. The OC-curve
p 7→ φa(p, n, c) of a SSP-(n, c) plan is given by:

φa(p, n, c) = P (Dn,p ≤ c) =

c∑
j=0

n!

j!(n− j)!
pj(1− p)n−j ,

and a statistical design is a solution of the system of equations (1) where φ = φa.
Minimal sample sizes can be achieved by considering zero-acceptance number sampling
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plans (n, 0). As noted by several authors, the OC-curve of these plans is convex for
all quality levels. As a result, the producer’s risk is rapidly increasing, even for small
values of the lot fraction defective, which is unfair to the producer [6].

The ChSP-1 plans are an alternative on zero-acceptance number sampling plans
that prevent such pathological shape of the OC-curve [13]. The operating procedure
of these plans is as follows:

(1) Select a sample of size n from the current lot and observe the number of defective
units Dn,p.

(2) If Dn,p = 0 the lot is accepted; If Dn,p ≥ 2, the lot is rejected; And if Dn,p = 1,
the lot is accepted provided there have been no defectives in the previous i lots.

The points on the OC-curve of a ChSP-1-(n, i) plan are determined by:

φChSP
a (p, n, i) = P0(p) + P1(p)P0(p)i, (2)

where Pc(p) =
(
n
c

)
pc(1 − p)n−c denotes the binomial probability of having c defects.

These plans only chain past results when a defective unit is observed in the current
sample. Clearly, the OC-curve converges to that of a zero-acceptance sampling plan
(n, 0) as i→ +∞.

The sample size of a ChSP-1 plan can be further reduced by exploring quality
history, even when no nonconformities are observed. As a results, Govindaraju [8]
introduced MChSP-1 plans that are defined by two integers: the sample size n and the
number of chained sample results i. Under the condition of a bionomial model, the
decision procedure of a MChSP-1-(n, i) plan is given by:

(1) Select a sample of size n from the current lot and observe the number of defective
units Dn,p. Reject the lot if Dn,p ≥ 1.

(2) Accept the lot if no defective units are found in the sample provided the preceding
i samples are also free from defective units except in one sample that contains
at most one defective unit. Otherwise reject the lot.

The OC-curve of a MChSP-1-(n, i) plan is given by:

φMChSP
a (p, n, i) = P0(p)i+1 + iP0(p)iP1(p).

The acceptance probability is obtained as the sum of two events. The first term des-
cribes the event in which the current sample and the preceding i samples contain no
defective units. The second terms describes the event in which the current sample
contains zero defective units, while any of the i preceding samples contains only one
defective unit and the rest of the (i− 1) samples are free from defective units.

Another type of a dependent sampling plan is a MDS plan. A MDS plan for in-
spection by attributes is specified by four parameters (n, c1, c2, i) and has the following
operating procedure:

(1) From each lot, select a sample of n units and observe the number of defective
units Dn,p.

(2) If Dn,p ≤ c1, accept the lot; If Dn,p > c2, reject the lot; If c1 < Dn,p ≤ c2, accept
the current lot if all the immediately preceding i lots are accepted.

The OC-curve of a MDS-(n, c1, c2, i) for inspection by attributes is determined by:

φMDS
a (p, n, c1, c2, i) = P (Dn,p ≤ c1) + P (c1 < Dn,p ≤ c2)φMDS

a (p, n, c1, c2, i)
i. (3)
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If c1 = 0 and c2 = 1, the OC-curve of a MDS plan approximates that of a ChSP-1 plan.
Moreover, it is clear from equation (3) that for large i the OC-curve is approximated
by that of a SSP-(n, c1) plan.

If a continuous variable X in a lot of size N is inspected, one can use a SSP plan for
inspection by variables [13]. Such plan assumes that the variable X follows a normal
distribution N(µ, σ2) with mean µ and a standard deviation σ. In this article, it is
assumed that σ is known. If an upper specification limit U is given, a single lot is

accepted under the condition U−Xn

σ ≥ k, where k is a continuous criterion indicating

the minimal standardized distance between the sample mean Xn ∼ N(µ, σ
2

n ) and
the upper specification limit U . Similarly, if a lower-specification limit L is used, the

condition is given by Xn−L
σ ≥ k. In both cases the OC-curve for a SSP-(n, k) for

variables inspection is defined by:

φv(p, n, k) = P (Z ≤
√
n(Φ−1(1− p)− k)), (4)

where Φ denotes the cumulative distribution function of a variable Z following a
standard normal distribution N(0, 1).

Govindaraju [8] provided upper limits kmax on k to decide whether a given SSP-
(n, k) has a satisfactory OC-curve or not. A ChSP-1-(n, k, i) for variables inspection is
applied when the criterion k of a SSP-(n, k) exceeds kmax. When an upper-specification
limit U (resp. lower-specification limit L) is defined on the measured variable X, the
procedure is as follows:

(1) From each lot, select a sample of n units and compute V = U−Xn

σ (resp. V =
Xn−L
σ ).

(2) Accept the lot if V ≥ kmax and reject the lot if V < k1. If k1 < V < kmax, the lot
is accepted provided the preceeding i lots were accepted on the condition that
v ≥ kmax.

The parameter k1 is determined by applying the two-point method to the OC-curve
that is defined by:

φChSP
v (p, n, k, i) = φv(p, n, kmax) +

(
φv(p, n, k1)− φv(p, n, kmax)

)
φv(p, n, k)i.

As with ChSP-1 plan for attributes inspection, the performance of these plans appro-
aches that of a SSP-(n, kmax) plan for large i.

