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Abstract

Objective: Nocturnal home monitoring of epileptic children is often not feasible due to the cumbersome manner of seizure
detection with the standard method of video electroencephalography monitoring. The goal of this paper is to propose a
method for hypermotor seizure detection based on accelerometers that are attached to the extremities.
Methods: Supervised methods that are commonly used in literature need annotation of data and hence require expert
(neurologist) interaction resulting in a substantial cost. In this paper an unsupervised method is proposed that uses
extreme value statistics and seizure detection based on a model of normal behavior that is estimated using all recorded
and unlabeled data. In this way the expensive interaction can be avoided.
Results: When applying this method to a labeled dataset, acquired from 7 patients, all hypermotor seizures are detected
in 5 of the 7 patients with an average positive predictive value (PPV) of 53%. For evaluating the performance on an
unlabeled dataset, seizure events are presented to the system as normal movement events. Since hypermotor seizures are
rare compared to normal movements, the very few abnormal events have a negligible effect on the quality of the model.
In this way, it was possible to evaluate the system for 3 of the 7 patients when 3% of the training set was composed of
seizure events. This resulted in sensitivity scores of 80%, 22% and 90% and a PPV of 89%, 21% and 44% respectively.
These scores are comparable with a state-of-the-art supervised machine learning based approach which requires a labeled
dataset.
Conclusions: A person-dependent epileptic seizure detection method has been designed that requires little human inter-
action. In contrast to traditional machine learning approaches, the imbalance of the dataset does not cause substantial
difficulties.

Keywords: extreme value theory, unsupervised, unbalanced data, accelerometers, hypermotor seizures, epileptic.

1. Introduction

Video electroencephalography (EEG) monitoring, the
gold standard for detecting epileptic seizures [1], is not
suitable for home monitoring since electrodes are uncom-
fortable, need to be in contact with skin at all times, and
hamper the patient’s sleep. However, there is a need for a
long-term home monitoring system for early intervention
and prevention of seizure related side effects and giving the
neurologist valuable information about the progress of the
disease [2]. Although most of the patients can be treated
with medication or surgery, in 25% of patients seizures
cannot be fully controlled by medication or surgery [3].
Here long-term home monitoring can play a crucial role.

The study presented in this article focuses on hyper-
motor seizures that are marked by a strong and uncon-
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trolled movement of the arms and legs and can last from
a couple of seconds to some minutes. The group of pa-
tients that is studied consists of 7 patients with hypermo-
tor seizures, all between the age of 5 and 16 years. Due
to the heavy movement, patients can injure themselves
during the seizure, which increases the need for an alarm
system [4]. The main focus of this article is on pediatric
patients, as epilepsy has a higher prevalence in children
(as it has in the elderly) than in adults [4]. Furthermore,
in children the disorder can still evolve over time.

A home-monitoring system permits a better observation
of the patient so that parents or caregivers can be warned
to administer medication, reposition the patient or com-
fort him during or after the seizure. Recently, research
has been carried out to improve automatic registration by
making use of less intrusive sensors like accelerometers at-
tached to the extremities [2]. The goal is then to (auto-
matically) build a classification model that uses the sensor
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data to indicate whether a certain movement is due to an
epileptic convulsion.

In the literature, supervised learning algorithms are
commonly used (e.g. support vector machines (SVMs)
[5–7]) to obtain such classification models and hence an-
notated examples are required. This annotation of data
(every movement needs to be manually evaluated) requires
expert (neurologist) interaction and results therefore in a
substantial cost. Furthermore, to be able to label the ac-
quired data, EEG has to be recorded, which is uncomfort-
able for the patient.

In this article the use of an unsupervised approach for es-
timating seizure detection models is proposed that is based
on extreme value theory (EVT)[8]. The method proceeds
in three main steps:

(i) The unlabeled sensor data is used to build a model of
“normal behavior”.

(ii) A threshold border is automatically set in the tails of
this model by using EVT.

(iii) An observed movement that exceeds this threshold
is classified as a rare event and may be an epileptic
convulsion.

The rationale for this approach is two-fold: 1) move-
ments during an epileptic convulsion have characteristics
that differ from normal nocturnal movement events and
2) hypermotor seizures are rare so that only a small frac-
tion of seizure events is included when building a model of
normality, resulting in a limited effect. The advantage of
this method is that it does not require any annotation of
data, yet state-of-the-art classification scores are obtained
that are comparable to those obtained with a supervised
learning algorithm. Furthermore, it does allow to build a
patient-specific seizure detector more easily.

