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Abstract

Background: As gait speed and transfer times are considered to be an important measure of functional ability in
older adults, several systems are currently being researched to measure this parameter in the home environment of
older adults. The data resulting from these systems, however, still needs to be reviewed by healthcare workers which
is a time-consuming process.

Methods: This paper presents a system that employs statistical process control techniques (SPC) to automatically
detect both positive and negative trends in transfer times. Several SPC techniques, Tabular cumulative sum (CUSUM)
chart, Standardized CUSUM and Exponentially Weighted Moving Average (EWMA) chart were evaluated. The best
performing method was further optimized for the desired application. After this, it was validated on both simulated
data and real-life data.

Results: The best performing method was the Exponentially Weighted Moving Average control chart with the use of
rational subgroups and a reinitialization after three alarm days. The results from the simulated data showed that
positive and negative trends are detected within 14 days after the start of the trend when a trend is 28 days long. When
the transition period is shorter, the number of days before an alert is triggered also diminishes. If for instance an abrupt
change is present in the transfer time an alert is triggered within two days after this change. On average, only one
false alarm is triggered every five weeks. The results from the real-life dataset confirm those of the simulated dataset.

Conclusions: The system presented in this paper is able to detect both positive and negative trends in the transfer
times of older adults, therefore automatically triggering an alarm when changes in transfer times occur. These
changes can be gradual as well as abrupt.

Keywords: Assisted living, Gerontechnology, Change detection algorithms, Statistical process control, Log logistic
distributions, Gait speed

Background
Although ageing is often associated with a decline in
health, most older adults want to live in their own home
environment as long as possible. Automated homecare
systems that can help older adults maintain their inde-
pendence are therefore in high demand [1–3] and the
development of these systems is receiving a lot of research
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attention. Research groups aim to develop systems which
can automatically monitor the health of older adults
enabling the detection of both acute events, such as fall
incidents, and gradual changes in health or functional
ability [4].
Because a decline in gait speed has a predictive value

for a broad array of adverse events such as physical func-
tional decline [5–8], cognitive impairment [9–12] and fall
incidents [7, 9, 10, 13–15] it is one of the parameters often
monitored in these systems. For the monitoring of gait
speed as well as the closely related transfer times (the
time needed to cross a predefined transfer zone) both
wearable sensors such as accelerometers and gyroscopes
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[11, 16, 17] and contactless sensors, such as motion detec-
tion systems [18], radar [19] and cameras [20, 21] are
used. Although these systems provide accurate measure-
ments for healthcare workers, themajority of this research
does not further process this data. Consequently, the data
still needs to be reviewed for each patient individually,
which can be very time-consuming and not feasible for
healthcare workers who have a high number of patients.
Additionally, specialized knowledge is needed to interpret
these measurements.
The goal of our research therefore was the develop-

ment of a system that could automatically detect deviating
trends in transfer times of older adults. When a deviat-
ing trend is detected, an alarm is triggered alerting the
healthcare worker. Said triggering of an alarm will reduce
the time healthcare workers need to spend on reviewing
the data. These alarms will furthermore allow for quicker
interventions, beforemajor health problems arise, and will
consequently improve the quality of care and quality of life
of older adults.
To automatically detect these deviations in the trans-

fer times of older adult this study suggests the use of
Statistical Process Control (SPC) techniques. Three sta-
tistical process control techniques: Tabular CUmulative
SUM (CUSUM) chart, Standardized CUSUM and Expo-
nentially Weighted Moving Average (EWMA) chart, were
evaluated on simulated data. The best performing SPC
method was selected and optimized to suit the appli-
cation. After optimization the results were extensively
validated on both simulated as well as on real-life datasets
showing that chosen SPC technique is well-suited to
detect gradual changes in the transfer times of older
adults.
Although in previous studies SPC techniques are some-

times used to predict future events when monitoring
health-related variables [22, 23], the use of SPC techniques
for the monitoring of transfer times is, however, new. We
published a first proof of concept in which the basic SPC
techniques were tested on a limited set of simulated data
in [24].
The remainder of the paper is structured as follows.

First, a general description of the evaluated statistical pro-
cess control methods is provided. Thereafter, the different
simulated datasets for both training and validation, as well
as the real-life dataset are discussed. This is followed by
the empirical evaluation of the different SPC techniques.
Finally, an in-depth discussion of the results and a gen-
eral conclusion is presented. An overview of the different
abbreviations used in the paper and their meaning is given
at the end of the paper.

Methods
In this section first the different datasets used to evalu-
ate and optimize the different statistical process control

techniques are discussed. This is followed by a general
description of statistical process control and the used con-
trol charts. Lastly, the experimental set-up is discussed.

The dataset
Four real-life datasets were acquired during previous
research [20, 21]. This limited number of datasets was,
however, deemed insufficient to evaluate the different SPC
techniques as well as to optimize and validate the best
performing method. Simulated data were thus generated
for evaluation, optimization and a first validation. The
real-life dataset was used for further validation of the
optimized technique.

