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Abstract

The paper deals with the cyclicity of unbounded semi–hyperbolic
2–saddle cycles in polynomial Liénard systems of type (m,n) with m <
2n + 1, m and n odd. We generalize the results in [1] (case m = 1),
providing a substantially simpler and more transparant proof than the
one used in [1].

1 Introduction

In this paper we will study families of Liénard systems

(X(a,b)) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = y −
(
xn+1 +

n∑
i=1

aix
n+1−i

)
,

ẏ = −
(
xm +

m−1∑
i=1

bix
m−i

)
,

(1)

with (m,n) ∈ N
2, m and n odd and m < 2n+ 1. We fix such (m,n). As an

important ingredient of the construction, we observe that X(a,b) is invariant
under

(x, y, ao, ae, bo, be, t) �→ (−x, y,−ao, ae,−bo, be,−t), (2)

with ao = (a1, a3, . . . , an), ae = (a2, a4, . . . , an−1), bo = (b1, b3, . . . , bm−2)
and be = (b2, b4, . . . , bm−1).

The motivation to study systems (1) comes from the scalar equations:

ẍ+Q(x)ẋ+ P (x) = 0, (3)

with P and Q polynomials of respective strict degrees m and n and with the
highest degree coefficient of P positive. In the phase plane equation (3) can
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be written as: {
ẋ = y,

ẏ = −P (x)− yQ(x).
(4)

By means of the transformation y = y + F (x), with F ′(x) = Q(x) and
F (0) = 0, one can represent (4) in the so–called Liénard plane as:{

ẋ = y − F (x),

ẏ = −P (x).
(5)

After putting a singularity at the origin (which can always be done in case m
and n are both odd) and a linear rescaling in (x, y, t), expression (5) reduces
to (1), at least for a good choice of the parameters (a, b).

In aiming at studying the large amplitude limit cycles of (1) (see [1] for
a definition), one uses a compactification of the plane described in [2] and
[4]. The best way to do this is by using, near infinity:

(x, y) = (
1

r
cos θ,

1

rn+1
sin θ), (6)

for r ∼ 0, and multiplying the obtained expression of (1) by rn in order to
desingularize. The procedure adds a circle at infinity (given by {r = 0})
near which the extended vector field (that we denote by X(a,b)) looks like in
Figure 1. In this figure double arrows stand for hyperbolic behaviour and
simple arrows for semi–hyperbolic behaviour.

Figure 1: Behaviour near infinity of system (1).

Because of the chosen conditions on (m,n), it is possible that for some
parameter value

(a, b) = (a1, . . . , an, b1, . . . , bm−1),

X(a,b) contains a heteroclinic connection between the two semi–hyperbolic
saddles at infinity, giving rise to an unbounded semi–hyperbolic 2–saddle cy-
cle.
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In this paper we aim at finding an upperbound on the number of limit
cycles that can perturb from such L. When we say (a, b) ∼ (a, b), we will
restrict to

(a, b) = (a1, . . . , an, b1, . . . , bm−1) ∈ W,

with W a neighbourhood of (a, b) in parameter space.
This problem has been treated in [1] under the condition that m = 1.

We want to generalize the results from [1] to the case m > 1. As shown in [4]
unbounded semi–hyperbolic 2–saddle cycles only occur for Liénard systems
of type (m,n) when m < 2n+ 1 and both m and n are odd.

We are not yet able to provide a complete generalization for m > 1. We
can however prove the results that follow below.

In Section 4, more precisely in (26), we define a sequence of polynomials
(Pi(a, b))i=1,2,...,N−1, with N = 2n+1−m, that reveal to play an important
role in the subsequent calculations. More precisely we will consider the
related sequence of polynomials

(cj(a, b))j=1,...,K , (7)

for some K ∈ N that can be defined as follows:

c1 = P2i1+1,

if P1 ≡ P3 ≡ P5 ≡ · · · ≡ P2i1−1 ≡ 0 and P2i1+1 �≡ 0,

c2 = P2i2+1 mod c1,

if P1, P3, . . . , P2i2−1 belong to the ideal generated by c1 and P2i2+1

does not,
...

cl = P2il+1 mod (c1, . . . , cl−1),

if P1, P3, . . . , P2il−1 belong to the ideal generated by (c1, . . . , cl−1)

and P2il+1 does not.

We end with l = K in a way that all (P1, P3, . . . , PN−1) belong to the ideal
generated by (c1, . . . , cK). We see that K ≤ N/2.

We call (c1, . . . , cK) the leading large amplitude Lyapunov quantities of
the chosen family.

Remarks:
1. In the process just described we can choose for cl the polynomial P2il+1

itself or any other (preferably simpler) polynomial that is equal to
P2il+1 mod (c1, . . . , cl−1).

2. In the process just described there is no need to work with a full family
of Liénard systems as in (1), we can also work with a subfamily. In

3
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case of a full family it will reveal that K = N/2, while for a subfamily
it can be strictly smaller. We will only work with subfamilies that are
obtained from (1) by restricting one or more parameters ai or bj to a
constant value, while keeping the other; let us call them full subfamilies.

We can now formulate our main theorem.

Theorem 1 Let (Y(a,b)) be a full subfamily of (1) and let c1(a, b), . . . , cK(a, b)

be the related leading large amplitude Lyapunov quantities. Let (a, b) = (a, b)
be a value for which Y(a,b) is defined and has an unbounded semi–hyperbolic
2–saddle cycle L(a,b). Then

(i) If ck(a, b) �= 0 for some 1 ≤ k ≤ K, then the cyclicity of L(a,b) in the
family Y(a,b) is bounded by k.

(ii) If c1(a, b) = · · · = cK(a, b) = 0, and if Y(a,b) has a center near infinity
and if (a, b) �→ (c1(a, b), . . . , cK(a, b)) is a submersion at (a, b), then
the cyclicity of L(a,b) in the family (Y(a,b)) is bounded by K.