The outline of the article is as follows. Section 2 gives
an overview of related research. In section 3 a compre-
hensive review is given of how to use EVT for detecting
novelties in general. The dataset and experimental setup
are described in section 4. Experimental results can be
found in section 5 and are discussed in section 6. Finally,
we provide some conclusions and possible directions for
future work in section 7.

2. Related research

A lot of work on epileptic seizure detection using EEG
signals exists, see e.g. [2] for an overview. In general,
seizure detection can be accomplished by classification al-
gorithms that are applied to so-called feature vectors that
are extracted from the original sensor signals and cap-
ture the main information. In [5] classifications of EEG
signals using convolutional networks and SVMs are com-
pared. Other approaches as discrete wavelet transform and
entropy are used in e.g. [9, 10].

Given the impracticality of EEG data for home monitor-
ing, accelerometer data are used in this article and hence

the focus of this discussion on related research is on epilep-
tic seizure detection using accelerometers. Besides these
types of signals, other signals have been used in the past
as well. A recent overview can be found in [11].

In 2011 the first commercially available wrist-watch-like
detectors for tonic-clonic seizures, the EpiLert and the
SmartWatch, were presented, and the first clinical studies
were carried out [12, 13]. Kramer et al. [12] included 31
patients in their research. During 1692 hours of monitor-
ing, 20 of 22 seizures were detected with 8 false detections.
The detector was worn during night and day. In the re-
search of Lockman et al. [13], 40 patients were included
and 7 of 8 tonic-clonic seizures were detected generating
204 non-seizure detections (of which one occurred during
the night). Other researchers detected different types of
epileptic seizures by means of multiple accelerometers at-
tached to the extremities. Nijsen et al. [14] used 5 ac-
celerometers (arms, legs and sternum) to detect myoclonic
seizures. Although the detection rate was good (> 80%),
a lot of false positives were detected with a positive pre-
dictive value (PPV) that was smaller than 20%. Cuppens
et al. [15] used 4 accelerometers (wrists and ankle) to de-
tect frontal lobe seizures with a high sensitivity (> 90%)
and specificity (> 80%) in 3 patients. Jallon et al. [16]
used 2 accelerometers for the detection of non-specified
seizures with a high sensitivity (> 88%) and a PPV of
75% and 55% respectively in two patients. Conradsen et
al. [17] used a multi-modal approach using acceleration,
angular velocity and surface electromyography on patients
with tonic, clonic and versive seizures. Their multimodal
approach gave a good sensitivity (> 90%) and specificity
(100%).

The weak point of these approaches, however, is that
they all require annotation of data. In this article, it is
shown that an EVT-based approach can be used to au-
tomatically detect hypermotor seizures without the need
for an expensive annotation. The use of multivariate ex-
trema for novelty detection in multivariate data was first
approached in [18] and [19]. Extrema are used in the clas-
sical way as multivariate extrema that occur in one or more
dimensions. Thus, novelties are detected by determining
events of extremely large or small magnitude in one or
more dimensions. Recently Clifton et al. [20] developed
a technique that is generally applicable and has the ad-
ditional advantage of translating a multivariate model of
normal behavior to an univariate model of minimal densi-
ties, using classical EVT. They applied the approach to a
vital-sign monitoring problem.

In this article the approach is used for the first time
to develop a detection system for epileptic seizures in
an unsupervised manner. The focus is on hypermotor
seizures that often involve violent movements. Therefore,
the seizure data are suspected to be situated in the tails of
the model of normal behavior that can be modelled using
EVT.
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3. Using EVT to model rare events

In this section the methodology that was recently pro-
posed in [20] is reviewed. In contrast to the commonly
used supervised approach, novelty detection using EVT is
based on a model of normal behavior. From this point
of view one supposes that a d-dimensional dataset D is
given, consisting of data points assumed to be drawn in-
dependently from some population X that is distributed
according to an unknown probability distribution function
(PDF) y = f(x). Novelty detection addresses the question
whether a given sample S = {x1, . . . , xk} ⊂ Rd is drawn
from the distribution of X or not.