Real-life data
To acquire real-life data, four camera systems consisting
of multiple wall-mounted webcams, were installed in the
homes of four older adults for two to three months. From
the resulting video data transfer times (the time a person
needs to cross a predefined transfer zone) were measured.
To reduce the influence of noise on the system a median
of the measured transfer times was calculated per day,
thus resulting in four datasets of medians of measured
transfer times. An in-depth discussing of the measured
transfer times is given in [21]. During this previous study
it was shown that a person in good health also had a sta-
ble gait model which is defined by short transfer times and
small fluctuations in the measured times (see Fig. 1(a) and
(b)). It was also shown that a person with different health
issues (e.g. high fall risk, cognitive problems, etc.) had an
unstable gait model which is identified by long transfer
times and large fluctuations in the measured times (see
Fig. 1(c)). Lastly, it was also observed that an improving
health presents itself in the shortening of the transfer time
and a smaller variability in these transfer times. A declin-
ing health in turn was visible by an increase in the transfer
time and a larger variability (see Fig. 1(d)). It is there-
fore important that the designed method is able to detect
deviating trends without triggering alerts when ’normal’
fluctuations in the transfer times occur.
Ethical approval for the study was provided by the Med-

ical Ethics Committee of the Leuven University Hospitals
(Trial registration numbers ML9820 and S55834 Regis-
tered 18 October 2013) and a written informed consent
was obtained from all participants for both the data acqui-
sition as well as for the publication of individual results.
More in-depth information concerning the algorithm

used to automatically detect and time the transfer zones
and the acquired data can be found in [21].

Simulated data generation
There are several aspects that were taken into account
when generating the simulated transfer times. First of
all, the type of distribution used to generate the transfer
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(a) Measurements of a participant who has a stable (b) Measurements of a participant who has a stable
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(c) Measurements of a participant who has a very unstable (d) Measurements of a participant whose health

gait model during the acquisition period improved and declined again during the acquisition period

Fig. 1Medians of measured transfer times per day of the different participants. The dotted line is the average of the measured transfer times

times was determined. This was done based on the real-
life transfer times. Several distributions types: Normal,
Log-Normal, Gamma, Nakagami, Logistic, Log-Logistic,
Birnbaum-Saunders and Weibull, were selected based on
visual inspection of the different datasets. To assess which
of these distributions was the best fit, the parameters
for each distribution and for each dataset were estimated
using maximum likelihood estimation [25]. Subsequently,
the Kolmogorov-Smirnov test was used to determine the
probability that the evaluated distribution matched with
the data [26]. The distribution with the highest average P-
value (see Table 1) was the log-logistic distribution. This
distribution is therefore used to generate the simulated
data.
The Log-Logistic distribution is a continuous probabil-

ity distribution for a non-negative random variable. It is
the probability distribution of a random variable whose
logarithm has a logistic distribution [27]. The probability
density function (pdf) is defined through

p(x|μ, σ) = 1
σ

1
x

ez

(1 + ez)2
; x ≥ 0 (1)

and

z = log(x) − μ

σ
(2)

with

• μ = the location parameter
• σ = the scale parameter
• x = transfer time.

Table 1 Average and standard deviation of the P-values resulting
from the Kolmogorov-Smirnov test for the four real-life datasets

Distribution Mean Standard deviation

Gamma 0.2445 0.1295

Log-Normal 0.5062 0.2342

Normal 0.2649 0.2417

Nakagami 0.3368 0.2362

Birnhaum-Saunders 0.4050 0.2213

Logistic 0.3169 0.1605

Log Logistic 0.8140 0.1454

Weibull 0.1362 0.1055

The distribution with the highest average P-value is marked in bold
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Using maximum likelihood estimation, μ and σ were
estimated for a stable gait model based on the data in
Fig. 1(b). As an unstable gait model typically has longer
transfer times and more variability [21], μ and σ of an
unstable gait model were therefore determined using this
knowledge. A stable model was therefore defined by a
small value for both μ and σ an unstable gait model
in turn was defined by an increase in both μ and σ .
The resulting probability density functions are shown in
Fig. 2. Additionally, two models were defined combining
the properties of both the stable gait model and the unsta-
ble gait model. An overview of the different parameters
for each model is given in Table 2.
To determine the number of measurements on a certain

day, a poisson distribution was used. Poisson distributions
are typically used to express the probability of a given
number of events occurring in a fixed interval of time
[28], which is a good match with our application. The
probability density function used to sample the number of
measurements per day is:

PN (n|λ) = λn

n!
e−λ (3)

with λ = 5 chosen as the mean of the distribution.
Lastly, the method used to alter from a stable gait

model to an unstable gait model and vice versa was imple-
mented. During the transition period, the parameters of
the gait model were determined using linear interpolation
between the original and the new model. For each day in
the transition period, a new set of distribution parameters
was calculated.
The simulated data generator was built using Math-

Works’ Matlab. The code will become available for down-
load.
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Fig. 2 Probability density function for both stable and unstable gait
models

Table 2 Parameter values of the simulated data models

σ = 0.155 σ = 0.206

μ = 1.504 SGMa TGM1b

μ = 2.097 TGM2c UGMd

Notes
A gait model is defined as a combination of
an average transfer time and standard deviation
aStable Gait Model
bTheoretical Gait Model 1 (not based on real-life data)
cTheoretical Gait Model 2 (not based on real-life data)
dUnstable Gait Model

Simulated trainings dataset
To select and optimize the best method, three differ-
ent types of simulation scenarios were chosen based on
those observed in the real-life dataset: no trend present,
one trend present and two trends present. For each type,
two different scenarios were defined. An overview can
be found in Table 3, one column corresponds with one
scenario. Transfer time data for each possible simulation
scenario was generated 20 times, resulting in 120 different
datasets in total.

Simulated validation dataset
To validate the resulting method, an extended valida-
tion dataset was generated. The goal of this dataset was
firstly, to validate the results acquired with the training
set and secondly, to find the limitations of the selected
method. To validate the results on the training set, the
basic scenarios similar to the training set were generated.
Additionally, the basic scenarios were generated with dif-
ferent transition lengths (0, 4, 8 and 12 weeks). Moreover,
transition scenarios were also generated with a change
in either μ or σ , resulting in transitions to TGM1 and
TGM2 as defined in Table 2. Lastly, the number of mea-
surements per day was halved. Each additional scenario
type was simulated 20 times and was 52 weeks long
resulting in 520 different validation simulation scenar-
ios. An overview of the different simulation scenarios is
given in Table 4, again one column corresponds with one
scenario.

