Wiskundige aspecten van algemene relativiteit

N. Van den Bergh

m.m.v. Lode Wylleman

Januari, 2016
Inhoud

1 Inleiding
 1-1 De ruimtetijd van Aristoteles ... 4
 1-2 De ruimtetijd van Galilei .. 5
 1-3 De ruimtetijd van Minkowski .. 6
 1-4 Het equivalentiebeginsel .. 9
 1-5 Gekromde ruimten .. 10

2 Beperkte Relativiteitstheorie .. 13
 2-1 Inleiding ... 13
 2-2 Lorentztransformaties ... 14
 2-3 Minkowskidiagrammen ... 17
 2-4 Minkowskimetriek ... 21
 2-5 Relativistische mechanica .. 23
 2-5.1 Inleiding .. 23
 2-5.2 Energie-impulstensor van een deeltjeswolk 25
 2-5.3 Energie-impulstensor van een perfecte vloeistof 27
 2-5.4 Behoudswetten en energievoorwaarden 29
 2-6 Elektrodynamica ... 31
 2-6.1 Algemeenheden .. 31
 2-6.2 Elektromagnetische golven .. 32
 2-6.3 Energie-impulstensor .. 33

3 Differentiaalvariëteiten en tensoren ... 36
 3-1 Differentiaalvariëteiten ... 36
 3-2 Vectoren ... 38
 3-2.1 Stromingen .. 41
 3-2.2 Connecterende vectoren .. 42
 3-3 Eénvormen ... 44
 3-4 Tensoren ... 45
 3-4.1 Vrije vectorruimten .. 45
 3-4.2 Tensorproduct ... 45
 3-4.3 Tensoren en multilineaire afbeeldingen 46

4 Differentiaalvormen .. 50
 4-1 Differentiaalvormen .. 50
 4-2 Uitwendige afleiding .. 52
 4-3 Integratie van vormen .. 54
 4-3.1 Oriëntatie .. 54
 4-3.2 Integratie van vormen .. 54
 4-4 Lie-afleiding .. 56
5 Connecties en kromming

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Covariante afleiding</td>
<td>60</td>
</tr>
<tr>
<td>5-2</td>
<td>Parallel transport</td>
<td>60</td>
</tr>
<tr>
<td>5-3</td>
<td>Normale coördinaten</td>
<td>60</td>
</tr>
<tr>
<td>5-4</td>
<td>Symmetrische connecties</td>
<td>60</td>
</tr>
<tr>
<td>5-5</td>
<td>Kromming</td>
<td>60</td>
</tr>
</tbody>
</table>

6 Metrieken

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Algemeenheden</td>
<td>68</td>
</tr>
<tr>
<td>6-2</td>
<td>Eigenschappen van de riemanntensor</td>
<td>68</td>
</tr>
<tr>
<td>6-3</td>
<td>Uitgewerkte voorbeelden</td>
<td>75</td>
</tr>
<tr>
<td>6-4</td>
<td>Geodetische afwijking en kinematische grootheden</td>
<td>77</td>
</tr>
<tr>
<td>6-4.1</td>
<td>Geodetische afwijking</td>
<td>77</td>
</tr>
<tr>
<td>6-4.2</td>
<td>Kinematische grootheden van een tijdachtige congruentie</td>
<td>78</td>
</tr>
</tbody>
</table>

7 Hypervlakken

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>Inleiding</td>
<td>85</td>
</tr>
<tr>
<td>7-2</td>
<td>Intrinsieke kromming</td>
<td>85</td>
</tr>
<tr>
<td>7-3</td>
<td>Uitwendige kromming</td>
<td>85</td>
</tr>
<tr>
<td>7-4</td>
<td>Voorbeelden van hypervlakken in \mathbb{R}^3</td>
<td>85</td>
</tr>
<tr>
<td>7-5</td>
<td>Orthogonale projector op een ruimteachtig hypervlak</td>
<td>91</td>
</tr>
<tr>
<td>7-6</td>
<td>$3+1$ splitsing van de krommingstensor</td>
<td>95</td>
</tr>
</tbody>
</table>

8 Dualiteit

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>Inleiding</td>
<td>98</td>
</tr>
<tr>
<td>8-2</td>
<td>Bivectoren en dualiteit in een ruimte-tijd</td>
<td>98</td>
</tr>
<tr>
<td>8-3</td>
<td>Maxwellveld</td>
<td>101</td>
</tr>
<tr>
<td>8-4</td>
<td>Petrovclassificatie van de weyltensor</td>
<td>105</td>
</tr>
</tbody>
</table>

9 Isometrieën

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>Inleiding</td>
<td>111</td>
</tr>
<tr>
<td>9-2</td>
<td>Isometrieën van de minkowskisfeer</td>
<td>113</td>
</tr>
<tr>
<td>9-3</td>
<td>Maximaal symmetrische variëteiten</td>
<td>115</td>
</tr>
</tbody>
</table>

10 Beginselen en experimentele testen

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>Beginstil van Mach</td>
<td>118</td>
</tr>
<tr>
<td>10-2</td>
<td>Zwak Equivalentiebegin</td>
<td>120</td>
</tr>
<tr>
<td>10-3</td>
<td>Covariantiebegin</td>
<td>122</td>
</tr>
<tr>
<td>10-4</td>
<td>Einstein’s Equivalentiebegin</td>
<td>124</td>
</tr>
<tr>
<td>10-5</td>
<td>Sterk Equivalentiebegin</td>
<td>130</td>
</tr>
<tr>
<td>10-5.1</td>
<td>Metriche theorieën en het zonnestelsel: inleiding</td>
<td>131</td>
</tr>
<tr>
<td>10-5.2</td>
<td>Geval van gebonden beweging</td>
<td>133</td>
</tr>
<tr>
<td>10-5.3</td>
<td>Geval van ongebonden beweging</td>
<td>134</td>
</tr>
<tr>
<td>10-6</td>
<td>Minimale koppeling</td>
<td>136</td>
</tr>
<tr>
<td>10-6.1</td>
<td>Testdeeltjes</td>
<td>136</td>
</tr>
<tr>
<td>10-6.2</td>
<td>Perfecte vloeistoffen</td>
<td>137</td>
</tr>
<tr>
<td>10-6.3</td>
<td>Elektromagnetisme</td>
<td>137</td>
</tr>
<tr>
<td>10-6.4</td>
<td>Behoudswetten</td>
<td>138</td>
</tr>
<tr>
<td>10-7</td>
<td>Correspondentiebegin</td>
<td>139</td>
</tr>
<tr>
<td>10-8</td>
<td>Veldvergelijkingen in de aanwezigheid van materie</td>
<td>140</td>
</tr>
<tr>
<td>10-8.1</td>
<td>Energievoorwaarden</td>
<td>141</td>
</tr>
</tbody>
</table>
11 De veldvergelijkingen nader bekeken 143
 11-1 De lineaire benadering .. 143
 11-2 Vlakke gravitatiegolven 145
 11-3 Structuur van de veldvergelijkingen 147
 11-3.1 Inleiding .. 147
 11-3.2 3+1 splitsing van de veldvergelijkingen 148

12 Inleiding tot de kosmologie 151
 12-1 Standaard model .. 151
 12-2 Symmetrie en geometrie ... 153
 12-3 Energie-impulstensor .. 160
 12-4 Veldvergelijkingen .. 161
 12-5 Oplossingen .. 162
 12-5.1 Niet-statische modellen 162

13 Enkele bijzondere oplossingen 167
 13-1 Inleiding .. 167
 13-2 Sferische symmetrie .. 168
 13-3 Schwarzschildoplossing 169
 13-4 Eddington-finkelsteinmetriek 174
 13-5 Statische en sferisch symmetrische perfecte vloeistoffen . 176
 13-6 FKS-extensie van de schwarzschildmetriek 181
 13-7 Conforme compactificatie 187
 13-8 Reissner-nordström-metriek 191
Voorwoord

Praktische aspecten

• evaluatie: wekelijkse oefeningen (60%) + project (40%), geen examen. Het project houdt in dat de student in de laatste lesweken 10 tot 30 bladzijden schrijft over één of ander onderwerp uit een lijst die ter beschikking zal worden gesteld en dit mondeling verdeeld in de loop van de examenperiode.

• Wat gaan we precies doen? Na een kort historisch overzicht, van de gelegenheid gebruik makend om links en rechts wat persoonlijke accenten te leggen op onderwerpen die te maken hebben met de fundamenten van de beperkte zowel als de algemene relativiteitstheorie en die –alhoewel op eerste zicht wat banaal lijken– m.i. toch de moeite zijn om even te blijven bij stilstaan, behandelen we meer wiskundige aspecten. Een overlap met de cursus differentiaalmeetkunde is hierbij niet te vermijden. We maken u ook in enkele lessen wegwijks in het hanteren van Maple’s DifferentialGeometry-pakket en eindigen met wat extra mathematische beschouwingen over exacte oplossingen, zoals de Schwarzschild, Tolman-Oppenheimer-Volkov, Reissner-Nordstrom en Kerr metriek, enkele kosmologische modellen en evt. de classificatie van de type D vacua.

• hulpmiddelen: literatuur (zie hieronder), Maple (DifferentialGeometry, difforms en –voor oudere versies– GRTensor), Reduce.

Naslagwerken

Deze cursus vereist enige voorkennis op het vlak van de differentiaalmeetkunde (minstens van oppervlakken in \mathbb{R}^3) en van de klassieke tensorrekening. Een goede inleiding tot de differentiaalmeetkunde is het boek *Introduction to Differential Geometry* van Barrett O’Neill. Het boek dat zonder enige twijfel nog steeds de bijbel van de relativiteitstheorie mag genoemd worden is *The large scale structure of space-time* van Stephen Hawking en George Ellis (Cambridge 1973). Hieruit zijn grote stukken zonder meer —en zonder al te veel schaamte— overgenomen.

Meer fysisch georiënteerde werken zijn *Gravity* van James Hartle (Addison Wesley 2003) en *Gravitation and cosmology* van Steven Weinberg (Wiley 1972). Dit laatste bevat een uitmuntende historische inleiding en is een absolute klassieker voor wat betreft het onderdeel kosmologie (en opteert eveneens voor de traditionele tensorrekening).

Wie een snelle en bondige introductie zoekt tot de meer mathematische aspecten van huidig onderzoek in A.R., kan zich beperken tot de eerste hoofdstukken uit *Exact solutions of Einstein’s field equations* van Dietrich Kramer, Hans Stephani, Malcolm MacCallum en Eduard Herlt (Cambridge 2003). Het grootste deel van dit boek is echter een encyclopedie van z.g. ‘algebraïsch speciale’ oplossingen.

Enkele aanraders uit de oudere literatuur (helaas –met uitzondering van *The Meaning of Relativity* – niet zo makkelijk meer te vinden):

- P. Bergmann *Introduction to the Theory of Relativity* (Prentice-Hall 1942)
- A. Einstein *The Meaning of Relativity* (Methuen 1922)
- V. Fock *The Theory of Space-time and Gravitation* (Pergamon 1964)
- C. Möller *The Theory of Relativity* (Oxford U.P. 1952)
- H. Robertson en T. Noonan *Relativity and Cosmology* (Saunders 1968)
- E. Schrödinger *Space-Time Structure* (Cambridge U.P.)
- J.A. Schouten *Ricci Calculus* (Springer 1954)
- R. Tolman *Relativity Thermodynamics and Cosmology* (Clarendon 1934)
- H. Weyl *Space-Time-Matter* (Methuen 1922)

De meeste van deze werken kunnen als djvu- of pdf-bestand aan de student ter beschikking worden gesteld.
Hoofdstuk 1

Inleiding

1-1 De ruimtetijd van Aristoteles

Deze cursus is niet geschikt als leermateriaal voor een eerste kennismaking met AR: het publiek bestaat doorgaans uit wiskundigen en natuurkundigen, die reeds enige vertrouwdheid hebben met differentiaalmeetkunde en die reeds ook reeds een inleidende cursus AR gevolgd hebben. Wiskundigen associëren echter het concept van een differentiaalvariëteit doorgaans niet direct met de ruimtetijd (maar eerder met oppervlakken in \mathbb{R}^3, 3d variëteiten, liegroepen enz. al naargelang hun achtergrond): het is dus niet zo dwaas om even stil te staan bij het ruimtetijd concept zelf. Dit concept heeft een lange geschiedenis achter de rug, al is het strikt gezien nog maar een jong begrip. Het is echter een enorm nuttig begrip, dat ons toelaat om een groot deel van de evolutie en de geschiedenis van de natuurkunde in een elegant kader te plaatsen en alzo de verborgen assumpties bloot te leggen die bij de opeenvolgende wereldbeelden passen. Uiteraard doen we hierbij de geschiedenis geweld aan en geven we aan de evolutie van de wereldbeelden, zoals in de volgende paragrafen kort geschetst, een logischer en gestroomlijnder vorm dan in werkelijkheid het geval was (wat ertoe leidt dat sommige ontwikkelingen vandaag als “onvermijdelijk” bestempeld worden, terwijl ze dat helemaal niet waren).

In eerste instantie bekijken we het concept van de aristoteliaanse ruimtetijd, een concept dat in ieders brein vast gebetonneerd zit, zodanig zelfs dat het ook door de relativisten af en toe nog wel eens parten speelt. Ruimtetijd is eigenlijk niets anders dan de verzameling van gebeurtenissen, of events. Een event kunnen we ons voorstellen als een botsing tussen twee knikkers of een vingerknip. We zouden eigenlijk moeten zeggen ‘ruimtetijd is de verzameling alle mogelijke events’ (hier en daar, gelijk waar in het heelal, inclusief alle voorbije events en alle toekomstige events). Gaan we ervan uit dat gebeurtenissen ‘ergens’ gebeuren en op een bepaald tijdstip (aangegeven door een familie van gesynchroniseerde klokken geplaatst in de corresponderende punten), dan kunnen we events schematisch voorstellen als punten in ‘ruimtetijd-diagrammen’ (waarbij we doorgaans, bij gebrek aan plaats één van de drie ruimte-assen weglaten en waarbij de tijd-as verticaal getekend wordt). We noemen de onderliggende wereldvisie op de ruimtetijd de aristoteliaanse visie: hierin bestaat dus een 3-d foliatie van de ruimtetijd, samen met een geprefeerde familie van wereldlijnen, die toelaat om de punten in de verschillende bladen met elkaar te identificeren.

Visies (of modellen) zijn belangrijk omdat ze toelaten (en impliceren) om zinvolle vragen te stellen (wat men regelmatig vergeet is dat die vragen –en uiteindelijk ook onze experimenten– dus mee bepaald worden door de visie en op zichzelf weinig of geen betekenis hebben). Zinvolle vragen die binnen de aristoteliaanse visie kunnen gesteld worden, zijn dan bv.

1 daterend van 1908 n.a.v. het werk van H. Minkowski, dus na de publicatie in 1905 van de beperkte relativiteitstheorie
2 in eerste instantie ... later zullen we zien dat de ruimtetijd van de algemene relativiteitstheorie iets gecompliceerder is
Hoever bevinden twee events zich van elkaar?
Zijn deze twee events gelijktijdig?
Gebeuren deze twee events op dezelfde plaats?
Is dit deeltje in rust?
Wat is de snelheid van dit deeltje?
Beweegt dit deeltje sneller dan dat deeltje?

M.b.t. de eerste vraag merken we op dat ‘deeltjes’ eigenlijk niet ‘bewegen’ in de ruimtetijd maar in de ruimtetijd ‘zijn’: een deeltje is dus niets anders dan een kromme in de ruimtetijd: we noemen dit *wereldlijnen*³.

Zo wordt een deeltje waarop geen enkele kracht werkt doorgaans voorgesteld door een rechte (het beweegt immers eenparig) en i.h.b. een deeltje in rust door een verticale rechte. Daarentegen wordt de baan van de aarde om de zon niet voorgesteld door een gesloten ellips, maar door een spiralende kromme.

Hoe wordt het licht voorgesteld in deze diagrammen? Stel u een flitslamp voor die op t = 0 in de oorsprong afgaat, dan verspreidt het licht zich als een sferische golf, m.a.w. 1 honderdduizendste seconde later wordt een sfeer met een straal van 3 km opgelicht, op t = 2 honderdduizendste seconde een sfeer met een straal van 6 km enz. In een ruimtetijd-diagram wordt 1 dimensie weggelaten, zodat de sferische golffronten worden voorgesteld door cirkels die in de loop van de tijd uitdijen. De kegel die op die manier ontstaat is wat we de *lichtkegel* noemen.

Het aristoteliaanse wereldbeeld zal de natuurkunde domineren tot en met Copernicus (1473–1573) en Kepler (1571–1630). Stel nu dat u, ergens in outer space, een aristoteliaanse waarnemer bent. Stel dat er iemand voorbij vliegt die achtereenvolgens (met dezelfde hand) twee vingerknippen geeft en dat men u vraagt of die twee events al dan niet op dezelfde plaats gebeuren. Vanzelfsprekend is het antwoord neen: de ene vingerknip gebeurt immers hier ... en de volgende vingerknip daar ... Stel u nu echter een andere aristoteliaanse waarnemer voor, die in zijn eigen ruimtestation voorbijvliegt met dezelfde snelheid als de vingerknippende reiziger: voor deze aristoteliaanse waarnemer gebeuren beide events duidelijk wel op dezelfde plaats! Er is dus niet één aristoteliaanse visie (onze persoonlijke), maar er zijn er verschillende! Dat geen enkele van deze visies op basis van experimenten de voorkeur kan krijgen is één van de grote bijdragen van Galileo Galilei (1564–1642).

De aristoteliaanse visie bevat dus overtollige bagage voor een goede beschrijving van de ruimtetijd, onder de vorm van de verborgen assumptie dat er iets bestaat als ‘de plaats’ van een event. We vervangen daarom de aristoteliaanse visie door wat we noemen de Galileaanse visie.

1-2 De ruimtetijd van Galilei

Laten we verschillende families van aristoteliaanse waarnemers hun klokken synchroniseren door af te spreken om allemaal samen hun vingers te knippen op een gegeven tijdstip t = 0: we construeren alzo een 3d oppervlak van events in de ruimtetijd, het ‘t = 0 oppervlak’. We kunnen hetzelfde doen op t = 1 enz, zodat de ruimtetijd als een boek kaarten wordt, van ‘gelijktijdigheidoppervlakken’. Deeltjes waarop geen krachten werken worden dan nog altijd voorgesteld door rechte lijnen doorheen dit boek kaarten, maar er is geen regel meer die zegt welk punt in de ene kaart overeenstemt met een punt in een andere. Er is m.a.w. in de galileaanse visie wel een absolute tijd (de folatie in bladen van ‘gelijke tijd’), maar geen absolute ruimte. Willen we van de ene aristoteliaanse familie overgaan op de andere, dan komt dit neer op het geven van een verschuiving aan ons kaartenboek: de verschuivingsformules die dit voor ons doen zijn de galileitransformaties.

³In dit verband vermelden we Einstein’s opbeurende commentaar (1955) aan de familie van zijn pas overleden vriend, Michele Besso: ‘Now he has departed from this strange world a little ahead of me. That means nothing. People like us, who believe in physics, know that the distinction between past, present, and future is only a stubbornly persistent illusion.’
Opnieuw kunnen we nu binnen de galileaanse visie een aantal zinvolle uitspraken maken, zoals deze twee events gebeuren op hetzelfde tijdstip er verlopen 10 seconden tussen deze twee events de afstand tussen deze twee gelijktijdige events bedraagt 10 cm deze waarnemer beweegt met constante snelheid (... dit definiëert de inertiaalwaarnemers) dit deeltje beweegt met een snelheid van 5m/s t.o.v. dat deeltje \(F = GMm/r^2 \) met \(r \) de afstand tussen gelijktijdige posities van zon en aarde)

Sommige uitspraken die zinvol waren in het aristoteliaanse kader zijn nu in het galileaanse kader zinloos geworden, zoals

deur twee events gebeuren op dezelfde plaats
daafstand tussen twee willekeurige events bedraagt 10 cm
dit deeltje is in rust
dit deeltje beweegt met een snelheid van 5m/s
dit deeltje beweegt sneller dan dat deeltje.

De galileaanse wereldvisie vormde het kader voor de klassieke mechanica: zo is het bestaan van een klasse van inertiaalwaarnemers één van de hoekstenen van de Newtoniaanse mechanica, die gedurende 200 jaar de natuurkunde zal regeren.

Deze wetten waren wat men noemt ‘invariant’ onder de hoger vermelde galileitransformaties. Dit beginsel speelt in de klassieke mechanica een fundamentele rol en werd het relativiteitsbeginsel genoemd. Een alternatieve formulering is dat er geen enkel mechanisch experiment bestaat dat toelaat om een toestand van absolute rust te identificeren (terzijde weze opgemerkt dat Newton de fundamenten van zijn theorie binnen het aristoteliaanse kader formuleert: reden was dat hij de inertiaalwaarnemers op een operationele manier zou definiëren, nl. door de afwezigheid van krachten. Hierdoor raakt hij in een vicieuze cirkel en wordt gedwongen om het bestaan van een absolute ruimte te postuleren).

1-3 De ruimtetijd van Minkowski

Problemen

In de tweede helft van de 19de eeuw begon er een haar in de soep te komen, in de vorm van het electromagnetisme: dit werd succesvol beschreven door de z.g. wetten van Maxwell, waarin snelheidsafhankelijke krachten optraden (de lorentzkracht, een ketterij in het galileaanse beeld!) en die voorspelden dat de snelheid van het licht –als electromagnetische golf die zich voortplantte in een mysterieus medium dat men de ether noemde – onafhankelijk was van zijn bron (een hypothese die men pas later zal kunnen testen aan de hand van waarnemingen van dubbelsterren en die pas in 1964 met een hoge precisie zou bevestigd worden door de snelheid te meten van licht dat wordt uitgezonden als vervalproduct van pi-mesonen bewegend met een snelheid van 0.997c. De wetten van het electromagnetisme waren m.a.w. niet invariant onder de galileitransformaties en, aangezien er aanwijzingen waren dat de ether zich niet met de materie meebewoog (aberratie van het licht: net zoals men ook bij vertikaal vallende regen- een paraplu schuin moet houden wanneer men er een snelle pas inzet, moet ook een telescoop lichtjes schuin gehouden worden om het effect te compenseren dat veroorzaakt wordt door de beweging van de aarde), meende men dat het mogelijk moest zijn om bv. de snelheid van de aarde te meten t.o.v. de ether. Pogingen in die zin (te beginnen met Michelson & Morley in 1887) mislukten echter ...