The MDS plans for variables inspection follow a similar procedure as the ChSP-1
plans by variables, but where kmax is replaced by another criterion k2 > k1. The plans
are defined by four parameter (n, k1, k2, i) and their OC-curve is given by:

φMDS
v (p, n, k1, k2, i) = φv(p, n, k2) +

(
φv(p, n, k1)− φv(p, n, k2)

)
φMDS
v (p, n, k1, k2, i)

i.

3. Modified chain sampling plans

In this section MChSP plans are defined, first for inspection by attributes and then
for inspection by variables. For this purpose, it is assumed that lots are drawn from a
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continuing stream of lots of a process with an unknown but constant fraction defective
p. Furthermore, the dependency of the OC-curves with respect to the plan parameters
is formally studied.

A MChSP plan for inspection by attributes is determined by a triple of natural
numbers (n, c, i) and has the following operating procedure:

(1) Select a sample of size n from the current lot and observe the number of defective
units Dn,p. Reject the lot if Dn,p > c.

(2) If Dn,p ≤ c the lot is accepted provided that there is at most 1 lot among the
preceding i lots in which the number of defective units Dn,p exceeds the criterion
c. Otherwise reject the lot.

The OC-curve of a MChSP-(n, c, i) plan for inspection by attributes is given by:

φ∗a(p, n, c, i) = m(mi + imi−1(1−m)), (5)

where m = P (Dn,p ≤ c) is given by the probability that the observed number of
defective units found in a lot is less than the criterion c. The OC-curve of a MChSP-
(n, 0, i) plan will approximate that of a MChSP-1-(n, i) plan. Furthermore, for i = 1,
one retrieves the SSP by attributes, i.e., φ∗a(p, n, c, 1) = m(p, n, c) = φa(p, n, c).

In a similar way the results of a SSP plan by variables can be chained to obtain a
MChSP by variables. For this purpose a variable X ∼ N(µ, σ) is considered with σ
known. When an upper-specification limit U (resp. lower-specification limit L) on X is
defined, the operating procedure of a MChSP-(n, k, i) plan for inspection by variables
is given by:

(1) From the current lot, select a sample of n units and compute V = U−Xn

σ (resp.

V = Xn−L
σ ). Reject the lot if V < k.

(2) When V > k the lot is accepted provided there is at most 1 lot among the
preceding i lots where V < k. Otherwise reject the lot.

Thus the OC-curve is given by:

φ∗v(p, n, k, i) = w(wi + iwi−1(1− w)), (6)

where w = w(p, n, k) = P (Z ≤
√
n(Φ−1(1− p)− k)).

We proceed by discussing several properties of MChSP plans. Proofs of the theo-
rems can be found in Appendix A. To start with, a property of a SSP-(n, c) plan by
attributes is studied. Note that a SSP-(n, c) plan can be viewed as a MChSP-(n, c, i)
plan with i = 1. The design of SSP plans is based on the solutions of the system of
equations (1), which generally do not have to be unique. Geometrically, the solutions
will be situated in a region of the nc-plane consisting of all the points (n, c) that satisfy
cl(n) ≤ c ≤ cu(n) with

cl(n) = sup{c|φa(pRQL, n, c) ≤ β} and cu(n) = inf{c|φa(pAQL, c, n) ≥ 1−α}. (7)

The expression of a minimum size SSP plan that passes through a consumer’s risk
point (pRQL, β) is due to Hahn [12]. The following theorem shows that these plans are
obtained as solutions of (1) as pAQL → 0.

Theorem 3.1. Consider a consumer’s risk point (pRQL, β) and producer’s risk α. As
pAQL → 0, the sampling plan (n, c) satisfying (1) that has the smallest sample size is
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given by the zero-acceptance number sampling plan:(⌈
log β

log(1− p2)

⌉
, 0

)
.

Thus, for high yield processes where the defect ratio pAQL is very low, one tends
to find zero-acceptance number sampling plans as solutions of Eq. (1). As noted in
Section 2, these plans are undesirable for the producer as their OC-curves tend to
decrease very rapidly near zero. MChSP plans ensure a discriminative power for small
fractions defective by the existence of an inflection point on the OC-curve, as is shown
in the next theorem.

Theorem 3.2. Consider a MChSP-(n, c, i) plan and its corresponding OC-curve p 7→
φ∗a(p, n, c, i). Then:

(1) The OC-curve p 7→ φ∗a(p, n, c, 1) of a SSP-(n, c) plan is situated above the OC-
curve p 7→ φ∗a(p, n, c, i) of a MChSP-(n, c, i) plan with i > 1.

(2) φ∗a(p, n, c, i) is decreasing as a function of n, i and increasing as a function of c.

(3) If i > 1, there exists an inflection point p = p1, where ∂2φ∗
a

∂p2 (p1, n, c, i) = 0.

Figure 1(a) shows OC-curves of several MChSP plans for inspection by attributes.
As n or i increases the curves become steeper such that pAQL and pRQL can both be
chosen smaller. Furthermore, the OC-curves possess a point of inflection which tends
to move closer to the y-axis as i or n increases.

The next theorem deals with SSP plans for inspection by variables.

Theorem 3.3. Consider a SSP-(n, k) plan by variables. Denote p0 = 1−Φ(k), then:

(1) φv(p, n, k) decreases as a function of k.
(2) φv(p, n, k) increases as a function of n for p < p0 and decreases as a function of

n for p > p0.

Furthermore φv(p0, n, k) = 1
2 .

From theorem 3.3, it is clear that an increase in the sample size of a SSP plan
will result in both a decrease of the producer’s risk for pAQL < p0 and a decrease in
the consumer’s risk for pRQL > p0. This is not the case for SSP plans by attributes,
where an increase in sample size will only decrease the consumer’s risk (as is shown
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(a) SSP-(n, c) and MChSP-(n, c, i) plans for attri-
butes inspection.
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(b) SSP-(n, k) and MChSP-(n, k, i) plans for va-
riables inspection.