SPC techniques
SPC techniques are commonly used to check a process
during its run and trigger an alert when variations, not
inherent to the process, occur using control charts. In our
research, control charts are consequently used to detect
when one gait model transitions to another one which
is consistent with the detection of small deviations from
the first gait model. As the CUSUM and EWMA con-
trol charts are best fitted [29] the desired application,
the remainder of this paper therefore focuses solely on
CUSUM and EWMA control charts.
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Table 3 Overview of the different training simulation scenarios

Transition Scenarioa
No trend One trend Two trends

TrS TrU TrSU TrUS TrSUS TrUSU

Duration 12 weeks 28 weeks 44 weeks

Model 1b SGM UGM SGM UGM SGM UGM

Model 2 UGM SGM UGM SGM

Model 3 SGM UGM

Transition 1 length 4 weeks 4 weeks

Transition 2 length 4 weeks

Notes
One column corresponds with one scenario
aTr stands for Training scenario, S stands for Stable gait and U stands for Unstable gait
bSGM stands for Stable Gait Model and
UGM stands for Unstable Gait Model

Typically a control chart has three lines: the Upper Con-
trol Limit (UCL), Lower Control Limit (LCL) and the
Centre Line (CL). From the medians of the transfer times
a sample statistic is calculated and subsequently plotted
on the control chart. When a deviation occurs, the sample
statistic is plotted outside the control limits and an alarm
is triggered. To determine the range of natural variation in
the transfer times, an initialization period of 14 days was
defined. Themean of the measurements conducted in this
period is used as the Central Line and a multiple of the
standard deviation is used to define the Upper and Lower
Control Limits.

CUSUM
CUSUM charts calculate the cumulative sum of the devi-
ations of the observations from the target value. The
deviations above the target value are accumulated in the
positive CUSUM, whereas the deviations below the tar-
get value are accumulated in the negative CUSUM. Using
this method, the information contained in the current
time point and in the previous time points is taken into
account, thus facilitating the detection of smaller shifts
[29]. In our application one time point coincides with the
median of the transfer times measured during one day.
When the transfer times remain stable at the target

value, both the positive and negative CUSUM remain
around zero. However, when the transfer time increases,
a positive drift will develop in the positive CUSUM. If a
trend develops in the medians of the transfer times, one of
the Control Limits will be exceeded and an alarm will be
triggered.
The literature differentiates between Tabular CUSUM

and Standardized CUSUM. Both are therefore incorpo-
rated in this study.

Tabular CUSUM
With the Tabular CUSUM, the positive and negative
CUSUM values are calculated using formulas:

C+
i = max

[
0, xi − (μ0 + K) + C+

(i−1)

]
(4)

and

C−
i = max

[
0, (μ0 − K) − xi + C−

(i−1)

]
. (5)

In both formulas,μ0 is defined as the target value, which
in our application corresponds to the mean of the mea-
sured transfer times during the initialisation period and
xi is the current time point. K refers to the allowance or
the slack value of μ0 and is often chosen halfway between
the target value and the out of control value [29]. In
our application K is expressed as a multiple of the stan-
dard deviation of the transfer times measured during the
initialisation period:

K = k
2
σ . (6)

As seen in formulas (4) and (5), both positive and nega-
tive CUSUMs accumulate deviations from the target value
that are greater than K. If either exceeds the control limits:

UCL = LCL = hσ (7)

an alarm is triggered. Both h and k are parameters that
need to be set for an effective detection.

Standardized CUSUM
Standardized CUSUM uses similar formulas to those of
the Tabular CUSUM chart. The value of xi, however, is
first standardized using

yi = xi − μ0
σ

. (8)

After this standardization, the CUSUM chart is applied
on these standardized values.

EWMA
The Exponentially Weighted Moving Average (EWMA)
control chart is an alternative to the CUSUM chart when
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Table 4 Overview of the different validation simulation scenarios

Transitiona Scenario
No trend One trend Two trends

VS VU VSU VST1 VST2 VUS VUT1 VUT2 VSUS VST1S VST2S VUSU VUT1U VUT2U

Duration 52 weeks 52 weeks 52 weeks

Model 1b SGM UGM SGM SGM SGM UGM UGM UGM SGM SGM SGM UGM UGM UGM

Model 2 UGM TGM1 TGM2 SGM TGM1 TGM2 UGM TGM1 TGM2 SGM TGM1 TGM2

Model 3 SGM SGM SGM UGM UGM UGM

Transition 1 0/4/8/12 4 4 0/4/8/12 4 4 0/4/8/12 4 4 0/4/8/12 4 4

length weeks weeks weeks weeks weeks weeks weeks weeks weeks weeks weeks weeks

Transition 2 0/4/8/12 4 4 0/4/8/12 4 4

length weeks weeks weeks weeks weeks weeks

Notes
One column corresponds with one scenario
aV stands for Validation scenario, S stands for Stable gait and U stands for Unstable gait
bSGM stands for Stable Gait Model and UGM stands for Unstable Gait Model
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one is interested in detecting small shifts [29]. It accu-
mulates the exponentially weighted moving average of
all prior sample means. The samples are weighted in
decreasing order so that the most recent sample gets the
highest weight while the most distant samples contribute
very little. The exponentially weighted moving average is
calculated as

zi = λxi + (1 − λ)z(i−1) (9)

with λ the weighing factor chosen between 0 and 1. The
starting value of z0 is chosen the same as the central value
μ0.
Upper control limit and lower control limit are calcu-

lated as

UCL = μ0 + Lσ

√
λ

2 − λ

[
1 − (1 − λ)2i

]
(10)

and

LCL = μ0 − Lσ

√
λ

2 − λ

[
1 − (1 − λ)2i

]
. (11)

In these formulas, L determines the width of the con-
trol limits. Note that the term 1 − (1 − λ)2i will become
one when i gets larger. The Control Limits will therefore
reach a steady state after several days. However, for small
values of i this term will reduce the width of the Con-
trol Limits facilitating the detection of a process deviation
immediately after the EWMA chart is started. Similar to
both CUSUM control charts, μ0 corresponds with the
mean of the measured transfer times during the initializa-
tion period and σ with the standard deviation of the same
period.