Remark: Instead of saying cyclicity of L(a,b) in the statement of Theorem
1, we can also say large amplitude limit cycles of Y(a,b) for (a, b) ∼ (a, b).

Theorem 1 does not permit to treat the cyclicity problem of unbounded
semi–hyperbolic 2–saddle cycles in families (1) completely. It however in-
duces a complete answer for a number of interesting cases, including the
classical Liénard equations that have been treated in [1].

The main problem in trying to apply Theorem 1, consists in calculating
the {cj(a, b) | 1 ≤ j ≤ K}. This is rather easy in case for each i we have
either a2i+1 = 0 or b2i+1 = 0. In the other case the calculation might get
quite involved. This is similar to the kind of problems that are encountered
in calculating Lyapunov quantities at a non–degenerate singularity of center–
focus type.

In Section 9 we will show that following theorems can be obtained as
corollaries of Theorem 1.

Theorem 2 Consider a full subfamily (Y(a,b)) of (1) such that (where we
write ai = 0 when i > n and bi = 0 when i ≥ m):

(i) a2i+1b2i+1 = 0, when 1 ≤ 2i+ 1 ≤ 2n−m,

(ii) a2i+1 = b2i+1 = 0, when 2i+ 1 > 2n−m.

Let (a, b) = (a, b) be a value, satisfying the above conditions, such that Y(a,b)
has an unbounded semi–hyperbolic 2–saddle cycle L(a,b). Then:

Cycl((Y(a,b)),L(a,b), (a, b)) ≤ #{j | 1 ≤ 2j + 1 ≤ 2n−m, a22j+1 + b22j+1 �≡ 0}.

4
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Special cases are the following of which Theorem 4 contains the theorem
proven in [1].

Theorem 3 Let (Y(a,b)) be a family of polynomial Liénard equations of type
(m,n), m ≤ n, with odd friction term:

(Y(a,b)) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = y −

⎛
⎝xn+1 +

(n−1)/2∑
i=1

a2ix
n+1−2i

⎞
⎠,

ẏ = −
(
xm +

m−1∑
i=1

bix
m−i

)
,

such that Y(a,b) has an unbounded semi–hyperbolic 2–saddle cycle at (a, b) =
(a, b). Then Cycl((Y(a,b)),L(a,b), (a, b)) ≤ #{j | b2j+1 �≡ 0} ≤ m−1

2 .

Theorem 4 Let (Y(a, b)) be a family of polynomial Liénard equations of type
(m,n), m ≤ n, with odd forcing term.

(Y(a,b)) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = y −
(
xn+1 +

n∑
i=1

aix
n+1−i

)
,

ẏ = −

⎛
⎝xm +

(m−1)/2∑
i=1

b2ix
m−2i

⎞
⎠,

such that Y(a,b) has an unbounded semi–hyperbolic 2–saddle cycle at (a, b) =
(a, b). Then Cycl((Y(a,b)),L(a,b), (a, b)) ≤ #{j | a2j+1 �≡ 0} ≤ n+1

2 .

Remark: When m > n (⇒ 2n −m < n < m) in the 2 previous theorems,
condition (ii) in Theorem 2 imposes extra conditions on the families of Lié-
nard equations with odd forcing or odd friction term.

Of course it might be possible to apply Theorem 1 to specific cases in
which some a2i+1b2i+1 are not identically zero. As an example we prove:

Theorem 5 Consider the following full subfamily of (1):

(Y(a,b)) :

{
ẋ = y − (x6 + a1x

5 − x4 + a4x
2),

ẏ = −(x3 + b1x
2 + x).

Let (a, b) = (a1, b1, a4) be such that Y(a,b) has an unbounded semi–hyperbolic
2–saddle cycle L(a,b), then Cycl((Y(a,b)),L(a,b), (a, b)) ≤ 2

The methods that we will use in the proof of these results are partly
inspired from [1]. However, based on a recent normal linearization theorem at
semi–hyperbolic singularities (see [3]) and a systematic use of the symmetry

5
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(2) we obtain a substantial simplification of the calculations made in [1],
providing a more transparant proof.

We will now first introduce, as in [1], a difference map near the unbounded
semi–hyperbolic 2–saddle cycle in a way that large amplitude limit cycles
agree with small positive zeros of the difference map.

2 Study near infinity

As is usual, in working with a compactification as given in (6), it is preferable
to work with charts. For a system X(a,b) like in (1), both semi–hyperbolic
saddles at infinity lie in the chart in the positive y–direction. This is obtained
by means of the tranformation

x = u/s, y = 1/sn+1

and by multiplying the result with sn, leading to the family

(X̂(a,b)) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = 1− un+1 −
n∑

i=1

aiu
n+1−isi

+
um+1

n+ 1
s2n+1−m +

1

n+ 1
u

m−1∑
i=1

biu
m−is2n+1−m+i,

ṡ =
1

n+ 1
s2n+2−m

(
um +

m−1∑
i=1

biu
m−isi

)
.

(8)

Because of the invariance of X(a,b) under transformation (2), we see that
X̂(a,b) is invariant under

(u, s, ao, ae, bo, be, t) �→ (−u, s,−ao, ae,−bo, be,−t). (9)

System (X̂(a,b)) has two singularities s± = (±1, 0) that are both semi–
hyperbolic saddles with linear part

±
(
−(n+ 1) a1

0 0

)
.

The behaviour near s− follows easily from the behaviour near s+ using
that X̂(a,b) is invariant under the transformation

(t, u, s) �→ (−t,−u,−s). (10)

Therefore the behaviour of the flow of −X̂(a,b) near s− in the region {(u, s) |
s > 0,−1 < u < −ε} is found precisely in the behaviour of the flow of X̂(a,b)

near s+ in the region {(u, s) | s < 0, ε < u < 1}, where ε > 0.