Figure 1. OC-curves of SSP and MChSP plans showing the lot acceptance probability Pa as a function of
the lot fraction defective p.
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in Theorem 3.2). The quality level at p0 where φv(p0, n, k) = 1
2 is also termed the

indifference quality level [5, 21].

Theorem 3.4. Consider a MChSP-(n, k, i) plan by variables. Denote p0 = 1−Φ(k),
then:

(1) φ∗v(p, n, k, i) decreases as a function of i and k.
(2) φ∗v(p, n, k, i) increases as a function of n for p < p0 and decreases as a function

of n for p > p0.

(3) There exists an inflection point p = p1, where ∂2φ∗
v

∂p2 (p1, n, k, i) = 0.

Furthermore φ∗v(p0, n, k, i) = i+1
2i+1 .

Figure 1(b) shows OC-curves of several MChSP plans by variables. In contrast to the
MChSPs for inspection by attributes, the discriminative power of the plans improves
as n increases (as shown in Figure 1(a)). The curves become steeper when the number
of chained sample results i increases.

4. Statistical design and parameter sensitivity analysis

In this section, search procedures are discussed to solve the system of equations (1)
for MChSP plans. Furthermore, the effect of the choice of the parameters α, β, pAQL

and pRQL on the required sample sizes is studied.
Appendix B provides the pseudocode for procedures to search a series of solutions

of the system of equations (1). The search strategies calculate for each i the minimum
sample size nmini that is required to assure that the OC-curve of the sampling plan
will pass approximately through a given producer’s point (pAQL, 1 − α) and a given
consumer’s point (pRQL, β). Moreover, for each i, corresponding criteria cmini and kmini
are calculated for inspection by attributes and variables respectively. In this way a
solution curve S : n = n(i) is found that depends on the chosen quality levels pAQL,
pRQL and risks α, β. Note that a similar search procedure can be used to select MChSP-
1 plans that are based on binomial models. Technical details can be found in Appendix
B.
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Figure 2. Effect of changing risks (α, β) and changing quality levels (pAQL, pRQL) on the solution cur-

ves of MChSP plans for attributive inspection. One parameter at a time is changed starting from the point
(α, β, pAQL, pRQL) = (5%, 10%, 0.1%, 1%) in parameter space.
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Figure 3. Effect of changing risks (α, β) and changing quality levels (pAQL, pRQL) on the solution cur-

ves of MChSP plans for variable inspection. One parameter at a time is changed starting from the point

(α, β, pAQL, pRQL) = (5%, 10%, 0.1%, 1%) in parameter space.

Figure 2 and Figure 3 show solution curves of MChSP plans for different values of
the parameters α, β, pAQL and pRQL. The solution curves may show sharp corners and
jumps due to the discreteness of the sample sizes. To examine the effect of the choice
of parameters on the solutions curves, one parameter at a time is changed [16]. For
illustrating purposes, the risks are set to α = 5% and β = 10%, which are common
choices. The acceptance quality level pAQL is set to 0.1%, and the rejectable quality
level pRQL is set to 1%. Figure 2(a) and 3(a) show the effect on the solution curves of
a change in α; Figure 2(b) and 3(b) show the effect on the solution curves of a change
in β. Generally an increase in risk naturally leads to a decrease in sample size. Note
that, the underlying criteria cmini vary between 0 and 4 and tend to decrease as well
with increasing risks. Furthermore, lower sample sizes are naturally accompanied by
lower criteria.

Figure 2(c) and 3(c) show the effect of changes in pAQL and pRQL. It is clear that
an increase of pAQL while pRQL is held constant leads to an increase in sample size.
Similar an increase in sample size is expected when pRQL decreases while pAQL is held
constant. Generally, it is expected that a reduction in distance between pRQL and pAQL

leads to an increase in the sample size (and an increase in the accompanied criteria)
as this imposes a higher steepness to the OC-curves.

5. Comparison between sampling plans

In this section, the sampling efficiency is compared between MChSP plans and other
dependent sampling procedures. In particular, the required sample size of MChSP
plans is compared with that of several sampling procedures: (i) ChSP-1 plans [11];
(ii) SSP plans [17]; (iii) MDS plans[1, 20], and (iv) MChSP-1 plans for inspection by
attributes based on a binomial model [8].

Table 1 shows a comparison between different sampling plans by attributes that
are designed by using the two-point approach with different values of pAQL and pRQL.
The risks α at pAQL and β at pRQL are limited to 5% and 10%, respectively. Sample
sizes are minimized when computing ChSP-1 and MDS plans using the procedures
in [17, 20]. The design of MChSP-1 and MChSP plans is based on the algorithms
discussed in Appendix B, and the same number of chained samples i is chosen as in
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Table 1. Several attributes sampling plans indexed by pAQL and pRQL: ChSP-1-(n, i) plans, MDS-(n, c1, c2, i),
MChSP-1-(n, i), MChSP−(n, c, i), and MChSP−(n, c, i′) plans, where i′ is given by the minimum number of

past lot results that are required to obtain a smaller sample size than the matching MChSP-1 plan and MDS

plan. Risks are set to α = 5% and β = 10%.

pAQL pRQL ChSP-1 MDS MChSP-1 MChSP

n i n c1 c2 i n i n c i n c i’

0.001 0.008 / / 287 0 2 4 / / 235 1 4
0.01 / / 230 0 1 3 / / 221 1 3
0.02 114 4 114 0 1 4 37 4 41 0 4 34 0 5
0.05 45 3 45 0 1 3 18 3 21 0 3 17 0 4