Er bestaat discussie over de vraag of Einstein al dan niet op de hoogte was van het M&M experiment: hij verwijst alleszins naar dergelijke experimenten in de openingsparagraaf van het 1905 artikel en vermeldt het M&M experiment expliciet in 1931, vlak voor de dood van Michelson. Dat hij er minder
belang aan hechtere kan wellicht verklaard worden door het feit dat het experiment ook op andere wijzen kon uitgelegd worden (zoals door Lorentz’ theorie). Ook de pogingen van o.a. Hertz om de maxwellvergelijkingen aan te passen zodat ze -net als de andere vergelijkingen van de mechanica-invariant werden onder de galileitransformaties liepen uit op een sisser en tegen de eeuwwisseling was de kwestie uitgegroeid tot één van de grote problemen van de fysica, waaraan verschillende ‘reuzen’ (zoals Henri Poincaré en Hendrik Antoon Lorentz) hun beste krachten wijdden en waarvoor een aantal ad hoc oplossingen geformuleerd werden. Het popularist was Lorentz’ dualistische theorie waarin de ether de achtergrond was voor de electromagnetische velden, waarbij deeldeeltjes gehoorzaamden aan de wetten van Newton en waarbij de maxwellvergelijkingen enkel geldig waren in een stelsel in rust t.o.v. de ether. Het nul-resultaat van o.a. het M&M experiment kon binnen deze theorie verklaard worden d.m.v. de Lorentz-FitzGerald contractie van bewegende meetstaven (pas in 1932 zal het Kennedy-Thorndike experiment -een M&M versie met ongelijke arm lengtes van de interferometer- aantonen dat contractie van de meetstaven alleén niet voldoende is, maar dat ook de door BR voorspelde tijdsdilatatie in acht moet worden genomen). Ook had Lorentz opgemerkt dat de maxwellvergelijkingen voor het electromagnetisme invariant waren onder een merkwaardig soort transformaties (achteraf door Poincaré de lorentztransformaties gedoopt), waarvan de galileitransformaties de lage snelheidslimiet waren (dezelfde transformaties waren al eerder opgedoken als mathematische curiositeit in een behandeling van het Doppler-effect door Woldemar Voigt, 1887).

Einstein’s oplossing

Einstein’s artikel van juni 1905 houdt eigenlijk twee delen in: in het eerste (kinematische deel) construeert hij een nieuwe theorie die niet zozeer gericht was op het verklaren van de nieuwe observationele gegevens (zoals het M&M experiment), of die een nieuwe mechanica pretendeerde te zijn, of een nieuwe theorie voor het electromagnetisme, maar een nieuw wereldbeeld dat in korte tijd zou evolueren tot het kaderwerk waarin alle, nog te ontwikkelen, theorieën van de twintigste eeuw een plaats zouden vinden. In het tweede luik herformuleert hij de mechanica en electrodynamica, zo dat ze allebei op een natuurlijke manier in het nieuwe kaderwerk passen.

De nieuwe theorie (die zich reduceert tot de newtoniaanse mechanica in de lage-snelheidslimiet), gaat uit van twee postulaten. Het eerste postulaat eist dat de wetten van de fysica -nu echter zowel deze van de mechanica als deze van het electromagnetisme- identiek zijn voor de inertaalwaarnemers (het z.g. relativiteitsbeginsel), waardoor een einde wordt gemaakt aan de eerder vermelde conflicten tussen de mechanica en het electromagnetisme). Het tweede postulaat stelt dat de lichtsnelheid onafhankelijk is van zijn bron en dus, via het relativiteitsbeginsel, gelijk is voor alle inertaalwaarnemers. Het eerste postulaat is een natuurlijke veralgemening van het gelijknamige relativiteitsbeginsel van Galilei en Newton; het tweede postulaat is vreemd en lijkt op eerste zicht in tegenspraak met het eerste. Opdat deze twee met elkaar consistent zouden zijn moest er nooddwedongen gesleuteld worden aan de concepten van ruimte en tijd, een proces waaruit o.a. opnieuw de lorentztransformaties zouden volgen, evenals de bijhorende vreemde verschijnselen zoals de Lorentz-FitzGerald contractie van meetstaven en de tijdsdilatatie (het feit dat bewegende klokken blijkbaar ‘trager’ tikken t.o.v. een stil staande klok).

Verschillende van de ideeën en resultaten die in de theorie voorkomen waren zoals gezegd reeds eerder geformuleerd door Lorentz en Poincaré: in ‘La mesure du temps’ (1898) stelde Poincaré zich al vragen bij het concept van gelijkheid en beide postulaten waren al, los van elkaar, door Poincaré gepoogd in 1904. Samen met het feit dat Einstein’s artikel vrijwel tegelijk verschijnt met Poincaré’s uiteindelijke synthese ‘Sur la dynamique de l’électron’- heeft dit tot een zorgelijkheid geleid betreffende de originaliteit van Einstein’s bijdrage. Zowel Poincaré als Lorentz blijven echter tot in 1904 sprekken over ‘lokale tijd’ vs. klokken die de ‘echte tijd’ aangeven en die bv. toelaten om -op een absolute manier- over gelijktijdige gebeurtenissen te praten. Einstein bekijkt in Elektrodynamik bewegter Körper (juni 1905) de kwestie op een totaal nieuwe en veel diepgaander wijze, al liep de oplossing van het probleem niet van een leien dakje: in zijn autobiografie schrijft hij dat hij volle zeven jaar met het probleem geworsteld had, maar dat hij, toen hij eenmaal inzag dat het het concept van gelijkheid was dat de gordiaanse
knoopt vormde voor het ganse kluwen, het probleem in vijf weken opgelost had. De cruciale assumptie die in de galileaanse visie verborgen zit en die verantwoordelijk is voor de kaartenboek-structuur van de ruimtetijd is namelijk dat we onze klokken zonder meer kunnen synchroniseren (herinner u dat we begonnen zijn met te zeggen “laten we allemaal op een bepaald tijdstip in onze vingers knippen” ...).

Meetstokken en klokken

We bekijken daarom metingen in de ruimtetijd van wat naderbij. We zullen daarbij niet de weg van 1905 volgen, maar we geven een meer gestroomlijnde voorstelling, die achteraf bijna onvermijdelijk ook tot AR zal leiden. We beginnen met meetstaven overboord te zetten, en wel om drie redenen: ten eerste zijn (zelfs geïdealiseerde 1 dimensionale meetstaven) vanuit ruimtetijd standpunt gezien erg gecompliceerde 2-dimensionale objecten, waarvan het gebruik het gelijkzijdigheidsconcept lijkt te vereisen en ten tweede is het concept van ‘langtemeting op een gegeven tijdstip’ al evenzeer moeilijk te verwezenlijken: je moet de ene kant van de stok hier leggen (op jouw wereldlijn) en vervolgens moet je over één of ander mechanisme beschikken om de afzetting aan de andere kant naar je toe te verzenden (aangezien je bezwaarlijk je eigen wereldlijn kan verlaten door naar de andere kant te lopen). Veel eenvoudiger is het om enkel gebruik te maken van ‘klokken en spiegeltjes’. De klokken zijn geïdealiseerde klokken, allemaal werkend volgens hetzelfde fysische principe en komende uit dezelfde fabriek, die allen op hun wereldlijn ‘hun’ tijd aangeven. Natuurlijk mogen we niet zo maar om het even wat over de klokken veronderstellen. Bekijken we b.v. twee klokken A en B die zich langs verschillende banen van p naar q bewegen, dan zou de veronderstelling dat \(\Delta t_A = \Delta t_B \) toelaten om, na keuze van een willekeurige oorsprong A, de ruimtetijd opnieuw op een invariante manier op te delen in 3-d vlakken van ‘gelijke tijd’. Dit wordt niet alleen tegengesproken door experimenten, maar bovenal stelt zich de vraag waarom we deze hypothese zonder meer zouden slikken? We zullen wel veronderstellen dat de klokken voldoen aan een ‘consistentievoorwaarde’, in de zin dat de kloksnelijkheid onafhankelijk is van de voorgeschiedenis van de klok: klokken die, wanneer samengebracht, even snel lopen en vervolgens een verschillende geschiedenis doorlopen, tonen na samenbrenging eventueel een verschillende tijd, maar lopen terug even snel. Klokken zijn dus vanuit ruimtetijd standpunt gezien 1-dimensionale objecten, die op hun wereldlijn niets anders doen dan een serie getalletjes produceren. De spiegeltjes dienen enkel om lichtstralen te reflecteren, zodat we afstanden kunnen meten d.m.v. de tijd die het licht nodig heeft om heen en weer te reizen. Dit is trouwens in overeenstemming met de manier waarop (sedert 1983) de ‘meter’ gedefinieerd wordt (nl. als de afstand door het licht afgelegd in 1/299792458 seconde). Deze herdefinitie van de meter (als zijnde de lengte van de Pt-Ir-staaf) heeft trouwens om ongeveer dezelfde redenen uitgevoerd als de vervanging van de oorspronkelijke meter (gebaseerd op 1/40000 van de lengte van de meridiaan van Parijs) door de Pt-Ir-staaf: de tweed bij uitstek was in tegenstelling tot de eerste veel makkelijker te reproduceren! Omdat de meetstaaf echter onderhevig was aan omgevingsinvloeden, moesten de meetomstandigheden nauwkeurig gepreciseerd worden, wat aanleiding heeft gegeven tot achtereenvolgende aanpassingen (een eerste maal in 1889 en een tweede maal in 1927); in essentie was de meter tot op dat ogenblik dus een veelvoud van de bohrstraal, \(\hbar^2/2mc^2 \). In 1960 werd beslist de meter te baseren op het golflengte van het oranje-rode licht van Kr-86 (zodat hij voortaan bepaald werd, via de rydbergconstante, als een veelvoud van \(\hbar^3/2mc^4 \)). T.g.v. de hogere nauwkeurigheid waarmee de seconde kon worden gedefinieerd5 en de betere reproduceerbaarheid van een lengte-eenheid gebaseerd op een tijdseenheid, werd in 1983 uiteindelijk beslist om de meter te definiëren a.d.h.v. de lichtsnelheid in vacuum.

Het eerste BR-artikel wordt nog op 27 september gevolgd door een korte aanvulling van drie bladzijden -niet veel meer dan een voetnoot- ‘Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?’ waarin \(E = mc^2 \) prijkt en waarmee de geschiedenis voorgoed zou veranderen. Experimentele bevestiging van \(E = mc^2 \) komt er pas in 1916 d.m.v. de experimenten van Guye en Lavanchy waarbij de

5een caesiumklok is bovendien in principe bestand tegen versnellingen van 10^{22}g
massa van hoge-snelheid-electronen gemeten werd a.d.h.v. hun afbuiging in een magneetveld. Soortgelijke bevestiging gebeurt tegenwoordig dagelijks bij het onderzoek van het gedrag van elementaire deeltjes in deeltjesversnellers: het spectaculairst zijn de annihilatie-experimenten, waarbij de energie van bv. een positron en een electron bij botsing volledig wordt omgezet in gammastraling.

De naam ‘relativiteitstheorie’ kwam in het juni-artikel nog niet voor (al sprak Einstein al wel van het RelativPrinzip). Het was Max Planck die in 1906 naar de theorie verwees als de ‘RelativTheorie’, een benaming die door Einstein in 1907 werd overgenomen. Pas in 1915 zou hij naar de theorie verwijzen als de ‘Speciale Relativiteitstheorie’ (of de Beperkte) om het onderscheid te maken met de latere Algemene Theorie: in de beperkte theorie heeft b.v. het relativiteitsbeginsel enkel betrekking op de z.g. inertaalwaarnemers. BR is ondertussen met zeer hoge precisie geverifieerd en is niet meer weg te denken uit de theoretische fysica.

1-4 Het equivalentiebeginsel

Wat was nu precies het probleem met gravitatie? Waarom kon de tweede wet van Newton (kracht = massa × versnelling) niet zonder meer, net zoals de wetten van het electromagnetisme, in de vorm van de 1905 theorie gegoten worden? Het probleem lag bij de inertaalwaarnemers:

Laten we voor de eenvoud onderstellen dat een waarnemer in rust op aarde een inertaalwaarnemer is in Newtoniaanse betekenis. Proberen we ons nu ergens anders in het heelal, maar ver verwijderd van alle mogelijke graviterende objecten, een waarnemer voor te stellen die zich in een ruimteschip bevindt dat onderhevig is aan een versnelling van 1 g. Wanneer we deze waarnemer dezelfde experimenten laten uitvoeren, dan zullen we vaststellen dat de notities van beide exact overeenkomen. M.a.w. geen enkel experiment laat ons toe om (binnen een afgesloten labo) een onderscheid te maken tussen de Newtoniaanse inertaalwaarnemer in een gravitatieveld en de Newtoniaanse eenparig versnelde waarnemer in afwezigheid van gravitatie (alternatief experiment: wat gebeurt er met een pingpongballetje in een vallende emmer water?) en Einstein beseft dat daarmee het concept van de Newtoniaanse inertaalwaarnemer elke betekenis verliest! Dat er inderdaad geen enkel experiment bestaat dat een onderscheid tussen beide omstandigheden kan maken, is een merkwaardig feit, waarover ook Newton zich al gebogen had (hij wijdde er zelfs de openingsparagraaf van de Principia aan) en dat teruggaat tot de eigenschap dat de ‘inerti massa’ (dit is de massa die optreedt in het massa × versnelling rechterlid van Newton’s derde wet) van een voorwerp precies gelijk is aan zijn ‘gravitationele massa’ (de massa die optreedt in het linkerlid, wanneer we als kracht de gravitatiekracht m × g beschouwen). Als de verhouding van beide massa’s constant is, dan is natuurlijk a = g en bekomen we als resultaat dat de valbeweging van een object onafhankelijk is van zijn samenstelling - een eigenschap die reeds door Galilei getest was met behulp van valexperimenten6. Newton zelf had de gelijkheid van m, en mg reeds getest met een nauwkeurigheid van ongeveer 10⁻³, gebruik makend van metingen van de periode van een slinger waaraan holle (om het effect van de luchtweerstand identiek te houden) gewichten van een verschillende samenstelling bevestigd waren, maar tegen het einde van de 19de eeuw was Lorand van Eötvös er in geslaagd de gelijkheid te testen met een precisie van 10⁻⁸ (dankzij Charles Vernon Boyce’s kwartsdraden met een dikte van 2 10⁻³ mm en 9 m lengte!). Einstein ziet reeds in 1907 in dat achter de gelijkheid van deze twee -op eerste zicht aan elkaar vreemde concepten- iets diepers schuilgaat en verheft dit ogenschijnlijk onschuldige experimenteel gegeven tot een onwrikbaar beginsel van zijn nieuwe

6 dat hij het experiment vanop de toren van Pisa daadwerkelijk zou uitgevoerd hebben, staat niet met zekerheid vast
theorie. Hij postuleert dat er geen enkel experiment (niet alleen mechanisch) bestaat dat lokaal een onderscheid zou kunnen maken tussen gravitatie en versnelling en noemt dit het equivalentiebeginsel.

Met dit principe, dat tegenwoordig geverifieerd wordt met een nauwkeurigheid van 10^{-13}, wordt eigenlijk de algemene relativiteitstheorie geboren. Einstein was op basis van enkel dit inzicht al in staat om in een vroeg stadium voorspellingen te maken over de gravitationele roodverschuiving, die zegt dat de golflengte van licht dat uit een gravitatiepotential klint (en bv. van een ster naar ons toekomt) zal groter worden. Een gelijkaardig fenomeen is dat klokken in een gravitatieveld ‘trager gaan lopen’ (zie p.128 voor de correcte interpretatie van deze populaire, maar betwistbare, uitspraak). De roodverschuiving werd voor het eerst bevestigd in het experiment van Pound & Rebka (Harvard, 1960) en Pound & Snider (1964); de gravitationele ‘klokvertraging’ werd eveneens bevestigd in het experiment van Hafele & Keating; een van de nauwkeurigste bevestigingen van de ‘klokvertraging’ wordt geleverd door het Vessot-Levine experiment (1976) waarbij een rakettot op een hoogte van 10000 km gebracht werd, waarna een H-maser-klok in de rakettot vergelijken werd met een gelijkvaarde H-maser op aarde; het effect speelt trouwens er toen nog geen experimentele gegevens, want hij zat er 50% naast: de andere helft van de afbuiging, die door Eddington in 1919 zal waargenomen worden, is te wijten zijn aan de kromming van de ruimte, en daarmee was Einstein in 1907 nog lang niet klaar!

1-5 Gekromde ruimten

Riemann

Waarom duurt het van 1907 tot 1915 vooraleer de theorie haar finale vorm krijgt? Wel, er was natuurlijk een probleem met dat nieuwe beginsel, dat zei dat alle wetten van de fysica er hetzelfde moeten uitzien voor alle waarnemers: een testdeeltje in een gravitatieveld (of zelfs voor een versnelde waarnemer) beweegt nu eenmaal ‘duidelijk’ anders dan een testdeeltje in de afwezigheid van gravitatie. Willen we dat beide deeltjes op zo iets als ‘een rechte’ bewegen, dan moeten we sleutelen aan de geometrie van ruimte en tijd. Maar daarmee moest Einstein opboksen tegen de intuïtie dat ruimte (of ruimtetijd) ‘vlak’ waren, een intuïtie die er bij iedereen – ook bij hemzelf – diep ingeprent zat.

Natuurlijk wisten wiskundigen al in het einde van de 19de eeuw dat er naast de bekende vlakke meetkunde van Euclides nog andere meetkundes bestonden. Gauß, Bolyai en Lobachevsky hadden al in de eerste helft van de 19de eeuw aangetoond dat er wel degelijk andere meetkundes mogelijk waren, waarin het vijfde postulaat van Euclides niet geldig was, terwijl Bernhard Riemann in 1854 had aangetoond dat begrippen als punten, rechten en vlakken zelfs niet nodig zijn om meetkunde te bedrijven: het volstond om abstracte objecten (zgn. manifolds of differentiaalvariëteiten, ‘mehrfach aussgedehnte Grössen’) die op bepaalde wijze te associëren zijn aan n-tupels van reële getallen en voorzien zijn van iets wat een ‘metrische structuur’ werd genoemd.

Riemann boog zich nu niet alleen maar over mathematische abstracties, maar ook over de fysische ruimte als arena voor fysische objecten en bewegingen. Riemann’s Raum was van vlees en bloed, het was ‘der Raum’! Dit blijkt duidelijk uit de lezing (Über die Hypothesen welche der Geometrie zu Grunde Liegen) die hij in 1854 gaf n.a.v. zijn Habilitation aan de universiteit van Göttingen, waarin hij o.a. de vraag stelt hoe we kennis kunnen verwerven over de ware geometrie van de ruimte! Hier zien we de kiem van een nieuwe gedachte ontstaan, namelijk dat meetinstrumenten wel eens een ontologische rol zouden kunnen spelen bij het bepalen van de geometrie van de ruimte! Hiermee ging Riemann lijnrecht in tegen de tot dan gangbare opvattingen. Over de fysische ruimte bestond er in de 19de eeuw immers weinig twijfel. Er mochten dan misschien wel alternatieve wiskundige meetkundes bestaan, maar m.b.t. de fysische ruimte heerste nog steeds het standpunt dat de ruimte een container

5 dit effect was op basis van een corpusculair lichtmodel al eerder voorspeld door Soldner in 1881
6 de uiteindelijke versie van de veldvergelijkingen ziet pas het licht in Einstein’s vierde lezing in de Prussische Academie, op 25.11.1915

10
is voor fysische objecten en een podium waarop het schouwspel van de fysica zich afspeelt. Beide containers, Ruimte en Tijd, beschikten elk over een intrinsieke metrische structuur (de euclidische) die niet afhankt van het al dan niet bestaan van goede meetstaven en klokken. Meetinstrumenten speelden volgens deze doctrine dus hooguit een epistemologische rol bij het bepalen van deze structuur!

von Helmholtz en Poincaré

Riemann sterft echter aan tuberculose in 1866 en twee jaar na zijn dood verschijnt er een ander werk op het Europees podium, van de hand van Hermann von Helmholtz. De titel zegt genoeg: ‘Über die Thatsachen die der Geometrie zu Grunde Liegen’ en de gevolgen zullen tot in het begin van de 20ste eeuw voelbaar blijven. Von Helmholtz had een merkwaardige carrière doorlopen: hij heeft eerst geneeskunde gestudeerd en is begonnen als chirurg in het Pruisische leger, waar zijn belangstelling voor wetenschappelijk onderzoek vorm kreeg. Vervolgens doceerde hij anatomi in Heidelberg, waar hij met ‘Die Lehre von den Tonempfindungen als physiologische Grundlage f¨ur die Theorie der Musik’ de grondslag legt voor de psycho-acoustiek en als eerste een fysische onderbouw formuleert voor de muziektheorie. Een ander standaardwerk, waarin we de fundamente herkennen van zijn later geometrisch werk, is het *Handbuch der Physiologischen Optik*. Vervolgens wordt hij professor fysica in Berlijn, waar hij o.m. als studenten Planck, Hertz en Eötvös heeft. Helmholtz was een intellectuele reus en als hij sprak werd er geluisterd ...

In de ‘Tatsachen’ vertrekt hij van het standpunt (ook door Riemann en later door Einstein benadrukt) dat vrij transporteerbare meetstaven inderdaad nodig zijn om metrische relaties te kunnen definiëren en verheft de vaste meetstaf daarmee tot een Kantiaans a priori. Vervolgens toont hij hoe uit het bestaan van dergelijke objecten een geometrie volgt waarvan de kromming in elk punt constant is! Het uitgangspunt van Helmholtz’ bewijs, nl. de vrije transporteerbaarheid van *driedimensionele* vaste meetstaven, was fout, maar het gewicht van zijn argumenten is zo groot dat vrijwel iedereen in het eerste decennium van de 20ste eeuw van overtuigd blijft dat de ‘ware geometrie’ van de ruimte de euclidische is.

Deze indruk wordt vreemd genoeg versterkt vanuit een totaal andere invalshoek, namelijk de conventionele school van Poincaré, die de zinleiding van de ‘ware geometrie’ benadrukt, zolang we deze loskoppelen van de noodzakelijke afspraken (conventies) m.b.t. de gebruikte meetinstrumenten. Ook Einstein is zich bewust van de conventionele geladenheid van zijn ‘vaste meetstaven’ en ‘ideale klokken’, maar Poincaré gaat een stap verder door te poneren dat natuurkundigen altijd gebruik zouden kunnen maken van de euclidische meetkunde (i.e. van een vlakke achtergrondgeometrie) door hun meetinstrumenten op de gepaste manier aan te passen.