6



Preprint submitted at DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.
The final publication is available at

http://aimsciences.org/journals/displayArticles.jsp?paperID=4986

Combining (9) and (10), we see that X̂(a,b) is also invariant under the
composition:

(u, s, ao, ae, bo, be, t) �→ (u,−s,−ao, ae,−bo, be, t). (11)

To understand the behaviour near s+ = (1, 0), we study the behaviour
on a center manifold W c

(a,b) that locally can be written as a graphic

{(1 + u0(s, a, b), s)}, (12)

for some smooth function u0 with u0(0, a, b) = 0. From (8) it is clear that
we can write

u0(s, a, b) = ϕ(s) + ψ(s, a, b), (13)

with ϕ(s) = 1
(n+1)2

s2n+1−m(1+O(s)) and ψ(s, a, b) = O(a, b), (a, b) → (0, 0);
moreover ϕ is an even function in s.

Since X̂(a,b) is invariant under (11), we also know that the (a, b)–family
of center manifolds is invariant under the same transformation. We hence
obtain that u0 = u0(s, a, b) is invariant under

(s, ao, ae, bo, be) �→ (−s,−ao, ae,−bo, be). (14)

The behaviour on a center manifold is given by

ṡ =
1

n+ 1
s2n+2−m +O(s2n+3−m), s → 0. (15)

Since m is odd, X̂(a,b) is of saddle-type near s+ and the center manifold is
unique.

Proposition 6 Let {u = 1 + u0(s, a, b)} be the center manifold of X̂(a,b) at
s+, then u0 can be written as

u0(s, a, b) =
2n−m∑
i=1

νi(a)s
i +O(s2n+1−m), s → 0, (16)

where

(i) ν1(a) = − 1
n+1a1, and

(ii) νi(a) = − 1
n+1ai +O(a1, . . . , ai−1),

for all 1 ≤ i ≤ 2n−m, with ai = 0 if i > n. Moreover

(iii) ν2j+1(a) = − 1
n+1a2j+1 +O(a1, a3, . . . , a2j−1),

for all j with 1 ≤ j ≤ 1
2(2n−m− 1), and where a2j+1 = 0 if 2j + 1 > n.

7
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Proof. Using the invariance of u = u0(s) = u0(s, a, b) under the flow of
X̂(a,b), one finds:

du0
ds

(s)
1

n+ 1
s2n+2−m

(
(1 + u0(s))

m +
m−1∑
i=1

bi(1 + u0(s))
m−isi

)

=

1− (1 + u0(s))
n+1 −

n∑
i=1

ai(1 + u0(s))
n+1−isi +

1

n+ 1
(1 + u0(s))

m+1s2n+1−m

+
1

n+ 1
(1 + u0(s))

m−1∑
i=1

bi(1 + u0(s))
m−is2n+1−m+i.

Up to order O(s2n+1−m), s → 0 the above equation is given by:

1− (1 + u0(s))
n+1 −

n∑
i=1

ai(1 + u0(s))
n+1−isi = 0. (17)

This already shows that the νi do not depend on b.
We continue by substituting

u0(s, a, b) = ν1s+ ν2s
2 + · · ·+ ν2n−ms2n−m +O(s2n+1−m), s → 0,

in (17). The result will follow by induction on i.
Comparing coefficients with s in (17), we find ν1 = − a1

n+1 . The second
statement easily follows by considering (17) under the extra condition that
a1 = · · · = ai−1 = 0. For the third statement, we take k such that a1 = a3 =
· · · = a2k−1 = 0. By induction ν1 = ν3 = · · · = ν2k−1 = 0, reducing equation
(17) to

1−

⎛
⎝1 +

k∑
j=1

ν2js
2j + ν2k+1s

2k+1

⎞
⎠

n+1

−
k∑

j=1

a2j(1 + u0(s))
n+1−2js2j

−a2k+1(1 + u0(s))
n+1−2k−1s2k+1 = O(s2k+2), s → 0.

Comparing coefficients with s2k+1 this leads to ν2k+1 = −a2k+1

n+1 .

Remark: Since u0 is invariant under (14) we also see that

ν2j+1(−a0, ae) = −ν2j+1(a
0, ae) and ν2j(−a0, ae) = ν2j(a

0, ae). (18)

3 The difference map

We will now introduce, in a different way than in [1], an appropriate dif-
ference map near an unbounded semi–hyperbolic 2–saddle cycle L as rep-
resented in Figure 2. We strongly refer to that figure for the notions and
notations that we will introduce now.

8
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Γ1

Γ2

s− s+ R+

D+

S+

Σ1
+

Σ2
+

s− s+

Σ2
0

Σ1
0

(a) (b)

H−

Figure 2: (a) An unbounded semi–hyperbolic 2–saddle cycle L. (b) Regular
transition maps and Dulac maps near L.

Denote by Γ1 the connection at infinity between the saddles s− and s+
of X(a,b), i.e. the part of the u–axis lying between (−1, 0) and (1, 0) for
X̂(a,b). This connection stays fixed for all parameter values (a, b) ∼ (a, b).
Denote by Γ−

2,a,b and Γ+
2,a,b the respective center manifolds of s− and s+. For

(a, b) = (a, b), these two manifolds coincide along a heteroclinic connection,
being part of L. Denote this connection by Γ2.

Choose sections Σi
+ and Σi

0 transverse to Γi and parametrized by a reg-
ular parameter. Σi

+ are chosen near the saddle s+, while Σi
0 are chosen on

{x = 0}. Furthermore, if the regular parameter on Σ1
0 is denoted by w,

w > 0, then we suppose that the intersection Γ1 ∩Σ1
0 corresponds to w = 0.

One defines:

1. the regular transition map R(a,b)
+ near Γ1 from Σ1

0 to Σ1
+, defined by

the flow of X(a,b),

2. the Dulac map D(a,b)
+ describing the corner passage near s+ from Σ1

+

to Σ2
+ defined by the flow of X(a,b),

3. the regular transition maps S(a,b)
+ near Γ2 from Σ2

+ to Σ2
0, defined by

the flow of X(a,b),

4. the transition maps H(a,b)
± = H±(w, a, b) near L from Σ1

0 to Σ2
0, defined

by the flow of ±X(a,b). In particular H(a,b)
+ = S(a,b)

+ ◦ D(a,b)
+ ◦ R(a,b)

+ .