0.002 0.01 / / 235 0 2 2 / / 339 2 2 137 1 7
0.02 / / 115 0 1 3 / / 110 1 3
0.05 45 3 45 0 1 3 18 3 21 0 3 17 0 4
0.1 22 3 22 0 1 3 9 3 10 0 3 8 0 4

0.005 0.02 / / 118 0 3 2 / / 259 3 2 114 2 7
0.05 / / 45 0 1 3 / / 44 1 3
0.1 22 3 22 0 1 3 / / 22 1 3 8 0 4
0.2 11 2 11 0 1 2 6 2 7 0 2 5 0 3

0.01 0.05 / / 46 0 2 2 / / 79 2 2 26 1 8
0.1 / / 22 0 1 3 / / 22 1 3 19 1 4
0.2 11 2 11 0 1 2 6 2 13 1 2 4 0 4
0.3 7 2 7 0 1 2 4 2 9 1 2 3 0 3

Table 2. Relative sampling efficiencies n0
n

with respect to a SSP-(n0, c) plan for several attributes sampling

plans: ChSP-1-(n, i), MDS-(n, c1, c2, i), MChSP-1-(n, i), MChSP-(n, c, i), and MChSP-(n, c, i′) plans with i′ as
in Table 1. Risks are set to α = 5% and β = 10%.

pAQL 0.001 0.002 0.005 0.01
pRQL 0.008 0.01 0.02 0.05 0.01 0.02 0.05 0.1 0.02 0.05 0.1 0.2 0.05 0.1 0.2 0.3
ChSP-1 1.7 1 1.7 1 1.7 1.6 1.6 1.7
MDS 2.3 2.3 1.7 1 2.8 2.3 1.7 1 3.9 2.3 1.7 1.6 2.9 2.4 1.6 1.7
MChSP-1 5.2 2.5 4.2 2.4 3 4.5 3
MChSP 2.8 2.4 4.7 2.1 2.0 2.4 3.7 2.2 1.8 2.4 1.7 2.6 1.7 2.4 1.4 1.3
MChSP i = i′ 5.7 2.6 4.9 4.5 2.8 4.1 4.8 3.6 5.1 2.7 1.6 4
SSP n0 664 531 194 45 667 265 77 22 462 105 38 18 132 52 18 12

c 2 2 1 0 3 2 1 0 5 2 1 1 3 2 1 1

the matching MDS plans.
It can be seen from Table 1 that, when the same number of past sample results is

used, MChSP plans do not always require a smaller sample size compared to MDS,
ChSP-1 and MChSP-1 plans. However, in contrast to ChSP-1 and MDS plans, the
sample sizes of MChSP plans can be further reduced by increasing the number of
chained sample results. Table 1 shows the minimum number i′ of past sample results
that is required to obtain a MChSP-(n, c, i′) plan with a smaller sample size than a
MDS-(n, c1, c2, i) plan and a MChSP-1-(n, c, i) plan. Furthermore, MChSP plans have
the appealing ability to possess steeper OC-curves in comparison with MChSP-1 plans,
because they allow criteria c > 0, i.e., no solution exists for ChSP-1 and MChSP-1
plans if the required distance between pAQL and pRQL is too small.

Table 2 shows a comparison between the sampling efficiencies of the different sam-
pling plans with respect to a SSP-(n0, c) plan. The quality levels pAQL and pRQL are
chosen as in Table 1 and risks α and β are set to 5% and 10% respectively. The
relative efficiencies are calculated as the ratios n

n0
of the sample sizes of matching

sampling plans. If a sufficient number of past lot results is available the highest sam-
pling efficiency is obtained by MChSP plans. Note that the required sample size of
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Table 3. Several variables sampling plans indexed by pAQL and pRQL: ChSP-1-(n, k1, i), MDS-(n, k1, k2, i),
MChSP−(n, k, i), and MChSP−(n, k, i′) plans, where i′ is the minimum number of past lot results that are

required to obtain a smaller sample size than the matching MDS plan. Risks are set to α = 5% and β = 10%.

pAQL pRQL ChSP-1 MDS MChSP

(PPM) (PPM) n k i n k1 k2 i n k i n k i’

1 2 / / / 262 2.06 4.69 2 281 4.65 2 215 4.64 3
5 47 4.61 2 47 2.16 4.61 2 51 4.52 2 39 4.48 3
8 27 4.57 2 27 4.14 4.57 2 30 4.45 2 23 4.40 3
10 22 4.54 2 22 4.07 4.55 2 24 4.41 2 19 4.36 3

2 5 / / / 127 1.97 4.55 1 228 4.50 1 115 4.45 3
8 / / / 60 4.30 4.51 1 98 4.45 1 50 4.37 3
10 44 4.46 2 44 4.25 4.49 1 72 4.41 1 37 4.33 3
20 21 4.40 1 21 3.91 4.39 2 23 4.26 2 18 4.21 3

5 8 / / / 320 3.40 4.39 1 812 4.35 1 295 4.31 5
10 / / / 228 1.01 4.35 2 244 4.31 2 187 4.29 3
20 / / / 55 3.99 4.29 2 59 4.20 2 46 4.16 3
30 32 4.24 2 32 3.99 4.28 1 53 4.19 1 27 4.09 3

10 20 / / / 142 2.74 4.20 2 229 4.15 2 126 4.10 5
30 / / / 83 3.92 4.16 2 90 4.09 2 69 4.06 3
40 / / / 51 3.82 4.12 2 56 4.04 2 43 4.01 3
50 38 4.14 1 38 3.88 4.13 1 62 4.01 1 31 3.95 3

