

Modeling pedogenesis at multimillennium timescales

Achievements and challenges

Peter A. Finke

Dept. Geology & Soil Science, Ghent University, Belgium

- 1. Introduction
- 2. SoilGen model
- 3. Achievements
 - a. Calibration and quality tests
 - b. Applications
- 4. Challenges
 - a. Multimillennium boundary conditions
 - b. Panta rhei and hydrological parameters
 - c. Calibration and performance testing
 - d. Soil redistribution

Introduction

Vadose zone modeling	Pedogenesis modeling	"Misery"
Sat/Unsat Water flow		BC's
Solute flow		BC's
Chemistry, exchange reactions		complexity
Heat flow	Heat flow	BC's
Weathering	Weathering (chem, phys)	complexity
C-cycle	C-cycle	BC's
	Soil formation processes: Clay migration, bioturbation, podzolisation,	Process Coverage
(multi-) annual + (sub-)second	(multi-)millennium + sub-second	Runtime

SoilGen2 Flow of water, solutes, heat

Based on LEACHM(2003) model

- Water flow: Richards' equation
- Solute flow: CDE

Heat flow eq.

$$\frac{\partial c_L}{\partial t}(\theta + \rho K_d + \varepsilon K_H) = \frac{\partial}{\partial z} \left[\theta D(\theta, q) \frac{\partial c_L}{\partial z} - q c_L \right] \pm \theta$$
$$\frac{\partial T}{\partial z} = \frac{\partial}{\partial z} \left(\frac{K_t(\theta)}{\beta} \frac{\partial T}{\partial z} \right)$$

 $\frac{\partial h}{\partial t} C(\theta) = \frac{\partial}{\partial r} \left| K(\theta) \frac{\partial H}{\partial r} \right| - U(z,t)$

Added

•

SoilGen2 = enhanced transport model

Envir	onmental factor	Processes covered	Time scale (year)
CL imate	Temperature	Flow of	
	Precipitation: water	water	$10^{-8} - 10^{-4}$
	Precipitation: solutes	heat	10^{-4}
	Evaporation	Temperature effects on chemistry, C-turnover, water flow	
O rganisms	Vegetation	Soil-Plant cycles of C, Ca, Mg, K, Na, Al	10-3
	Fauna	Bioturbation	10 ⁰
	Human influence	Effects of Fertilization and Plowing	10 ⁰ /pulse
Relief	Slope	Runoff	10 ⁻⁸ – 10 ⁻⁴
	Erosion / Sedimentation	Effects of Removal or Addition of top layers	10 ⁰ /pulse
	Local variants of T, P, E	Effects of slope exposition of Heat/water/solute flow	
Parent	Texture	Physical weathering, Clay migration	10 ³ - 10 ¹
material	Mineralogy	Cation exchange Weathering primary minorals Chamical	
	Species of Ca, Al, Mg, K, Na, 	Dissolution/Precipitation, Chemical equilibriums	10 ³ - 10 ¹
Time	Change of boundary conditions	Effects of changing climate, vegetation and soil management	

Calibrations and tests

Notes:

- Calibration involved only process parameters, not time series or initial conditions
- Confrontation to final state after 1000 year (OC%), x000 year (decalcification), 15000 year (clay%)
- Long runtime (≈1 CPU-week/run) > minimal number of calibration runs

Calibration methods:

- a. SA followed by iterative dissection-type calibration per sensitive parameter (OC%)
- b. Generic calibration by comparison to databased metamodel (decalcification)
- Fit relation model quality parameter values and find function minimum (clay%)

Calibrations and tests: OC%

Top layer simulations of OC a little too low. Ectorganic OC not shown

Yu, Finke, Guo, Wu. 2013. Geoscientific Model Development.

Calibrations and tests: Decalcification

OK, but time series of precipitation surplus is highly uncertain!

Finke & Hutson, 2008. Geoderma + Finke, 2012. Quaternary International

Calibrations and tests: Clay%

Too high clay eluviation in topsoil layer 0-40

Finke, 2012. Quaternary International + Sauer et al., 2012. Quaternary International

Cases: Climosequence + Toposequence

+

+

Effect climate evolution on soil pH

Model = sensitive to effect climate

Belgium

Effect slope exposition on clay leaching, Belgium Model = sensitive to effect topographic position

Finke & Hutson, 2008. Geoderma

Finke, 2012. Quaternary International

Case: Chronosequence

Effect soil age on non-linear development of soil properties in 12 - 1.9 kBP chronosequence

- Slower recent uplift rates related to slower leaching of "marine legacy" basic cations"
- Countering effect of higher recent precipitation surplus (P-PE)

Model = sensitive to "non-linear" soil development

Case: Soilscape reconstruction

Zwertvaegher et al. 2013. Geoarchaeology

Archaeological land evaluation, Belgium

- Modeling terrain evolution 1. Vermeer et al. In review
- 2. Modeling 3D hydrology
 - Calibration and quality testing
 - Application
- 3. Modeling 1D soil evolution Zwertvaegher et al. In review
 - **Multiple locations**
 - Take erosion and deposition from terrain model
 - Take water fluxes (or water tables) from hydrological model
 - DSM for interpolation of soil characteristics to full extent
- 4. Land evaluation of past land uses in past landscapes

Model = applicable in soilscape reconstruction

Zwertvaegher, 2012. PhD-thesis

Challenge 1: Multimillennium boundary conditions

Reconstructed boundary conditions are a major source of uncertainty on model results. Consistency?

Challenge 2: Panta rhei and hydrological parameters

Pedogenesis= ΔOC , decalcification, weathering, clay migration $\rightarrow \Delta \rho$, $\Delta texture$, Δh - θ -K, $\Delta structure$. **PTFs**?

Challenge 3: Calibration and performance testing

Runtime issues, final state calibration. Efficient calibration methods and smart evaluation proxies?

Issues:

1. Long runtime = no brute force methods.
What else?

- 2. Confronting simulations to data and proxies (*not just final state calibration*). *Ex: Calibration of MODFLOW phreatic water tables over period 12.7 kBP - present*
- Calibration using the mapped drainage class (1953), but also by:
- (a) Maximizing the number of dated and dry archaeological sites ("dry feet proxy")
- (b) Maximizing the number of sites where the bottom of the Podzol-Bh is above the water table at least 1500 years ("time-integrated proxy")

ALT: chronosequence calibration.

Challenge 4: Soil redistribution

Importance

- C-sequestration in erosion/deposition landscapes
- Understanding feedback mechanisms between soil development / erosion

Approaches

- 1. Linked soil-landscape-vegetation models
- 2. Integrated soil-landscape-vegetation models

Challenges

- 1. Computational effort
- 2. Reconstruction of boundary conditions in human-affected landscapes
- 3. Quantification interactions soil-water-vegetation-mass redistribution

(e.g. Zwertvaegher et al. in review)

(e.g. Schoorl et al. 2012)

Conclusions

Pedogenetic modeling is feasible

Work needed on

- 1. Process coverage (e.g. Podzolisation)
- 2. Generating "mutually consistent" BC (e.g. by Climate-Vegetation models)
- 3. Quantification effect changing soil structure on hydro props (e.g. ripening)
- 4. Efficient calibration and smart proxies along the timeline
- 5. Soil-landscape interactions

• Heat flow → Temperature 31-12-yyyy

Gas flow \rightarrow pCO₂ 31-12-yyyy