By the invariance of X(a,b) under (2) one has:

H−(w, a
o, ae, bo, be) = H+(w,−ao, ae,−bo, be).

9
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The difference map Δ(a,b) : Σ1
0 �→ Σ2

0, expressed in the chosen parameters on
the sections Σ1

0 and Σ2
0, can now be defined as:

Δ(a,b)(w) = Δ(w, a, b) =

H+(w,−ao, ae,−bo, be)−H+(w, a
o, ae, bo, be),

(19)

for w ∼ 0 and (a, b) ∼ (a, b). Notice that Δ(w, 0, ae, 0, be) = 0.
The large amplitude limit cycles correspond to small positive zeros of

Δ(a,b). The cyclicity Cycl(X(a,b),L, (a, b)) is equal to the least upper bound
of the number of isolated zeros of Δ(a,b), for w ↓ 0, (a, b) → (a, b). An
upperbound on this cyclicity will be found by applying a division–derivation
algorithm to Δ(a,b), based on Rolle’s theorem.

4 Normalizing coordinates

Choosing appropriate normalizing coordinates near the semi-hyperbolic sad-
dles at infinity will appear to be a helpful tool in simplifying the calculation
of the difference map.

We can and will restrict to considering s+ and we change X̂(a,b) near s+
by the equivalent family Y(a,b) defined as:

Y(a,b) = (n+ 1)

(
um +

m−1∑
i=1

biu
m−isi

)−1

X̂(a,b). (20)

We now introduce z = u− (1 + u0) with u0 = u0(s, a, b) and write

um +
m−1∑
i=1

biu
m−isi = α1(s, a, b) + α2(s, a, b)z +O(z2),

with

α1(s, a, b) = (1 + u0)
m +

m−1∑
i=1

bi(1 + u0)
m−isi,

and

α2(s, a, b) = m(1 + u0)
m−1 +

m−1∑
i=1

bi(m− i)(1 + u0)
m−i−1si.

We also write u̇ = β1(s, a, b) + β2(s, a, b)z +O(z2), with

β1(s, a, b) = 1− (1 + u0)
n+1 −

n∑
i=1

ai(1 + u0)
n+1−isi

+
(1 + u0)

m+1

n+ 1
s2n+1−m +

1

n+ 1
(1 + u0)

m−1∑
i=1

bi(1 + u0)
m−is2n+1−m+i,

10
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and

β2(s, a, b) = −(n+ 1)(1 + u0)
n +

m+ 1

n+ 1
(1 + u0)

ms2n+1−m

−
n∑

i=1

ai(n+ 1− i)(1 + u0)
n−isi

+
1

n+ 1

(
m−1∑
i=1

bi(m+ 1− i)(1 + u0)
m−is2n+1−m+i

)
.

In the new coordinates (z, s), the family Y(a,b), as defined in (20), can be
written as: {

ż = −A(s, a, b)z +O(z2),

ṡ = s2n+2−m,
(21)

with

A(s, a, b) =
n+ 1

α1(s, a, b)2
(α2(s, a, b)β1(s, a, b)− α1(s, a, b)β2(s, a, b)). (22)

The function A(s, a, b) is strictly positive and is invariant under

(s, ao, ae, bo, be) �→ (−s,−ao, ae,−bo, be). (23)

From Theorem 1.3 of [3], we know that, on a (a, b)-uniform neighbour-
hood V of (a, b), there exists a smooth (a, b)-family of coordinate changes of
the form

(Z, s) = (z(1 + zZ(z, s, a, b)), s), (24)

conjugating (21) to {
Ż = −A(s, a, b)Z,

ṡ = s2n+2−m,
(25)

for the same A(s, a, b) as in (21). The same can be done for (a, b) ∼
(−ao, ae,−b

o
, b

e
) and the coordinate change can even be chosen to commute

with (23) in the sense that also Z(z, s, a, b) is invariant under (23); we will
however not have to rely on the latter.

From (22), we know that A is given by:

A(s, a, b) = (n+1)2+

N−1∑
i=1

Pi(a, b)s
i+ sN (n− 2m− 1+PN (a, b))+O(sN+1),

(26)
as s → 0 for some polynomials Pi(a, b), 1 ≤ ∀i ≤ N , with Pi(0, 0) = 0 and
where N = 2n+ 1−m.

In order to calculate the difference map, we will now first study the
expression of the coefficients Pi(a, b).

11
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5 Expression of the coefficients Pi(a, b).

As in [1] it will reveal that the most interesting information will be con-
tained in the functions P2k+1(a, b), with 0 ≤ 2k + 1 ≤ N − 1, and more
specifically in the related functions c1(a, b), . . . , cK(a, b) as defined in (7).
Each P2k+1(a, b) is an algebraic expression in (a, b) of which the complexity
increases considerably as k is getting bigger.

In the case m = n = 3, we have for instance:

P1(a, b) = 16(
3

4
a1 − b1),

P3(a, b) = 2a1(2b2 − a2) + 4a3 +O(34a1 − b1).

When m = 3, n = 5, one has:

P1(a, b) = 36(
1

2
a1 − b1),

P3(a, b) = 2a1(3b2 − 2a2) +
7

9
a31 + 6a3 +O(

1

2
a1 − b1),

(27)

and
P5(a, b) = 2a1a4 − 4a1a2b2 +

4

3
a31b2 −

1

54
a51 − 6a5 + 6a1b

2
2,

given that P1(a, b) = P3(a, b) = 0.
It appears that the complexity of the expression of P2k+1(a, b) is caused

by the mixing of terms {(a2i+1, b2i+1) | 0 ≤ i ≤ k}, that appear in (1). The
following theorem can however easily been proven.