Einstein poogt, net als vele anderen in die zelfde periode, eerst om een gravitatietheorie te construeren op een vlakke achtergrondgeometrie, maar beslist uiteindelijk, na een lange zoektocht, om het gravitatieveld te identificeren met de metrische structuur van de ruimtetijd, waarvan de eigenschappen te ontdekken zijn door gebruik te maken van ideale (1-dimensionele!) vrij transporteerbare meetstaven en klokken. Tegemoet worden meetstaven geweerd uit de fundamente van de theorie: zoals eerder beschreven volstaat het om enkel klokken te gebruiken, in combinatie met een aantal aannames betreffende het gedrag van lichtsignalen. Kort samengevat komt het er op neer dat de causale structuur (de ‘lichtkegelstructuur’) van de ruimtetijd de metrik bepaalt op een conforme factor na. Deze conforme factor kan vervolgens in elk punt bepaald worden d.m.v. een –bij conventie aangenomen! – vrij transporteerbare tijdseenheid (geleverd door een ideale klok). Als alternatief kan de conforme factor ook bepaald worden (zonder op ideale klokken te steunen!) door te eisen dat geprefereerde families van wereldlijnen (namelijk van de vrij vallende neutrale, niet-roterende testdeeltjes) op geodeten bewegen (Ehlers, Pirani, Schild 1972).

Doorbraak

De theorie was niet meteen een succes, in de eerste plaats omdat ze haar tijd ver vooruit was en omdat er experimenteel nauwelijks ondersteuning voor bestond. In 1916 werden er drie voorspellingen
door de theorie gemaakt: 1) de z.g. gravitationele roodverschuiving of vertraging van klokken in een
gravitatieveld (zie hoger), waarvoor de benodigde technieken in 1916 vollagen ontoereikend waren 2)
de z.g. precessie van de baan van Mercurius met een snelheid van 43” per eeuw, een resultaat dat
perfect klopte met het kleine deficit dat astronomen bleven waarnemen na aftrek van alle mogelijke
invloeden van bekende planeten, maar dat ook kon verklaard worden door het invoeren van nieuwe
objecten in het zonnestelsel en 3) de voorspelling dat lichtstralen in hun baan nabij de zon zouden wor-
den afgebogen, waarvoor evenmin enige bevestiging bestond (het betrof slechts een hoekje van 1.75”).
Een obstakel voor de verspreiding van de nieuwe theorie was ook het feit dat Einstein in 1916 aan de
verkeerde kant van de frontlinie zat. Internationale wetenschappelijke contacten stonden op een laag
pitje, tijdschriften werden niet meer naar Duitsland verzonden, Duitse en Oostenrijkse onderzoekers
waren van de ledenlijsten geschrapt van bv. de Royal Society enz. Vanuit het neutrale Nederland zendt
echter Willem de Sitter, die later een belangrijke rol zal spelen in de kosmologische toepassingen van
AR, een kopie van zijn versie naar zijn vriend Arthur Eddington, hoofd van het Cambridge Observatory.
Eddington was niet alleen een van de weinige astronomen die toen vertrouwd waren met de differentiaalmeetkunde, maar was bovendien Quaker en pacifist (hij belandt in 1918 bijna in de gevangenis
wegen dienstweigering) en overtuigd van de rol die de wetenschap kon spelen bij het helen van de
oorlogswonden. Hij realiseerde zich dat er een zonsverduistering op komst was (29 mei 1919) waarbij
de zon zich vlak voor de Hyades sterrencluster zou bevinden, wat een nauwkeurige fotografering van
het door Einstein voorspelde effect kon mogelijk maken. Er vertrokken twee expedities: Eddington
naar Principe (W. Afrika) en Crommelin naar Sobral (Brazilie), waarbij de metingen van de laatste
mislukten t.g.v. een optisch defect in de telescopen. Eddington’s waarnemingen klopten echter perfect
met de voorspelling van AR en het was met het nodige gevoel voor drama dat hij op 6 november 1919
in het tot de nok gevulde gebouw van de Royal Society op Piccadilly kon aankondigen dat zijn expeditie
de cruciale test tussen Newton en Einstein had beslecht in het voordeel van Einstein. Voor de na-
oorlogse media was het aangekondigd nieuws van deze Duitse wetenschapper, wiens theorie bevestigd
werd door een Brit, een ideale kluit en van de ene dag op de andere wordt Einstein gekatapulteerd
tot internationale beroemdheid en krijgt hij voorgoed het aureool dat hem vandaag nog steeds omringt.

Ondanks het wereldwijde succes van 1919 zou de algemene theorie stagneren na 1920. Reden is zonder
meer dat met AR Einstein zijn tijd ver vooruit was en het zou tot ongeveer 1960 duren vooraleer ze
nieuw leven wordt ingeblazen door een ganse reeks van nieuwe precisie-experimenten en door allerhande
theoretische ontwikkelingen.
Hoofdstuk 2

Beperkte Relativiteitstheorie

2-1 Inleiding

Terugkijkend op de geschiedenis van de relativiteitstheorie, de beperkte zowel als de algemene, zijn we vandaag vooral onder de indruk van de elegantie van de algemene theorie, die ontegensprekelijk Einstein’s grootste intellectuele tour de force blijft. Sommige auteurs gaan echter verder en laten doorschemeren dat de geboorte van de beperkte theorie, in tegenstelling tot de algemene theorie, een historisch onvermijdelijke ontwikkeling was binnen de natuurkunde, die ook wel zonder Einstein tot stand zou zijn gekomen. Ik ben het hiermee niet helemaal eens. De conceptuele sprong van een positief definierte metriek naar een niet-positief-definiete is m.i. van een fundamenteel andere aard dan de veralgemening van een lokaal vlakke naar een lokaal gekromde ruimte.

Wat was er aan de hand? Op het einde van de 19de eeuw werd de newtoniaanse mechanica met zware problemen geconfronteerd. De in 1864 door Maxwell opgestelde vergelijkingen voor het elektromagnetisme\(^1\),

\[
\nabla \cdot \vec{E} = 4\pi \rho,
\nabla \cdot \vec{H} = 0,
\n\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{H}}{\partial t},
\n\nabla \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{E}}{\partial t} + 4\pi \vec{j} \right),
\]

waren niet invariant onder de galileitransformaties, zodat Maxwell’s theorie van het elektromagnetisme onverenigbaar leek met het relativiteitsbeginsel. Dit beginsel zegt dat de wetten van de fysica voor alle inertiële waarnemers identiek moeten zijn: Einstein zag in dat deze schijnbare onverenigbaarheid verband hield met een derde —verborgen en algemeen aanvaarde— hypothese, namelijk dat het mogelijk is om van elk tweetal gebeurtenissen te beslissen of ze al dan niet gelijktijdig zijn. Dit geniale inzicht kan pas ten volle geapprecieerd worden, als we in gedachten houden dat op dat ogenblik het minkowskiaanse wereldbeeld nog totaal afwezig was. We beginnen daarom met een overzicht van de beperkte theorie, zonder ab initio te vertrekken met de structuur van een 4-dimensionale minkowski ruimtetijd. We zullen proberen om aan de hand van enkele eenvoudige gedachtenexperimenten deze structuur (i.h.b. de lorentztransformaties) terug op te bouwen. Terzijde merken we op dat reeds in

\(^1\)in gauß-cgs eenheden
1881 door Voigt een stelsel van transformaties ontdekt werd,

\[t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[y' = y, \]
\[z' = z, \]

waaronder Maxwell’s vergelijkingen wél invariant waren! Dit stelsel van transformaties werd in het begin echter bekeken als een mathematische curiositeit en kreeg slechts achteraf zijn huidige respectabele status, na geëvolueerd te zijn tot één van de mathematische fundamente van de relativiteitstheorie. In plaats van dus aan de maxwellvergelijkingen te sleutelen en ze aan te passen aan het galileiaanse wereldbeeld, zette Einstein dit wereldbeeld opzij en gaf Maxwell’s elektrodynamica een sleutelpositie in de nieuwe theorie. Aan de basis van de theorie lag het *relativiteitsbeginsel*:

1. de wetten van de dynamica, zowel als van het elektromagnetisme, nemen dezelfde vorm aan voor een geprivilegeerd stelsel van waarnemers, de z.g. inertiële waarnemers
2. de snelheid van het licht in vacuum is dezelfde voor alle inertiële waarnemers².

In wat volgt leggen we de nadruk op een aantal theoretische aspecten van de beperkte theorie, die in de rest van de cursus nog aan bod komen. Er wordt niet ingegaan op experimenten (Michelson-Morley, ..) of fysische effecten (Doppler, aberratie, Compton,..), die enerzijds voldoend gekend zijn uit de cursussen natuurkunde en anderzijds ook van weinig belang zijn voor de hierop volgende hoofdstukken.

2-2 Lorentztransformaties

Laten we twee inertiële waarnemers A en A’ bekijken, uitgerust met identieke klokken, waarbij A’ zich met constante snelheid v verplaatst langs de x-as van A. Beide waarnemers synchroniseren hun klokken, zodat \(t = t' = 0 \) op het ogenblik dat ze samenvallen.³

Veronderstel nu dat A op tijdstip \(t_1 \) een lichtsignaal zendt naar A’: A’ ontvangt dit op \(t_2' \) en zendt het terug naar A, die het gereflecteerde signaal ontvangt op \(t_3 \). Omwille van de symmetrie van het experiment (elke waarnemer ziet de andere zich met dezelfde snelheid verwijderen en de lichtsnelheid is voor beide waarnemers gelijk) moet een functie \(f \) bestaan zodat \(t_2' = f(t_1) \) en \(t_3 = f(t_2') \), m.a.w. \(f \circ f(t_1) = t_3 \). Kent nu A aan de gebeurtenis, of event, P de coördinaten \((t, x) \) toe, dan is \(t_1 = t - \frac{x}{c} = t(1 - \frac{v}{c}) \) en \(t_3 = t + \frac{x}{c} = t(1 + \frac{v}{c}) \), zodat met de constante \(k \) gedefinieerd door

\[k = \sqrt{\frac{1 + v/c}{1 - v/c}} \]

(2-2.1)

voor alle \(t_1 \) geldt dat

\[f \circ f(t_1) = k^2 t_1 \]

(2-2.2)

Men kan aantonen dat de enige oplossing van deze functionele vergelijking (voor continu differentieerbare \(f \)) gegeven wordt door

\[f(t) = kt, \]

(2-2.3)

³De hier gevolgde manier om de Lorentztransformaties te introduceren is te danken aan G.J. Whitrow en werd vooral gepopulariseerd door H. Bondi.
Oefening: bewijs dit!

Beschouwen we vervolgens een gebeurtenis E die niet gelegen is op de wereldlijn van A of A': A en A' kennen door middel van lichtsignalen, uitgezonden en ontvangen op de respectievelijke tijdstippen $t - x/c$, $t + x/c$, $t' - x'/c$, $t' + x'/c$, aan E de coördinaten (t, x) resp. (t', x') toe. Zoals hiervoor aangetoond, geldt dan

$$t_2' \equiv t' - x'/c = k(t - x/c) \equiv kt_1,$$

$$t_3 \equiv t + x/c = k(t' + x'/c) \equiv kt_3',$$

waaruit we, m.b.v. 2-2.1 de $1+1$ dimensionale lorentztransformaties bekomen:

$$t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}},$$

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}. \quad (2-2.5)$$

Noteer dat de inverse transformatie van 2-2.5 gegeven wordt door v te vervangen door $-v$ en dat voor $|v| << c$ de galileitransformaties ($t' = t$ en $x' = x - vt$) bekomen worden.

Vanaf nu werken we in eenheden waarvoor $c = 1$ en stellen we $\gamma = (1 - v^2)^{-1/2}$. Er geldt dan

$$t' = \gamma(t - vx),$$

$$x' = \gamma(x - vt). \quad (2-2.6)$$

Het is duidelijk dat deze transformaties een 1-parameter-groep vormen. Immers, als

$$t' - x' = k_{12}(t - x),$$

$$t' + x' = k_{12}^{-1}(t + x)$$
Hiermee bekomen we onmiddellijk de additiewet van snelheden: stellen we \(k_{ij} = \sqrt{1 + v_{ij}^2} \) enz., dan volgt dat
\[
v_{13} = \frac{v_{12} + v_{23}}{1 + v_{12}v_{23}}.
\] (2-2.8)

Tevens volgt uit \(t' - x' = k(t - x) \), \(t' + x' = k^{-1}(t + x) \), \(y' = y \) en \(z' = z \) dat de uitdrukking
\[
-t^2 + x^2 + y^2 + z^2
\] (2-2.9)
dezelfde is voor alle inertiële waarnemers \(F \) en \(F' \), die op \(t = t' = 0 \) samenvallen op \(x = x' = 0 \) en die t.o.v. elkaar éénparig bewegen langs de \(x \)-as. Vermits echter \(x^2 + y^2 + z^2 \) invariant is onder rotaties, is dit te veralgemenen tot \textit{willekeurige} inertiële waarnemers die op \(t = t' = 0 \) samenvallen. We noemen daarom 2-2.9 een \textit{lorentzinvariant}: als twee inertiële waarnemers, die op \(t = t' = 0 \) samenvallen, aan een gebeurtenis \(E \) de coördinaten \((t, x, y, z)\), resp. \((t', x', y', z')\) toekennen, dan geldt dat
\[
-t'^2 + x'^2 + y'^2 + z'^2 = -t^2 + x^2 + y^2 + z^2.
\] (2-2.10)
We beschouwen vervolgens waarnemers A en A', met wereldlijnen die mekaar niet noodzakelijk snijden op $t = t' = 0$, en die aan twee gebeurtenissen E_1 en E_2 coördinaten (t_1, x_1, y_1, z_1), (t_2, x_2, y_2, z_2) resp. (t'_1, x'_1, y'_1, z'_1) en t'_2, x'_2, y'_2, z'_2 toekennen. Door middel van translaties van de oorsprong zijn deze waarnemers te associëren met waarnemers \tilde{A}_1 en \tilde{A}_2, die aan E_1 en E_2 de coördinaten $(0, 0, 0, 0)$, $t_2 - t_1, x_2 - x_1, y_2 - y_1, z_2 - z_1$ resp. $(t'_2 - t'_1, x'_2 - x'_1, y'_2 - y'_1, z'_2 - z'_1)$ toekennen, zodat t.g.v. voorgaande opmerking

\begin{align*}
- (t_2 - t_1)^2 + (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \\
= - (t'_2 - t'_1)^2 + (x'_2 - x'_1)^2 + (y'_2 - y'_1)^2 + (z'_2 - z'_1)^2
\end{align*}

een invariant is voor alle inertiële waarnemers.

De invariant 2-2.11 heeft dus een duidelijke fysische betekenis:

De eigentijd $\Delta \tau$ verlopen tussen de gebeurtenissen E_1 en E_2 is precies de tijd aangeduid door de klok van een inertiële waarnemer F (die zijn klok zó heeft afgesteld dat $t = 0$ in E_1) op het ogenblik dat hij samenvalt met E_2:

\begin{equation}
\Delta \tau^2 = \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2.
\end{equation}

2-3 Minkowskidiagrammen

Uit vorige paragraaf volgt dat het oppervlak

\begin{equation}
-t^2 + x^2 + y^2 + z^2 = 0
\end{equation}

een belangrijke rol speelt in de beperkte relativiteitstheorie. Dit is de z.g. lichtkegel in de oorsprong O en is de verzameling van de punten die uit O bereikbaar zijn m.b.v. lichtsignalen (immers licht heeft snelheid 1, zodat $t = (x^2 + y^2 + z^2)^{1/2}$). We stellen de lichtkegel gewoonlijk voor door één dimensie weg te laten: noteer dat de raaklijnen aan de wereldlijnen van testdeeltjes steeds een hoek $< 45^\circ$ maken met de t-as (want $|v| < 1$)! Een nog eenvoudiger voorstelling bekomen we door twee dimensies weg te laten.

De resulterende 1+1 dimensionale minkowskidiagrammen zijn dikwijls nuttig om causale verbanden te illustreren. In het voorbeeld van fig. 2.4 is het duidelijk dat voor de waarnemer $F(t, x)$ de drie gebeurtenissen E_1, E_2 en E_3 volgen op de gebeurtenis O. Voor de waarnemer $F'(t', x')$ gaat E_3 echter

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{lightcone.png}
\caption{lichtkegel}
\end{figure}
\footnote{met x, y, z, t coördinaten toegekend door een inertiële waarnemer, zoals beschreven in voorgaande paragraaf}
aan O vooraf. Er bestaat dus geen causaal verband tussen O en E₃ (of O en E₂), maar wel tussen O en E₁: hoe snel F' zich ook beweegt, steeds zal E₁ zich binnen de z.g. toekomstige lichtkegel van O bevinden. We zeggen daarom dat O causaal aan E₁ voorafgaat, dat E₁ in de causale toekomst van O ligt, of dat O in het causaal verleden van E₁ ligt (dat OE₁² < 0 is duidelijk een invariante uitspraak).

Enige voorzichtigheid bij het ‘lezen’ van minkowski-diagrammen is nodig. Bekijk bv. de inconsistentie die ontstaat bij de ‘aanschouwelijke’ voorstelling van de fitzgerald-lorentz-contractie in figuur 2.5. De waarnemer A' beweegt met snelheid v t.o.v. waarnemer A en figuur (a) suggereert (terecht) dat l < l'. Figuur (b) (getekend vanuit het gezichtspunt van A') daarentegen suggereert dat l < l'. Oorzaak is te zoeken in het feit dat de standaard metrische relaties van ons blad papier geen correcte weergave leveren van de pseudometrische relaties in de minkowskiruimte.

Om uit beide diagrammen de correcte conclusie te trekken, moeten zowel l als l' in elke figuur vergeleken worden met de lengtes van de eenheidsvectoren eₓ en eₓ': deze zijn te bekomen door de doorsnede te bepalen van de hyperboelen x² − t² = x'² − t'² = 1 met de rechten t = 0 resp. t' = 0. In beide diagrammen vinden we dan dat l/OA = 1 < l'/OA': zie figuur 2.6.

Er wordt soms beweerd dat de beperkte relativiteitstheorie zich enkel zou lenen tot de beschrijving van waarnemingen voor onderling eenparig bewegende waarnemers. Dit is echter niet het geval! Bekijk bv. een deeltje dat zich met veranderlijke snelheid v = dx/dt verplaatst langs de x-as van een inertiële waarnemer F. We definiëren dan de eigentijd, gemeten door een klok die met het deeltje meebeweegt, door te postuleren dat deze klok op elk tijdstip P ‘even snel tikt’ als de klok van een inertiële waarnemer F' die in P met het deeltje ogenblikkelijk meebeweegt:

we stellen dus dτ/dτ' = 1, zodat m.b.v. 2-2.12

\[\frac{d\tau}{dt} = \frac{d\tau'}{dt'} = (1 - v^2)^{1/2} \]

\[j_P = \frac{d^2x'}{dt'^2}|_P = \frac{dv'}{dt'}|_P. \]

dat een ideale fysische klok gehoorzaamt aan deze eigenschap en dus ongevoelig is voor de lokale versnelling is een ver-reikende hypothese, waarvan de draagwijdte pas in volgend hoofdstuk zal duidelijk worden; we beklemtonen het adjectief ‘ideale’, aangezien echte klokken wel degelijk gevoelig zijn voor lokale versnellingen (dit laatste is echter eerder een technisch dan een fysisch probleem!)
Om j_P uit te drukken in functie van v en zijn afgeleiden naar t is enige voorzichtigheid nodig: we voeren eerst een inertiële waarnemer F'' in, die met snelheid w beweegt t.o.v. F en voor wie het deeltje beweegt met veranderlijke snelheid $v'' = \frac{dx''}{dt''}$. Dan is $v = \frac{dx}{dt} = \frac{v'' + w}{1 + v''w}$ en dus $\frac{dv}{dt} = \frac{(1-w^2)}{1+(v''w)^2} \frac{dv''}{dt''}$. Laten we F'' en F' samenvallen in P, dan is $v'' = v' = 0$ en $\frac{dv''}{dt''} = \frac{dv'}{dt'} = j_P$, zodat (in P)

$$\frac{dv}{dt} = (1-v^2)j(1-v^2)^{1/2}$$

en dus

$$j = \frac{d}{dt \left(\frac{v}{(1-v^2)^{1/2}} \right)}.$$ \hspace{2cm} (2-3.4)

Mits invoering van de viersnelheid (zie ook paragraaf 2.5) definieert $u^i = \frac{dx^i}{dt} = v^i \frac{dt}{d\tau}$ (zodat $u^i u_i = -1$), laat deze uitdrukking zich in het algemeen herschrijven als

$$j^\alpha = \frac{du^\alpha}{dt} = a^\alpha \frac{d\tau}{dt},$$ \hspace{2cm} (2-3.5)

we gebruiken voortaan griekse letters voor ruimtelijke indices, terwijl latijnse letters over de indices 0, 1, 2, 3 lopen.
waarbij \(a^i = u^j u^l = \frac{du^i}{d\tau} \) de componenten zijn van de *relativistische versnellingsvector*. M.a.w. er geldt
(vergelijk ook met \(u^\alpha = \gamma v^\alpha \))
\[
a^\alpha = \gamma j^\alpha. \tag{2-3.6}
\]

Oefening: toon aan dat een deeltje, dat vanuit rust vertrekt in \((t = 0, x = 0)\) en dat onderhevig is aan een *constante* versnelling \(j \) langs de \(x \)-as, voldoet aan
\[
\begin{align*}
t &= \frac{1}{j} \sinh(j \tau), \\
x &= \frac{1}{j} (\cosh(j \tau) - 1)
\end{align*} \tag{2-3.7}
\]

en dus nooit sneller zal bewegen dan het licht! Noteer echter wel dat dit *niet* impliceert dat lichtsigna len dit deeltje steeds kunnen ‘inhalen’: i.h.b. kan vanuit het gecar ceerde deel van figuur 2.8 geen communicatie naar het deeltje plaats hebben! We noemen de rechte \(t = x + 1/j \) daarom een *event horizon*\(^7\).

\(^7\)zie ook hoofdstuk 13-4
Wereldlijn van een niet-éénparig bewegend deeltje

Wereldlijn van een waarnemer voor wie het deeltje ogenblikkelijk in rust is in P

Figure 2.7: eigentijd voor versnellende waarnemer

Figure 2.8: event horizon voor een versnelde waarnemer

2-4 Minkowskimetriek

We keren opnieuw terug naar 2-2, waar we aantoonden dat in de omgeving van elk punt O op invariante wijze een afbeelding $\Phi : M \rightarrow \mathbb{R}$ kan gedefinieerd worden, door voor een willekeurig inertieel referentiestelsel $\Phi(t, x, y, z)$ te bepalen als

$$\Phi(t, x, y, z) = -t^2 + x^2 + y^2 + z^2.$$ \hspace{1cm} (2-4.1)

Deze afbeelding voldoet (voor willekeurige coördinaten x'^i) aan

$$\frac{\partial \Phi}{\partial x'^i} \bigg|_0 = 0$$ \hspace{1cm} (2-4.2)

sommige auteurs noemen Φ de wereldfunctie
en laat toe een bilineaire afbeelding \(g \) te construeren

\[
g : T^1_0(M) \times T^1_0(M) \to \mathbb{R} : (u, v) \mapsto g(u, v) = \frac{1}{2} \frac{\partial^2 \Phi}{\partial x^i \partial x^j} u^i v^j.
\]

(2-4.3)

Toon aan (oefening!), m.b.v. 2-4.2, dat deze definitie onafhankelijk is van de gebruikte coördinaten. Kiezen we i.h.b. voor \(x^i \) de inertiële coördinaten \(t, x, y, z \), dan reduceert 2-4.3 zich tot

\[
\mathbf{u} \cdot \mathbf{v} := g(\mathbf{u}, \mathbf{v}) = \eta_{ij} u^i v^j
\]

met

\[
\eta = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]

(2-4.5)

\(g \) is dan duidelijk een lorentzmetriek (zie ook 6-1). We noemen \(g \) de minkowski metrische tensor of de minkowskimetriek. In inertiële coördinaten \(x^i \) geldt dus

\[
g = \eta_{ij} dx^i \otimes dx^j,
\]

wat ook genoteerd wordt als

\[
ds^2 = \eta_{ij} dx^i dx^j
\]

(2-4.6)

(2-4.7)

(het linkerlid wordt in overeenstemming met 2-2.12 vaak ook genoteerd als \(-d\tau^2 \)).