To obtain an estimate for f(x), a multivariate kernel
density estimation (KDE) is performed [21]. Such KDE
can be viewed as a weighted sum of Gaussian kernels cen-
tered at the data points xi ∈ Rd(1 ≤ i ≤ n) corresponding
to normal behavior:

f(x) =
1

n

n∑
i=1

1

(2π)d/2 |H|1/2
e−

1
2 ((x−xi)

′H−1(x−xi)). (1)

Here the accent defines vector transposition and H ∈
Rd×d denotes a bandwidth matrix which is symmetric and
positive-definite. Because our interest is in discerning the
general shape of the density, the choice of kernel is not cru-
cial [21]. A Gaussian kernel has the advantage of making
the estimation smooth, having all derivatives of all orders.

On the other hand, the choice of the bandwidth matrix
H in (1) is crucial in the performance of the estimation.
The diagonal elements of H can be viewed as smooth-
ing parameters in the different dimensions, whereas the
off-diagonal elements induce smoothing in an oblique di-
rection and can be used to adjust for correlations between
the features. If the values are too large, the estimation is
oversmoothed and it fails to detect local variations. On
the other hand, a too small choice of the elements of H
corresponds to an overfitting that induces too much vari-
ation on the estimation. See for instance [21] for a more
complete elaboration on the subject and [22] for an imple-
mentation of the techniques in R [23].

Algorithms for the estimation of H have a high compu-
tational cost as the size of the dataset grows [21, 22]. We
prefer to apply the following simple and heuristic approach
for choosing H, also known as the generalization of Scott’s
rule of thumb [24]:

H = n−2/(d+4)Σ̂,

where Σ̂ denotes the covariance matrix of the observed
data.

Based on this model of normal behavior EVT is ap-
plied to the samples S. EVT is used for describing
those extremes of samples S = {x1, . . . , xk} of length k
that have a minimal density value with respect to the
KDE f(x). In particular, one considers for each sample
S = {x1, x2, . . . , xk} the corresponding sample of density

values in Im(f) ⊂ R:

(y1, y2, . . . , yk) = (f(x1), f(x2), . . . , f(xk)).

The distribution of Y is strongly related to that of X.
Using EVT, one can determine the distribution of minima
of samples from Y :

ye := min1≤i≤k{f(xi)}. (2)

The distribution of the population Y e tells us where the
minimal densities of samples S of length k are expected to
be located.

According to EVT, the distribution for minimal densi-
ties ye, with k large enough, can be approximated by the
Gumbel, Fréchet or Weibull distribution [8]. Fréchet and
Gumbel distributions can be used to model minima that
are not bounded from below. The Weibull distribution
corresponds to a model for minima that possesses a lower
bound. The corresponding PDF is given by:

w(y) =
a

b

(
y + c

b

)a−1

exp

(
−
[
y + c

b

]a)
where the parameters a > 0, b and c respectively determine
shape, scale and position. For minimal densities the loca-
tion parameter can be set to zero, c = 0. The parameters
a and b can be found using maximum likelihood estimates.

A sample S of length k is said to be rare with respect to
f if its minimal density ye is abnormal with respect to the
estimated Weibull distribution. Generally a rare sample
S can be situated in the tails of the distribution of f or
between the modes of f .
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Figure 1: Gumbel density functions centered at β = 0 and scale
parameter α = 0.5, 1 from above to below.
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Figure 2: Schematic overview of algorithm for novelty detection using
EVT

In our study rare samples have an abnormally small
minimal density with respect to the Weibull distribution.
These are all pushed into a small interval close to zero.
One can use the transformation z = − log(y) to overcome
this skewness. The short tail near zero of the Weibull dis-
tribution is then stretched out as the right tail of a Gumbel
distribution for maxima, where extremes can be shown in
a clearer way. The corresponding cumulative distribution
function (cdf) reads:

G(z) = exp(− exp(−z − β
α

)) (3)

where α = 1
a > 0 and β = − ln b. Figure 1 shows Gumbel

density functions.
A novelty score of a sample S can be defined as:

χ(S) := G(− log(ye)) (4)

where ye is defined as in (2). The novelty score of a sample
increases when the probability of choosing a sample with a
higher minimal density increases. One can now threshold
these novelties and consider a sample as rare if its corre-
sponding novelty score is above some threshold. From a
probabilistic point of view, a typical choice of threshold
is e.g. 95%. A schematic overview of the methodology is
given in figure 2.