Theorem 7 Let A(s, a, b) be the C∞ function defined in (22) and let Pi be
the coefficients defined in (26). Then

(i) Pi(−ao, ae,−bo, be) = (−1)iPi(a
o, ae, bo, be),

for 1 ≤ i ≤ 2n −m + 1. Moreover (and here we write ai = 0 for i > n and
bi = 0 for i ≥ m)

(ii) Pi(a, b) only depends on (a1, . . . , ai, b1, . . . , bi),

and when (a1, a3, . . . a2k−1, b1, b3, . . . , b2k−1) = 0, then

(iii) P2j+1(a, b) = 0, ∀0 ≤ j ≤ k − 1,

and

(iv) P2k+1(a, b) = (n+ 1)2
(
m−2k
n+1 a2k+1 − b2k+1

)
.

12



Preprint submitted at DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.
The final publication is available at

http://aimsciences.org/journals/displayArticles.jsp?paperID=4986

Proof. (i) follows immediately from the fact that A(s, a, b) is invariant under
(14).

(ii) follows from the fact that in the expression of A(s, a, b) ai and bi are
always accompanied by si (or sj , with j > i).

(iii) is a direct consequence of (i) and (ii).
(iv) is easily obtained by putting (a1, a3, . . . , a2k−1, b1, b3, . . . , b2k−1) = 0

in the expression of A(s, a, b) and checking the coefficient in front of s2k+1.

6 Dulac map near s+

In this section we express the Dulac map D+ in normalizing coordinates, i.e.
D+ calculated from {Z = 1} to {s = s0}, with s0 > 0, for the expression
(25). Let us call it the normalized expression of D(a,b)

+ .

Proposition 8 Let D+(s, a, b) be the normalized expression of the Dulac
map D(a,b)

+ near the saddle s+ and defined for s ≥ 0. Then, denoting N =
2n+ 1−m:

(i) D+(s, a, b) = exp
(
− 1

sN
(F (s) +G+(s, a, b))

)
,

for some functions F (s) and G+(s, a, b) with F (0) = (n+1)2

N . Moreover

(ii) F (s) = (n+1)2

N − (n− 2m− 1)sN ln s+O(sN ), s → 0,

and

(iii) G+(s, a, b) =
∑N−1

i=1
Pi(a,b)
N−i si − PN (a, b)sN ln s+ sNΦ(s, a, b), s → 0,

for some C∞ function Φ(s, a, b).

Proof. Clearly

D+(s) = exp

(∫ s

s0

A(x, a, b)

x2n+2−m
dx

)
. (28)

Now, because of (26):∫ s

s0

A(x, a, b)

x2n+2−m
dx (29)

=

∫ s

s0

1

xN+1

(
(n+ 1)2 +

N−1∑
i=1

Pi(a, b)x
i

+xN ((n− 2m− 1) + PN (a, b)) +O(xN+1)

)
dx,

13



Preprint submitted at DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.
The final publication is available at

http://aimsciences.org/journals/displayArticles.jsp?paperID=4986

=

∫ s

s0

(
(n+ 1)2

xN+1
+

N−1∑
i=1

Pi(a, b)
1

xN+1−i
(30)

+
1

x
((n− 2m− 1) + PN (a, b)) +O(1)

)
dx,

=

[
− (n+ 1)2

N

1

xN
−

N−1∑
i=1

Pi(a, b)

N − i

1

xN−i

+((n− 2m− 1) + PN (a, b)) lnx

]s
s0

+O(1)

= −(n+ 1)2

N

1

sN
−

N−1∑
i=1

Pi(a, b)

N − i

1

sN−i

+((n− 2m− 1) + PN (a, b)) ln s+O(1),

as s → 0. The result now easily follows.

7 Further study of the difference map

Denote by ϕ(u, s) = ϕ(a,b)(u, s) = (ψ(a,b)(u, s), s) the (a, b)–family of coordi-
nate changes conjugating (Y(a,b)), as defined in (20), to (25) locally near s+.
ϕ is the succession of the mapping introducing z, defined below (20), and
the mapping defined in (24).

Let
σ1
+ = {(1, s) | s ≥ 0} and σ2

+ = {(Z, s0) | Z ≥ 0}.

By taking s0 > 0 sufficiently small and after some dilatation in Z one can
suppose that these sections lie in the domain of ϕ−1.

We now choose Σ2
+ in the (u, s)–coordinates near s+ inside {s = s0} and

transversally cutting the center manifold Γ+
2,a,b. We choose Σ1

+ ⊂ ϕ−1({Z =

1}) transversally cutting Γ1 (see Figure 2 (b) and 3). We parametrize Σ2
+ by

{Z ≥ 0}, through the mapping ϕ, (Z=0 represents Γ+
2,a,b). We parametrize

Σ1
+, also through ϕ, by s ≥ 0. All sections depend, in a smooth way, on

(a, b). The section Σ1
0 (resp. Σ2

0) is chosen inside {u = 0} (resp. {x = 0})
transverse to Γ1 (resp. Γ2) and parametrized by s > 0 (resp. y).

As in Section 6, the Dulac map D(a,b)
+ can be studied in the normalizing

coordinates in the quadrant {Z > 0, s > 0}, (from σ1
+ to σ2

+). Parametrizing
σ1
+ by s and σ2

+ by Z > 0, we get the expressions given in Proposition 8 for

14
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Z

s

σ1
+

σ2
+

u

s

Σ1
+

Σ2
+

D+

s+

D+ ϕ

Figure 3: Corner passages expressed using normalizing coordinates.

D(a,b)
+ , namely: D(a,b)

+ is expressed by:

(1, s) �→ (D+(s, a, b), s0).

