Code structure of SoilGen3.8

For the description of the functionality of SoilGen and how to work with the model via the User Interface, | refer to
the eBook publication https://doi.org/10.1007/978-3-031-55583-1 available via Springer.

The code is developed in (or has been migrated from Fortran to) Lazarus FreePascal, and most of the procedures
and functions have internal documentation describing the order and method of actions. | used Lazarus version
2.2.6 but updated versions are released frequently.

@ About Lazarus O X

Free Pascal

Lazarus

Project

Version: 2.2.6
1-2

The main program consists of various windows (programmed by forms) that can be opened via the user interface.
The behavior of these forms and their components (e.g. buttons) is coded in units, but also units exist that are not
strictly related to a form (-component). Names of the units always start with unt*.

The Integrated Debugger Environment by Lazarus for SoilGen3.8 will open when double-clicking SoilGen.inf. The
window Source Editor will depict the source code of each one of the units. After setting the cursor to one of the
units associated with a form, the form can be shown by pressing the F12 or the associated icon on the control bar.

i Lazarus IDE v2.2.6 - SoilGen

File Edit Search View #Burce Project BRun Package Jools Window Help

............................

“ D = | @ v E ﬁ | E | L~ Standard Additional Common Controls Dia
[oog-p-nmpEee B B [B0) Abc (b

Figure 1 names the main units.

e The units in the pink marked part of this figure correspond to forms related to defining the initial situation of a
model run.

e The units in the orange part correspond to windows that are used to define the scenario. Centralis the unit
untGUI, the window that opens when the program is started and from which the model is actually run. The
button bttnRunClick on untGUI starts the actual simulation.

https://doi.org/10.1007/978-3-031-55583-1

e The unitsinthe blue part relate to model execution. untMemDump opens a window to depict the status of
model variables in case of a runtime error. untProcesses contains all the processes that affect the soil ata
temporal resolution of less than 1 year, and this unit is called annually by untGui. Processes with a temporal
resolution of 1 year are part of untGUI.

untAbout

F 3

Initialization windows Scenario construction windows

untSoftConstants «——

v

untEditSoilData - untClimate =——— untimportClimateData

untEditChemConstants < » untBioturbation

untEditClnputs

-~

» untlmportFertilizerData

untEditBedrock

»

» untEvents

» untDecayProtection
v
v L J
Main window
untNonFatal >

untGUI

untMemDump bttnRunClick

untProcesses

Figure 1 Major structure of the windows and associated units

Figure 2 names the functional steps that are taken when the button bttnRun is clicked (the onClick event). Several
of these steps are associated with calls to functions or procedures from the unit untGUI. When all data for a
particular year of the simulation are prepared, a call to the procedure StartProcesses in the unit untProcesses is
done, which starts the calculations for timesteps inside the year. After that year, simulated data are passed back
(by untProcesses.PassDataOut) to untGUI. bttnRunClick and a run for the next year is prepared and started.