4. Dataset and experimental setup

4.1. Dataset description

In this article the proposed approach is applied to noc-
turnal detection of hypermotor seizures. The dataset is
collected in collaboration with the Pulderbos rehabilita-
tion Center for Children and Youngsters in Zandhoven
(Pulderbos), Belgium.

Table 1: Overview of data available in the dataset

patient nights of hypermotor normal
number monitoring seizures movements

pat 1 1 2 117
pat 2 2 9 287
pat 3 2 2 439
pat 4 1 2 239
pat 5 5 26 784
pat 6 2 7 381
pat 7 2 3 468
total 15 51 2715

The group of patients that is studied consists of 7 pa-
tients with hypermotor seizures, all between the age of 5
and 16 years. The hypermotor seizures are marked by a
strong and uncontrolled movement of the arms and legs
(e.g. pedaling movement) that can last from a couple of
seconds to some minutes. Due to the heavy movement,
the patient can injure himself during the seizure, which in-
creases the need for an alarm system. The focus is primar-
ily on pediatric patients, as epilepsy has a higher preva-
lence in children than in adults. Furthermore, in children
the disorder can still evolve over time.

The recordings took place during several nights no more
than 2 or 3 months apart, except for patient 5 where the
period between successive nights lasted from 5 up to 14
months. An overview of the dataset is given in Table 1.
All patients were between the age of 5 and 16 years old,
with a mean age of 9 years and a standard deviation of 3
years.

The collected data contain multimodal information:
EEG, EMG, EOG, ECG, video, audio and acceleration
are registered. The EEG, video and audio signals are used
by the neurologists to label the data, which is considered
as the golden standard. In this article, seizure detection
is based on 12 channel acceleration data, collected by four
3D acceleration sensors that are attached to the extremi-
ties and sampled at 250 Hz.

4.2. Preprocessing and experimental setup

The preprocessing step follows the same procedure as
in [15, 25, 26] and is briefly reviewed here. Computations
were performed using Matlab [27].

The raw accelerometer data are first filtered by a digital
low-pass filter with a cut-off frequency of 47 Hz in order to
avoid aliasing effect when downsampling from 250 Hz to
125 Hz. This is justified since data analysis has shown that
no meaningful frequency content is present above 50 Hz in
the considered signals. As a consequence the undesirable
electrical network frequency (50 Hz) is also removed in
the signal. In order to avoid phase distortion, the data are
processed in a forward and reverse direction to obtain a
zero-phase filtering.
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The gravitational force is present in the accelerometer
data as a result of DC offsets in each of the orthogonal
axes. These offsets depend on the accelerometer position
compared to the gravitational vector (which is always ver-
tically oriented). Since patients are assumed to lie in differ-
ent positions (e.g. on the back or side) such offsets might
give undesirable signal variations and are therefore filtered
off using a zero-phase digital high pass filter with cut-off
frequency 0.2 Hz.

Given the filtered data, movement events are detected
when the data of at least one arm or leg show a minimal
amount of energy. The following procedure is adopted:

(i) For each limb the L2 norm is computed of the vec-
tor defined by the 3D data given by each individual
accelerometer,

(ii) Standard deviations are calculated for each of the 4
resulting signals using a sliding window with a width
of 2 seconds with 50% overlap.

(iii) A movement event is detected when the standard de-
viation exceeds a threshold value.

The sliding window of 2 seconds in (ii) is chosen since:

(a) 2s is short enough to not smooth out meaningful
movement events, which are expected to be longer
than 2s [25].

(b) 2s is long enough to be robust against measurement
noise.

Note that two thresholds are used in (iii), one for the arms
and another for the legs. These thresholds were deter-
mined by a simulation during which a simulator lies in
bed during five minutes, after which he makes small finger
and toe movements. The thresholds were set in such a way
that these movements were the smallest motions to be de-
tected. This resulted in a threshold of 10 mg for the arms
and a threshold of 5 mg for the legs, where g represents
the gravitational acceleration which is 9.81m

s2 .
Analysis of our annotated data revealed that hypermo-

tor seizure related movement events were less than 30s
apart. This result was confirmed by the authors in [4]
where it was concluded that hypermotor seizures can oc-
cur with interruptions that are typically between 20s and
40s in duration. Therefore, in a final preprocessing step,
movement events that occur less than 30s apart are clus-
tered as the duration of the epileptic activity considered
here is typically long and sometimes a patient stops mov-
ing in the middle of a hypermotor seizure. If the movement
events are not clustered, then a single epileptic event can
wrongly be considered as two epileptic events.