In a similar way the regular transition maps R(a,b)
+ , S(a,b)

+ can be repre-
sented as going from Σ1

0 to σ1
+ and from σ2

+ to Σ2
0 respectively. One obtains

maps R+(s, a, b), S+(y, a, b) respectively. R+ is expressed in s > 0 with
values in s > 0, S+ is expressed in Z > 0 with values in y. Furthermore let
us denote

H+(s, a, b) = S+(D+(R+(s, a, b), a, b), a, b), (31)

going from Σ1
0 to Σ2

0.
The difference map as defined in (19) can now be expressed as:

Δ(s, ao, ae, bo, be) = H+(s,−ao, ae,−bo, be)−H+(s, a
o, ae, bo, be), (32)

for small positive values of s.
Let us now first provide nice expressions for the regular transition map

R+ using normalized sections and parametrizations.
Choose u0 ∈]0, 1[ in (u, s)–coordinates such that ψ(a,b)(u0, 0) = 1. Con-

sider the sections {u = u0} and {u = 0} transversally cutting the u–axis
and parametrized by the s–coordinate. Let T+(s, a, b) be the regular tran-
sition map from {u = 0} to {u = u0}. In the following lemma we give an
expression for this regular transition maps T+.

Lemma 9 Consider the family (X̂(a,b)) (8). Consider the regular transition
maps T+ from {u = 0} to {u = u0}. Then:

T+(s, a, b) = s+O(s2n+2−m), s → 0,

Proof. We transform (8) into the equivalent differential equation

ds

du
= s2n+2−mQ(u, s, a, b), (33)

with Q the rational function given by:

Q(u, s, a, b) =
1

n+ 1

um +
∑m−1

i=1 biu
m−isi

(1− un+1)
(
1− P (u,s,a,b)

1−un+1

) ,

15
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and where P (u, s, a, b) is the polynomial:

P (u, s, a, b)=
n∑

i=1

aiu
n+1−isi−um+1

n+ 1
s2n+1−m− 1

n+ 1
u
m−1∑
i=1

biu
m−is2n+1−m+i.

Clearly, Q(u, s, a, b) is bounded on every compact subset of ] − 1, 1[×R ×
R
n+m−1.

The solution of equation (33) is s(0, s0, u, a, b) with initial conditions
s(0, s0, 0, a, b) = s0. In particular, we have

∂

∂u
s(0, s0, u, a, b) = (s(0, s0, u, a, b))

2n+2−mQ(u, s(0, s0, u, a, b), a, b). (34)

and T+(s0, a, b) = s(0, s0, u0, a, b). Clearly, for s0 ∼ 0 and (a, b) ∼ (a, b):

{(u, s(0, s0, u, a, b)) | u ∈ [−u0, u0]} ⊂ K,

for some compact K ⊂] − 1, 1[×R × R
n+m−1. Therefore integrating both

sides of equation (34) from u = 0 to u = u0:

|T+(s0)− s0| =

∣∣∣∣
∫ u0

0
(s(0, s0, u, a, b))

2n+2−mQ(u, s(0, s0, u, a, b), a, b)) du

∣∣∣∣
≤ M

∫ u0

0
|s(0, s0, u, a, b)|2n+2−m du,

for some M > 0. Because s(0, s0, u, a, b) = O(s0), s0 → 0, uniformly for
u ∈ [−u0, u0], (i) immediately follows.

Choose sections π+
(a,b) ⊂ ϕ({u = u0}). We parametrize π+

(a,b) through ϕ

by s ≥ 0. Consider the regular transition map F+ : π+
(a,b) �→ σ1

+ expressed
using the chosen parametrisation on π+

(a,b), σ
1
+. Then we have

R+(s, a, b) = F+(T+(s, a, b), a, b).

Lemma 10 Let F+(s, a, b) be the regular transition map from π+
(a,b) to σ1

+.
Then

F+(s, a, b) = s+O(s2n+2−m), s → 0.

Proof. To shorten notation we write F+(s) = F+(s, a, b). The map F+(s) is
defined by the integral equation:∫ 1

ψ(a,b)(u0,s)

1

x
dx =

∫ F+(s)

s

A(x, a, b)

x2n+2−m
dx.

Totally similar as in (29), one gets:

lnψ(a,b)(u0, s) =

[
(n+1)2

N
1
xN +

∑N−1
i=1

Pi(a,b)
N−i

1
xN−i

−((n− 2m− 1) + PN (a, b)) ln |x|
]F+(s)

s

+O(1).

16
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Writing F+(s) = sF+(s), F+(0) �= 0, this leads to:

(n+ 1)2

N

(
1

F+(s)N
− 1

)
+

N−1∑
i=1

Pi(a, b)

N − i

(
1

F+(s)N−i
− 1

)
si = O(sN )

as s → 0, or

N−1∑
i=0

di(a, b)(F+(s)
i−N − 1) si = O(sN ), s → 0,

for some properly chosen functions di(a, b) with d0(a, b) =
(n+1)2

N �= 0. This
implies the result.

Combining Lemma’s 9 and 10, leads to the following proposition.

Proposition 11 Consider the regular transition maps R+(s, a, b) going from
Σ0
1 to σ1

+. Then:

R+(s, a, b) = s+O(s2n+2−m), s → 0.

8 The reduced difference map

In this section we will introduce a so–called reduced difference map that will
be used in finding an upperbound on the number of limit cycles that can
perturb from L.

By Rolle’s theorem, the difference map Δ has at most N + 1 zeros in a
neighbourhood of zero if ∂Δ

∂s has at most N zeros for s near zero, multiplicity
taken into account. So, by (32), an upperbound on Cycl(X(a,b),L, (a, b)) is
found by searching the number of solutions of the equation:

∂H+

∂s
(s,−ao, ae,−bo, be) =

∂H+

∂s
(s, ao, ae, bo, be). (35)

However from Proposition 8 and the identity in (31), it is clear that
∂H+

∂s (s, a, b) is exponentially flat. For removing this exponentially flatness,
we introduce a smooth map, called a reduced difference map Δ, in such a
way that its zeroes represent the roots of (35) and hence the zeroes of ∂Δ

∂s .

Theorem 12 Let (X(a,b)) be a family of general Liénard systems like in (1)
admitting an unbounded semi–hyperbolic 2–saddle cycle L for some parame-
ter value (a, b).