M.b.v. de minkowskimetriek kunnen vectoren \(x \) ingedeeld worden in klassen van tijdachtige, ruimteachtige en nulvectoren, al maargelang \(x . x < 0, > 0 \) of = 0.

Een belangrijke vector is de (vier-)snelheid \(u \) van een deeltje met wereldlijn gegeven door \(x^i = x^i(\tau) \). Deze vector heeft componenten \(u^i = \frac{dx^i}{d\tau} \), met \(d\tau = dt \sqrt{1 - v^2} \), \(v^2 = |\mathbf{v}|^2 \) en \(\mathbf{v} = \left(\frac{dx^1}{dt}, \frac{dx^2}{dt}, \frac{dx^3}{dt} \right) \) (\(\tau \) is de eigentijd langs de wereldlijn van het deeltje) en voldoet dus aan \(u^2 = \mathbf{u} . \mathbf{u} = -1 \).

In wat voorafging hebben we de metrische structuur van de minkowskiruimtetijd \(g \) deduceerd uit de (fysische) postulaten van de beperkte relativiteitstheorie. Cruciaal hierbij was de rol die werd gespeeld door de bijzondere klasse van inertiële waarnemers, die toelieten om de functie \(\Phi \) te bepalen.

Een alternatieve, meer mathematische, benadering \(g \) deduceert de lorentztransformaties en het bestaan van de klasse van inertiële waarnemers uit de volgende postulaten:

1. De minkowskiruimtetijd \((M, g) \) is een 4-dimensionale differentiaalvariëteit, voorzien van een vlakke lorentzmetriek \(g \) (i.e. \(\nabla_c g_{ab} = 0 \) en \(R^a_{\ bcd} = 0 \)).

2. Langs elke (!) tijdachtige kromme is een parameter \(\tau \) gedefinieerd door \(d\tau^2 = -g_{ij} dx^i dx^j \). Deze parameter is de eigentijd, gemeten door ideale klokken die langs deze krommen bewegen.

3. In \((M, g) \) bestaan twee geprivilieerde klassen van krommen: dit zijn de tijdachtige geodeten (de ‘wereldlijnen van vrije, massieve, deeltjes’) en anderzijds de nulgeodeten (de ‘wereldlijnen van fotonen’).

Er bestaan dan steeds lokale coördinaten waarin \(g_{ij} = \eta_{ij} \) en waarin deze bijzondere wereldlijnen gegeven zijn door \(x^0 = t, x^\alpha = v^\alpha t + a^\alpha \), met \(a^\alpha \) en \(v^\alpha (\alpha = 1, 2, 3) \) constanten en met \(v^2 := \sum_\alpha (v^\alpha)^2 < 1 \) of = 1.

\(^9 \)zie ook par. 5-5
We kunnen vervolgens aantonen dat de isomorfismen van de minkowskiriemtijd precies gegeven zijn door de inhomogene lorentztransformaties. Het klassieke bewijs verloopt als volgt: invariantie van $\eta_{ij}\mathrm{d}x^i\mathrm{d}x^j$ onder de coördinatentransformaties $x' = x'(x)$ betekent dat

$$\eta_{ij}\frac{\partial x'^i}{\partial x^m}\frac{\partial x'^j}{\partial x^m} = \eta_{lm}. \quad (2-4.8)$$

Partieel afleiden van deze betrekking naar x^n levert, na cyclisch permuteren van l, m en n en het nemen van enkele lineaire combinaties, dat

$$\eta_{ij}\frac{\partial^2 x'^i}{\partial x^n\partial x^l}\frac{\partial x'^j}{\partial x^m} = 0. \quad (2-4.9)$$

Onderstellen we dat de jacobiaan van de transformatie verschillend van 0 is, dan reduceert dit zich tot $\frac{\partial^2 x'^i}{\partial x^n\partial x^l} = 0$, zodat constanten L^i_j en a^i bestaan waarvoor $x'^i = L^i_j x^j + a^i$ of $x^i = L^i_j x^j + b^i$. De fysische betekenis van de coëfficiënten volgt door een referentiestelsel (x^α', t') te beschouwen, waarin een deeltje, dat met snelheid \vec{v} beweegt t.o.v. (x^α, t), in rust is: dan is $dt = L^0_{\alpha'} dt'$ en $\mathrm{d}x^\alpha = L^\alpha_{\alpha'}\mathrm{d}t'$, zodat $L^0_{\alpha'} = \gamma$ en $L^\alpha_{\alpha'} = \gamma v^\alpha$.

Voor een ‘moderener’ bewijs bepalen we eerst de generatoren van deze isomorfismen, namelijk de oplossingen van de killingvergelijkingen $X_{(i,j)} = 0$ in de minkowskiriemtijd: zie p. 113.

De verzameling van alle lorentztransformaties heeft duidelijk een groepsstructuur, voor $a^i \neq 0$ de poincarégroep of de inhomogene lorentzgroep genoemd. Voor $a^i = 0$ bekomen we de homogene lorentzgroep. Een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrices L^i_j waarvoor $\det L^i_j = +1$ en $L^0_{0'} \geq 1$ (noteer dat $-1 = \eta_{00} = \eta_{ij}L^i_0 L^0_{j'}$ impliciet dat $(L^0_{0'})^2 = 1 + \sum_{\alpha'=1}^3 (L^\alpha_{0'})^2 \geq 1$). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatiebehoudend zijn en (2) toekomstgerichte vectoren afbeelden op toekomstgerichte vectoren: $\mathbf{u} L \mathbf{u} < 0$ voor alle tijdachtige \mathbf{u}. Eigenlijke lorentztransformaties die de tijdzijds behouden $(L e_0 = e_0)$ vormen precies de speciale rotatiegroep $SO(3,\mathbb{R})$. Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden $(\mathbf{e}_0, \mathbf{e}_a)$ en $(\mathbf{e}_{0'}, \mathbf{e}_{a'})$ kunnen we immers eerst \mathbf{e}_0 op $\mathbf{e}_{0'}$ afbeelden d.m.v. een boost, om vervolgens de tetrad $(\mathbf{e}_{0'}, \mathbf{e}_{a'})$ d.m.v. een rotatie af te beelden op $(\mathbf{e}_{0''}, \mathbf{e}_{a''})$.

N.B. In al wat voorafging werd stilzwijgend aangenomen dat de globale topologie van de minkowskiriemtijd gegeven is door de standaardtopologie van \mathbb{R}^4. Identificeren we hierin echter bv. de $t = \pm 1$ hypervlakken, dan ontstaat een lokaal equivalentie ruimtetijd, die we de minkowskicilinder noemen. Hierin komen echter gesloten tijdachtige krommen voor, met alle erbij horende paradoxen. Zowel de toekomstige als de verleden lichtkegel van elk punt omvat hier de ganse ruimtetijd!

2-5 Relativistische mechanica

2-5.1 Inleiding

Bekijken we eerst de beweging van een deeltje met rustmassa m_0 en snelheid

$$\mathbf{u} = \frac{(1, \vec{v})}{\sqrt{1 - v^2}}. \quad (2-5.1)$$

Vermits m_0 een invariant is, is

$$\mathbf{p} = m_0 \mathbf{u} \quad (2-5.2)$$
een vector, die we het *impuls* noemen. De projectie van deze vector in de 3-dimensionale ruimte van de waarnemer
\[\vec{p} = \frac{m_0}{\sqrt{1 - v^2}} \hat{v} \] (2-5.3) noemen we het *3-impuls* en
\[m \text{ (of } E) = p^0 = \frac{m_0}{\sqrt{1 - v^2}} \] (2-5.4) de *relativistische massa* of *energie*. Deze terminologie komt niet uit de lucht vallen, want \(\vec{p} \) treedt op in een behoudswet, die precies overeenkomt met de wet van behoud van impuls in de klassieke mechanica. De bewegingsvergelijkingen voor één deeltje zijn immers af te leiden uit een actiebeginsel met actie \(S \) gedefinieerd door
\[S = - \int_{\tau_1}^{\tau_2} m_0 \, d\tau, \] (2-5.5) of (vermits \(d\tau^2 = (1 - v^2)dt^2 \))
\[S = \int_{t_1}^{t_2} L \, dt \] met \(L = -m_0(1 - v^2)^{1/2} \). De relativistische mechanica van een systeem van niet-interagerende deeltjes is dus niets anders dan de klassieke mechanica van een stelsel deeltjes met lagrangiaan
\[L = - \sum_n m_0(n)(1 - v^2(n))^{1/2}. \] (2-5.6) Het canoniek 3-impuls van een dergelijk systeem wordt gegeven door
\[\vec{p}(n) = \frac{\partial L}{\partial \vec{v}(n)} \] (2-5.7) in overeenstemming met 2-5.3, terwijl de *hamiltoniaan* bekomen wordt als
\[H = \sum_n \vec{p}(n) \cdot \vec{v}(n) - L = \sum_n m(n), \] (2-5.8) in overeenstemming met 2-5.4. Voor een systeem van niet-interagerende deeltjes (of voor een systeem van deeltjes die interageren via ideale gelokaliseerde puntinteracties) reduceert de wet van behoud van energie zich dus tot het behoud van relativistische massa, terwijl de invariantheid van de actie onder translaties resulteert in het behoud van het totale 3-impuls\(^{12}\). Beide behoudswetten samen impliceren dat het relativistische impuls \(\vec{p} \) een behouden grootheid is. Doorgaans is het eenvouder om te steunen op het behoud van \(\vec{p} \), i.p.v. de twee geprojecteerde behoudswetten te gebruiken. Bekijken we bv. een deeltje met rustmassa \(M \) dat uiteenvalt in een deeltje met rustmassa \(m \) en een foton met energie \(E \), dan verkrijgen de geprojecteerde behoudswetten in het ruststelsel van \(M \) de gedaante
\[M = \frac{m}{\sqrt{1 - v_1^2}} + E, \] (2-5.9)\[0 = \vec{p}_1^2 + \vec{p}_2^2, \] (2-5.10)
\(^{10}\)we nemen de gewoonte aan om enkel 4-d objecten in boldface te noteren
\(^{11}\)dat \(L \) zich in de limiet \(v \to 0 \) reduceert tot de klassieke lagrangiaan \(\frac{1}{2}m_0v^2 \) verklaart de benaming "rustmassa" voor de constante \(m_0 \)
\(^{12}\)Treden er wel interacties tussen de deeltjes op, dan zijn totale relativistische massa en totaal 3-impuls (zoals hierboven gedefinieerd) niet langer behouden grootheiten. Beide behoudswetten zijn dan echter te veralgemenen door de invoering van de energie-impulstensor van het systeem (zie verder).
waaruit (vermits $|p_2|^2 = E$) $M - E = \sqrt{m^2 + E^2}$ en dus $E = \frac{M^2 - m^2}{2M}$. Eenvoudiger is het echter om rechtstreeks op te merken dat $p = p_1 + p_2$: hieruit volgt $(p - p_2)^2 = p_1^2$, wat zich onmiddellijk reduceert (vermits $p_2^2 = 0$) tot $M^2 - 2ME = m^2$.

Definiëren we nu de relativistische kracht als de vector

$$\mathbf{F} = (F^0, \vec{F}) = \frac{d\mathbf{p}}{dt}, \quad (2-5.11)$$

dan bekomen we door projectie in de rustruimte van de waarnemer, wegens $\frac{dt}{d\tau} = 1/\sqrt{1 - v^2}$,

$$\frac{1}{\sqrt{1 - v^2}} \frac{d}{dt}(m\vec{v}) = \vec{F}. \quad (2-5.12)$$

De newtoniaanse 3-kracht $\vec{f} = \frac{d}{dt}(m\vec{v})$ is dus niet \vec{F}, maar wel

$$\vec{f} = \sqrt{1 - v^2} \vec{F}. \quad (2-5.13)$$

Hieruit volgt dan ook het klassieke resultaat dat de arbeid, nodig om een deeltje vanuit de rusttoestand te versnellen tot een snelheid v, gegeven wordt door

$$\Delta E = \int_0^x f dx = \int_0^t \int_0^t \frac{d}{dt}(mv) dt \quad (2-5.14)$$

$$= \int_0^t \int_0^t \frac{d}{dt}(mv) dt \quad (2-5.14)$$

$$= \int_0^t \int_0^t \frac{d}{dt}(mv) dt \quad (2-5.14)$$

Noteren we ten slotte nog dat uit de invariantie van p_2^2 en uit $p = (m, \vec{p})$ volgt dat

$$m^2 (of E^2) = m_0^2 + \vec{p}^2, \quad (2-5.15)$$

wat zich voor een foton, met $m_0 = 0$, reduceert tot $E = |\vec{p}|$. Noteer ook dat de relativistische massa (of energie) van een deeltje met impuls p, gemeten door een waarnemer met snelheid u_{obs} ($u_{obs}^2 = -1$), gegeven wordt door

$$E = -p \cdot u_{obs}. \quad (2-5.16)$$

Deze uitdrukking is immers een invariant, die zich in het ruststelsel van de waarnemer reduceert tot $-p_0 u_{obs}^0 = -p_0 = p_0 = E$. Heeft bv. een foton energie $E_1 = p \cdot u_1$ t.o.v. een waarnemer met snelheid u_1, dan wordt het door een waarnemer met snelheid u_2 waargenomen met energie $E_2 = p \cdot u_2$. Het verschil tussen E_1 en E_2 leidt dan tot het z.g. dopplereffect.

Oefening

Een deeltje met rustenergie M valt uiteen in twee deeltjes, resp. met rustmassa’s m_1 en m_2. Bereken (in het ruststelsel van M) de energie van deze deeltjes.

2-5.2 Energie-impulstensor van een deeltjeswolk

We introduceren nu de z.g. *energie-impulstensor* door een wolk van niet-interagerende (of via punt-interacties interagerende) deeltjes te bekijken, elk met rustmassa $m_{0(n)}$ en met impuls $p_{(n)}$.

Definiëren we eerst de totale energie-impulsdichtheid

$$T^{00} = \sum_n p_{(n)}^0 \delta^3(\vec{x} - \vec{x}_{(n)}(t)), \quad (2-5.17)$$
evenals de flux van deze grootheid

\[T^{\alpha \alpha} = \sum_{n} p^{\alpha}_{(n)} \frac{dx^{\alpha}_{(n)}}{dt} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \quad (2-5.18) \]

en de deeltjesstroom

\[N^i = \sum_{n} \frac{dx^i_{(n)}}{dt} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \quad (2-5.19) \]

waarbij \(\vec{x}_{(n)}(t) \) de positievector is van het \(n \)-de deeltje en \(\delta^3 \) de 3-dimensionale dirac-distributie. Beide uitdrukkingen 2-5.17 en 2-5.18 kunnen dan verenigd worden in

\[T^{ij} = \sum_{n} p^{i}_{(n)} \frac{dx^{i}_{(n)}}{dt} \delta^3(\vec{x} - \vec{x}_{(n)}(t)). \quad (2-5.20) \]

Dan is echter, vermits \(p^{i}_{(n)}(t) = E_{(n)} \frac{dx^{i}_{(n)}}{dt} \) met \(E_{(n)} = \gamma_{(n)} m_{0(\alpha)} \):

\[T^{ij} = T^{ji} = \sum_{n} \frac{p^{i}_{(n)} p^{j}_{(n)}}{E_{(n)}} \delta^3(\vec{x} - \vec{x}_{(n)}(t)). \quad (2-5.21) \]

Bovendien zijn \(T^{ij} \) de componenten van een tensor, want

\[T^{ij} = \sum_{n} \int_{-\infty}^{+\infty} p^{i}_{(n)}(t) \frac{dx^{j}_{(n)}}{dt} \delta^4(x^k - x^k_{(n)}(\tau)) \ d\tau \quad (2-5.22) \]

en \(\delta^4(x^k - x^k_{(n)}(\tau)) = \delta(t - \tau)\delta^3(\vec{x} - \vec{x}_{(n)}(\tau)) \) is een lorentzvariant\(^{13}\). We noemen de symmetrische tensor \(T = T^{ij} e_i \otimes e_j \) de energie-impulstensor van de deeltjeswolk. Voor de deeltjesstroom geldt analoog dat

\[N^i = \sum_{n} \int_{-\infty}^{+\infty} \frac{dx^i_{(n)}}{dt} \delta^3(x^k - x^k_{(n)}(\tau)) \ d\tau. \quad (2-5.23) \]

Vermits

\[
\frac{\partial T^{i\alpha}}{\partial x^\alpha} = \sum_{n} p^{i}_{(n)} \frac{dx^{\alpha}_{(n)}}{dt} \frac{\partial}{\partial x^\alpha} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \\
= - \sum_{n} p^{i}_{(n)} \frac{dx^{\alpha}_{(n)}}{dt} \frac{\partial}{\partial x^\alpha} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \\
= - \sum_{n} p^{i}_{(n)} \frac{\partial}{\partial t} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \\
= - \frac{\partial}{\partial t} \left(\sum_{n} p^{i}_{(n)} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \right) \\
+ \sum_{n} \frac{\partial p^{i}_{(n)}}{\partial t} \delta^3(\vec{x} - \vec{x}_{(n)}(t)) \\
= - \frac{\partial}{\partial t} T^{00} + \sum_{n} \frac{dp^{i}_{(n)}}{dt} \delta^3(\vec{x} - \vec{x}_{(n)}(t)),
\]

geldt

\[\frac{\partial T^{ij}}{\partial x^j} = T^i, \quad (2-5.25) \]

\(^{13}\)Onder een lineaire transformatie \(x' = \Lambda x \) is immers \(\delta^i(x') = \frac{1}{|det\Lambda|} \delta^i(x) \), met |det\(\Lambda | = 1 \) voor een lorentztransformatie.
met de uitwendige krachtdichtheid \(\vec{F} = \sum_n \vec{F}(n) \delta^3(\vec{x} - \vec{x}(n)(t)) \) gegeven door

\[
F^i = \sum_n \frac{dp^i(n)}{dt} \delta^3(\vec{x} - \vec{x}(n)(t))
= \sum_n \frac{d\tau}{dt} F^i(n) \delta^3(\vec{x} - \vec{x}(n)(t)).
\]

Voor een geïsoleerd stelsel is de uitwendige kracht = 0, zodat we de behoudswetten

\[
T^{ij,j} = 0
\]

bekomen.

2-5.3 Energie-impulstensor van een perfecte vloeistof

In de niet-relativistische hydrodynamica wordt de beweging van een perfecte vloeistof bepaald door de

\[
\frac{\partial \rho}{\partial t} + \text{div}(\rho \vec{v}) = 0,
\]

en de navier-stokesvergelijkingen

\[
\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \nabla p + \vec{f},
\]

met \(\vec{f} \) de uitwendige kracht, die we hier 0 stellen. We onderstellen bovendien dat een toestandsvergelijking geldt, die van de vorm is

\[
p = p(\rho).
\]

We gaan op zoek naar een stelsel van tensoriële vergelijkingen, die zich in de limiet van kleine snelheden en kleine drukken \((v << 1 \text{ en } p << \rho, \text{ z.g. normale omstandigheden}) \) reduceert tot bovenstaande vergelijkingen. Als eerste stap schrijven we 2-5.28 en 2-5.29 simultaan als

\[
\frac{\partial}{\partial t}(\rho v^i) + \frac{\partial}{\partial x^j}(\rho v^i v^j + p \delta^i_j) = 0,
\]

of nog, met

\[
\tau^{ij} = \left[\begin{array}{ccc}
\rho & \rho v^i & \rho v^i \otimes \vec{v} + pI_3 \\
\rho v^i & \rho v^i \otimes \vec{v} + pI_3 \\
\rho & \rho v^i \otimes \vec{v} + pI_3 \\
\end{array} \right]
\]

(\(I_3\) de eenheidsmatrix), als

\[
\tau^{ij} \frac{\partial}{\partial x^j} \tau^{ij} = 0.
\]

\(\tau^{ij}\frac{\partial}{\partial x^j}\) definieert geen tensor, maar de vorm van 2-5.32 suggereert de definitie van twee scalaireuren \(p \) en \(\rho \), namelijk de druk en dichtheid van de vloeistof zoals gemeten door een ogenblikkelijk meebewegende inertiële waarnemer, evenals de definitie van een tensor \(T \) door

\[
T = (p + \rho)u \otimes u + p\eta,
\]

waarbij \(u = \gamma(1, \vec{v}) \). Dan is

\[
T^{ij} = (p + \rho)u^i u^j + p\eta^{ij}
= \left[\begin{array}{ccc}
(p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 \\
(p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 \\
(p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 & (p + pu^2)\gamma^2 \\
\end{array} \right] + pI_3.
\]

27
Deze tensor T, die zich onder ‘normale omstandigheden’ inderdaad reduceert tot t, noemen we de *energie-impulstensor* van de perfecte vloeistof met druk p, dichtheid ρ en snelheid u. Noteer dat ook hier T een *symmetrische* tensor is en dat de tensorvergelijking die zich onder normale omstandigheden reduceert tot 2-5.33 terug de vorm 2-5.27 aannemt!

Het begrip *energie-impulstensor* is van groot belang, o.a. omdat het in de einsteinveldvergelijkingen optreedt als bronterm voor de gravitatie.

Dat er een factor γ^2 optreedt in bv. T^{00} is logisch: voor een waarnemer, die de vloeistof met snelheid \vec{v} ziet bewegen, neemt de energie in een volume-elementje toe met een factor γ, maar anderzijds zal voor deze waarnemer het volume-elementje, t.g.v. de fitzgerald-lorentzcontractie, in de bewegingsrichting ook krimpen met een factor γ. De grootheid ρ staat dus voor de energie-dichtheid (met inbegrip van de kinetische energie) van de vloeistof. De continuïteitsvergelijking zal dus behoud van energie uitdrukken, eerder dan behoud van deeltjesaantal.