This filtering causes a substantial reduction in process-
ing time since less data need to be inspected for abnormal-
ities. Typically, 80% to 90% of the data is discarded as it
contains no movement.

Each movement event is represented by a specific set of
features (collected in a tuple). The extracted features are
the same as the ones that are computed in Cuppens et al.
[25, 26]. They are common features that are widely used in

accelerometer detection [28] and epilepsy research [29, 30].
However, in this article the features are not computed on
the complete movement event (except for movement event
length) but instead are extracted from 50% overlapping
sliding windows containing 125 samples, which is the min-
imum number of samples of a movement event. Hence, in
order to have at least a single feature vector per event a
length of 125 is set. Remark that our implementation of
the movement detector (using the sliding window principle
as described above) selects movement events with lengths
that are a multiple of 125 samples. As a result a feature
vector set is obtained per movement event. This allows
evaluation of the distribution of features.

Based on fixed-length subsets (of length k) of the fea-
ture sets EVT is used to judge whether movement events
are related to normal behavior or to rare events including
hypermotor seizure.

The following experimental setups are used to validate
the proposed detection method:

(i) Comparison with a supervised learning algorithm: In
order to compare with a supervised learning algo-
rithm, i.e. SVMs [31], fixed partitions of the data
in training and test sets are generated. The training
sets contained two third and test sets one third of the
data. A sufficient amount of seizures is needed to be
able to train and validate an SVM model. This is the
reason why in the comparison with SVMs in the fol-
lowing section, only results for patients 2, 5 and 6 are
given.

(ii) Clean versus mixed training: The ultimate goal is to
obtain a model of normal behavior in an unsupervised
manner. In the considered application this is feasible
since we expect that most of the time the observed
data will be normal. Abnormal, seizure related, be-
havior is assumed to be rare. A model of normal be-
havior is then learned based on all available (unan-
notated) data. This means that some seizure related
data might wrongly be assumed as normal. To assess
the effect of having seizure related data in the dataset
for model estimation two experiments are performed.
In a first experiment, indicated by clean training, a
model estimation is performed on training data that
do not contain seizure related data. In this way nor-
mal behavior can be modeled accurately leading to
high sensitivity scores. In a second experiment, in-
dicated by mixed training, seizure related data are
added to the training set. As can be expected this
leads to lower accuracy and hence lower sensitivity
scores. Therefore, the performance scores of the clean
training experiment can be viewed as an upper bound
to the model accuracy.

5. Results

In this section, our proposed approach is evaluated em-
pirically. The use of EVT for novelty detection is imple-
mented using the statistical software package R [23].
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As explained in section 4 the movement data are first
partitioned in movement events. From each movement
event a set of a feature vectors is extracted. In order
to be able to apply EVT, one chooses a feature vector
S = {x1, . . . , xk} of length k from each movement event.
This feature vector is composed of features that are ex-
tracted from windows of the event as is explained in more
detail in section 4.2. Each xi denotes a d-dimensional dat-
apoint and represents one window of one movement event.
The dataset of all such feature vectors is denoted as D
and the dimension d equals the number of features that
are used to represent each window.

Training and testing is done in a m-fold randomization,
where m = 10 is a typical choice commonly found in liter-
ature, see e.g. [32, 33]. Reported results show the average
over 10 runs with the corresponding standard deviations.
The sample length k needs to be large enough for the Gum-
bel model to be a valid approximation for minimal densi-
ties, but too large values can be time-consuming. Results
are reported for the choice k = 50, which is considered to
be large enough [20]. A fixed threshold of t = 95% on the
novelty scores is a typical choice from a probabilistic point
of view and will work fine for most patients whose seizures
are extreme with respect to the model.

Results are presented using three evaluation criteria that
will be important in our discussion in the next section:

• the sensitivity, i.e. the proportion of actual epileptic
convulsions which are correctly identified as such;

• the specificity, i.e. the proportion of normal move-
ment events which are correctly identified;

• the PPV, i.e. the proportion of the seizures predicted
by our system that are actual epileptic convulsions.