Rational Subgroups
In literature a rational subgroup typically is a group of
samples which are collected under the same set of con-
ditions. The variation between the samples in the same
subgroup is similar to the inherent variation of the pro-
cess [29]. As the median per day is used as input for
the control charts a form of rational subgroups is already
implemented in the basic methods. If however there is a
difference in the number of measurements within a sub-
group, which is the case in our application, Montgomery
et al. advise to take this number into account. Within the
suggested methodology the number of measurements is
used to determine the width of the control limits [29].
This is done in the CUSUM-based methods by dividing K,
UCL and LCL with √ni and in the EWMA-based meth-
ods by dividing L with √ni, where ni is the number of
measurements that are used to calculate the median per
day.

Reinitialization
Multiple trends can present themselves subsequently in
the transfer times. As the control charts are initialized

based on the first two weeks of acquisition data, a sub-
sequent trend could remain undetected. To ensure the
detection of any subsequent trends, the control charts can
be reinitialized after three consecutive alarm days. This
reinitialization is done by replacing the mean and stan-
dard deviation of the measured transfer times calculated
during initialization period, with those calculated during
the 14 days prior to the last alarm day.When the first trend
is detected, the control chart will therefore be reinitialized
based on the more recent data, facilitating the detection
of any subsequent trends.

Experimental set-up
The previously described SPC techniques were evaluated
on the training set. From this evaluation, the two best
performingmethods were optimized for the desired appli-
cation. Next, the validation data was used to validate the
training set results and the best performing method was
selected. This was followed by an assessment of the limits
of the chosen method.

General approach
To assess if the different methods can successfully detect
transitions in the data during the transition period, three
evaluation criteria were selected. These criteria were cal-
culated over multiple datasets of the same type (e.g. all the
simulation datasets containing a SGM to UGM), and are
as follows:

1. Detection Rate (DR)
The Detection Rate is the percentage of the detected
transitions. For our application, it is necessary that
the number of transitions that are not detected is
kept as low as possible. Ideally, all transitions trigger
an alert (= 100% Detection Rate).

2. Average Run Length (ARL)
Montgomery et al. defined the ARL of a control chart
as the number measurements or subgroups needed
to detect a transition [29]. In our application this
corresponds with the number medians and thus the
number of days which pass between the start of a
transition and the detection of this transition. This
time needs to be kept as short as possible to enable
healthcare workers to respond quickly to changes in
health. If there is no detection, no ARL is calculated.

3. Average number of false alerts per week (FPR)
This is the average number of alerts triggered during
one week for one person when there is no transition.
As the median per day is used as input of the control
charts only one false alert can be triggered per day.
The number of measurements per day or per week
do not influence this number.

If the sample statistic is plotted outside the control lim-
its for more than two consecutive days this is counted as
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one alarm. An alarm is considered correct when it occurs
during the transition period. An alarm is a false alarm
when it presents itself at least two days prior to the tran-
sition period or after the transition period. One exception
was applied to these rules in simulation scenarios where
a sudden change in gait model was present (a transition
period of 0 days). In this case an alarmwas deemed correct
when it occurred within 4 days after the sudden change.
Before or after this 4 day period, an alarm is deemed as a
false alarm.

Evaluation of the different SPC techniques
The training set was used to evaluate the performance
of the different SPC techniques. The parameters for both
CUSUM and EWMA charts were chosen based on a
rule of thumb when aiming for a fast detection of small
changes with k = 1

2 and h = 3 for both types of CUSUM
charts and with λ = 0.15 and L = 3 for the EWMA
chart [29].

Optimization
After the evaluation of the different SPC techniques, the
two top-ranked methods were selected. Subsequently, the
parameters of thesemethods were further optimized. This
was done by calculating DR, ARL and FPR for the train-
ing set using a wide variety of parameter combinations.
For the CUSUM-based method k varied between 0 and
1, and h varied between 2 and 4. For the EWMA based
method λ varied between 0 and 1, and L varied between 2
and 4.
After this, the mean of the DR, ARL and FPR was cal-

culated for each possible combination of both parameters
over the different simulation scenarios. This was subse-
quently plotted in a ROC-like plot with DR and ARL on
the X- and Y-axis, adding color information for the num-
ber of false alarms. The operating point with the best
possible combination for all three criteria, giving higher
importance to DR and ARL, was subsequently determined
based on this plot. After determining the new operat-
ing point and comparing the results for both top-ranked
methods, the best performing method was selected.

Validation & experimental methodology
The validation of the best method was performed in three
stages. First, the results after optimization were compared
to those on a validation set consisting of similar scenar-
ios as the training set. After this the following items were
investigated:

• The effect of a variation in the transition length on
the detection results;

• The effect of a change in simulation parameters on
the detection results;

• The effect of a reduction in the average number of
measurements per day on the detection results;

• The effect of the initialization period length on the
detection results.

Lastly, the optimizedmethod was validated on the real-life
dataset.