Men kan zich afvragen waarom in 2-5.35- en 2-5.36 geen andere coëfficiënten werden gekozen, waarmee het resultaat zich onder normale omstandigheden eveneens zou kunnen reduceren tot de tensor t (bv. $\rho + 5p$ i.p.v. $\rho + p$...). Om hierop een antwoord te geven maken we even een ommetje ...

Eerst voeren we op invariante wijze de *deeltjesdichtheid* n in, als de deeltjesdichtheid gemeten door een ogenblikkelijk met de vloeistof meebewegende inertiële waarnemer. Voor een perfecte vloeistof definiëren we dan de *deeltjesstroom* als de vector

$$ N = nu. \quad (2-5.37) $$

In elk referentiestelsel waarin $N^\alpha = 0$ geldt dan $T^{\alpha\alpha} = 0$14. Voor een perfecte vloeistof wordt verder gepostuleerd dat

$$ \frac{\partial N^i}{\partial x^i} = 0, \quad (2-5.38) $$

wat zich, in normale omstandigheden, reduceert tot $\frac{2n}{\partial t} + \text{div}(n\vec{v}) = 0$.

We herschrijven nu 2-5.27 als

$$ ((p + \rho)u^j)_j u^i + (p + \rho)u^j u^i,_j + p,j\eta^i j = 0. \quad (2-5.39) $$

Partieel afleiden van $u^i u_i = -1$ geeft $u^i,_j u_i = 0$, zodat contractie van 2-5.39 met u_i resulteert in

$$ - ((p + \rho)u^j)_j + p,j u^j = 0, \quad (2-5.40) $$

i.e.

$$ - (\frac{p + \rho}{n} N^j)_j + p,j u^j = 0, \quad (2-5.41) $$

of, m.b.v. 2-5.38

$$ - N^j (\frac{p + \rho}{n})_j + p,j u^j = N^j (\frac{\rho}{n})_j + p (\frac{1}{n})_j = 0. \quad (2-5.42) $$

Met $V = 1/n$ het specifiek volume en $e = \rho/n$ de specifieke inwendige energie, herschrijven we deze laatste betrekking als

$$ u^j (e,j + pV)_j = 0. \quad (2-5.43) $$

Uit de tweede hoofdwet van de thermodynamica, $kT ds = de + pdV$, volgt dan dat de specifieke entropie constant is langs de stroomlijnen van een perfecte vloeistof:

$$ u^j \frac{\partial s}{\partial x^j} = 0. \quad (2-5.44) $$

14In het algemeen — t.t.z. voor niet-perfecte vloeistoffen — kan een netto energie-impulstroom ook optreden zonder netto deeltjestransport.
Hadden we in de definitie van de energie-impulstensor andere coëfficiënten gekozen voor de p-bijdragen, dan was dus in deze laatste paragraaf een conflict ontstaan met deeltjesbehoud óf met de tweede hoofdwet!

Merk ten slotte nog op dat 2-5.40 kan herschreven worden als
\[\dot{\rho} + (\rho + p) \Theta = 0, \]
met $\dot{\rho} = \rho_j u^j$ en met $\Theta = u^i \Theta_i$ de z.g. *volume-expansie*. Substitutie hiervan in 2-5.39 geeft de ruimtelijke componenten van de drukgradiënt als
\[p_\alpha + (\rho + p) a_\alpha = 0. \]

De betekenis van de scalar Θ wordt bekomen door een basis X_1, X_2, X_3 te beschouwen die met een infinitesimaal klein vloeistofelementje wordt meegesleept: voor elk van deze basisvectoren geldt dan (zie ook p. 84) $\dot{X}_i = X_{i,j} u^j$ of $\dot{X} = BX$ met $B_{\alpha\beta} = u_{\alpha\beta}$. Met de matrix $A = [X_1, X_2, X_3]$ is dan
\[\dot{A} = BA, \]
(zodat
\[\Theta = \text{tr}(B) = \text{tr}(\dot{A}A^{-1}) = \frac{1}{\det A} \text{det} (A) = \frac{V}{V}, \]
met V het volume van het beschouwde vloeistofelementje.

2-5.4 Behoudswetten en energievoorwaarden

We leggen nu een verband tussen de grootheden $\sum_n \vec{p}(n)$ en $\sum_n m(n)$ uit paragraaf 2-5.1 en de groot-\['__\]heden ρ en p uit paragraaf 2-5.3 en bekijken daartoe een perfecte vloeistof als de limiet van een deeltjeswolk. Identificeren we de hierboven bekomen energie-impulstensor van een deeltjeswolk met deze van een perfecte vloeistof, dan vinden we
\[T^i_i = -\rho + 3p = \sum_n \frac{\vec{p}_n^2 \rho_n}{E_n} \delta^3(\vec{x} - \vec{x}_n(t)) \]

en
\[T^{ij} u_i u_j = \rho = \sum_n \frac{(\rho_n u_i)^2}{E_n} \delta^3(\vec{x} - \vec{x}_n(t)) \]
\[= \sum_n E_n \delta^3(\vec{x} - \vec{x}_n(t)). \]

Uit beide betrekkingen volgt nog, gebruik makend van $\vec{p}_n^2 = -E_n^2 + \vec{p}_n^2$,
\[p = \frac{1}{3} \sum_n \frac{\vec{p}_n^2}{E_n} \delta^3(\vec{x} - \vec{x}_n(t)) \]
en dus, vermits $\vec{p}_n^2 < E_n^2$,
\[0 \leq p \leq \frac{1}{3} \rho. \]

Twee bijzondere gevallen van 2-5.51 zijn het verwijderen waard. Voor een koud, weinig-relativistisch gas is
\[E_n = (m_0^2(n) + \vec{p}_n^2)^{1/2} \]
\[\approx m_0(n) + \frac{1}{2} \frac{\vec{p}_n^2}{m_0(n)} \]
\[= m_0(n) + \frac{1}{2} \frac{\vec{p}_n^2}{m_0(n)}. \]
en dus
\[\rho \approx \rho_0 + \frac{3}{2} \rho. \]
Voor een heet, extreem relativistisch gas is anderzijds
\[E_{\langle n \rangle} \approx (\bar{p}_{\langle n \rangle}^2)^{1/2} \] en dus
\[\rho \approx 3 \rho. \]
Bij normale omstandigheden is in (2-5.54) de term \(\frac{3}{2} \rho \) verwaarloosbaar t.o.v. de rustmassadichtheid \(\rho_0 \), zodat we (voor identieke deeltjes) het klassieke resultaat \(\rho \approx n m_0 \) vinden. Grote drukken zijn echter in staat om een significante bijdrage te leveren tot de energie-dichtheid (en dus tot het gewicht). Vandaar dat bv. een zware ster niet zonder meer in evenwicht kan blijven door haar inwendige druk voldoende groot te maken; we komen hier later nog op terug.

De voorwaarden (2-5.52) zijn erg sterk: ze werden hier afgeleid voor een zeer eenvoudig gasmodel. Voor meer realistische materieverdelingen gelden ze niet noodzakelijk. Ook voor meer complexe materiemodel- len blijft echter gelden dat de totale energie-impulsverdeling altijd beschreven wordt door een symmetrische tensor \(T^{ij} \) die voldoet aan de behoudswetten \(T^{ij} j = 0 \). In paragraaf 2-6.3 tonen we dit nogmaals aan voor een wolk van geladen testdeeltjes, die onderling interageren via de lorentzkrachten. Aan elke dergelijke tensor is dan in een vlakke ruimte een behouden vectoriële grootheid gekoppeld, het (veralgemeend) *totaal impuls* met componenten
\[P^i = \int_{t=\text{const}} T^{i0} \, d^3 x \]
en gehoorzamend aan
\[\frac{dP}{dt} = 0. \]
Immers door toepassing van de wet van Gauß (en aannemend dat het systeem begrensd is) vinden we
\[\frac{dP^i}{dt} = \frac{\partial}{\partial t} \int_{t=\text{const}} T^{i0} \, d^3 x \]
\[= - \sum_{\alpha} \frac{\partial T^{i\alpha}}{\partial x^\alpha} d^3 x \]
\[= 0. \]
\[E = P^0 \] en de vector \(\vec{P} \) met componenten \(P^\alpha \) zijn dan de veralgemeningen van de in 2-5.1 geïntroduceerde behouden grootheden ‘totale energie’ en ‘totaal drie-impuls’. Expliciete berekening van \(E \) en \(\vec{P} \) voor de in paragraaf 2-5.2 beschouwde wolk van niet-interagerende deeltjes, levert trouwens precies de uitdrukkingen 2-5.7 en 2-5.8 op.

Vermelden we ten slotte dat algemeen wordt aangenomen dat ‘klassieke’ energie-impulstensoren nog aan een aantal bijkomende voorwaarden dienen te voldoen: zie paragraaf 10-8.1.

\(^{15}\)Hieraan kan automatisch voldaan worden door \(T^{ij} \) te definiëren a.d.h.v. een gepast variationeel beginsel.
2-6 Elektrodynamica

2-6.1 Algemeenheden

Beschouwen we een elektromagnetisch veld in vacuum: de maxwellvergelijkingen 2-1.1 reduceren zich dan (met \(c = 1 \)) voor een willekeurige inertiële waarnemer tot

\[
\nabla \cdot \vec{E} = 4\pi \rho, \tag{2-6.1}
\]
\[
\nabla \times \vec{H} = \frac{\partial \vec{E}}{\partial t} + 4\pi \vec{j}, \tag{2-6.2}
\]
\[
\nabla \cdot \vec{H} = 0, \tag{2-6.3}
\]
\[
\nabla \times \vec{E} = -\frac{\partial \vec{H}}{\partial t} \tag{2-6.4}
\]

en een testlading \(e \) ondergaat een kracht

\[
\vec{f} = e(\vec{E} + \vec{v} \times \vec{H}). \tag{2-6.5}
\]

Definiëren we de \textit{elektromagnetische veldtensor} of \textit{faradaytensor} door de matrix

\[
F_{ij} = \begin{bmatrix}
0 & -E^1 & -E^2 & -E^3 \\
E^1 & 0 & H^3 & -H^2 \\
E^2 & -H^3 & 0 & H^1 \\
E^3 & H^2 & -H^1 & 0
\end{bmatrix}, \tag{2-6.6}
\]

dan corresponderen hiermee de matrices

\[
F^i_{\ j} = \eta^{ik} \eta^{jm} F_{km} \quad \text{en} \quad F^i_{\ j} = \eta^{ik} F_{kj};
\]

\[
F^i_{\ j} = \begin{bmatrix}
0 & E^1 & E^2 & E^3 \\
E^1 & 0 & H^3 & -H^2 \\
E^2 & -H^3 & 0 & H^1 \\
E^3 & H^2 & -H^1 & 0
\end{bmatrix}, \tag{2-6.7}
\]
\[
F^{ij} = \begin{bmatrix}
0 & E^1 & E^2 & E^3 \\
-E^1 & 0 & H^3 & -H^2 \\
-E^2 & -H^3 & 0 & H^1 \\
-E^3 & H^2 & -H^1 & 0
\end{bmatrix}. \tag{2-6.8}
\]

en worden de vergelijkingen (2-6.3, 2-6.4) met \(x^0 = t \) herschreven als

\[
F_{[ij,k]} = 0. \tag{2-6.9}
\]

Definiëren we de \textit{stroombdichtheid} \(\mathbf{J} \) (zie ook 8-3.8) door \(J_\alpha = j_\alpha \) en \(J_0 = -\rho \), dan reduceren 2-6.1 en 2-6.2 zich anderzijds tot

\[
F_{i\ j} = 4\pi J_i. \tag{2-6.10}
\]

Ook is\(^\text{16} 2-6.5\) te herschrijven als

\[
\frac{dp^\alpha}{d\tau} = e(u^0 E^\alpha + (\vec{u} \times \vec{H})^\alpha)
\]

en dus

\[
\frac{dp^\alpha}{d\tau} = eF^\alpha_{\ j} u^j. \tag{2-6.11}
\]

\(^{16}\text{Aangezien} \frac{dp^\alpha}{d\tau} = F^\alpha = \gamma f^\alpha (\alpha = 1, 2, 3) \text{ en} \ u = \gamma (1, \vec{u})\)
Anderzijds is
\[
\frac{dp^0}{d\tau} = \gamma \frac{dp^0}{dt} = \gamma \frac{dE}{dt} = \gamma f \cdot \vec{v} = \gamma e (\vec{E} + \vec{v} \times \vec{H}) \cdot \vec{v},
\]
of
\[
\frac{dp^i}{d\tau} = e F^0_{j} u^j,
\]
zo dat beide vergelijkingen 2-6.11 en 2-6.12 simultaan te schrijven zijn als
\[
\frac{dp^i}{d\tau} = e F^i_{j} u^j.
\]
Merk ook nog op (zie de poincaréstelling, p. 53) dat 2-6.9 lokaal het bestaan garandeert van een potentiaal, de elektromagnetische potentiaal genoemd, waarvoor
\[
F_{ij} = 2 A_{[j,i]} = A_{j,i} - A_{i,j}.
\]
Uitschrijven van deze betrekkingen toont enerzijds dat \(E^\alpha = -F_{0\alpha} = -A_{\alpha,0} + A_{0,\alpha} \) en dus, met
\[
\vec{A} = A^\alpha \frac{\partial}{\partial x^\alpha} \quad \text{en} \quad \phi = A^0,
\]
dat
\[
\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\nabla \phi.
\]
Anderzijds is bv. \(\vec{H} = F_{23} = \partial_2 A_3 - \partial_3 A_2 = (\nabla \times \vec{A})^1 \), zodat
\[
\vec{H} = \nabla \times \vec{A}.
\]
Beide betrekkingen hadden we natuurlijk ook, zoals bekend, rechtstreeks uit de maxwellvergelijkingen zelf kunnen afleiden.

Voor een compactere formulering van de maxwellvergelijkingen verwijzen we naar § 8-3.

2-6.2 Elektromagnetische golven

We herschrijven de maxwellvergelijkingen in functie van de elektromagnetische potentiaal: substitutie van 2-6.14 in 2-6.10 levert
\[
\partial^i \partial_j A_i - \partial^i \partial_i A_j = -4\pi J_i.
\]
De tweede term in het linkerlid kunnen we 0 maken door de gradiënt van een gepaste scalaire functie \(\varphi \) bij \(\vec{A} \) op te tellen zó dat
\[
\partial^i A_j = 0.
\]
Het (gedeeltelijk) vastleggen van de functie \(\varphi \) wordt een keuze van de ijk genoemd. In het bijzonder noemen we de ijkkeuze waarvoor 2-6.19 geldt de lorentzijk.

In de lorentzijk reduceren de maxwellvergelijkingen zich tot de eenvoudiger gedaante
\[
\Box A_i \equiv \partial^i \partial_j A_i = -4\pi J_i.
\]
Voor een vrij maxwellveld, i.e. \(J = 0 \), ligt het dan voor de hand om golfoplossingen te zoeken van de vorm
\[
\vec{A} = \vec{C} \exp iS,
\]
met \(\mathbf{C} \) een constant vectorveld en met \(S \) de z.g. fase van de golf. De fase moet dan voldoen aan

\[
\Box S = 0, \quad (\nabla S)^2 \equiv \partial_j S \partial^j S = 0, \quad C_j \partial^j S = 0.
\]

Stellen we \(\mathbf{k} = \nabla S = \) de normaal op de oppervlakken van constante fase, dan betekent 2-6.23 dat \(\mathbf{k} \) een nulvector is, de z.g. propagatievector. De constante-fase oppervlakken zijn dus nul-oppervlakken.

Een waarnemer met snelheid \(\mathbf{u} (\mathbf{u}^2 = -1) \) zal de fase zien veranderen met een snelheid \(dS/d\tau \): deze snelheid noemen we de frequentie van de golf,

\[
\omega = -\frac{dS}{d\tau} = -\partial_j S w^j = -w^j k_j.
\]

Belangrijke bijzondere oplossingen van 2-6.22-2-6.24 zijn de z.g. vlakke golven, met \(S = \sum_{i=0}^3 k_i x^i \) en \(k_i \) constanten waarvoor \(-k_0^2 + k_1^2 + k_2^2 + k_3^2 = 0 \).

2-6.3 Energie-impulstensor

Net zoals in 2-5 beschouwen we nu opnieuw een wolk puntdeeltjes, maar we voorzien elk deeltje van een lading \(q(n) \). We definiëren dan de ladingsdichtheid en de stroomdichtheid als

\[
\rho = \sum_n q(n) \delta^3(\bar{x} - \bar{x}(n)(t)), \quad \mathbf{j} = \sum_n q(n) \frac{d\bar{x}(n)}{dt} \delta^3(\bar{x} - \bar{x}(n)(t)).
\]

Beide begrippen zijn te verenigen in de (vier-)stroomdichtheid \(\mathbf{J} \) met

\[
\mathbf{J}^i = \sum_n q(n) \frac{d\bar{x}^i(n)}{dt} \delta^3(\bar{x} - \bar{x}(n)(t)) = \sum_n \int_{-\infty}^{+\infty} q(n) u^i(n) \delta^4(x^k - \bar{x}^k(n)(\tau)) d\tau.
\]

De vector \(\mathbf{J} \) voldoet aan de behoudswet

\[
\frac{\partial \mathbf{J}}{\partial \bar{x}^k} = 0.
\]

Immers

\[
\partial_\alpha \mathbf{J}^\alpha = \sum_n q(n) \partial_\alpha \left(\delta^3(\bar{x} - \bar{x}(n)(t)) \frac{d\bar{x}^\alpha(n)}{dt} \right)
\]

\[
= -\sum_n q(n) \frac{\partial}{\partial \bar{x}^\alpha(n)} \left(\delta^3(\bar{x} - \bar{x}(n)(t)) \frac{d\bar{x}^\alpha(n)}{dt} \right)
\]

\[
= -\sum_n q(n) \frac{\partial}{\partial t} \left(\delta^3(\bar{x} - \bar{x}(n)(t)) \right)
\]

\[
= -\frac{\partial \rho}{\partial t} = -\partial_j \mathbf{j}^0 = -\frac{\partial \rho}{\partial x^0},
\]

wat precies de continuïteitsvergelijking is.
Een gevolg is dat de integraal over het hyperoppervlak \(t = \text{constant} \),

\[
Q = \int_{\mathbb{R}^3} J^0 \, d^3x, \tag{2-6.31}
\]
een constante is, de totale lading genoemd:

\[
\frac{dQ}{dt} = \frac{d}{dt} \int_{\mathbb{R}^3} J^0 \, d^3x = \int_{\mathbb{R}^3} \frac{\partial J^0}{\partial t} \, d^3x = - \int_{\mathbb{R}^3} \nabla \cdot \vec{j} \, d^3x \tag{2-6.32}
\]

(zie ook p.138).

Uit het feit dat \(Q \) constant is in de tijd volgt nu ook dat \(Q \) een invariante grootheid is:

\[
Q(t) = Q(0) = \int_{-\infty}^{+\infty} Q(t') \delta(t(t')) \, dt'
\]

\[
= Q = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} J^0(t', x) \, d^3x \delta(t(t')) \, dt'
\]

\[
= \int_{\mathbb{R}^4} -u_k J^k \delta(-u_i x^i) \, d^4x. \tag{2-6.33}
\]

We bekijken nu terug de energie-impulstensor van de wolk puntdeeltjes, zoals opgesteld in 2-5 en noteren deze als \(T_{(M)} \) (de ‘zuivere materie bijdrage’):

\[
T_{(M)}^{ij} = \sum_n \frac{p_i^{(n)} p_j^{(n)}}{E^{(n)}} \delta^3(\vec{x} - \vec{x}^{(n)}(t)). \tag{2-6.34}
\]

Vermits de deeltjes geladen zijn, is elk deeltje onderworpen aan een lorentzkracht

\[
F^{i}_{(n)} = q_{(n)} F^i_k \frac{dx_i^{(n)}}{dt}. \tag{2-6.35}
\]

De uitwendige krachtdichtheid \(\mathcal{F} \) 2-5.26 wordt hiermee

\[
\mathcal{F}^i = \sum_n \frac{d\tau}{dt} q_{(n)} F^i_k \frac{dx_k^{(n)}}{d\tau} \delta^3(\vec{x} - \vec{x}_{(n)}(t))
\]

\[
= F^i_k \sum_n \frac{d\tau}{dt} q_{(n)} \delta^3(\vec{x} - \vec{x}_{(n)}(t))
\]

\[
= F^i_k J^k, \tag{2-6.36}
\]

zodat uit 2-5.25 volgt dat

\[
\frac{\partial T_{(M)}^{ij}}{\partial x^j} = F^i_k J^k. \tag{2-6.37}
\]

\(T_{(M)} \) voldoet dus \textit{niet} aan de behoudswetten 2-5.27: de oorzaak is te zoeken in het feit dat de deeltjes niet langer lokaal interageren (lorentzkrachten!). Het veld dat verantwoordelijk is voor de interactie, het elektromagnetisch veld, draagt zelf bij tot de energie-impulstensor en deze bijdrage, \(T_{(EM)} \) is zodanig dat ze het rechterlid van 2-6.37 opheft:

\[
\frac{\partial (T_{(M)}^{ij} + T_{(EM)}^{ij})}{\partial x^j} = 0. \tag{2-6.38}
\]
We verifiëren dat hieraan voldaan wordt door de volgende symmetrische tensor, die we de energie-impulstensor van het maxwellveld noemen:

$$T_{(EM)}^{ij} = \frac{1}{4\pi} (F^i_k F^{jk} - \frac{1}{4}\eta^{ij} F_{kl} F^{kl}). \tag{2-6.39}$$

Inderdaad, substituieren we in

$$\partial_j T_{(EM)}^{ij} = \frac{1}{4\pi} (\partial_j F^i_k F^{jk} + F^i_k \partial_j F^{jk} - \frac{1}{2}\eta^{ij} F_{kl} \partial_j F^{kl})$$

de eerste term door

$$\eta^{il} F^{jk} \partial_j F_{lk} = -\eta^{il} F^{jk} (\partial_k F_{jl} + \partial_l F_{jk})$$

$$= -\eta^{ij} F^{lk} \partial_k F_{lj} - \eta^{ij} F^{lk} \partial_j F_{kl},$$

dan bekomen we voor $\partial_j T_{(EM)}^{ij}$

$$\frac{1}{4\pi} \left(\frac{1}{2}\eta^{ij} F_{kl} \partial_j F^{kl} - \eta^{ij} F^{lk} \partial_k F_{lj} + F^i_k \partial_j F^{jk} \right)$$

$$\frac{1}{4\pi} \left(\frac{1}{2}\eta^{ij} (F^{kl} \partial_j F_{lk} + F^{kl} \partial_k F_{lj} + F^{ik} \partial_l F_{jk}) + F^i_k \partial_j F^{jk} \right)$$

$$(\text{door omwisseling van } k \text{ en } l \text{ in de derde term})$$

$$= \frac{1}{4\pi} F^i_k \partial_j F^{jk} \tag{2-6.40}$$

$$(\text{door toepassing van } 2-6.9)$$

$$= - F^i_k J^k.$$

Dat 2-6.39 inderdaad de energie-impulstensor is van het maxwellveld, blijkt ook nog uit het feit dat, bij berekening, T^{00} en $T^{\alpha \beta}$ zich reduceren tot, respectievelijk, de klassieke energiedichtheid $\frac{1}{8\pi} (E^2 + H^2)$ en de poyntingvector $\frac{1}{4\pi} (\vec{E} \times \vec{H})^\alpha$ van dit veld.