Let D+ be the normalized expression of D(a,b)
+ and R+, S+ the expressions

of R+, S+ respectively using normalized sections and parametrisations as in
Section 7. Let A(s, a, b) be the map defined in (22).

17
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Then the cyclicity Cycl(X(a,b),L, (a, b)) of L inside (X(a,b)) is at most
one unit higher than the number of positive zeroes of the map:

Δ(s, a, b) = H+(s,−ao, ae,−bo, be)−H+(s, a
o, ae, bo, be), (36)

with

H+(s) = H+(s, a, b)

= sN−1
(
logS′

+(D+(R+(s))) + logD+(R+(s)) + logA(R+(s))

+ logR′
+(s)− (N + 1) log R+(s)

s

)
,

(37)
for s ∼ 0 and N = 2n+ 1−m. The map Δ(s, a, b) is smooth and

Δ(s, 0, ae, 0, be) ≡ 0.

Moreover:

Δ(s, a, b) = 2

N/2−1∑
j=0

P2j+1(a, b)

N − 2j − 1
s2j +O(sN−1). (38)

Proof. Large amplitude limit cycles arising from L correspond to small posi-
tive zeros of the difference map Δ. Moreover an upperbound for the number
of such zeros is one unit higher than the number of solutions of equation
(35).

It is clear, from (28) and (31), that

∂H+

∂s (s) = ∂H+

∂s (s, a, b)

= S′
+(D+(R+(s)))D+(R+(s))

A(R+(s))
sN+1

(
s

R+(s)

)N+1
R′

+(s).

The exponential flatness in this formula is caused by D+(R+(s)), see Propo-
sition 8. To remove it, we introduce:

H+(s, a, b) = sN−1 log

(
sN+1∂H+

∂s
(s, a, b)

)
,

leading to expression (37). From Propositions 8 and 11 and the fact that
A(0) > 0, S′

+(0) > 0 and R+ is smooth, one has:

H+(s, a, b) = −F (s)

s
−

N−1∑
i=1

Pi(a, b)

N − i
si−1+PN (a, b)sN−1 ln s+ sN−1Φ(s, a, b),

(39)
where

Φ(s, a, b) = −Φ̃(s, a, b) + logS′
+(D+(R+(s))) + logA(R+(s))

+ logR′
+(s)− (N + 1) log R+(s)

s .

18



Preprint submitted at DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.
The final publication is available at

http://aimsciences.org/journals/displayArticles.jsp?paperID=4986

for some Φ̃(s, a, b). The further statements now follow from (39) and Theo-
rem 7, inducing:

H+(s,−ao, ae,−bo, be)−H+(s, a
o, ae, bo, be) =

2
(∑(N/2)−1

j=0
P2j+1(a,b)
N−2j−1 s2j

)
+sN−1(Φ(s,−ao, ae,−bo, be)− Φ(s, ao, ae, bo, be))

9 Cyclicity in full subfamilies of (X(a,b))

We are now ready to treat the cyclicity of unbounded semi–hyperbolic 2–
saddle cycles inside full subfamilies of (1) as described in the introduction.
We will give a proof of Theorems 1, 2, 3, 4 and 5.

Proof of Theorem 1: From Theorem 12, we know

Δ(s, a, b) = 2

(N/2)−1∑
j=0

P2j+1(a, b)

N − 2j − 1
s2j +Υ(s, a, b),

for some smooth function Υ(s, a, b) = O(sN−1), s → 0. By definition of the
Lyapunov quantities (7), one now has:

Δ(s, a, b) =
2c1

N − 2i1 − 1
s2i1(1+O(s2))+2

(N/2)−1∑
j=i2

P2j+1(a, b)

N − 2j − 1
s2j+Υ(s, a, b).

By induction on l ∈ {1, . . . ,K}:

Δ(s, a, b) =
K∑
j=1

2cj
N − 2ij − 1

s2ij (1 +O(s2)) + Υ(s, a, b)), (40)

with 0 ≤ i1 < · · · < iK ≤ (N/2)− 1.
Now let (a, b) = (a, b) be a value such that c1(a, b) = · · · = ck−1(a, b) = 0

and ck(a, b) �= 0 for some 1 ≤ k ≤ K. Applying a standard division–
derivation algorithm, based on Rolle’s theorem on (40), one obtains (i).

We are left with proving (ii). By assumption (a, b) �→ c(a, b), with
c(a, b) = (c1(a, b), . . . , cK(a, b)), is a submersion. Therefore one can take,
if necessary, a λ(a, b) such that (a, b) �→ (c(a, b), λ(a, b)) is a diffeomorphism.
Moreover we define Δ̃(s, c, λ) such that Δ(s, a, b) = Δ̃(s, c(a, b), λ(a, b))
and Υ̃(s, c, λ) such that Υ(s, a, b) = Υ̃(s, c(a, b), λ(a, b)). By assumption
Δ(s, a, b) = Δ̃(s, 0, λ) = 0, for λ = λ(a, b), such that, using (40), also
Υ̃(s, 0, λ) = 0.

We now prove that Δ̃(s, c, λ) has at most K − 1 zeros near s = 0 for
(c, λ) ∼ (0, λ) leading to (ii).
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Applying Taylor’s theorem on Υ̃ with respect to cj = 0 one easily gets,
by induction on j ∈ {1, . . . ,K}, the existence of C∞ functions Φj such that

Υ̃(s, c, λ) =
K∑
j=1

cjΦj(s, cj , . . . , cK , λ),

for s ∼ 0, c ∼ 0 and ∀j : Φj(s, cj , . . . , cK , λ) = O(sN−1). Substitution in
(40) leads to