Results
Evaluation of the different SPC techniques
The results of evaluating the different SPC techniques are
given in Table 5. From this table the following observa-
tions can be made:
Firstly, there is a lower detection rate when using the

standard SPC techniques with transitions from stable to
unstable as opposed to transitions from unstable to sta-
ble. This is mainly due to the small zone which is defined
between the control limits based on the stable gait model,
combined with the wide variability present in an unstable
gait model. It is therefore less likely to have two consecu-
tive days, during the transition period, on which the data
points reside at the same side of the upper and lower
control limits.
Next, it can be observed that the ARL of the different

methods increases when the rational subgroups method is
implemented. When implementing this method, days on
which a small number of measurements are present have
a smaller influence on the calculated CUSUM or EWMA
values. Following this, if at the beginning of the transi-
tion period some days have fewer measurements they will
delay the detection of the transition.
Moreover, the same increase of ARL can be seen when

implementing the reinitialization after three consecutive
alarm days. This is caused by the reinitialization when
three consecutive days trigger a false alarm. The wider
control limits that result from this reinitialization increase
the number of days needed to detect an actual transition.
If, however, no reinitialization is done, subsequent trends
could not be detected.
The Standardized CUSUM has the lowest detection

rate, making it not suitable for our application. EWMA
and Tabular CUSUM both have better detection rates.
The detection rates for both EWMA and Tabular CUSUM
were further improved by implementing the reinitializa-
tion after three alarm days and by using the rational
subgroups method. After this, EWMA has slightly better
detection rates than Tabular CUSUM. FPR and ARL of
both Tabular CUSUM with a reinitialization after three
alarm days (TCRA) and EWMA with reinitialization and
rational subgroups (ERSRA) are however similar to each
other. Both methods were therefore further optimized for
our application.

Optimization
The optimization graphs for both top-ranked methods
(Fig. 3) show that a small improvement in detection rates
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Table 5 Results Tabular CUSUM, Standardized CUSUM and EWMA (when the dataset contains two trends both trends are evaluated separately)

Tabular CUSUM (TC) Standardized CUSUM (SC) EWMA (E)

TC RSb RAc RSRAd SC RSb RAc RSRAd E RSb RAc RSRAd

Average number of false positive alerts per week

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

TrS a 0.01 0.04 0.06 0.08 0.10 0.04 0.04 0.04 0.19 0.16 0.10 0.03 0.09 0.02 0.19 0.14 0.00 0.00 0.14 0.08 0.00 0.00 0.03 0.06

TrU 0.06 0.08 0.09 0.06 0.11 0.08 0.15 0.12 0.13 0.11 0.15 0.11 0.07 0.05 0.18 0.17 0.00 0.00 0.20 0.15 0.00 0.00 0.05 0.06

TrSU 0.04 0.02 0.01 0.02 0.07 0.04 0.03 0.04 0.06 0.05 0.05 0.03 0.05 0.02 0.08 0.07 0.01 0.02 0.06 0.04 0.03 0.02 0.08 0.05

TrUS 0.02 0.03 0.02 0.02 0.05 0.03 0.04 0.04 0.04 0.04 0.08 0.08 0.04 0.03 0.06 0.06 0.02 0.04 0.09 0.08 0.02 0.03 0.08 0.04

TrSUS 0.03 0.02 0.01 0.01 0.05 0.03 0.02 0.02 0.03 0.02 0.02 0.01 0.05 0.03 0.05 0.04 0.01 0.01 0.05 0.03 0.03 0.02 0.01 0.04

TrUSU 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.01 0.02 0.08 0.07 0.02 0.02 0.08 0.04

Detection rate

TrSU 10% 95% 100% 100% 40% 0% 100% 25% 85% 100% 100% 100%

TrUS 70% 85% 95% 100% 65% 25% 45% 60% 85% 100% 65% 100%

TrSUS

S→U 10% 95% 95% 95% 30% 0% 95% 35% 75% 100% 95% 100%

U→S 0% 0% 95% 75% 0% 0% 0% 0% 0% 0% 35% 100%

TrUSU

S→U 60% 70% 100% 100% 55% 25% 35% 60% 85% 95% 55% 95%

U→S 0% 0% 100% 100% 0% 0% 60% 0% 5% 40% 65% 100%

Average Run Length [days]

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

TrSU 2.50 2.12 17.47 4.56 10.30 3.40 16.25 2.99 6.38 4.34 / / 13.75 4.00 7.20 4.60 2.94 2.36 10.20 3.53 15.85 3.05 10.10 3.39

TrUS 5.29 5.38 16.41 3.39 14.89 3.96 14.00 4.53 14.08 5.89 7.80 7.29 16.89 4.78 12.00 5.41 11.18 4.39 14.05 6.55 23.38 2.79 14.85 6.10

TrSUS

S→U 4.00 1.41 18.95 2.68 13.00 5.42 16.21 5.14 4.33 3.14 / / 13.58 4.60 6.29 1.98 2.93 2.25 9.20 4.27 15.79 3.60 10.80 4.27

U→S / / / / 15.63 3.68 11.20 4.38 / / / / / / / / / / / / 24.14 2.14 13.15 5.90

TrUSU

U→S 6.50 6.79 14.64 6.06 16.85 6.06 12.60 5.45 12.27 4.58 10.40 9.34 12.57 4.61 8.58 5.62 11.29 6.57 21.37 5.91 21.55 4.11 14.05 5.35