Table 4. Relative sampling efficiencies n0
n

with respect to a SSP-(n0, k) plan for several variables sampling

plans: ChSP-1-(n, k1, i), MDS-(n, k1, k2, i), MChSP-(n, k, i), and MChSP-(n, k, i′) plans with i′ as in Table 3.
Risks are set to α = 5% and β = 10%.

pAQL (PPM) 1 2 5 10
pRQL (PPM) 2 5 8 10 5 8 10 20 8 10 20 30 20 30 40 50
ChSP-1 1.6 1.7 1.6 1.6 1.6 1.7 1.6
MDS 1.6 1.6 1.7 1.6 1.8 1.6 1.6 1.6 2.5 1.6 1.6 1.7 2.4 1.6 1.6 1.6
MChSP 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5
MChSP i = i′ 2.0 1.9 2.0 1.9 2.0 2.0 1.9 1.9 2.8 2.0 2.0 2.0 2.7 2.0 2.0 2.0
SSP n0 425 76 45 36 228 98 72 34 812 370 90 53 346 135 84 62

k 4.7 4.6 4.5 4.5 4.5 4.4 4.1 4.3 4.4 4.3 4.2 4.2 4.2 4.1 4.1 4.1

a zero-acceptance SSP plan by attributes equals that of a ChSP-1 plan such that an
efficiency of 1 is obtained.

Table 4 shows a comparison between different sampling plans by variables. As before,
the plans are selected by using the two-point method. Sample sizes are minimized when
computing the ChSP-1 and MDS plans by using the procedures in [1, 17]. MChSP
plans are selected by means of Algorithm 2 in Appendix B. Compared to attributes
inspection, variables inspection is able to limit the risks α and β at lower proportions
defective [19]. Therefore, small quality levels pAQL and pRQL are considered expressed
in parts per million (PPM) that may result from high quality processes [23].

The sampling efficiency of a MChSP plan is lower compared to that of a ChSP-1 and
a MDS plan when the same number of past sample results is used. If i = 1, MChSP
plans are equivalent to SSP plans and the difference in efficiency between the plans is
largest. However, the sample sizes of MChSP plans rapidly decrease when the number
of chained samples i increases. Table 3 shows the minimal number i′ of past results
that is required to obtain a MChSP-(n, c, i′) plan with a smaller sample size n than
the matching MDS plan.

Table 4 shows the relative efficiencies of the sampling plans in Table 3 with respect
to a matching SSP-(n, k) by variables. The sampling efficiency of MChSP-(n, k, i) plans
equals that of a SSP-(n, k) plan if i = 1. As i increases, the relative efficiency of a
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Figure 4. Comparison of matching OC-curves passing approximately through two designated points indicated
by the gray dot. (a) Attributes sampling plans: MChSP-(21, 0, 3), MDS-(45, 0, 1, 3), ChSP-1-(45, 3) and SSP-

(45, 0). (b) Variables sampling plans: MChSP-(19, 4.36, 3), MDS-(22, 4.07, 4.55, 2), ChSP-1-(22, 4.54, 2) and

SSP-(36, 4.48).

MChSP plans with respect to a SSP increases.
Finally, Figure 4 shows the OC-curves of several matching sampling plans that pass

(approximately) through two designated points: (pAQL, 1−α) and (pRQL, β) (indicated
by a gray dot). For attributes sampling plans , the parameters were chosen to be
pAQL = 0.001, pRQL = 0.05, α = 0.05, and β = 0.1 (as shown in Figure 4(a) and Table
1); For variables sampling plans, the parameters were chosen to be pAQL = 1 PPM,
pRQL = 10 PPM, α = 0.05, and β = 0.1 (as shown in Figure 4(b) and Table 3).
As noted before, the lot acceptance probability of a zero-acceptance sampling plan
begins to drop very rapidly as the lot fraction defective becomes greater than pAQL.
The MDS plans have a high discriminative power, ensuring producer’s protection,
even for fractions defective beyond pAQL. The OC-curves of the MChSP and ChSP-1
plan are situated between those of the matching MDS and SSP plan. However, the
discriminative power of the ChSP-1 plans is slightly higher when compared to the
MChSP plans.

6. Example

To show how the sampling plan can be applied to a real-world scenario, a case study
from food industry is presented as an example. A company that is specialized in egg
processing inspects shipments of eggs from a local farmer. The quality characteristic
that is inspected is given by the Haugh unit, which is a measure of egg protein quality
based on the height of its egg white.

Suppose that the lower specification limit for the Haugh unit is set to L = 65
and the company desires to restrict the required sample size to 10 when inspecting a
random sample from a lot. One assumes that the lot fraction defective is constant and
the standard deviation of the Haugh unit is known as σ = 5.0. The company and the
farmer agree to set the quality levels pAQL and pRQL as 0.1% and 0.5% respectively.
The risks α and β are set to 5% and 1% respectively. Figure 5(a) shows the solution
curve of the required sample sizes as a function of the chained sample results i. The
company decides to use a number of i = 8 past lot results with a sample size of n = 9
and a criterion k = 2.46.
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Figure 5. (a) Required sample size as a function of past lot results associated with the parameters pAQL =

0.1%, pRQL = 0.5%, α = 5%, and β = 1%. The labels indicate the criteria. (b) Sample means of the past 21

shipments for the Haugh unit case study. The crosses indicate that the lots are rejected.