In our dataset, the ratio of the number of seizures to nor-
mal movements roughly does not exceed 3%. This number
however varies slightly from one patient to another with a
mean of 2% and a standard deviation of 1%. In order to
give an indication of the performance measures that would
be obtained if no label information is available, a novelty
study using EVT is performed such that the ratio of the
number of seizures to normal movements is 3%, 2% and
1% respectively in both the training and test set. In order
to be able to perform such a study, one needs a sufficient
number of seizures. This is the case for patient 2, 5 and
6. For patient 6 the number of normal events in the train-
ing data have to be reduced in order to obtain the desired
proportions of 1%, 2% and 3% respectively. Performance
scores are shown in table 2.

In the next section a comparison of these results with
an SVM-classifier that is trained in a patient-specific way
is discussed [25, 26]. Table 3 shows the results of this
classifier using the same partitions in training and test set
during the 10-fold cross-validation to allow for a consistent
comparison. For this purpose the training sets contained
two third and the test sets one third of the data. The SVM-
classifier requires labeled data hence a fairer comparison

Table 2: Sensitivity (SS), specificity (SP) and PPV for patients 2, 5
and 6 when 3%, 2% and 1% seizures are added to the training data.
Thresholds for the novelties are set at 95%. Mean and standard
deviation (SD) are calculated over 10 runs in a 10-fold randomization.

EVT SS PPV SP
mean SD mean SD mean SD

pat2 80.00 17.21 89.28 22.65 99.37 1.40
3% pat5 22.22 14.81 20.57 13.21 96.97 1.09

pat6 90.00 31.62 43.63 9.81 97.01 1.69
pat2 93.33 14.05 81.95 21.00 99.06 1.34

2% pat5 25.55 13.90 20.93 1.10 96.64 1.23
pat6 90.00 31.62 42.00 10.34 96.77 1.84
pat2 100.00 0.00 68.28 15.30 98.33 1.11

1% pat5 25.55 12.88 20.92 11.36 96.41 1.23
pat6 93.33 21.08 40.59 21.75 95.67 19.73

Table 3: Sensitivity (SS), specificity (SP) and PPV for patients 2, 5
and 6 using the SVM-classifier. Mean and standard deviation (SD)
are calculated over 10 runs in a 10-fold randomization.

SVMs SS PPV SP
mean SD mean SD mean SD

pat2 97.14 6.02 85.43 11.12 98.65 1.10
pat5 39.58 31.81 41.18 15.81 95.34 3.45
pat6 84.00 30.98 94.44 8.33 99.76 0.38

Table 4: Sensitivity (SS), specificity (SP) and PPV for patients 1−7,
when no seizures are added to the training data. Thresholds for the
novelties are set at 95%. Mean and standard deviation (SD) are
calculated over 10 runs in a 10-fold randomization.

EVT SS PPV SP
Study mean SD mean SD mean SD

pat1 100.00 0.00 49.09 37.39 92.18 7.21
pat2 100.00 0.00 60.01 20.04 97.29 2.31
pat3 100.00 0.00 56.33 17.8 97.18 1.43
pat4 70.00 25.81 31.78 25.18 97.29 2.31
pat5 27.77 12.00 20.77 9.96 96.29 1.08
pat6 100.00 0.00 56.65 17.29 97.79 1.47
pat7 100.00 0.00 44.02 9.79 95.77 1.49

can be achieved by using table 4 that shows the results of
our approach when the training set only consists of normal
movement events.

6. Discussion

The discussion of the results is organised by successively
answering the following questions:

Q1 How does our unsupervised detection method per-
forms? For this purpose, the performance is compared
with a state-of-the-art supervised method.

Q2 What is the influence on the performance if the ra-
tio of epileptic convulsions versus normal movements
decreases in our training set?

Q3 How does our method performs when no seizure data
is present in the training set?

6
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Q4 What is the influence of the values for the parameter
k and the novelty threshold and can these values be
optimized per patient?

Q5 Is a real-time implementation possible for the pro-
posed approach?

To answer the first question, we use the performance
scores achieved by a novelty study using EVT such that the
ratio of the number of seizures to normal movements is 3%
(Table 2). A comparison with a state-of-the-art supervised
method is obtained by using the results of table 3.