S→U / / / / 10.95 3.66 15.65 4.22 / / / / 15.08 3.48 / / 6.00 0.00 13.88 6.75 20.77 3.14 13.25 4.84

Notes
aTraining simulation scenarios as described in Table 3
bControl chart with rational subgroups implemented
cControl chart with a reinitialization after three consecutive alarm days
dControl chart with rational subgroups and a reinitialization after three consecutive alarm days
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(a) Tabular Cusum with
Reinitialization after three consecutive alarms (TCRA)
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Fig. 3 Plot of the average Detection Rate (DR), Average Run Length (ARL) and average number of false alarms (FPR) calculated for a wide variety of
parameters over the different simulation scenarios used for parameter optimization. Colors represent the average number of false alarms. The initial
parameters were chosen by a rule of thumb (TCRA: k = 0.5 and h = 3 and ERSRA: λ = 0.15 and L = 3), optimized parameters are chosen based on
this plot giving priority to ARL and DR over FPR (TCRA: k = 0.42 and h = 2.08 and ERSRA: λ = 0.18 and L = 2)

can be reached and that a shorter ARL causes an increase
in the average number of false alarms per week. However,
since the number of false alarms per week remains very
low and due to the fact that a transition from one gait
model to another needs to be detected as fast as possi-
ble, an improvement in the ARL is desirable. The choice
was thereforemade to determine a new operating point on
these graphs by aiming to raise the detection rate further
and to shorten the ARL.
The new operating point, as well as the point resulting

from the parameters, as chosen by the rule of thumb, are

both plotted on the graphs. The improvements made by
changing the operating point are given in Table 6.
As both the values for λ and k remain close to those

chosen by the rule of thumb (see Table 6), the improve-
ment in both ARL and DR are mainly due to the lowering
of L for EWMA and h for Tabular CUSUM. This corre-
sponds with lowering the control limits, therefore creating
a smaller zone in which variations in the transfer times are
considered normal.
Both Table 6 and Fig. 3 show that the highest DR and

shortest ARL can be achieved with the EWMA method
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Table 6 Average results of the best performing methods prior to and after optimization

TCRAa ERSRAb

Initial parameters Optimized parameters Initial parameters Optimized parameters

k = 0.5 k = 0.42 λ = 0.15 λ = 0.18

h = 3 h = 2.08 L = 3 L = 2

ARLc 13.58 11.07 12.67 9.65

DRd 97.50 98.33 99.17 100

FPRe 0.06 0.08 0.10 0.18

Notes
aTabular CUSUM with a reinitialization
after three consecutive alarm days
bEWMA with rational subgroups and a reinitialization
after three consecutive alarm days
cAverage Run Length
dDetection Rate
eAverage number of false alarms per week

with rational subgroups implemented and a reinitializa-
tion after three consecutive alarm days. λ and L were
optimized into resp. 0.18 and 2. This method will be
further validated in the paper.

Validation
Validation on the training set
After optimization the results from the training set were
validated using a set of similar simulation scenarios (see
Table 4). The results from this validation, shown in
Table 7, confirm the prior results for DR as well as ARL
and FPR.

Variation in transition length
The scenarios from the training set had a transition length
of four weeks. The different simulation scenarios were
also generated with varying transition lengths of 0, 4, 8
and 12 weeks.
Table 8 demonstrates that a longer transition length

causes a longer ARL. Since the model parameters dur-
ing the transition period are determined through inter-
polation, a longer transition period causes smaller daily
changes and hence it takes longer for the algorithm to
detect a significant change. In contrast, when a sudden
change in transfer time is present, the ARL is substantially
shorter. DR and FPR are not influenced by a change in
transition length.

Change in the gait model parameters
Based on the real-life data a change in gait model was
characterized by a change in both parameters μ and σ . A
dataset containing transitions characterized by a change
in eitherμ or σ was also included in the validation set (gait
models TGM1 and TGM2).
The results from these datasets compared to those of

the training set (see Table 9) demonstrate that a transition
characterized by a single change in μ yields similar results
to those where a change in both parameters was present.

Table 7 Comparison of the results on training- and validation set
(when the dataset contains two trends both trends are evaluated
separately)

Training scenariosa Validation scenariosb

Detection Rate (DR)

TrSU 100% VSU 100%

TrUS 100% VUS 100%

TrSUS VSUS

S→U 100% S→U 100%

U→S 100% U→S 100%

TrUSU VUSU

U→S 100% S→U 100%

S→U 100% U→S 100%

Average Run Length (ARL)

TrSU 8.05 ± 3.62 VSU 7.70 ± 3.34

TrUS 12.95 ± 4.31 VUS 10.95 ± 3.59

TrSUS VSUS

S → U 7.65 ± 4.10 S→U 8.35 ± 3.59

U→S 11 ± 4.30 U→S 12.45 ± 5.25

TrUSU VUSU

U→S 10.15 ± 5.96 U→S 10 ± 3.54

S→U 8 ± 5.58 S→U 8.10 ± 2.88

Average number of false alarms per week (FPR)

TrS 0.15 ± 0.17 VS 0.16 ± 0.07

TrU 0.11 ± 0.07 VU 0.14 ± 0.06

TrSU 0.20 ± 0.10 VSU 0.20 ± 0.07

TrUS 0.18 ± 0.07 VUS 0.17 ± 0.07

TrSUS 0.23 ± 0.08 VSUS 0.20 ± 0.08

TrUSU 0.23 ± 0.07 VUSU 0.20 ± 0.08

Notes
aTraining simulation scenarios as described in Table 3
bValidation simulation scenarios as described in Table 4
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Table 8 Validation results of scenarios with varying lengths of
transition period

Scenarioa Transition period
(in weeks)

