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• Archaeological prospection & predictive modeling

• Objectives

• Mapping: Bayes: deductive, inductive, mixed model

Regression indicator kriging

• Precision+accuracy: MBF evidence filter + ROC validation

• Results and conclusions
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Archaeological prospection

• EU Valetta Treaty: protecting the cultural heritage
Increased need for info on presence, quantity and quality of 

archaeological heritage → “find databases” with data of various origin:

1.Reconnaissance walking: field loc ±; amateur work; only positives

2.Line walking: scanning line fragments; field loc; common; pos+neg

3.Grid walking: exhaustive; GPS field loc; less common; pos+neg
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Predictive modeling

• Two “schools of ecological determinism”:
‣ Deductive: knowledge-driven 

Most common; based on (reconstructed) soilscape

Criticism: personal bias, unknown portability

‣ Inductive: data-driven 
Still few examples; Discr. Analysis, logistic regression, CART, kriging

Criticism: dependency (unfavorable) data configuration

• Problems:
‣ Data configuration often sub2optimal;

‣ Information “non-find” often not used.
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Research Q’s + Objectives

1. What mapping method works in difficult data 

configurations and with + - data?

‧ Test potential of Bayesian methods

‧ Compare with IRK

‧ Compare deductive and inductive methods

2. Political sensitivity: display what (when) on map?

‧ Evidence strength filter 
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Research area, sampling

• 19x14 km2 area in N Flanders

• Pleistocene coversand, alluvial plains, tertiary outcrops

• Mostly line walks in threatened (plowed agricultural) fields

• Fields randomly selected (10% sampled area =validation)

• Focus on final-Paleolithic and Mesolithic artifacts

• Finds & non-finds stored in 10x10 m grid (protocol)
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Research area: auxiliary variables

• Relevancy for settlement, hunting, gathering

DEM Wetness N-wind exposure

Distance to open water Drainage class Soil texture class
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Bayesian mapping

At a location,

1. Prob(occur.|attributes) (Bayes’ rule)

2. CP(attributes) and

3. P(attributes)

Combination:

(e.g. Aspinall, 1992):

Prior occurrence counted as fraction (occur.+abs.)

CP’s individual attributes counted and combined
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Bayesian mapping (BayesPMap)

1. Deductive method eqv Aspinall, 1992

‣ n=1 (deductive map with m classes)

2. Inductive method eqv Gorsevski et al., 2003

1. Fuzzy k-means clustering of auxiliary info (Matlab-FuzMe)

2. n=no. clusters, with Σ m membership classes  

3. Mixed method eqv Aspinall, 1992

1. Selection of auxiliary information

2. Supervised classification in classes (distribution + - histogram, χ2 test)

(interactive software)

3. n=no. of auxiliary variables; m classes
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Map precision: Evidence filter

Minimum Bayes Factor MBF 
(Goodman, 1999): Gaussianity→ →→

Low MBF=strong evidence against H0: μ=prior

At pixel: μ=prior, x= P(o|f), σ=? ↓

Bootstrap resampling pos/neg dataset

‣ distribution of CP’s → SDcoi

1. Error propagation rules

‣ SD P(o|f)

2. Calc MBF per pixel 

3. Apply filter for display
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Map accuracy: ROC and AUC

1. Receiver Operator Characteristic

2. Area Under Curve 

(eqv. Mann-Whitney U)



PF PM2007 

Results: Quality of Bayesian maps
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Results: comparison with IRK

• IRK performance depends on data configuration

‣ Random validation fields: poor performance

‣ Random validation pixels: excellent performance

IRK
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Best map
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Conclusions

1. Bayesian predictive mapping may outperform IRK 

(depending on data configuration).

2. Bayesian models:

‣ Imported deductive models and inductive models based on fuzzy k-

means clustering performed comparably (AUC);

‣ Inductive model passed evidence filter easily, deductive model didn’t;

‣ Mixed model performed best: Interaction archaeologist/pedometrician!

3. Usage of both + and – data improves performance 

(AUC+evidence filter).

4. MBF-based evidence filter useful for politically sensitive 

maps.