Conditionally: Check if run=continuation and then read soil variables; Check if capacity flow and then set some parameters
Set presence of read VGN params to false
Write header to 'PSD.txt' (particle size distribution top compartment)
Disable buttons in user interface
Conditionally: exclude bioturbation, climate change, fertilization, events depending on GUI-settings
call ReadCheckClimate (interpolate climate input to annual climate values)
Initialize physical weathering
Conditionally: If bedrock then initialize grainsize data in bedrock layer
call ReadCheckFertil (construct annual fertilization data from input)+call ReadCheckEvents (construct annual events data from input)+call Beschrijf_scenario (write scenario to logfile)
10. Write header to "ectorganic.out'
11. Create time depth diagram files (*.tdd) and write headers,
12. |Initialize 14C activity data
13. eall ScreenoutputO (initialize screen with 6 tdd graphs)
14. call CopyRecToFrom (set all data in record DataYearln equal te Datalnit)
15. Couple bioturbation, climate, fertilization and events files, if any.
16. eall CalcSlopeEffects (to get correction factors for P and PE based on slope, wind, latitude)
17. Conditienally: call ReadDataRock (bedrock mineral props) + convert to mass + calculate rock porosity + initialize grain size fractions. Create 'Bedrock.out’ + write initial mass per mineral
18. call CopyRecToFrom (set all data in record DataYearln equal to Datalnit)
FOR EACH YEAR
19. Conditionally: if daily output tdd's are requested then gall AssignDailyTDD
20. Conditionally: if tracing option applies for this year then set an indicator variable
21. Conditionally: if the program abortion checkbox was checked then call WriteData, call WriteDataC, call WriteDataWE, write logfile, raise EInOutError
22. Assign pCO2 for the current year
23. Read climate data for this year (or for 12 months in this year; if special option chckbxSpecialClimate activated)
24. Calculate correction factor for P and PE data in default year using the actual values from the climate file
25. Calculate correction factor for P and PE for slope, wind, latitude
26. Convert daily temperature data in default year using the actual values from the climate file
27. Correct daily P with interception evaporation, which is vegetation dependent and the correction factor
28. Correct weekly PE for for slope, wind, latitude
29. Conditi lly: If chckbxSpecialClimate activated: correct monthly P for interception + monthly P and PE with correction factor
30. Read fertilization data for this year (if any)
31. Read events for this year (if any) and read per type of event the descriptive data. Put data in Datalnit, DataYearln and DataYearOut after initializations
32. Set plant growth data for this year, can be "constants” for some vegetations
33. eall WriteDataC, WriteDataWE, WriteData (inputfiles for this year)
34. Calculate and report to the GUI some progress variabes
35. side the year (untProcesses.StartProcesses)|
36. Conditionally: If bedrock then write mass per mineral and rockporosity and weathering loss at end of current year
37. Conditionally: if daily output tdd's are requested then gall CloseDailyTDD
38. (Call ReadOutC, Call ReadOutWE (yearly outputs for C and minerals)
39. Update mass per textural class
40. call ReCalcOC (from mass per OC-pool to over-all OC mass, also include effect of physical weathering)
41. call AdjustCECAXSE20C (adjust the CEC to the changed OC-content)
42, call Turbation (apply bioturbation, if any, to the indicated toplayers)
43. Conditionally: if agriculture then gall Turbation to emulate harrowing; if set: first apply turning plow
44. Update 'ectorganic.out’ at the end of this year
45. call CopyRecToFrom (copy record DataYearOut to DataYearln, for next simulation year) + call
46. call EffectSaltLoss (CaCO3 and CaS04 mass-loss/-gain on texture) + gall Weatheringindices + gall Decay (14C decay)
47. Conditionally: If bedrock and rockporosity>=threshold and weatheringloss>=threshold then convert bedrock compartment to saprolite (=soil) compartment
48. with derived soil data. gall CopyRecToFrom (copy record DataYearOut to DataYearln, for next simulation year)
49. call ScreenOutput1 (update screen with 6 tdd graphs)
50. call WriteTimeDepth (write soil data at end of year to *.tdd-files)
51. Write final Van Genuchten parameters to file
52. call Prepare_Continuation (create subfolder 'continuation’ and put in all the necessary files for a subsequent SoilGen run)
53. call WriteData, call WriteDataC, call WriteDataWE (inputfiles for a future year)
54. write closing remarks to logfile + Close all outputfiles and call cleanupdisk (remove temporary files) + Make a batch file of the current run if that did not exist yet + Handle runtime errors.

ain windo

untGUI

LR R S

bttnRunClick ==

untProcesses

Figure 2 Functionality inside the bttnRunClick (i.e. the driver for a multi-annual run). Blue highlighted are the calls to procedures in the
untGUI unit. @ highlighted is the call to the entry point of the unit untProcesses (the procedure StartProcesses). Numbers 1..54 also occur
as remarks { 1} (etc.) at the starting point of the relevant part of the source code of bttnRunClick.

Figure 3 describes the main structure of the unit untProcesses, which handles the calculations inside one year. The
entry pointis the procedure StartProcesses, which is the main process driver. Starting with initializations, calls are
made to MAINC and MAINC2; the latter routine handles the calculations inside the year, with dynamic timesteps
depending on the process dynamics of (a.0.) water infiltration (procedure TSTEP). The largest timestep is still a
fraction of one day, the smaller timesteps are in the order of minutes. After one year has passed, the routine
STOPC is called which closes output files and gives focus back to bttnRunClick in the user interface (untGUI).