Not all seizures are detected when 3% of the training
data consists of seizures but this is due to the relatively
high percentage of seizure movements that are used in the
training set. However, for patients 2 and 6 high sensitiv-
ity scores are achieved by our unsupervised method as is
the case when using the SVM-classifier. For patient 5, the
epileptic convulsions are more similar to the normal move-
ment events. Since the seizures are less extreme, they are
also less detectable inducing lower sensitivity and PPV-
scores. The SVM-classifier yields better PPV-scores for
patients 5 and 6.

Decreasing the ratio of epileptic convulsions versus nor-
mal movements in the training set from 3% to 2% or 1%
results, as can be expected, in an increase in sensitivity
since the model of normal behavior becomes more accu-
rate (table 2). When the ratio of seizures versus normal
movements is 1%, the sensitivity achieved by the SVM-
approach is lower for patients 2 and 6. This can be of
great value since hypermotor seizures often involve vio-
lent movements, which increases the need for high sensi-
tivity scores. Hence our unsupervised method can easily be
adapted to facilitate continuous learning where precision
increases over time. This can be achieved by only incorpo-
rating new data if the running system indicates that it is a
normal movement event. By doing so, the ratio of seizure
data versus normal movement continuously decreases in
the training set. Furthermore note that these results indi-
cate the potential performance boost when a labeling for
a subset of the data is available.

At the same time the PPV decreases as the number of
seizures in the training data decreases. This can be ex-
plained mathematically by the fact that a smaller number
of seizures in our training data results in a decreased mass
in the tails of the distribution. Therefore minimal den-
sities become smaller and novelty scores higher such that
false positives have the tendency to occur more often. The
SVM-approach yields slightly better PPV-scores when the
ratio of seizures versus normal movements in our training
set is 1%.

Question 3 is addressed by discussing the results in ta-
ble 4. Since no seizure data need to be used in the train-
ing set, it becomes possible to evaluate our method on
patients 1, 3, 4 and 7 for whom only a small number of
seizures is available in our dataset (Table 1). This is in
contrast with a supervised method for which examples of
both classes are needed in the training phase, making it

impossible to validate the supervised SVM-approach on
those patients. Moreover, since the SVM-classifier requires
a labeled dataset a fairer comparison with our method is
obtained using table 4 where the training set only consists
of normal movement events.

Note that table 4 also gives an indication of the perfor-
mance that would be obtained if more data were available.
One expects that in comparison to table 2 the sensitivities
will further increase and the values of PPV will further
decrease. This seems not to be the case for patient 6.
However as already indicated in section 5, the number of
normal events in the training data had to be reduced for
this patient in order to obtain the results in table 2. This
results in a lower accuracy of the model and hence a lower
PPV in comparison to table 4 where all normal events of
the training set can be used.

In order to answer question 4, the influence of the value
of the parameter k is discussed first. The previous results
were obtained with a value of k = 50. As indicated before,
the sample length k needs to be large enough because a low
value can result in a poor Gumbel approximation leading
to biases and unreliable performance scores. This is very
natural because the probability of drawing enough sam-
ples from the tail decreases for small sample lengths. A
too large choice of k can however lead to time-consuming
calculations for estimation of Gumbel model parameters.

For k = 50, approximations during all runs of the 10-
fold randomizations for all patients are satisfactory and
the Gumbel model is valid. As an illustration, figure 3
shows some quantile-quantile (Q-Q) plots during 4 runs of
the 10-fold randomization of patient 2. The y-axis shows
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Figure 3: Q-Q plot of empirical quantiles versus Gumbel quantiles
for patient 2 during run 2, 4, 6 and 8 in a 10-fold randomization.
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Figure 4: Dependency of sensitivity scores (full lines) and PPV-
scores (dashed lines) of patient 2 (gray) and patient 7 (black).

the empirical quantiles obtained from the data. The x-
axis shows the Gumbel quantiles obtained theoretically
from (3). If the Gumbel model approximates well dur-
ing simulation, the points on the graph are expected near
the diagonal y = x, shown as a solid line. Plots of other
runs (90 for table 2 and 70 for table 4) are very similar,
following the diagonal y = x very well.

Small values of k can lead to poor Gumbel approxima-
tions and thus to unreliable performance scores. To illus-
trate this fact, the sensitivity and PPV-scores for patients
2 and 7 are shown for different values of k in figure 4. It is
clear that for small values of the parameter k performance
scores are quite variable. Moreover, the sensitivity scores
can show huge jumps when the number of seizures that
can be studied in the test sets is small as is the case for
the sensitivity scores for patients 7 (Table 1).