In Figure 5(b), the mean Haugh unit of the last 21 samples of size n = 9 are shown.
The dashed line indicates the critical distance kσ = 12.3 from the lower specification
limit L = 65. Starting from lot 9, the MChSP plan can be applied using the past 8 lot
results. The first 14 lot results are accepted under the MChSP plan. The mean Haugh
unit of lot 19 is too close to the lower specification limit of the Haugh unit such that
it is rejected. Lots 16 through 19 are accepted because the preceding 8 lots contain at
most 1 lot (lot 15 in particular) that was rejected according to the SSP-(9, 2.46) plan
by variables. Also, lot 19 is rejected. Lot 20 and 21 are rejected as the preceding 8 lots
contain two lots with a sample mean that is too close to L.

7. Conclusion

In this article MChSP plans were introduced that are an extension of the existing
ChSP-1 and MChSP-1 plans. Compared to ChSP-1 plans, MChSP plans enable us to
reduce the sample size by increasing the number of past lot results that are considered
during inspection. Several properties of MChSP plans were derived to study the de-
pendency of their OC-curve as a function of the sample size n, the number of chained
samples i and the criterion. Search procedures were developed to select MChSP plans
with an OC-curve that passes through two designated points: the producer’s risk point
(pAQL, 1− α) and the consumer’s risk point (pRQL, β).

The proposed plans were compared to ChSP-1, MDS and SSP plans in terms of
sampling efficiency. It is shown that the required sample size of a MChSP plan is
smaller than that of a matching ChSP-1, MDS or SSP plan if a sufficient number of
past sample results is available. Furthermore, MChSP plans have the ability to possess
steeper OC-curves compared to ChSP-1 and MChSP-1 plans such that pAQL and pRQL

can both be chosen smaller when using the two-point method for designing the plans.

Acknowledgement(s)

This work was partially funded by Flanders Innovation & Entrepreneurship under
a SME-innovation grant (IWT-140436). I would also like to thank our anonymous
reviewers for their helpful comments and suggestions.

13

http://www.tandfonline.com/


Preprint submitted at Journal of Applied Statistics. The final publication is available at Taylor & Francis

online library http://www.tandfonline.com/

References

[1] S. Balamurali and C.-H. Jun, Multiple dependent state sampling plans for lot acceptance
based on measurement data, European Journal of Operational Research 180 (2007), pp.
1221–1230.

[2] S. Balamurali and M. Kalyanasundaram, Determination of conditional double sampling
scheme, Journal of Applied Statistics 26 (1999), pp. 893–902.

[3] S. Balamurali and M. Usha, Optimal designing of variables chain sampling plan by mini-
mizing the average sample number, International Journal of Manufacturing Engineering
2013 (2013), pp. 1–12.

[4] H. Dodge and H. Romig, Single sampling and double inspection tables, Bell System Techni-
cal Journal 20 (1941), pp. 1–61.

[5] K. Govindaraju and S. Balamurali, Chain sampling plan for variables inspection, Journal
of Applied Statistics 25 (1998), pp. 103–109.

[6] K. Govindaraju and M. Bebbington, The consumers risk and costs in zero-acceptance
number sampling, Communications in Statistics - Theory and Methods 44 (2015), pp.
2933–2944.

[7] K. Govindaraju and V. Kuralmani, A note on the operating characteristic curve of the
known sigma single sampling variables plan, Communication in statistics - Theory and
Methods 21 (1992), pp. 2339–2347.

[8] K. Govindaraju and C.D. Lai, A modified ChSP-1 chain sampling plan, MChSP-1, with
very small sample sizes, American Journal of Mathematical and Management Sciences 18
(1998), pp. 343–358.

[9] K. Govindaraju and K. Subramani, Selection of chain sampling plans ChSP-1 and ChSP-
(0,1) for given acceptable quality level and limiting quality level, American Journal of
Mathematical and Management Sciences 13 (1993), pp. 123–136.

[10] K. Govindaraju and K. Subramani, Selection of multiple deferred (dependent) state sam-
pling plans for given acceptable quality level and limiting quality level, Journal of Applied
Statistics 20 (1993), pp. 423–428.

[11] R. Govindaraju, Chain sampling, in Springer Handbook of Engineering Statistics, H.
Pham, ed., Springer London, 2006, pp. 263–279.

[12] G. Hahn, Minimum size sampling plans, Journal of Quality technology 6 (1974), pp.
121–127.

[13] D.C. Montgomery, Introduction to statistical quality control, 7th ed., Johan Wiley & Sons,
USA, 2013.

[14] I. Negrin, Y. Parmet, and E. Schechtman, Developing a sampling plan based on Cpk,
Quality Engineering 21 (2009), pp. 306–318.

[15] C. Raju and J. Jothikumar, A design of chain sampling plan ChSP-1 based on Kullback-
Leibler information, Journal of Applied Statistics 21 (1994), pp. 153–160.

[16] A. Saltelli and P. Annoni, How to avoid a perfunctory sensitivity analysis, Environmental
Modelling & Software 25 (2010), pp. 1508–1517.

[17] E.G. Schilling and D.V. Neubauer, Acceptance Sampling in Quality Control, Second Edi-
tion, Statistics: A Series of Textbooks and Monographs, CRC Press, 2009.

[18] G. Schmueli, Practical Acceptance Sampling: A Hands-On Guide, 2nd ed., Axelrod Schnall
Publishers, 2016.

[19] W. Seidel, Is sampling by variables worse than sampling by attributes? a decision theoretic
analysis and a new mixed strategy for inspecting individual lots, Sankhy: The Indian
Journal of Statistics, Series B (1960-2002) 59 (1997), pp. 96–107.

[20] V. Soundararajan and R. Vijayaraghavan, Construction and selection of multiple depen-
dent (deferred) state sampling plan, Journal of Applied Statistics 17 (1990), pp. 397–409.

[21] L. Spooner, The concept of indifference quality level (IQL) in designing a sampling plan,
Industrial Quality Control 16 (1960), pp. 6–10.