Merk ten slotte nog op dat de energie-impulstensor van het maxwellveld spoorvrij is:

$$T_{(EM)}^{\alpha \beta} = \frac{1}{4\pi} (F^i_k F_{ik} - F_{kl} F^{kl}) = 0. \tag{2-6.40}$$
Hoofdstuk 3
Differentiaalvariëteiten en tensoren

3-1 Differentiaalvariëteiten

Een n-dimensionale differentiaalvariëteit (of manifold) is grofweg een topologische ruimte M die lokaal op de standaard euclidische ruimte \mathbb{R}^n lijkt.

Willen we dit wat preciezer maken, dan voeren we eerst het begrip in van een kaart: een kaart (U, Φ) op een topologische ruimte M bestaat uit een deelverzameling van M en een homeomorfisme Φ van een open deel U naar een open deel van \mathbb{R}^n.

Φ associeert met elk punt $p \in U$ een n-tupel van reële getallen (x^1, \ldots, x^n), de lokale coördinaten van p t.o.v. (U, Φ) genoemd. Alhoewel de coördinaten van p in werkelijkheid dus de getallen $x^i \circ \Phi(p)$ zijn, zullen we deze meestal kort noteren als $x^i(p)$.

Twee kaarten (U, Φ) en (V, Ψ) met $U \cap V \neq \emptyset$ heten C^k-compatibel als de bijectionen $\Psi \circ \Phi^{-1}$ en...
Figure 3.2:

\[\Phi \circ \Psi^{-1} \]

\[C^k \]

afbeeldingen zijn tussen de open delen \(\Phi(U \cap V) \) en \(\Psi(U \cap V) \) van \(\mathbb{R}^n \) (is dit het geval voor alle \(k \geq 0 \) dan zegt men dat ze \(C^\infty \)-compatibel zijn). Omwille van de leesbaarheid zullen we voortaan veronderstellen dat alle gebruikte functies glad zijn, in de zin dat ze voldoende differentieerbaar zijn (desnoods \(C^\infty \) of zelfs analytisch) om de nodige bewerkingen toe te laten. We zullen de differentieerbaarheidsklasse dan ook niet langer expliciet vermelden.

Compatibiliteit is reflexief en symmetrisch, maar niet noodzakelijk transitief en is dus geen equivalentierelatie (bekijk bv. de kaarten \(-1,1[\rightarrow \mathbb{R} : x \mapsto x,]0,1[\rightarrow \mathbb{R} : x \mapsto x \) en \(]-1,1[\rightarrow \mathbb{R} : x \mapsto x^3 \)). Daarom definiëren we een atlas op \(\mathcal{M} \): dit is een verzameling van onderling compatibele kaarten \((U_\alpha, \Phi_\alpha) \) zodat \(\mathcal{M} = \bigcup_\alpha U_\alpha \). Een volledige atlas op \(\mathcal{M} \) is de unie van alle atlassen compatibel met een gegeven atlas. We noemen \(\mathcal{M} \) voorzien van een volledige atlas dan een \(n \)-dimensionale variëteit. Dit betekent dat in het gebied \(U_\alpha \cap U_\beta \) van twee lokale coördinaatomgevingen \(U_\alpha, U_\beta \) de lokale coördinaten in de ene omgeving gladde functies zijn van de lokale coördinaten in de andere: \(x' = x'(x) \), met \(\det(\frac{\partial x'}{\partial x}) \neq 0 \). Merk op dat we de "indices" van de 'nieuwe' coördinaten voorzien van een accent\(^1\), eerder dan de coördinaten zelf.

Gewoonlijk worden nog extra topologische beperkingen opgelegd, die weliswaar een rol spelen bij het afleiden van sommige der hierop volgende resultaten, maar die bij een eerste kennismaking minder relevant zijn.

Voorbeeld 1:

Een typisch voorbeeld van een differentiaalvariëteit is \(S^2 \), de 2-sfeer, voorgesteld door de vergelijking

\[x^2 + y^2 + z^2 = 1, \]

met \(x, y, z \) standaard cartesiaanse coördinaten in de 3-D euclidische ruimte. Om aan te tonen dat \(S^2 \) een 2-D differentiaalvariëteit is, volstaat het om in een voldoende kleine omgeving \(V \) van een willekeurig punt coördinaten te vinden die \(V \) bijectief afbeelden op een open deel van \(\mathbb{R}^2 \). Voor punten in de noordelijke hemsfeer worden zulke coördinaten bv. gegeven door \(x \) en \(y \). Merk op dat verschillende coördinaatkaarten nodig zijn, zodat was \(S^2 \) homeomorf met een open deel van \(\mathbb{R}^2 \). Ook de standaard sferische coördinaten \(\{\theta, \phi\} \), gedefinieerd door

\[x = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta, \]

\(^1\)Deze, op het eerste zicht vreemd lijkende conventie werd ingevoerd door Jan Arnoldus Schouten (*Ricci-Calculus* 1954) en blijkt zeer nuttig.

37
vormen geen globaal coördinatenstelsel voor S^2, aangezien de afbeelding $S^2 \to \{\theta, \phi\}$ niet eenduidig bepaald is nabij de polen $\theta = 0, \pi$.

Voorbeeld 2:
Als tweede voorbeeld bekijken we $SU(2)$, de groep van de 2×2 complex unitaire matrices met determinent 1. Het is vrij eenvoudig om in te zien dat

$$A \in SU(2) \iff A = \begin{bmatrix} a_0 - ia_3 & -ia_1 - a_2 \\ -ia_1 + a_2 & a_0 + ia_3 \end{bmatrix}, \quad a_0, \ldots, a_3 \in \mathbb{R}: \quad \sum_{j=0}^{3} a_j^2 = 1,$$

wat aantoont dat $SU(2)$ (als differentiaalvariëteit) te identificeren is met de 3-sfeer S^3.

Een afbeelding $f : M \to N$ van een variëteit M naar een variëteit N is *glad in een punt* p als een lokaal coördinatenstelsel bestaat, waarvoor de lokale coördinaten van $f(p)$ in N gladde functies zijn van de lokale coördinaten van p in M (en in dat geval geldt dit voor alle lokale coördinatenstelsels). Een afbeelding die glad is in elk punt noemen we een *gladde afbeelding*. Bestaat de inverse afbeelding f^{-1} en is deze eveneens glad, dan zeggen we dat f een *diffeomorfisme* is. Bestaat er tussen M en N een diffeomorfisme, dan zijn M en N *diffeomorf*, wat wil zeggen dat ze glad in elkaar te vervormen zijn. De verzameling der gladde afbeeldingen $M \to \mathbb{R}$ noteren we als $\mathcal{F}(M)$. Dit is een *commutatieve algebra* over \mathbb{R}, wat betekent (a) dat $\mathcal{F}(M)$ een reële vectorruimte is onder de puntsgewijs gedefinieerde optelling en vermenigvuldiging met scalaire (namelijk $(f + g)(p) = f(p) + g(p)$ en $(\alpha f)(p) = \alpha f(p)$) en (b) dat de puntsgewijs gedefinieerde vermenigvuldiging van gladde functies $(fg)(p) = f(p)g(p)$ voldoet aan de eigenschappen $f(gh) = (fg)h$, $(f + g)h = fh + gh$, $fg = gf$ en $1f = f$ (waarbij 1 beschouwd wordt als de constante functie die elk element p afbeeldt op 1 in \mathbb{R}). Een *kromme* γ in M is een gladde afbeelding van een open interval $]a, b[\to M$.

3-2 Vectoren

Vectoren kunnen in een differentiaalvariëteit M niet meer bekeken worden als ‘pijlen met een aangrijpingspunt en een eindpunt’. Daarom definiëren we eerst het begrip *rakende krommen*:

als (U, Φ) een kaart is en γ_1 en γ_2 krommen zijn in M met $\gamma_1(t_0) = \gamma_2(t_0) = p \in U \subset M$, dan noemen we γ_1 en γ_2 *rakend in* p als $D(\Phi \circ \gamma_1)(t_0) = D(\Phi \circ \gamma_2)(t_0)$.

oefening: Toon aan dat deze definitie onafhankelijk is van de gebruikte kaart.

‘Rakend zijn in een punt’ is duidelijk een equivalentierelatie; een equivalentieklasse $[\gamma]_p$ noemen we een *rakende vector* in p. We definiëren ook $T_p(M) = \{[\gamma]_p; \text{ } \gamma \text{ is een kromme door } p\}$ als de *rakende ruimte* van M in p. Aan $T_p(M)$ kan op een natuurlijke manier de structuur van een vectorruimte gegeven worden.

Een vector in een punt p definieert dan ook een lineaire operator van $\mathcal{F}(M)$ naar \mathbb{R}: als $\gamma(t_0) = p$ dan stellen we $[\gamma]_p(f) = \frac{d}{dt}(f \circ \gamma)(t)|_{t_0}$. Zonder verlies van algemeenheid kan uiteraard steeds $t_0 = 0$ gekozen worden.

oefening: Toon aan dat deze definitie onafhankelijk is van de gekozen representant γ.

Zijn nu x^i lokale coördinaten in een omgeving van p en noteren we met γ^i de i-de coördinaatkromme, nl. de kromme $t \mapsto \phi^{-1}(\phi(p) + (t - t_0)\mathbf{e})$ (met \mathbf{e} de i-de basisvector van \mathbb{R}^n), waarvoor
dus de lokale vergelijkingen gegeven zijn door $x^j(t) = x^j(p) + (t - t_0)\cdot \delta^{ij}$, dan geldt

$$[\gamma^i]_p(f) = \frac{d}{dt}(f \circ \phi^{-1}(\phi(p) + (t - t_0)\cdot e))|_{t_0}$$

$$= D(f \circ \phi^{-1})(\phi(p))\cdot [0 \ldots 1 \ldots 0]^T$$

wat we gewoonlijk noteren als $\frac{\partial f}{\partial x^i}|_p$. Dit rechtvaardigt volgende notatie

$$[\gamma^i]_p = \frac{\partial}{\partial x^i}|_p$$

(3-2.1)

en men kan aantonen\(^2\) dat deze vectoren in p een basis vormen voor de rakende ruimte $T_p(M)$. We noemen deze basis een *coördinaatbasis* of een *holonome basis*.

Elke vector $v_p \in T_p(M)$ kan dus geschreven worden als

$$v_p = v^i \frac{\partial}{\partial x^i}|_p \text{ met } v^i \in \mathbb{R}$$

(3-2.2)

en de werking van v_p op $f \in \mathcal{F}(M)$ wordt bepaald door $v_p(f) = v^i \frac{\partial f}{\partial x^i}|_p$ (we gebruiken de *einstein-sommatieconventie*: over elke dubbel optredende index wordt gesommeerd van 1 tot n).

Een alternatieve manier om vectoren in een punt te definiëren, maakt gebruik van het begrip derivatie: een *derivatie* D *in een punt* $p \in M$ is een afbeelding $\mathcal{F}(M) \to \mathbb{R}$, die voldoet aan de volgende ‘afgeleide-achtige” eigenschappen ($f, g \in \mathcal{F}(M)$, $\alpha, \beta \in \mathbb{R}$):

$$D(\alpha f + \beta g) = Df + Dg \text{ [lineariteit]},$$

$$D(fg) = D(f)g + fD(g) \text{ [Leibniz eigenschap]},$$

$$Df = 0 \text{ als } f = \text{ const in een omgeving van } p.$$

\(^2\)Voor de voortbrengendheid definiëren we bij een gegeven kromme γ eerst de getallen $\xi^i = [\gamma]^i_p(x^i)$ en vervolgens een kromme $\tilde{\gamma}$ door $\tilde{\gamma}(t) = \phi^{-1}(x^1(p) + t\xi^1, x^2(p) + t\xi^2, \ldots)$. Voor deze kromme $\tilde{\gamma}$ geldt dan bij constructie $[\tilde{\gamma}]_p = \xi^i \frac{\partial}{\partial x^i}|_p$ en rest er enkel aan te tonen dat γ en $\tilde{\gamma}$ rakend zijn in p.
De derivaties in een punt p vormen een vectorruimte, die te identificeren is met de rakende ruimte $T_p\mathcal{M}$.

We kunnen ten slotte een *vectorveld* definiëren door met elk punt $p \in \mathcal{M}$ een vector $v_p \in T_p(\mathcal{M})$ te associëren. Dan geldt in lokale coördinaten dat $v = v^i \frac{\partial}{\partial x^i}$ met v^i functies van x^i. De verzameling der vectorvelden op \mathcal{M} noemen we voortaan $X(\mathcal{M})$. De werking van een vectorveld v op $f \in \mathcal{F}(\mathcal{M})$ wordt puntsgewijs gedefinieerd en geeft dus als resultaat $v(f) \in \mathcal{F}(\mathcal{M})$.

Een vectorveld v is bijgevolg een afbeelding $\mathcal{F}(\mathcal{M}) \rightarrow \mathcal{F}(\mathcal{M})$ die voldoet aan de volgende eigenschappen:

$$v(f + g) = v(f) + v(g),$$
$$v(fg) = g v(f) + f v(g),$$
$$v(\lambda f) = \lambda v(f) \quad (\lambda \text{ constant}).$$

Onder de puntsgewijs gedefinieerde optelling en vermenigvuldiging met gladde functies, wordt $X(\mathcal{M})$ dan een $\mathcal{F}(\mathcal{M})$-modul:

$$f(u + v) = f u + f v,$$
$$(f + g)u = f u + gu,$$
$$(fg)u = f(gu),$$
$$1u = u.$$

Noteer dat er geen zinvolle definitie bestaat van ‘de som van een rake nde vector in p en een rakende vector in q”, wat zich later zal vertalen in het feit dat het zinloos is om te spreken over ‘de snelheid van een deeltje in een punt p t.o.v. een waarnemer in het punt q”.

T.o.v. een willekeurige ‘anholonome basis’ $\{e_a\}$ van n onafhankelijke vectoren, $e_a = e^i_a \frac{\partial}{\partial x^i}$ schrijven we $v = v^a e_a$. We zullen proberen om op zo consistent mogelijke wijze de eerste acht letters van het alfabet te gebruiken voor anholonome indices en i, j, k, . . . voor holonome indices. Uiteraard lukt dit niet altijd: als bv. $v = v^i \frac{\partial}{\partial x^i} = v^a e_a$, dan is het niet duidelijk wat we met v^i bedoelen: als de context dit vereist zullen we de anholonome indices daarom voorzien van een ‘$\hat{}$’ dus $v^a e_a = v^a e_1 + \ldots + v^a e_n$. Verder zullen we ook dikwijls de notaties $\frac{\partial f}{\partial x^i} = f_i, e_a(f) = f_a$ en $\partial_i = \frac{\partial}{\partial x^i}$ gebruiken.

In de oudere literatuur werd vooral gewerkt met coördinatbasissen; het gebruik van anholonome basissen is doorgaans veel efficiënter.

Bij een verandering van lokale coördinaten $x^i \rightarrow x'^i$ (d.w.z. bij een verandering van kaart in een omgeving van p), geldt $v = \frac{\partial}{\partial x'^i} v^i \frac{\partial}{\partial x^j} = \frac{\partial x'^i}{\partial x^j} v^j$. Zodat uit de kettingregel onmiddellijk volgt

$$v'^i = \frac{\partial x'^i}{\partial x^j} v^j.$$

Voor een willekeurige basistransformatie geldt analoog dat als

$$e'_a = L^a_b e_b,$$

of, in matrixnotatie, met $e = [e_1 \ldots e_n]$,

$$e' = e L,$$

dan

$$v'^a = L^a_b v^b.$$

\[3(u + v)(f) = u(f) + v(f) \text{ en } (gu)(f) = gu(f)\]
of, in matrixnotatie, met $v = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix}$,

$$v = Lv', \quad (3-2.9)$$

waarbij L^a_b gedefinieerd is door $L^a_bL^c_a = \delta^c_b$, m.a.w. $(L^{-1})^a_b = L^a_b$.

N.a.v. de analogie tussen vectoren en richtingsafgeleiden, ligt het voor de hand dat de achtereenvolgende werking van twee vectoren op een functie afhankelijk is van de volgorde waarin ze worden toegepast. Het verschil tussen beide operaties wordt bepaald door $[u, v]$, de commutator of lie-haak, van de twee vectorvelden u en v:

$$[u, v](f) = u(v(f)) - v(u(f)). \quad (3-2.10)$$

Dat dit opnieuw een vectorveld is, kan men gemakkelijk nagaan (oefening): de lineariteit stelt geen problemen en enkel de leibnizeigenschap dient geverifieerd te worden.

Voor een coördinaatbasis geldt uiteraard

$$\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = 0, \quad (3-2.11)$$

maar voor een willekeurige basis moeten we rekening houden met de commutatiecoëfficiënten $D^e_{ab} = -D^e_{ba} \in \mathcal{F}(\mathcal{M})$ bepaald door

$$[e_a, e_b] = D^e_{ab}e_c. \quad (3-2.12)$$

Uit de jacobi-identiteit

$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 \quad (3-2.13)$$

volgt (oefening)

$$e[a D^d_{bc}] - D^d_{[a}D^e_{bc]} = 0. \quad (3-2.14)$$

Hierbij maken we gebruik van de conventie dat m indices, ingesloten door vertikale haken, duiden op $m! \times$ de alternerende som van alle permutaties; analogo duidden ronde hakken op de som van alle permutaties. bv.

$$x_{[ab]} = \frac{1}{2}(x_{ab} - x_{ba})$$

$$x_{(ab)} = \frac{1}{2}(x_{ab} + x_{ba}) \quad (3-2.15)$$

$$x_{[abc]} = \frac{1}{6}(x_{abc} + x_{bca} + x_{cab} - x_{acb} - x_{cba} - x_{bac})$$

3-2.1 Stromingen

Een andere manier om een vectorveld v voor te stellen, is ons een differentiaalvariëteit in te beelden als ‘opgevuld’ met een familie van onderling niet snijdende krommen, zó dat door elk punt van de variëteit precies één kromme gaat. We noemen zulke familie van krommen een congruentie en, indien in elk punt p de raakvector aan de betreffende kromme gelijk is aan v_p, dan zeggen we dat de familie gevormd wordt door de stroomlijnen (flow lines) of integraalkrommen van het vectorveld. M.a.w. een kromme γ is een stroomlijn van het vectorveld v als en slechts als $\gamma(\tau) = v_{\gamma(\tau)}$ in elk punt $p = \gamma(\tau)$ van de kromme. Voor een gegeven vectorveld v kan een congruentie van integraalkrommen dus geconstrueerd worden in een omgeving van elk punt p waar $v_p \neq 0$.

\[\text{Let op: de bovenste index in zowel } L^a_b \text{ als } L^a'{}^b \text{ is dus altijd de rij-index!}\]
Figure 3.4: een vectorveld \(\mathbf{v} \) rakend aan een congruentie van krommen.

Het volstaat om lokale coördinaten \(\{x^i\} \) in te voeren zó dat \(\mathbf{v} = v^i e_i \): een kromme \(\gamma(\tau) \) wordt dan gedefinieerd door \(n \) functies \(\gamma^i(\tau) \) en de voorwaarde \(\dot{\gamma}(\tau) = \mathbf{v}|_{\gamma(\tau)} \) reduceert zich tot een stelsel van differentiaalvergelijkingen,

\[
\frac{d\gamma^i(\tau)}{d\tau} = v^i|_{p=\gamma(\tau)}.
\]

Voor een continu vectorveld geldt dat dit stelsel, onder de beginvoorwaarden \(\gamma^i(0) = x^i(0) \), met \(x^i(0) \) de lokale coördinaten van een initieel punt op de kromme, steeds een unieke oplossing \(\gamma^i(\tau) \) heeft.

Stromingen zijn o.a. nuttig om de meetkundige betekenis van commutatoren beter te vatten. Beelden we ons bv. de stroomlijnen in van twee vectorvelden \(\mathbf{v} \) en \(\mathbf{w} \) (zie figuur 3.5): vertrekken we vanuit een punt \(p_0 \) en volgen we eerst de stroomlijn van \(\mathbf{v} \) over een klein interval \(\delta\tau \) van de parameter \(\tau \), en vervolgens een stroomlijn van \(\mathbf{w} \) over een zelfde interval \(\delta\tau \), dan belanden we in het punt \(p \). Vertrekken we uit hetzelfde punt \(p_0 \), maar volgen we eerst een stroomlijn van \(\mathbf{w} \) en vervolgens een stroomlijn van \(\mathbf{v} \) (steeds over eenzelfde parameterinterval \(\delta\tau \)), dan komen we doorgaans terecht in een ander punt \(p' \). In de limiet voor \(\delta\tau \to 0 \), waarbij de punten \(p, p' \) samenvallen met \(p_0 \), definieert de verbindingslijn tussen \(p \) en \(p' \) dan een vector, namelijk \([\mathbf{v}, \mathbf{w}]_\delta\tau^2 \).

Meer precies geldt dat, wanneer \(\mathbf{v} \) en \(\mathbf{w} \) vectorvelden zijn en \(p_0, p, p' \) punten (zie figuur 3.5), dan de commutator \([\mathbf{v}, \mathbf{w}] \) voor elke functie \(f \) op de volgende wijze het verschil bepaalt tussen \(f(p) \) en \(f(p') \):

\[
\lim_{\delta\tau \to 0} \frac{f(p) - f(p')}{\delta\tau^2} = ([\mathbf{v}, \mathbf{w}])(f)|_{p_0}.
\]

oefening: zij \(\{x, y, z\} \) een lokale coördinatenkaart. Bepaal de commutatoren \([\mathbf{u}, \mathbf{v}], [\mathbf{u}, \mathbf{w}], \) en \([\mathbf{v}, \mathbf{w}] \), met \(\mathbf{u} = x\partial_x + y\partial_y + z\partial_z \), \(\mathbf{v} = x\partial_y - y\partial_x \), \(\mathbf{w} = \partial_z \). Bepaal tevens de integraalkrommen van \(\mathbf{u}, \mathbf{v} \) en \(\mathbf{w} \).