The supporting procedures and functions called from untGUI.bttnRunClick (Figure 2) and from the process driver in
untProcesses (Figure 3) have internal documentation in the code which is not repeated here for brevity.

untProcesses.Startprocesses

Process Driver Startprocesses

1. Various initializations
2. call MAINC > call MAINC2 (includes call TSTEP)
3.call STOPC

MAINC

1 Assign and open intra-annual input- and output files

2 call READCNEW (read soil data from end of previous year)
3 call RothC_lInit (initialization and read input file for C-
submodel, status end of previous year)

4 call WE_lInit (initialization and read input file for Weathering
submodel, status end previous year)

5 Conditional: if bedrock then call WE_Init_sapro (initialization
+ read input file Weathering submodel for bedrock, status end
previous year)

6 call Init_Clay Migration (initialization for clay migration
submodel via mass of clay silt + sand at end previous year)

7 call MAINC2

STOPC
1. stop the run for this year and close the associated outputfiles

A

MAINC2
Continued initialization and dimensioning of model
call WATDAT to create an output table (part of *.out) of h-theta-K data
call THETA to estimate microporosity and air-filled porosity using H
call POTL (using initial theta and depending on bottom boundary condition)
calculate fieldcapacity and wilting point
Initialize chemical parameters (i.e. valence of species)
7+8 gall CHEM2 (to bring compartments in chemical equilibrium and calc pH) + call calcPHLAB (calculate pH-H20 at virtual 1:5 dilution)
11 setorreset counters and accumulators for water and solute
12 Repeat for every day in the year
13 Initialize counters and accumulators for this day
14 Conditional: if plants present then for crop development stage determine crop cover
15 Conditional: if plants have emerged then call GROWH to set plant props for current day
16 call RothC_Daily (C-submodel on a daily basis)
17 call CO2_diffusion (redistribute produced and present CO2 over the profile by diffusion)
18 call WE_daily (weathering of soil minerals on a daily basis)
19 conditional: if bedrock the call WE_daily_sapro (weathering of rock minerals on a daily basis)
20 Initialize daily uptake of chemicals via transpiration stream
21 call POTET (potential evapotranspiration for the day)
22 Add chemical amendments to water phase, possibly partly incorporated in the soil
23 Conditional: if capacity flow then set rain, potential evapotranspiration for the day
24 Repeat fortime intervals within day
25 call TSTEP (length of new time increment)
26 adjust bottom boundary if water table adjustment (not in SoilGen)
27 call ETRANS (Evapotranspiration during the length of the time increment)
28 call WUPTAK (Water sink term for WATFLO ie. root uptake)
29 Conditional: if Richards' equation then call WATFLO (water fluxes and potential updates) for current time interval
30 Conditional: if time=tenth of day then call HEAT + gall Physical_Weathering
31 call SINKC (uptake of cations Ca, Mg, Na, K and Al by plants)
32 call Clay_Migration1_PreCDE (calculate amount of clay in dispersion)
33 prep + call SOLC (transport of solute (incl. dispersed) species)
34 eall Clay_Migration2_PostCDE (calculate consequences of dispersible clay transport)
35 Conditional: if fixed or fluctuating water table then call CELLC (set new lower boundary concentrations)
36 Conditional: every x timesteps: call CHEM2 (chemical equilibrium) + gall calcPHLAB (1:5 dilution pH)
37 Conditional: if tipping bucket/Addiscott model then gall CALFC
38 Cumulative totals of chemicals and mass balancing, profile totals
39 Set solute concentrations for next time period
40 calculate leachate losses
41 Cumulate potential and actual transpiration, evaporation, drainage
42 Update air-filled porosity
43 Conditional: if infiltration in progress: reduce amount that still needs to infiltrate
44 Conditional: if end of infiltration reached then make evaluation of runoff risk and act accordingly
45 calculate water balance
46 Increase time counter to end of current time step
47 Conditional: if time to print to file: call CHEM2, call calcPHLAB, call OUTC
48 Write to various output files (not used by SoilGen): breakthrough file, segment totals, etc.
49 Conditional: if end of day then call CADATE (calendar date of next day)
50 Conditional: if time_to_print then write to *.SUM
51 Nexttime interval within day, until iend_of_day
52 Refresh the GUI after updating the day number
53 Conditional: if set in GUI then ecall WriteDailyTDD (selected soil variables)
54 Next day
56 call RothC_exit (at end of year; write C-and associated element pools to outputfile RC*.out)
57 call WE_Exit (at end of year; write minerals and cations locked in minerals to WE*.out)
58 call PassdataOut (at end of year; passes data from Processes unit to main program untGUI.Run via the record DataYearOut)

oW =

[=2]

Figure 3 Structure of the process driver in untProcesses, the unit that performs the calculations inside each simulation year. Highlighted in
blue are calls to supporting routines. The numbers are also indicated in the code at the starting point of the calculations. A fixed format
applies, e.g. the first process “Various Initializations” in “Startprocesses” would appear as the comment {StartProcesses 1 } {process driver |

Various initializations} in the model code.