FPRb DRc ARLd

VSU 0 0.16 ± 0.09 95% 1.74 ± 2.13

4 0.20 ± 0.07 100% 7.70 ± 3.34

8 0.12 ± 0.06 100% 11.45 ± 5.96

12 0.16 ± 0.07 100% 16.30 ± 7.49

VUS 0 0.15 ± 0.07 100% 2.45 ± 1.32

4 0.17 ± 0.07 100% 10.95 ± 3.59

8 0.11 ± 0.06 100% 15.85 ± 6.75

12 0.11 ± 0.04 100% 20.45 ± 11.50

VSUS 0 0.20 ± 0.09 100% 1.47 ± 0.93

4 0.20 ± 0.08 100% 10.40 ± 4.90

8 0.16 ± 0.05 100% 15.27 ± 9.30

12 0.14 ± 0.06 100% 17.68 ± 10.14

VUSU 0 0.18 ± 0.07 100% 2.25 ± 1.84

4 0.20 ± 0.08 100% 9.05 ± 3.33

8 0.17 ± 0.05 100% 14.18 ± 7.54

12 0.15 ± 0.06 100% 17.25 ± 11.96

Notes
aSimulation scenarios as described in Table 4
When two trends are present in the data
an average DR and ARL is calculated
bAverage number of false alerts per week
cDetection Rate
dAverage Run Length

If in contrast only σ changes during the transition, the
detection rate is much lower.

Change in the number ofmeasurements per day
The training set was generated with a varying num-
ber of measurements each day (between 0 and 10). A
dataset was added to the validation set in which only half
the number of measurements was used to generate the
data.
Table 10 indicates that a reduction in the number of

measurements per day does not influence the perfor-
mance of the control chart.

Change in the length of the initialization period
To assess the necessary length of the initialization period,
the ARL, DR and FPR were calculated for all scenarios
with a transition period of four weeks and with an initial-
ization period varying from 1 to 60 days. The three criteria
were averaged for each initialization period length. This
resulted in one value per criteria and per initialization
period length. These are shown per criteria in Fig. 4. An
optimal Detection Rate is reached with an initialization

Table 9 Comparison of the results on transitions to gait models
with varying parameters

Changing
parameters

Scenarioa FPRb DRc ARLd

μ and σ VSU 0.20 ± 0.07 100% 7.70 ± 3.34

VUS 0.17 ± 0.07 100% 10.95 ± 3.59

VSUS 0.20 ± 0.08 100% 10.40 ± 4.50

VUSU 0.20 ± 0.08 100% 9.05 ± 3.33

μ only VST2 0.20 ± 0.09 100% 7.85 ± 2.94

VUT1 0.16 ± 0.06 100% 9.55 ± 3.78

VST2S 0.23 ± 0.04 100% 8.05 ± 3.41

VUT1U 0.21 ± 0.07 97.50% 9.97 ± 3.59

σ only VST1 0.13 ± 0.08 50% 14.50 ± 6.96

VUT2 0.09 ± 0.07 25% 7.20 ± 9.47

VST1S 0.15 ± 0.06 35% 11.57 ± 9.07

VUT2U 0.11 ± 0.09 37.50% 12.87 ± 8.25

This change in gait model parameters is defined as either a change in both μ, σ or
either μ or σ (all transitions have a length of four weeks)
Notes
aSimulation scenarios as described in Table 4
When two trends are present in the data
an average DR and ARL is calculated
bAverage number of False Alerts per week
cDetection Rate
dAverage Run Length

period of 4 days. For both ARL and the average number of
FPR, a longer initialization period is needed. Both, how-
ever, show that an initialization period of more than 14
days does not result in an important improvement of the
results.

Table 10 Comparison of the results with a change in the
number of measurements per day

Scenarioa Number of measurements
per day

FPRb DRc ARLd

VSU [0–10] 0.20 ± 0.07 100% 7.70 ± 3.34

[0–5] 0.16 ± 0.06 100% 7.80 ± 4.41

VUS
[0–10] 0.17 ± 0.07 100% 10.95 ± 3.59

[0–5] 0.16 ± 0.06 100% 11.05 ± 4.20

VSUS [0–10] 0.20 ± 0.08 100% 10.40 ± 4.90

[0–5] 0.24 ± 0.08 100% 8.90 ± 4.15

VUSU [0–10] 0.20 ± 0.08 100% 9.05 ± 3.33

[0–5] 0.21 ± 0.05 100% 8.18 ± 4.30

Notes
aSimulation scenarios as described in Table 4
bAverage number of False Alerts per week
cDetection Rate
dAverage Run Length
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Fig. 4 Detection Rate, Average Run Length and Average number of false alerts per week calculated with varying number of days in the initialization
period

Validation on the real-life datasets
After training and validation on simulation data, the algo-
rithm was further validated on the real-life dataset. Three
different scenarios were collected during the real-life
acquisition. Firstly, two participants were monitored who
had a stable gait during the whole acquisition period. Sec-
ondly, transfer times of a participant with a very unstable
gait during the whole acquisition period were collected.
Lastly, a person who transitioned from an unhealthy gait
to a healthy gait and transitioned back to an unhealthy gait
was monitored.
The first participant (Fig. 5(a) and (b)) had a stable gait

model during the whole acquisition period and triggered
no false alarms during this period.
Although the second participant was reported being

in good health during the acquisition period two con-
secutive alarms were triggered (Fig. 5(c) and (d)). These
alarms were caused by the three consecutive days prior to
these alarms. On these days, longer transfer times were
recorded which could indicate that some health-related
problems were present during these days prior to the
alarm.
The third participant had a very unstable gait during

the whole acquisition period (Fig. 6(e) and (f)). Although

this was a very unstable gait, no changes in health were
reported and no alerts were triggered by our algorithm.
The last participant started the acquisition period with

an unstable gait. The gait improved slightly during the
acquisition period, but given that this improvement was
quite small, no alerts were triggered. After this improve-
ment, the participant experienced a rapid decline in
health after a stroke, which is visible in the measured
transfer times. This resulted in two alarms (Fig. 6(g)
and (h)).