[22] C.-W. Wu and Z.-H. Wang, Developing a variables multiple dependent state sampling plan
with simultaneous consideration of process yield and quality loss, International Journal of

14

http://www.tandfonline.com/


Preprint submitted at Journal of Applied Statistics. The final publication is available at Taylor & Francis

online library http://www.tandfonline.com/

Production Research 55 (2017), pp. 2351–2364.
[23] M. Xie, T. Goh, and V. Kuralmani, Statistical Models and Control Charts for High Quality

Processes, Kluwer Academic Publishers, 2002.

Appendix A. Proofs of theorems

In this appendix the proofs of the theorems that were presented in Section 3 are given.

A.1. Proof of Theorem 3.1

Let n0 =
⌊

log(1−α)
log(1−pAQL)

⌋
for a given producer’s risk point (pAQL, α). Then:

∀n ≤ n0 : φa(pAQL, 0, n) = (1− pAQL)n ≥ 1− α

such that ∀n ≤ n0 : cu(n) = 0. Therefore, for small pAQL, the desired sampling plans

have a criterion c = 0 upto the sample size n0 =
⌊

log(1−α)
log(1−pAQL)

⌋
. Clearly n0 → +∞ as

pAQL → 0. Therefore, given a consumer’s risk point (pRQL, β) and producer’s risk α,
one finds a δ > 0 such that:

∀pAQL < δ : n0 ≥
log β

log(1− pRQL)

and thus (1−pRQL)n0 ≤ β. Hence, for pAQL < δ the SSP by attributes with the lowest
sample size that satisfies the requirements from as well producer’s as consumer’s side

is given by (n, c) =
(⌈

log β
log(1−pRQL)

⌉
, 0
)

.

A.2. Proof of Theorem 3.2

Firstly, remark that the function Pa = φ∗a(p, n, c, i) = m(mi + imi−1(1 −m)) can be
extended to allow positive real values for m and i. This enables us to consider partial
derivatives with respect to m and i.

(i) Clearly, 0 ≤ mi + imi−1(1 −m) ≤ (m + (1 −m))i = 1, for each i ≥ 1, such that
0 ≤ φ∗a(p) ≤ m.
(ii) The function p 7→ φ∗a(p, n, c, i) is increasing as a function of m ∈]0, 1[:

∂φ∗a
∂m

= mi + i2mi−1(1−m) > 0

such that φ∗a has the same monotonicity as m with respect to n and c. As the function
m represents the acceptance under a SSP-(n, c) plan, it is clear that φ∗a decreases as a
function of n and increases as a function of c. The monotonicity as a function of i > 1
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can be found by:

∂φ∗a
∂i

=mi (m lnm+ (1−m) + i(lnm)(1−m))

≤mi (m(m− 1) + (1−m) + i(lnm)(1−m))

=mi
(
(m− 1)2 + i(lnm)(1−m)

)
≤mi

(
(m− 1)2 − i(m− 1)2

)
=mi(m− 1)2(1− i) ≤ 0 (A1)

as 0 < m < 1 and where the inequality lnm ≤ m− 1 is used.
(iii) The incomplete beta function is used to express m as:

m = (n− c)
(
n

c

)∫ 1−p

0
tn−c−1(1− t)cdt.

As a result:

∂φ∗a
∂p

(p, n, c, i) = −((1− i2)mi + i2mi−1)(n− c)
(
n

c

)
(1− p)n−c−1pc (A2)

If c > 0, ∂φ∗
a

∂p (0, n, c, i) = ∂φ∗
a

∂p (1, n, c, i). Rolle’s theorem for differentiable functions

implies that there exists a zero of p 7→ ∂2φ∗
a

∂p2 (p, n, c, i) [? ]. Substitution of c = 0 in (A2)
leads to:

∂φ∗a
∂p

(1, n, 0, i) = 0,
∂φ∗a
∂p

(0, n, 0, i) = −n < 0 and
∂2φ∗a
∂p2

(0, n, 0, i) = n2(i+1−i2)−n < 0,

as i+ 1− i2 ≤ 0 for i ≥ 2. Thus p 7→ ∂φ∗
a

∂p (p, n, 0, i) starts to decrease from p = 0 while

it is zero at p = 1. Therefore p 7→ ∂φ∗
a

∂p (p, n, 0, i) has to change monotonicity in ]0, 1[.
This ensures the existence of an inflection point.

A.3. Proof of Theorem 3.3

(i) As k 7→
√
n(Φ−1(1− p)− k) is decreasing, clearly

φv(p, n, k) = P (Z ≤
√
n(Φ−1(1− p)− k))

decreases for increasing k (remember that Φ denotes the CDF of Z ∼ N(0, 1)).
(ii) The function n 7→

√
n(Φ−1(1 − p) − k) is increasing when Φ−1(1 − p) > k and

decreasing when Φ−1(1−p) < k. Thus when Φ−1(1−p)−k is positive (resp. negative),
φv(p, n, k) increases (resp. decreases) as a function n. Furthermore:

Φ−1(1− p)− k > 0 ⇔ Φ−1(1− p) > k

⇔ 1− p > Φ(k)

⇔ p < p0 = 1− Φ(k)

Finally, φv(p0, n, k) = P (Z ≤ 0) = 1
2 .
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A.4. Proof of Theorem 3.4

(i) - (ii) The proof is very similar to that of theorem 3.2. Similarly, φ∗v is increasing as
a function of w such that φ∗v has the same monotonicity as w with respect to k and n.
The monotonicity of w is obtained in Theorem 3.3. Furthermore, the formula of the
partial derivation with respect to i is similar to (A1):

∂φ∗v
∂i
≤ wi(w − 1)2(1− i) ≤ 0.