To continue the answer to question 4 the influence of
the novelty score threshold and the possibility to further
personalize our approach per patient is discussed. For
this purpose figure 5 shows the precision-recall-curve (PR-
curve) for all patients where the PPV and the sensitivity
values are shown for different values of the novelty thresh-
old, averaged over the different runs of the 10-fold ran-
domization1. Novelty thresholds increase while moving up
the PR-curves, starting from the lower right hand corner
of the plot. The dots in each curve represent the 95%
threshold level that was used in the previous experiments.
For clarity, we opt to use the study with 0% seizures in
the training data.

1We prefer the use of PR-curves over ROC-curves for the (highly)
unbalanced datasets [34]

Average sensitivity

A
ve

ra
ge

 p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●1

●2
●3

●
4

●
5

●6
●7

pat 1
pat 2

pat 3
pat 4

pat 5
pat 6

pat 7

Figure 5: Precision-recall curves for patients 1−7. The dots indicate
the 95% threshold level chosen on the novelty scores.

In comparison to the other patients, the seizures that are
studied in the test set of patients 4 and 5 have lower novelty
scores. Therefore the point on the PR-curve where sensi-
tivity decreases from 100% is situated at a lower threshold
level. For patient 4, only two seizures can be be stud-
ied in the test set (Table 1), which both result in novelty
scores that are fluctuating around the threshold of 95%.
Although the PPV can be increased by choosing higher
threshold levels, the model is not able to fully detect both
seizures in the test set. For patient 5 the PPV cannot be
increased by choosing higher threshold levels. When the
manifestations of the seizures in patient 5 were studied,
it was clear that they were short in duration and subtle
in intensity and were clearly different from the seizures
in the other patients. Since the seizures are less extreme
the model does not succeed in distinguishing them from
normal movements resulting in an overall low PPV.

The PR-curves indicate that a 95% threshold level per-
forms reasonably well on average but is suboptimal for
each patient individually. For patients 1−3 and 6−7 per-
formances of the system can be improved by a slight in-
crease of the threshold, maintaining 100% sensitivity and
increasing the PPV. For patient 4 and 5 choosing a lower
threshold would result in 100% sensitivity while the PPV
will roughly be unaltered. From these results it can be
concluded that in principle it is possible to optimize the
model parameters in a patient-specific manner if sufficient
data are available.

To answer the last question, the CPU-time needed for
the calculations on a standard laptop was measured (in-
tel(R) core(TM) i7 Q 720 processor, clock rate 1.60Ghz
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and RAM memory of 4GB). The Gumbel parameters are
estimated in the training phase by simulating 300 minimal
densities from the model of normal behavior. The CPU-
time for this simulation does not exceed 2.5 minutes. The
testing phase of one set of feature vectors can be done in
a fraction of a second (0.48 seconds).

7. Conclusion and future research

In this paper an unsupervised system for the detection
of hypermotor seizures is introduced. Since hypermotor
seizures are rare, it is not only difficult to gather sufficient
training data for traditional machine learning approaches,
but the resulting imbalance in the dataset often causes
difficulties for these approaches. Our method in contrast
turns this imbalance into an advantage since all observed
data are used to build a model of “normal behavior”. EVT
is used to automatically trigger a seizure detection when
deviations from this model appear.

Our approach achieves performance scores that are
similar to a state-of-the-art supervised machine learning
method, such as an SVM-classifier. Although performance
decreases slightly when seizure data are included to build
the model, the proposed approach still yields reasonable
results in the unsupervised setting.

The proposed methodology can be used to build an ac-
quisition system that gains patient specific information in
an incremental manner. For this purpose formula (1) can
be used to adjust calculated densities to new incoming
data. In this way the model of minimal densities can be
calculated incrementally without restarting the training
process from scratch (saving CPU-time). In order to do
this one can choose to keep the covariance matrix H tem-
porarily constant and to update it on a regular basis.

In future research, we would like to validate our ap-
proach on a larger dataset and investigate how to automat-
ically optimize the model parameters per patient. Further
research is needed to optimize the method in order to in-
tegrate the methodology in an alarm system that can be
used in the clinical routine. At the moment however it
can be seen as a screening tool that can be used to mon-
itor patients during night time and analyze seizures that
were not observed by the caregivers outside the EEG lab.
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