3.2.2 Connecterende vectoren

Een vectorveld \(\mathbf{c} \) wordt *connecterend* genoemd voor een vectorveld \(\mathbf{v} \) als \([\mathbf{c}, \mathbf{v}] = 0 \) (vermits \([\mathbf{c}, \mathbf{v}] = -[\mathbf{v}, \mathbf{c}] \) volgt dan ook dat \(\mathbf{v} \) connecterend is voor \(\mathbf{c} \)). De (coördinataal)basisvectoren \(\partial /\partial x^i \) zijn dus onderling allemaal connecterend. Omgekeerd, zijn in een open deel een stel van \(n \) lineair onafhankelijke onderling connecterende vectorvelden \(e_1, ..., e_n \) gegeven, dan bestaat er een lokaal coördinatenstelsel \(\{x^i\} \) zó dat voor alle \(i \) \(e_i \) precies de \(i \)-de basis vector \(\partial /\partial x^i \) is. De corresponderende stroomlijnen van \(e_1, ..., e_n \) vormen dan het z.g. *coördinatennet* van het betreffende coördinatenstelsel.
Figure 3.5: De commutator $[v, w]$ van twee vectorvelden is een maat voor het verschil tussen de punten p en p', bekomen door de stroomlijnen van beide velden in verschillende volgorde te volgen.

Figure 3.6: Connecterende vectoren c ‘verbinden’ op naburige stroomlijnen punten met dezelfde parameter τ.

Oefeningen:

1. Zij $u = u^i \frac{\partial}{\partial x^i}$ en $v = v^i \frac{\partial}{\partial x^i}$. Bepaal de componenten van $[u, v]$ t.o.v. de lokale coördinaten x^i.

2. Bepaal, zo eenvoudig mogelijk,
$$
\begin{bmatrix}
\frac{x\partial_x + y\partial_y}{\sqrt{x^2 + y^2}}, \\
\frac{x\partial_y - y\partial_x}{\sqrt{x^2 + y^2}}
\end{bmatrix}.
$$

3. Beschouw in \mathbb{R}^3 de basis $e_1 = e^x \frac{\partial}{\partial y}$, $e_2 = e^x \frac{\partial}{\partial y} + xe^x \frac{\partial}{\partial x}$, $e_3 = \frac{\partial}{\partial x}$. Bepaal de commutatiecoëfficiënten.

4. Gegeven zijn de vectorvelden $a = x\partial_x + y\partial_y + z\partial_z$, $b = x\partial_y - y\partial_x$ en $c = \partial_z$. Ga na dat $[a, c] = -c$. Voer sferische coördinaten r, θ, ϕ in en ga na dat $a = \partial_\rho$ met $\rho = \log r$. Nu is $[a, c] = [\partial_\rho, \partial_z] = 0$. Waar zit de fout?

5. Ga expliciet na dat, met $X, Y \in \mathcal{X}(\mathcal{M})$, de componenten $[X, Y]^i$ transformeren zoals de componenten van een vectorveld in $\mathcal{X}(\mathcal{M})$.

6. Bepaal de componenten van $v = x\partial_x + y\partial_y$ in het coördinaatstelsel $\{a, b\}$, waarbij $a = x + y$, $b = 3xy$.

43
7. Gegeven het vectorveld \(\mathbf{u} = \partial_x + x\partial_y \), bepaal coördinaten \(\{X, Y\} \) (met \(X \) en \(Y \) functies van \(x, y \)) zó dat \(\mathbf{u} = \partial_X \).

8. Zij \(\xi \) het vectorveld \(x\partial_x - y\partial_y \) op \(\mathbb{R}^2 \). Toon aan dat de maximale integraalkromme van \(\xi \) doorheen het punt \(p = (p_1, p_2) \) gegeven wordt door de afbeelding \(\gamma : \mathbb{R} \rightarrow \mathbb{R}^2 : t \mapsto (p_1 e^t, p_2 e^{-t}) \).

Opmerking: wanneer, zoals in dit geval, voor elk punt \(p \) de maximale integraalkromme als domein \(\mathbb{R} \) heeft, dan zeggen we dat \(\xi \) compleet is.

3-3 Eénvormen

Eénvormen in een punt \(p \in \mathcal{M} \) zijn lineaire operatoren die vectoren in \(p \) omzetten in reële getallen:

- een \(1\text{-vorm} \(\omega \) in \(p \) is dus een element van de duale ruimte \(T_p^*\mathcal{M} \).

Het beeld \(\sigma(v) \in \mathbb{R} \) noemen we ook de contractie van \(\sigma \) en \(v \).

Voor een gegeven basis \(\{e_a\} \) zijn de \(n \) lineair onafhankelijke \(1\text{-vormen} \(\omega^a \) bepaald door \(\omega^a(e_b) = \delta^a_b \) een basis voor \(T_p^*\mathcal{M} \). We noemen deze basis de \textit{duale basis} van \(\{e_a\} \). Elke \(1\text{-vorm} \(\sigma \in T_p^*\mathcal{M} \) kan dan geschreven worden als

\[
\sigma = \sigma_a \omega^a
\]

en met \(v = v^a e_a \) geldt dus

\[
\sigma(v) = \sigma_a v^a.
\]

Net zoals voor vectorvelden definiëren we een \(1\text{-vormveld} \(\sigma \) door met elk punt \(p \in \mathcal{M} \) een \(1\text{-vorm} \(\sigma_p \in T_p^*\mathcal{M} \) te associëren en de werking van \(\sigma \) op een vectorveld puntsgewijs te definiëren:

\[
(\sigma(v))_p = \sigma_p(v_p).
\]

Alzo worden de \(1\text{-vormvelden} \(\mathcal{F}(\mathcal{M}) \)-lineaire afbeeldingen van \(\mathcal{C}(\mathcal{M}) \) naar \(\mathcal{F}(\mathcal{M}) \):

\[
\sigma(v_1 + v_2) = \sigma(v_1) + \sigma(v_2) \quad \text{en} \quad \sigma(fv) = f \sigma(v).
\]

Is er geen verwarring mogelijk, dan zullen we \(1\text{-vormvelden} \) doorgaans gewoon \(1\text{-vormen} \) noemen. De verzameling van de \(1\text{-vormvelden} \) op \(\mathcal{M} \) noemen we als \(\Omega^1(\mathcal{M}) \). Met puntsgewijs gedefinieerde optelling en vermenigvuldiging met gladde functies,

\[
(\sigma_1 + \sigma_2)v = \sigma_1 v + \sigma_2 v \quad \text{en} \quad (f \sigma)v = f(\sigma v),
\]

geldt dat ook \(\Omega^1(\mathcal{M}) \) een \(\mathcal{F}(\mathcal{M})\)-modul is.

Voor \(f \in \mathcal{F}(\mathcal{M}) \) definiëren we de \textit{uitwendige afgeleide} van \(f \) als de \(1\text{-vorm} \(df \), bepaald door

\[
df(v) = v(f) = v^a f_a
\]

voor alle \(v \in T(\mathcal{M}) \). Voor het bijzonder geval van de coördinaatfuncties \(x^i \) geldt dan

\[
dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j,
\]

zodat \(\{dx^i\} \) de duale basis is van \(\frac{\partial}{\partial x^i} \). T.o.v. een lokale coördinaatbasis kan elke \(1\text{-vorm} \) dus geschreven worden als

\[
\sigma = \sigma_i dx^i
\]

en geldt i.h.b.

\[
df = f_i dx^i = f_i \omega^a.
\]

Merk op dat voor alle \(f, g, h \in \mathcal{F}(\mathcal{M}) \) en \(\alpha \in \mathbb{R} \)

\[
d(f + g) = df + dg,
\]

\[
d(\alpha f) = \alpha df,
\]

\[
(g + h)df = g df + h df,
\]

\[
d(fg) = f df + g df,
\]

\[
(3-3.9)
\]
waarbij vooral de laatste *leibnizeigenschap van cruciaal belang is.
In de oudere fysicaliteratuur komen we 1-vormen tegen onder de benaming *covariante vectoren*. Deze benaming werd ingevoerd om, bij overgang naar nieuwe lokale coördinaten, de transformatieformules voor de componenten te onderscheiden van deze voor vectoren (ook *contravariante vectoren* genoemd).

Inderdaad, met 3-3.7 geldt \(\sigma = \sigma_i dx^i = \sigma^j dx^j \), zodat onmiddellijk volgt

\[
\sigma_{ij} = \frac{\partial x^j}{\partial x^i} \sigma_j
\]
(3-3.10)

(vergelijk met 3-2.5).

Bij een willekeurige basistransformatie met

\[
e_{a'} = L_{a'}^b e_b
\]

geldt voor de duale basis

\[
\omega^{a'} = L_{a'}^b \omega^b,
\]

zodat met \(\sigma = \sigma_a \omega^a \) volgt

\[
\sigma_{a'} = L_{a'}^b \sigma_b. \tag{3-3.11}
\]

oefening: bepaal de duale basis van \(\{e_1, e_2, e_3\} \) optredend in oefening 3 op p. 43.

3-4 Tensoren

We geven eerst een algemene definitie, die ook geldig is voor oneindig-dimensionele ruimten, waarna we ons verder beperken tot het eindig-dimensionale geval.

3-4.1 Vrije vectorruimten

Zij \(S \) een willekeurige verzameling en \(\mathbb{K} \) een commutatief lichaam. Zij \(\mathcal{W}(S) \) de verzameling van alle afbeeldingen \(S \rightarrow \mathbb{K} \) die slechts een eindig aantal elementen van \(S \) niet op 0 afbeelden (is \(S \) eindig dan is dit dus de verzameling \(\mathbb{K}^S \) van alle afbeeldingen \(S \rightarrow \mathbb{K} \)). We geven aan \(\mathcal{W}(S) \) de structuur van een vectorruimte d.m.v. puntsgewijs gedefinieerde optelling en scalar vermenigvuldiging.

Bijzondere elementen van \(\mathcal{W}(S) \) zijn de karakteristieke functies \(\chi_a \) van elementen \(a \in S \):

\[
\chi_a : S \rightarrow \mathbb{K} : x \mapsto \begin{cases} 1, & \text{als } x = a; \\ 0, & \text{als } x \neq a. \end{cases}
\]

Noemen we \(\hat{S} \) de verzameling van de karakteristieke functies \(\chi_a \), dan is het duidelijk dat \(\mathcal{W}(S) = \mathbb{K}\hat{S} \).

Omdat er een bijjectie bestaat tussen \(S \) en \(\hat{S} \subset V \), kunnen we echter \(S \) identificeren met \(\hat{S} \), zodat \(\mathcal{W}(S) \) op te vatten is als de verzameling van alle *eindige formele sommen* \(\sum_{i=1}^p x_i a_i (x_i \in \mathbb{K}, a_i \in S) \). We noemen \(\mathcal{W}(S) \) de *vrije vectorruimte voortgebracht door \(S \) over \(\mathbb{K} \).

3-4.2 Tensorproduct

Zij \(V \) en \(W \) vectorruimten over \(\mathbb{K} \). Net zoals de constructie van een vrije vectorruimte over \(S \) toelaat om te werken met lineaire combinaaties van elementen van een willekeurige verzameling \(S \), zouden we nu ook graag "producten" willen beschouwen van de gedaante \(\nu \otimes \omega \), met \(\nu \) en \(\omega \) vectoren uit resp. \(V \) en \(W \) en wel zó dat bilineariteit optreedt:

\[
(\alpha \nu + \beta \nu') \otimes \omega = \alpha \nu \otimes \omega + \beta \nu' \otimes \omega, \quad \nu \otimes (\alpha \omega + \beta \omega') = \alpha \nu \otimes \omega + \beta \nu \otimes \omega'. \tag{3-4.1}
\]

We beginnen met de vrije vectorruimte \(\mathcal{W}(V \times W) \) te beschouwen: dit is een monsterlijk grote vectorruimte, met als elementen lineaire combinaaties van koppels \((\nu, \omega)\) uit \(V \times W \) en waarin *niet* voldaan is aan de eigenschap dat de vectoren

\[
(\alpha \nu + \beta \nu', \omega) - \alpha(\nu, \omega) - \beta(\nu', \omega), \quad (\nu, \alpha \omega + \beta \omega') - \alpha(\nu, \omega) - \beta(\nu, \omega') \tag{3-4.2}
\]
null zijn. Daarom beschouwen we de deelruimte $U \leq \mathcal{W}(V \times W)$ die de opspanning is van alle vectoren van de vorm (3-4.2) en definiëren vervolgens het tensorproduct $V \otimes W$ als een quotiëntruimte,

$$V \otimes W = \mathcal{W}(V \times W)/U,$$

waarvan we de elementen tensoren noemen. Dit zijn dus lineaire combinaties van equivalentieklassen van de gedaante $(v, w) = (v, w) + U$, die we noteren als $v \otimes w$. M.a.w. een tensor in $V \otimes W$ is een eindige\(^5\) som $\sum \alpha_r v_r \otimes w_r$ van elementaire tensorproducten.

Oefening: toon zelf aan dat met deze definitie aan de bilineariteitsbepaling (3-4.1) automatisch voldaan is!

Zijn V en W eindigdimensionaal, met basissen resp. (e_1, \ldots, e_n) en (f_1, \ldots, f_m), dan kan, als gevolg van de bilineariteit, elk tensorproduct $v \otimes w$ worden voorgesteld als

$$v \otimes w = (v^a e_a) \otimes (w^b f_b) = v^a w^b (e_a \otimes f_b).$$

Hieruit volgt onmiddellijk dat de tensoren $e_i \otimes f_j$ (in het eindigdimensionale geval) voortbrengend zijn voor $V \otimes W$. Men kan ook aantonen dat ze lineair onafhankelijk zijn en dus een basis vormen, zodat

$$\dim(V \otimes W) = \dim(V) \dim(W).$$

Naar analogie met de vectorruimte V en haar duale V^*, zullen we de elementen van $V \otimes V$ contravariante tensoren van rang twee, of tweemaal contravariante tensoren, of tensoren van type $(2,0)$ noemen en de elementen van $V^* \otimes V^*$ covariante tensoren van rang twee, of tweemaal covariante tensoren, of tensoren van type $(0,2)$.

3.4.3 Tensoren en multilineaire afbeeldingen

In het geval van eindigdimensionale vectorruimten kunnen tensorproducten op een alternatieve, minder abstracte, manier gedefinieerd worden. We introduceren daartoe eerst de verzameling $\mathcal{L}(V_1, \ldots, V_p)$ van multilineaire afbeeldingen op een stel vectorruimten: dit zijn afbeeldingen

$$\phi : V_1 \times \cdots \times V_p \to K,$$

die lineair zijn in elke component afzonderlijk. Bekijken we om de gedachten te vestigen het geval $p = 2$: zijn V, W vectorruimten, dan bepaalt elk koppel $(v, w) \in V \times W$ een element van $\mathcal{L}(V^*, W^*)$ door

$$(v, w) : (\sigma, \tau) \mapsto \sigma(v) \tau(w).$$

Deze afbeelding kan uitgebreid worden tot de ganse vrije vectorruimte $\mathcal{W}(V \times W)$ door te stellen

$$\sum' \alpha'(v_r, w_r) : (\sigma, \tau) \mapsto \sum' \alpha' \sigma(v_r) \tau(w_r).$$

De deelruimte U voortgebracht door de vectoren (3-4.2) wordt hierdoor afgebeeld op 0, zodat deze afbeelding op unieke wijze kan worden ‘overgeheveld’ naar het tensorproduct $V \otimes W$: elke tensor $T = \sum' \alpha' v_r \otimes w_r \in V \otimes W$ definiëert alzo een unieke bilineaire afbeelding op $V^* \times W^*$ door

$$T(\sigma, \tau) = \sum' \alpha' \sigma(v_r) \tau(w_r).$$

Analoog definieert elke tensor in $V^* \otimes W^*$ een unieke bilineaire afbeelding op $V \times W$, waarbij we gebruik maken van de identificaties $V^{**} \cong V$ en $W^{**} \cong W$. Dit laat dus toe om tensorproducten van\(^5\) we gebruiken soms het symbool Σ' om eindige sommen aan te duiden.
eindigdimensionale vectorruimten te *definiëren* a.d.h.v. multilineaire afbeeldingen. Men kan aantonen dat het zo gedefinieerde tensorproduct associatief is:

\[u \otimes (v \otimes w) = (u \otimes v) \otimes w \]

en dat bv. \(U \otimes (V \otimes W) \cong (U \otimes V) \otimes W \cong U \otimes V \otimes W \) te identificeren is met \(\mathcal{L}(U^*, V^*, W^*) \).

Een belangrijk bijzonder geval treedt op wanneer de vectorruimten \(V_1, V_2, \ldots \) kopieën zijn van de ruimten \(V \) en \(V^* \). We spreken in dat geval, net zoals hogerop, van \(r \)-keer contravariante en \(s \)-keer covariante tenoren. Een tensor \(S \) van type \((r, s) \) over een vectorruimte \(V \) kan dus gedefinieerd worden als een element van de ruimte \(\mathcal{T}^r_s(V) = V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^* = V^{\otimes r} \otimes V^{* \otimes s} \).

In het bijzonder definiëren we \(\mathcal{T}^0_0(V) = \mathbb{K}, \mathcal{T}^1_0(V) = V \) en \(\mathcal{T}^0_1(V) = V^* \). Een tensor \(S \) van type \((r, s) \) is dus een multilineaire operator die \((r + s)\)-tupels \((\sigma^1, \ldots, \sigma^r, v_1, \ldots, v_s)\) van \(r \) lineaire functionalen \(\sigma \) en \(s \) vectoren \(v \) omzet in een scalar. Zo is bv. \(u_1 \otimes \cdots \otimes u_r \otimes \tau^1 \otimes \cdots \otimes \tau^s \) de operator gedefinieerd door

\[\langle u_1 \otimes \cdots \otimes u_r \otimes \tau^1 \otimes \cdots \otimes \tau^s \rangle (\sigma^1, \ldots, \sigma^r, v_1, \ldots, v_s) = \sigma^1(u_1) \cdot \ldots \cdot \sigma^r(u_r) \cdot \tau^1(v_1) \cdot \ldots \cdot \tau^s(v_s). \]

Elke tensor \(S \in \mathcal{T}^r_s \) kan geschreven worden als een lineaire combinatie van elementaire tensorproducten,

\[S = S^{a_1}_{b_1} \cdots a_r_{b_r} \cdots e_{a_1} \otimes \cdots \otimes e_{a_1} \otimes \omega^{b_1} \otimes \cdots \otimes \omega^{b_r}. \]

(3-4.5)

en de coëfficiënten \(S^{a_1}_{b_1} \cdots a_r_{b_r} \) (met \(r \) contravariante en \(s \) covariante indices) noemen we de *componenten* van \(S \) t.o.v. de basis\(\{e_a\}, \{\omega^a\}\). Er geldt dus

\[S^{a_1}_{b_1} \cdots a_r_{b_r} = S(\omega^{a_1}, \ldots, \omega^{a_r}, e_{b_1}, \ldots, e_{b_r}). \]

(3-4.6)

Voorbeeld

Bekijk in een 2-dimensionale vectorruimte de lineaire functionalen \(\sigma = 2\omega^1 - 3\omega^2 \) en \(\tau = 3\omega^1 + 2\omega^2 \). Dan is \(\sigma \otimes \tau \) een tensor van type \((0,2)\), met componenten die af te lezen zijn uit

\[\sigma \otimes \tau = (2\omega^1 - 3\omega^2) \otimes (3\omega^1 + 2\omega^2) \]

\[= 6\omega^1 \otimes \omega^1 - 4\omega^1 \otimes \omega^2 - 9\omega^2 \otimes \omega^1 - 6\omega^2 \otimes \omega^2. \]

Deze componenten kunnen dus worden voorgesteld door een matrix

\[[\sigma \otimes \tau]_{ab} = \begin{bmatrix} 6 & -4 \\ -9 & -6 \end{bmatrix}. \]

Meer gecompliceerde constructies zijn uiteraard ook mogelijk, maar, om de notaties niet te zwaar te maken, beperken we ons tot een voorbeeld:

het tensorproduct \(V \otimes V^* \otimes V^* \otimes V \) bevat tensoren van de gedaante \(S = S^{bc}_{de} \rho^a \otimes \omega^b \otimes \omega^c \otimes \epsilon_d \); dit zijn multilineaire afbeeldingen die 4-tupels \((\sigma, v, u, \tau)\) als volgt omzetten in reële getallen

\[S(\sigma, v, u, \tau) = S^{bc}_{de} \sigma^a \rho^b \omega^c \tau_d. \]

Omdat het tensorproduct niet commutatief is, is de positie van de indices belangrijk: \(S^{bc}_{de} \neq S^d_{be} \).

Neem daarom de gewoonte aan om in de componenten van tensoren de indices altijd op de juiste positie te schrijven! Dit heeft bovendien het bijkomende voordeel dat we uit de index-structuur van de componenten onmiddellijk kunnen aflezen over welk soort tensor het gaat: zo zijn \(T^{ab}_{c} \) nochzakelijk de componenten van een tensor in \(V \otimes V \otimes V^* \). Vandaar ook dat fysici en ingenieurs de gewoonte hebben aangenomen om naar bv. de tensor \(T^{bc}_{de} \epsilon_a \otimes \epsilon_b \otimes \omega^c \) te verwijzen als ‘de tensor’ \(T^{ab}_{c} \).

\(^6\)r factoren \(V \), die we identificeren met \(V^{**} \), en \(s \) factoren \(V^* \)
De som van tensoren, het product van een tensor met een scalar en het tensorproduct van tensoren worden puntsgewijs gedefinieerd. Voor tensoren \(S, T, T_1 \) in \(T^r_s(p) \) en \(T_2 \) in \(T^r_s(p) \) levert dit bv. de volgende definities op, waarbij \((\sigma, v)\) een korte schrijfwijze is voor \((\sigma^1, \ldots, \sigma^r, v_1, \ldots, v_s)\):

\[
(T + S)(\sigma, v) = T(\sigma, v) + S(\sigma, v),
\]

\[
(\alpha \cdot T)(\sigma, v) = \alpha \cdot T(\sigma, v),
\]

\[
(T_1 \otimes T_2)(\sigma, \sigma', v', v') = T_1(\sigma, v) \cdot T_2(\sigma', v'),
\]

zodat \(T \otimes T' \in T^{(r+1)s'}_s(p) \). Dit leidt tot de betrekkingen:

\[
(S + T)^{a_1 \ldots a_r}_{b_1 \ldots b_s} = S^{a_1 \ldots a_r}_{b_1 \ldots b_s} + T^{a_1 \ldots a_r}_{b_1 \ldots b_s},
\]

\[
(\alpha S)^{a_1 \ldots a_r}_{b_1 \ldots b_s} = \alpha S^{a_1 \ldots a_r}_{b_1 \ldots b_s},
\]

\[
(T_1 \otimes T_2)^{a_1 \ldots a_r}_{b_1 \ldots b_s} = T_1^{a_1 \ldots a_r}_{b_1 \ldots b_s} \cdot T_2^{a_1 \ldots a_r}_{b_1 \ldots b_s}.
\]

Voeren we in \(T_\rho(M) \) een basistransformatie uit \(e_\alpha = L^a_\rho e_b, \quad \omega^{a'} = L^{a'}_\rho \omega^b \), dan veranderen de componenten van \(S \) als volgt:

\[
S^{a_1 \ldots a_r}_{b_1 \ldots b_s} = L^{a_1}_{a'_1} \ldots L^{a_r}_{a'_r} \cdot L^{b_1}_{b'_1} \ldots L^{b_s}_{b'_s} \cdot S^{a'_1 \ldots a'_r}_{b'_1 \ldots b'_s}
\]

(in het bijzonder geval van een verandering van lokale coördinaten, substitueren we hierin \(L^{a'}_a \) door \(\frac{\partial x^a}{\partial x^{a'}} \) en \(L^a_\rho \) door \(\frac{\partial x^\rho}{\partial x^a} \)).