Discussion
This study reports on the selection, optimization and
extensive validation of a system to automatically detect
changes in the health of older adults using transfer times.
The best performing method was the EWMA control
chart implemented with rational subgroups and a reini-
tialization after three consecutive alarm days. After opti-
mization, the selected method had a detection rate of
100% and an average run length of 9.65 days when the
length of the transition period was 28 days. These results
were confirmed using a separate validation dataset, con-
firming the suitability of the presented method for the
application at hand.
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Fig. 5Median of transfer times compared to the EWMA rational subgroups with reinitialization after three consecutive alarm days (ERSRA) results.
The first 14 days were used as an initialization period and are therefore not used on the ERSRA control chart

There are still some aspects of the system that warrant
further clarification.

The design process
The tabular CUSUM, standardized CUSUM and EWMA
control charts were evaluated because of their ability
to detect small shifts in the data and their good per-
formance with skewed distributed data. These control
charts, however, still assume that the data is normally
distributed. Some control charts can be optimized for a
log-logistic distribution such as the Shewart Chart and
the Range Chart. These charts are in comparison with the
EWMA and CUSUM control charts, less suited to detect

small shifts. They were therefore not incorporated in this
research.
To evaluate the different control charts simulated data,

generated based on previously acquired real-life data was
used. The number of real-life datasets was limited. When
generating simulated data some scenarios which did not
fit the real-life data were also incorporated to reduce the
risk of over-fitting on the real-life data. Theoretical gait
models were incorporated in these scenarios as well as dif-
ferent transition period lengths and a varying number of
measurements per day.
Furthermore, in previous studies it was shown that some

noise is present in the measured transfer times. This noise
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Fig. 6Median of transfer times compared to the EWMA rational subgroups with reinitialization after three consecutive alarm days (ERSRA) results.
The first 14 days were used as an initialization period and are therefore not used on the ERSRA control chart

is due to imperfect preprocessing steps and changes in the
used walking aid [21]. To reduce the influence of noisy
measurements on the control charts a median was cal-
culated per day and used as input for the control charts.
The rational subgroups methods was also implemented to
reduce the influence of a day with a small number of mea-
surements on the performance of the control charts and
therefore reducing the number of false alarms.
The Western Electric rules were implemented to fur-

ther improve the performance of the control charts. These
are decision rules used for the detection of out-of-control
conditions on control charts. Since the desired goal was
the detection of process instabilities the so-called zone
rules were applied. These rules specify that a process is
out of control when two or three consecutive points fall

beyond a predefined zone [30]. Based on this an alert is
triggered when either the positive/negative CUSUM value
or the EWMA value is outside the Control Limits for at
least two consecutive days.
Lastly, a reinitialization after three consecutive alarm

days was implemented to facilitate the detection of subse-
quent trends.

Strengths and weaknesses of the presented method
Based on the simulated data, the proposed system will
report one false alert every five weeks. Although some of
these false alarms are due to outliers in the generated data
and hence still of interest, the system should under ideal
conditions produce less false alerts whilst maintaining the
current detection rate.When one would widen the control
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limits to decrease the number of false alerts, the ARL will
generally lengthen and the detection rate will decrease.
Similarly, when the control limits are tightened, the oppo-
site happens. However, since a false alert is triggered when
the measurements of two subsequent days are substan-
tially different to those of the previous days, it could
indicate that some health problems are apparent during
those days. Although no transition is present when such
an alarm is triggered, a visit of a healthcare professional
might still be needed. A compromise was therefore sought
between detection rate, ARL and the average number of
false alerts per week.
When using the presented methodology, it is assumed

that all values between the Upper Control Limit and the
Lower Control Limit are good. However, a value closer
to the Central Line is better than one closer to the Con-
trol Limits. It could therefore be useful to trigger a first
alarm if on several subsequent days the time points reside
close to the Control Limits. This can be done by imple-
menting more of theWestern Electric zoning rules. These
rules also describe when an alarm should be triggered,
even when a time point lies between the Control Lim-
its, depending on its distance to the Central Line and the
previous points.
A transfer could remain undetected when a transition

period starts and ends during the initialization period. If
it starts at the end of the initialization period and ends
after the initialization period, the transition, however, can
still be detected depending on the length of the transition
period and the change in μ after the initialization period.
The number of days needed to detect the transition will
increase. It is therefore advised to keep the initialization
period as short as possible.
The major strength of the presented method is that it is

a generic method. Although the presented research mon-
itored changes in transfer times, it could equally well be
applied to gait speed or other quality characteristics such
as step length, stride length and activity level. However,
a new optimization phase might be necessary to find the
optimal values for both λ and L.

Conclusion
The system presented in this paper is able to detect both
positive and negative trends in the transfer times of older
adults, therefore automatically triggering an alarm when
gradual and abrupt changes in transfer times, which are
closely linked to gait speed, occur. Since previous research
has shown that changes in gait speed can have a pre-
dictive value for a broad array of adverse events, several
research groups have already designed and validated sys-
tems which can measure the gait speed of a person on
a daily basis. They however do not trigger alerts and
a healthcare worker is needed to review the data. It is
therefore anticipated that the presented technique can

provide a valuable addition to existing gait monitoring
systems.

Availability of supporting data
The simulated data generator was built using MathWorks’
Matlab. The code will become available for download
on the website: www.kuleuven.be/advise/datasets. Due to
ethical regulations the real-life datasets are not publicly
available.
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