Finally as w = 1
2 for p = p0, one finds φ∗v(p0) = 1

2i (
1
2 + i(1− 1

2)) = i+1
2i+1 .

(iii) One easily verifies that [7] :

∂w

∂p
= −
√
ne−

1

2
(n(q−k)2−q2),

where q = Φ−1(1− p), and therefore:

∂φ∗v
∂p

(p, n, k, i) = −
√
n

(
(1− i2)mi + i2mi−1

)
e−

1

2
(n(q−k)2−q2)

Clearly, ∂φ∗
v

∂p (1, n, k, i) = 0 and:

lim
p→0

n(q − k)2 − q2 = lim
p→0

(n− 1)q2 − 2kqn+ nk2 = +∞

Hence, ∂φ
∗
v

∂p (0, n, k, i)→ 0, as p→ 0. As a result, Rolle’s theorem ensures the existence
of an inflection point.

Appendix B. Search procedures

Search strategies for MChSP plans are presented, first for inspection by attributes
and then for inspection by variables (Algorithms 1 and 2 respectively). Furthermore,
a similar search procedure is presented to design MChSP-1 plans under the condition
of a binomial model.

In Algorithm 1, one starts with initialization by considering the sampling plan
(n0, c0, i) = (1, 0, i) for each i. If α ≤ α0 and β ≤ β0 the sampling plan (1, 0, i) is
chosen. If the consumer’s risk is lower than the requested limit β0, and the producer’s
risk is higher than α0, the criterion c is increased. The latter increases consumer’s risk,
but lowers producer’s risk (as is shown in Theorem 3.2) while keeping the sample size
as low as possible (setting n0 = c0 + 1 keeps the producer’s risk at its minimum). At
the end of the while loop that starts at rule 8, either α ≤ α0 and β ≤ β0, or β > β0. If
α ≤ α0 and β ≤ β0, the desired sampling plans is found. If β > β0, the while loop at
rule 14 is entered in which the sample size is increased as long as the producer’s risk
is less than α0. At rule 20, the desired plan is found or α > α0. The latter requires an
increase in the criterion c that will reduce the producer’s risk. Subsequently, the while
loop that started at rule 14 is continued until a suitable sample size and criterion is
found. Next, i is increased and the while loop over i restarts a next iteration. Finally,
the procedure returns the minimum sample sizes and criteria as a function of i.
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The procedure to calculate a MChSP by variables is given in Algorithm 2. For each
i, the equation φ∗v(pAQL, n0, k, i) = 1− α is numerically solved yielding a SSP-(n0, ki)
with a criterium ki ∈ [0, 5] that protects the producer at pAQL. The range [0, 5] ensures
the existence of solutions for a wide range of values of pAQL [13]. Then, for each i, the
minimum sample size nmini = n0 is selected such that (n0, ki, i) protects the consumer.

Similar reasonings may be used to select MChSP-1 plans under the condition of a
binomial model. Indeed, for each i, a lower- and upper bound on the sample size n
can be calculated that satisfies:

nL(i) = inf{n | φMChSP
a (pRQL, n, i) ≤ β} and nU (i) = sup{n | φMChSP

a (pAQL, n, i) ≥ 1−α}.

The existence of a solution for a particular value of i requires that nL(i) < nU (i).
Besides, the value of i is bounded from above by iU = sup{φMChSP

a (pAQL, 1, i) ≤ 1−α}.

Algorithm 1 Attributes inspection

1: procedure Dsgn4a(pAQL, α0, pRQL, β0, im)
2: initialize vectors cmin and nmin

3: i← 1
4: while i ≤ im do
5: (n0, c0)← (1, 0)
6: α← 1− φ∗a(pAQL, n0, c0, i)
7: β ← φ∗a(pRQL, n0, c0, i)
8: while β ≤ β0 and α > α0 do
9: c0 ← c0 + 1; n0 ← c0 + 1

10: α← 1− φ∗a(pAQL, n0, c0, i)
11: β ← φ∗a(pRQL, n0, c0, i)
12: end while
13: while β > β0 do
14: while α ≤ α0 and β > β0 do
15: n0 ← n0 + 1
16: α← 1− φ∗a(pAQL, n0, c0, i)
17: β ← φ∗a(pRQL, n0, c0, i)
18: end while
19: if α > α0 then
20: c0 ← c0 + 1; n0 ← n0 − 1
21: if n0 <= c0 then
22: n0 ← c0 + 1
23: end if
24: end if
25: α← 1− φ∗a(pAQL, n0, c0, i)
26: β ← φ∗a(pRQL, n0, c0, i)
27: end while
28: (nmini , cmini , i)← (n0, c0, i+ 1)
29: end while
30: return nmin and cmin

31: end procedure

Algorithm 2 Variables inspection

1: procedure Dsgn4v(pAQL, α0, pRQL, β0, im)
2: initialize vectors k and nmin

3: (n0, k0, i)← (1, 0, 1)
4: while i ≤ im do
5: repeat
6: n0 ← 1
7: G(k)← φ∗v(pAQL, n0, k, i)
8: if G(0)G(5) < 0 then
9: ki ← solve G(k) = 1− α

10: α← 1− φ∗a(pAQL, n0, c0, i)
11: β ← φ∗a(pRQL, n0, c0, i)
12: n0 ← n0 + 1
13: else
14: n0 ← n0 + 1
15: end if
16: until β < β0

17: nmini ← n0

18: i← i+ 1
19: end while
20: return nmin and k
21: end procedure

Figure B1. Algorithms for the design of MChSP plans.
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