Δ̃(s, c, λ) =
K∑
j=1

cjΦj(s, cj , . . . , cK , λ), (41)

with Φj(s, cj , . . . , cK , λ) = 2
N−2ij−1s

2ij +O(s2ij+2), s → 0.
For values c = 0, one has by assumption a center near infinity and

therefore no large amplitude limit cycles. So to prove that Y(a,b) has at
most K large amplitude limit cycles for (a, b) ∼ (a, b), one can restrict
to values (c, λ) ∼ (0, λ) for which c �= 0. Therefore one can assume that
∀(c, λ) ∼ (0, λ) : ∃!γ = γ(c) with max {|γ1| , . . . , |γK |} = 1 such that ci = ργi,
1 ≤ ∀i ≤ K for some ρ = ρ(c) ∈ [0, ρ∗], ρ∗ > 0. From (41) it follows:

Δ̃(s, c, λ) = ρ
K∑
j=1

γjΦj(s, cj , . . . , cK , λ). (42)

Now the zeros of Δ̃(s, c, λ) near s = 0 and for (c, λ) ∼ (0, λ) correspond to
the zeros of the following map near s = 0:

Λ(s, γ, ρ, λ) =
K∑
j=1

γjΦj(s, ργj , . . . , ργK , λ),

for λ ∼ λ and max {|γ1| , . . . , |γK |} = 1. Now let (γ0, ρ0) ∈ Sm × [0, ρ∗],
where Sm denotes the unit sphere for the maximum norm on R

K . There
certainly exists 1 ≤ k ≤ K such that γ01 = · · · = γ0k−1 = 0 and γ0k �= 0.
Applying a division–derivation algorithm on Λ(s, γ, ρ, λ) one finds a neigh-
bourhood V (γ0, ρ0) of s = 0 and a neigbourhood W (γ0, ρ0) of (γ0, ρ0, λ)
such that Λ(s, γ, ρ, λ) has at most k − 1 ≤ K − 1 zeros for (s, γ, ρ, λ) ∈
V (γ0, ρ0)×W (γ0, ρ0). By compactness of Sm × [0, ρ∗] one can suppose that
the neighbourhood V (γ0, ρ0) is independent of (γ0, ρ0).

Theorem 2 is a direct corollary of Theorem 1. Conditions (i) and (ii)
imply rather easy expressions of the leading large amplitude Lyapunov quan-
tities enabling us to obtain the requested cyclicity. Let us first, for simplicity,
specify the families considered in Theorem 2. In case m ≤ n the full sub-
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families are given by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = y −
(
xn+1 +

n∑
i=1

aix
n+1−i

)
,

ẏ = −
(
xm +

m−1∑
i=1

bix
m−i

)
,

(43)

where for each 2i+ 1 either a2i+1 or b2i+1 is considered to be zero.
In case m > n, one considers families of the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = y −

⎛
⎝xn+1 +

2n−m∑
i=1

aix
n+1−i +

k2∑
i=k1

a2ix
n+1−2i

⎞
⎠,

ẏ = −

⎛
⎝xm +

2n−m∑
i=1

bix
m−i +

k3∑
i=k1

b2ix
m−2i

⎞
⎠,

(44)

with the indices (k1, k2, k2) defined such that 2n −m = 2k1 − 1, n = 2k2 +
1,m = 2k3 + 1 and where for each 2i+ 1 either a2i+1 or b2i+1 is considered
to be zero.

It is easily seen now that Theorems 3 and 4 are special cases of Theorem
2. We can only treat the full subfamilies with odd friction term or odd forc-
ing term in full generality if m ≤ n. If m > n one has to impose a2i+1 and
b2i+1 to be zero for 2i+ 1 > 2n−m as in (44).

Proof of Theorem 2: Consider first the case where (Y(a,b)) is a full sub-
family such that ao = bo = 0. Then, by Theorem 12, Δ(s, a, b) ≡ 0 such that
there are clearly no large amplitude limit cycles ∀(a, b).

Suppose now (ao, bo) �= (0, 0). Denote by ij , j ∈ {1, . . . ,K} the indices
for which (a2ij+1, b2ij+1) �= (0, 0). Then from Theorem 12, one has ∀k ≤ K:

ck(a, b) := ck(a, b) |c1(a,b)=···=ck−1(a,b)=0=

{
(n+ 1)(m− 2ik)a2ik+1, or

−(n+ 1)2b2ik+1.

Therefore from Theorem 1 (i) one has Cycl((Y(a,b)),L(a,b), (a, b)) ≤ K or
c1(a, b) = · · · = cK(a, b) = 0. One now easily verifies that ∀1 ≤ k ≤
K, (a, b) �→ (c1(a, b), . . . , ck−1(a, b)) and (a, b) �→ ck(a, b) are submersions
at (a, b) implying that (a, b) �→ (c1(a, b), . . . , cK(a, b)) is a submersion too.
Furthermore c1(a, b) = · · · = cK(a, b) = 0 implies ao = b

o
= 0 such that

Δ(s, a, b) = 0 (Theorem 12). The result now follows from Theorem 1 (ii).

Finally we treat an example where the coefficients among ao and bo occur
in non–trivial pairs inside the full subfamily.

Proof of Theorem 5: We are dealing with a full subfamily of Liénard
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systems of type (3, 5). We will show that one can take K = 2 in Theorem
1 and use the exact expressions of P1 and P3 obtained in Section 5, (27).
Indeed for the first two large amplitude Lyapunov quantities, one finds:

c1(a, b) = 18a1 − 36b1, c2(a, b) = a1(10 +
7

9
a21).

So c2(a, b) = 0 if and only if a1 = 0. Therefore c1(a, b) = c2(a, b) = 0 if and
only if (Ya,b)) has a center near infinity. So Theorem 1 (i) implies that if
a1 �= 0 one has Cycl((Y(a,b)),L(a,b), (a, b)) ≤ 2; and if a1 = 0, b1 �= 0 one has
Cycl((Y(a,b)),L(a,b), (a, b)) ≤ 1. If a1 = b1 = 0, clearly c1(a, b) = c2(a, b) = 0

and (a1, b1) �→ (c1(a1, b1), c2(a1, b1)) is a submersion at (a1, b1) = (0, 0). The
conditions in Theorem 1 (ii) are then clearly satisfied implying the result.
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