De contractie \(C^1_\rho(T) \) van \(T \), t.o.v. een basis \(\{e_\alpha\} \) met duale basis \(\{\omega^a\} \), over de eerste contravariante en covariante indices, definieren we door

\[
C^1_\rho(T) = T^{a_1 a_2 \ldots a_r}_{b_1 b_2 \ldots b_s} e_{a_1} \otimes \cdots \otimes e_{a_r} \otimes \omega^{b_1} \otimes \cdots \otimes \omega^{b_s}.
\]

Opmerking: ook deze definitie is onafhankelijk van de gekozen basis, wat toelaat om de contractie van \(T \) over de eerste contravariante en covariante indices te noemen. Vanzelfsprekend kan op dezelfde manier \(C^p_\rho(T) \) gedefinieerd worden.

Een tensor wordt *symmetrisch* (respectievelijk *antisymmetrisch*) genoemd in de contravariante indices \(p \ldots p + q \) naargelang

\[
T^{a_1 \ldots a_p \ldots a_{p+q} \ldots a_r} = T^{a_1 \ldots a_{p+q} \ldots a_p \ldots a_r}
\]

of

\[
T^{a_1 \ldots a_p \ldots a_{p+q} \ldots a_r} = T^{a_1 \ldots a_{p+q} \ldots a_p \ldots a_r}.
\]

Voor een stel covariante indices verloopt de definitie analogo.

Is \(M \) een variëteit, dan laat bovenstaande constructie toe om, met \(V = T_\rho(M) \), in elk punt \(p \in M \) de tensorenruimte \(T^r_s(p) \) te bepalen. *Tensorvelden* van type \((r, s)\) definieren we door met elk punt \(p \in M \) een element van \(T^r_s(p) \) te associëren. De verzameling van deze tensorvelden noemen we als \(T^r_s(M) \). Met puntsgewijs gedefinieerde optelling en vermenigvuldiging met scalaire velden wordt ook \(T^r_s(M) \) een \(F(M) \)-moduul.

M.bv. een gladde afbeelding \(F \) van een variëteit \(M \) naar een variëteit \(N \) is het vervol gens mogelijk om tensoren van de ene variëteit naar de andere ‘over te hevelen’. Definieren we eerst de *pull-back* \(F^*(f) \) van een \(f \in F(N) \):

\[
F^* f = f \circ F \in F(M).
\]

Voor een gegeven vector \(v_p \in T_p(M) \) laat dit vervolgens toe de *push-forward* \(F_* v_p \in T_{F(p)}(N) \) te bepalen:

\[
\forall f \in F(N) \quad (F_* v_p)(f) = v_p(F^* f).
\]
Is F een 1-1 afbeelding, dan kan voor een gegeven vectorveld $v \in \mathcal{T}^1_0(M)$ ook een vectorveld, de push-forward $F_*v \in \mathcal{T}^1_0(N)$, bepaald worden door:

$$\forall f \in \mathcal{F}(N) \quad \text{en} \quad \forall a \in \mathcal{M} \quad (F_*v)_a(f) = v_{F^{-1}(a)}(F^*f)$$ (3-4.13)

wat we kort ook schrijven als $(F_*v)(f) = v(F^*f)$.

Ten slotte definiëren we hiermee de pull-back $F^*\sigma$ van $\sigma \in \mathcal{T}^0_1(N)$ (ook als F niet 1-1 is):

$$\forall v \in \mathcal{T}^0_1(M) \quad \text{en} \quad \forall a \in \mathcal{M} \quad (F^*\sigma)_a(v_a) = \sigma_{F(a)}(F_*v_a)$$ (3-4.14)

wat kort geschreven wordt als $(F^*\sigma)v = \sigma(F_*v)$. De veralgemening tot $\mathcal{T}^p_0(M)$ en $\mathcal{T}^0_p(M)$ ligt voor de hand. Noteer dat zowel F_* als F^* lineaire afbeeldingen zijn. Als bovendien F een diffeomorfisme is (d.w.z. de inverse bestaat en is voldoende differentieerbaar) dan zijn met F en F^{-1} tensorvelden van elk type (r,s) over te hevelen van M naar N en omgekeerd. Zo wordt bv. de push-forward van een 1-vorm ω gegeven door $F_*(\omega) = (F^{-1})^*\omega$.

Opmerking: bij sommige auteurs bestaat de gewoonte om de begrippen contravariant en covariant te hechten aan resp. de 1-vormen en de vectoren, en dit omwille van hun gedrag onder push-forward en pull-back.

De volgende eigenschappen zijn niet moeilijk om aan te tonen:

- Als $f \in \mathcal{F}(N)$ dan is

 $$\text{d}(F^*f) = F^*(\text{d}f).$$ (3-4.15)

- Als F in lokale coördinaten x^j op M en y^i op N gegeven is door $y^i = y^i(x)$ en $\sigma = \sigma_i \, \text{d}y^i \in \mathcal{T}^0_1(N)$, dan wordt $F^*\sigma$ bekomen door ‘substitutie’:

 $$F^*\sigma = \sigma_i(y(x)) \frac{\partial y^i(x)}{\partial x^j} \, \text{d}x^j.$$ (3-4.16)

Opmerking: bekijken we een diffeomorfisme $\Phi : M \rightarrow M : p \mapsto p' = \Phi(p)$ dan kunnen we hiermee een coördinaattransformatie, of z.g. *passief* diffeomorfisme, associëren door $x'(p') = x(p)$ te stellen. Omgekeerd bepalen twee coördinaatkaarten x en x' in hun overlappendingsgebied een actief diffeomorfisme, door het punt p met x-coördinaat x_p af te beelden op het punt p' met x'-coördinaat $x'_{p'} = x_p$.
4-1 Differentiaalvormen

We beschouwen in de eerste drie paragrafen van dit hoofdstuk tensoren van type \((0,p)\) die, voor \(p \geq 2\), antisymmetrisch zijn in al hun covariante indices. In een gegeven punt een vormen deze tensoren de vectorruimte \(\Omega^p(M)\) van \(p\)-vormen of differentiaalvormen. De verzameling van de \(p\)-vormvelden noemen we als \(\Omega^p(M)\). Uiteraard is dit ook weer een \(\mathcal{F}(M)\)-moduul. We identificeren hierbij \(\mathcal{F}(M)\) met \(\Omega^0(M)\) en \(\mathcal{X}^\ast(M)\) met \(\Omega^1(M)\). Opnieuw zullen we, als er geen mogelijkheid is tot verwarring, spreken over \(p\)-vormen, wanneer we eigenlijk \(p\)-vormvelden bedoelen. Voor wat volgt zijn vooral de 2-vormen van belang. Een voorbeeld van een 2-vorm is

\[
\omega_1 \otimes \omega_2 - \omega_2 \otimes \omega_1,
\]

wat we noteren als \(\omega_1 \wedge \omega_2\). We noemen dit het \(\text{uitwendig product}, \text{wedge product} \) of \(\text{grassmannproduct}\) van \(\omega_1\) en \(\omega_2\). D.m.v. bilineariteit kan deze definitie uitgebreid worden: zo is met \(\theta_1 = 2\omega_1 - \omega_3\) en \(\theta_2 = \omega_1 + \omega_2 + 5\omega_3\),

\[
\theta_1 \wedge \theta_2 = 2\theta_1 \wedge \omega_2 + 10\theta_1 \wedge \omega_3 - \omega_3 \wedge \omega_1 - \omega_3 \wedge \omega_2 = 2\theta_1 \wedge \omega_2 + 11\theta_1 \wedge \omega_3 + \omega_2 \wedge \omega_3.
\]

Meer algemeen vinden we voor twee 1-vormen \(\theta_1 = \theta_{1a} \omega^a\) en \(\theta_2 = \theta_{2b} \omega^b\),

\[
\theta_1 \wedge \theta_2 = (\theta_{1a} \theta_{2b} - \theta_{1b} \theta_{2a}) \omega^a \otimes \omega^b = 2! \theta_{1[a} \theta_{2b]} \omega^a \otimes \omega^b
\]

en dus

\[
(\theta_1 \wedge \theta_2)_{ab} = 2! \theta_{1[a} \theta_{2b]}.
\]

Deze eigenschap kunnen we gebruiken om het uitwendig product van vormen van hogere orde te definiëren:

voor \(\theta_1 \in \Omega^p(M)\) en \(\theta_2 \in \Omega^q(M)\) noemen we \(\theta_1 \wedge \theta_2\) de \((p+q)\)-vorm met componenten

\[
(\theta_1 \wedge \theta_2)_{a...b...c...d} = \frac{(p+q)!}{p!q!} \theta_{1[a...b} \theta_{2c...d]}.
\]

Voor \(f \in \Omega^p(M)\) en \(\theta \in \Omega^q(M)\) spreken we af dat \(f \wedge \theta = \theta \wedge f = f \theta\). Hieruit volgt dat \(\wedge\) bilineair is en tevens voldoet aan

\[
\theta_1 \wedge \theta_2 = (-1)^{pq} \theta_2 \wedge \theta_1
\]

en

\[
\theta_1 \wedge (\theta_2 \wedge \theta_3) = (\theta_1 \wedge \theta_2) \wedge \theta_3.
\]
Het uitwendig product van meerdere 1-vormen is dus duidelijk lineair in elke variabele en verdwijnt wanneer twee of meer variabelen gelijk zijn.

Let op: de definitie 4-1.3 verschilt van deze in Hawking & Ellis en Kramer et al. met de factor \(\frac{(p+q)!}{p!q!} \). Ze heeft echter het voordeel dat in latere formules een geringer aantal numerieke coëfficiënten optreedt. Een basis van \(\Omega^p(M) \) wordt gegeven door de \(\binom{n}{p} \) onafhankelijke p-vormen

\[
\omega^{a_1} \wedge \cdots \wedge \omega^{a_p} = \sum_{\sigma} (-1)^{v} \omega^{\sigma(a_1)} \otimes \cdots \otimes \omega^{\sigma(a_p)},
\]

waarbij de som genomen wordt over alle permutaties van \(a_1, \ldots, a_p \) (\(1 \leq a_1 < \cdots < a_p \leq n \)).

De componenten \(\theta_{a_1 \cdots a_p} \) van een p-vorm voldoen bij definitie aan \(\theta = \theta_{a_1, \ldots, a_p} \omega^{a_1} \otimes \cdots \otimes \omega^{a_p} \), zodat

\[
\theta_{a_1 \cdots a_p} = \theta(e_{a_1}, \ldots, e_{a_p}).
\]

Ze kunnen ook afgelezen worden door \(\theta \) uit te schrijven in de basis 4-1.6:

\[
\theta = \frac{1}{p!} \theta_{a_1 \cdots a_p} \omega^{a_1} \wedge \cdots \wedge \omega^{a_p} = \sum_{a_1 < a_2 < \cdots < a_p} \theta_{a_1 \cdots a_p} \omega^{a_1} \wedge \cdots \wedge \omega^{a_p}.
\]

I.h.b. geldt dat \(\forall k \) (\(1 \leq k \leq n \))

\[
\omega^1 \wedge \omega^2 \wedge \cdots \wedge \omega^k(e_1, e_2, \ldots, e_k) = 1.
\]

Een p-vorm \(\omega \) wordt *simpel* genoemd als er \(p \) 1-vormen \(\alpha_k \) bestaan zó dat

\[
\omega = \alpha_1 \wedge \cdots \wedge \alpha_p.
\]

Voor elke \(v \in X(M) \) kunnen we een afbeelding construeren \(i_v : \Omega^{p+1}(M) \rightarrow \Omega^p(M) \), bepaald door

\[
i_v \theta(u_1, \ldots, u_p) = \theta(v, u_1, \ldots, u_p),
\]

dikwijls ook genoteerd als \(i_v \theta = v \cdot \theta \). Er geldt dan

\[
i_v \theta = C^1_{ij}(v \otimes \theta),
\]

of

\[
(i_v \theta)_{a_1 \cdots a_p} = v^a \theta_{a a_1 \cdots a_p}.
\]

Een bijzonder geval hiervan is de betrekking

\[
i_{e_a} \omega^b = \delta_a^b.
\]

Voorbeeld: met \(v = 2e_1 - e_2 \) en \(\theta = 3\omega^1 + \omega^2 + \omega^3 \) is

\[
i_v \theta = 2i_{e_1} \theta - i_{e_2} \theta = 6 - 1 = 5.
\]

Passen we de definitie 4-1.11 toe op \(\theta = \theta^1 \wedge \theta^2 \) met \(\theta^1 = \theta^1_a \omega^a, \theta^2 = \theta^2_b \omega^b \), dan vinden we

\[
i_v \theta(u) = \theta(v^a e_a, u^b e_b) = v^a u^b \theta(e_a, e_b)
\]

\[
\quad = v^a u^b \theta_{ab} = v^a u^b (\theta^1_a \theta^2_b - \theta^1_b \theta^2_a)
\]

\[
\quad = (\theta^1_a v^a)(\theta^2_b u^b) - (\theta^2_a v^a)(\theta^1_b u^b)
\]

\[
\quad = (i_v \theta^1) \theta^2 - (i_v \theta^2) \theta^1 \quad u.
\]

51
en dus
\[i_v(\theta^1 \wedge \theta^2) = (i_v\theta^1)\theta^2 - \theta^1(i_v\theta^2). \]
(4-1.15)

Ook deze 'leibniz-achtige' eigenschap kan veralgemeend worden tot vormen van hogere orde: voor alle \(\alpha \in \Omega^p(M) \) en \(\beta \in \Omega^q(M) \) geldt:
\[i_v(\alpha \wedge \beta) = (i_v\alpha) \wedge \beta + (-1)^p \alpha \wedge (i_v\beta). \]
(4-1.16)

Omwille van de lineariteit van de afbeelding \(i_v \) en voorgaande eigenschap, noemen we \(i_v \) ook wel de \textit{inwendige afgeleide}. We spreken af dat voor \(f \in \mathcal{F}(M) \) geldt \(i_v f = 0 \).

\textbf{oefening}

1. Gegeven het vectorveld \(v = \partial_x + x \partial_y \), bepaal alle 1-vormen \(\omega = a(x,y)dx + b(x,y)dy \) zó dat \(\omega(v) = 0 \).

2. Gegeven het 1-vormveld \(\omega = xdy + ydx \), bepaal alle vectorvelden \(v = a(x,y)\partial_x + b(x,y)\partial_y \) zó dat \(\omega(v) = 0 \).

3. Bepaal functies \(\alpha(x,y) \) en \(\beta(x,y) \) zó dat de 1-vorm \(\omega = dx + xdy \) te schrijven valt als \(\omega = \alpha d\beta \).

Wat is het verband met de integraalkrommen van de vectorvelden \(v \) waarvoor \(\omega(v) = 0 \)?

\textbf{4-2 Uitwendige afleiding}

In 3-3 definieerden we reeds de uitwendige afgeleide van een afbeelding \(f \in \mathcal{F}(M) \), namelijk de 1-vorm \(df = f, i dx^i \). Aan een 1-vorm \(\theta = \theta_i dx^i \) kunnen we vervolgens een 2-vorm associëren door te stellen \(d\theta = d(\theta_i) \wedge dx^i = \theta_{i,j} dx^j \wedge dx^i \).

Hiermee is voldaan aan de eigenschappen (ga na)
\[d(\theta^1 \wedge \theta^2) = d\theta^1 \wedge d\theta^2, \]
\[d(f \theta) = df \wedge \theta + f d\theta, \]
\[d(df) = 0, \]
waarbij in de derde eigenschap gebruik gemaakt werd van de symmetrie van de tweede afgeleide: \(d(df) = d(f_i dx^i) = f_{i,j} dx^j \wedge dx^i = 0 \). We kunnen nu van deze eigenschappen gebruik maken om de uitwendige afgeleide te definiëren voor vormen van hogere orde, door te postuleren dat voor \(\alpha \in \Omega^p(M) \), \(\beta \in \Omega^q(M) \) en \(f \in \mathcal{F}(M) \):

\[(i) \ d(\alpha + \beta) = d(\alpha) + d(\beta) \]
\[(ii) \ d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^p \alpha \wedge (d\beta) \]
\[(iii) \ df = f, i dx^i \]
\[(iv) \ d(df) = 0 \]

De operator \(d \) is hierdoor uniek bepaald, immers

Voor een willekeurige \(p \)-vorm \(\alpha = \frac{1}{p!} \alpha_{i_1 \ldots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p} \) impliceert dit
\[d\alpha = \frac{1}{p!} \alpha_{i_1 \ldots i_p,j} dx^{j} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_p}. \]

Voor \textit{alle} \(p \)-vormen \(\alpha \) volgt dan
\[d(d\alpha) = 0. \]
(4-2.6)
Een expliciete uitdrukking voor de uitwendige afgeleide $d\omega$ van een willekeurige p-vorm ω wordt gegeven door de volgende betrekking:

$$(d\omega)(v_1, ..., v_{p+1}) \equiv \sum_{s=1}^{p+1} (-1)^{s-1} v_s(\omega(v_1, ..., \hat{v}_s, ..., v_{p+1}))$$

$$+ \sum_{1\leq r<s\leq p+1} (-1)^{r+s} \omega([v_r, v_s], v_1, ..., \hat{v}_r, ..., \hat{v}_s, ..., v_{p+1}),$$

waarbij het ‘kapje’ boven een vector, \hat{v}_s, aangeeft dat deze vector ontbreekt in de opgegeven lijst.

Voorbeeld: met ω een 1-vorm, wordt de 2-vorm $d\omega$ bepaald door

$$(d\omega)(x, y) \equiv x(\omega(y)) - y(\omega(x)) - \omega([x, y]).$$

Dat (4-2.8) inderdaad een bilineaire vorm bepaalt, ondanks het optreden van de afgeleiden van x en y blijkt als volgt:

$$(d\omega)(fx, y) = (fx)(\omega(y)) - y(f\omega(x)) - \omega([fx, y])$$

$$= f[x(\omega(y)) - y(\omega(x)) - \omega([x, y])]$$

$$- y(f)\omega(x) + \omega(y(f)x)$$

$$= f(d\omega)(x, y).$$

Een belangrijk bijzonder geval wordt bekomen door voor x, y twee basisvectorvelden e_a, e_b te kiezen. We vinden dan (met ω^a de duale basis)

$$-(d\omega^c)(e_a, e_b) = D^{c}_{ab}$$

en dus

$$d\omega^c = -\frac{1}{2} D^{c}_{ab} \omega^a \wedge \omega^b.$$ (4-2.10)

Deze laatste betrekking volgt ook rechtstreeks door de uitwendige afgeleide te beschouwen van de uitdrukking $df = f_a^\mu \omega^\mu$ voor willekeurige f (ga na!).

De volgende stellingen (waarvan de omgekeerden triviaal zijn) worden vrij vaak gebruikt; ze gelden enkel lokaal en we vermelden ze zonder enige vorm van bewijs:

(i) poincaréstelling:

als $\alpha \in \Omega^p(M)$ ($p \geq 1$) en $d\alpha = 0$ dan bestaat een $\beta \in \Omega^{p-1}(M)$ zó dat $\alpha = d\beta$,

(ii) frobeniusstelling: als σ een 1-vorm is, dan geldt

$$\sigma \wedge d\sigma = 0 \iff \exists f, g \in M: \sigma = fdg.$$ (4-2.11)

Oefening

Toon aan dat de in $\mathbb{R}^2 \setminus \{0\}$ gedefinieerde 1-vorm $\omega = (xdy - ydx)/(x^2 + y^2)$ weliswaar gesloten is ($d\omega = 0$), maar niet globaal exact (d.w.z. er bestaat geen globaal gedefinieerde $f(x,y)$ zó dat $\omega = df$).
Opmerking
Het resultaat 3-4.15 is te veralgemenen tot willekeurige p-vormen: als F een afbeelding is van \mathcal{M} naar \mathcal{N} dan geldt
\[\forall \alpha \in \Omega^p(\mathcal{N}) : \ d(F^*\alpha) = F^*(d\alpha) \] (4-2.12)

4-3 Integratie van vormen

4-3.1 Oriëntatie
Kiezen we een n-vorm Ω op een vectorruimte V, dan laat deze keuze ons toe om V te oriënteren: een basis (e_1, \ldots, e_n) wordt een positieve basis genoemd als $\Omega(e_1, \ldots, e_n) > 0$. Elke basis (e'_1, \ldots, e'_n) = $(e_1, \ldots, e_n)L$ die met (e_1, \ldots, e_n) gelijkgeoriënteerd is, in de zin dat det $L > 0$, is dan eveneens een positieve basis (ga na!). Elke n-vorm $k\Omega$ met $k \in \mathbb{R}$ en $k > 0$ oriënteert M uiteraard op dezelfde manier.

Een differentiaalvariëteit M wordt oriënteerbaar genoemd als een $\Omega \in \Omega^n(M)$ bestaat die nergens 0 is. Een dergelijke n-vorm wordt een volumevorm op M genoemd. Is M oriënteerbaar dan kan M overdekt worden met kaarten waarvoor, in de betreffende overlappingsgebieden, de jacobiaanse determinanten allemaal positief zijn: het is dan immers mogelijk om op consistente wijze de coördinatbasissen in de rakende ruimten zo te kiezen dat ze allemaal positief georiënteerd zijn. We zeggen dat we M voorzien hebben van een oriëntatie of dat we M georiënteerd hebben door de keuze van Ω (elke andere volume-vorm $f(x)\Omega$ met f een positieve functie op M leidt uiteraard tot dezelfde oriëntatie van M). In wat volgt onderstellen we steeds dat M georiënteerd is door de keuze van een volumevorm Ω en definiëren we, voor een willekeurige basis (e_1, \ldots, e_n), $o(e_1, \ldots, e_n) = \text{sgn} (\Omega(e_1, \ldots, e_n))$, evenals $o(x) = o(\partial x^1, \ldots, \partial x^n)$.

4-3.2 Integratie van vormen
Bekijken we eerst het geval van een 1-dimensionale georiënteerd variëteit M. Is x een positief georiënteerde kaart ($o(x) = 1$) op M en $\theta \in \Omega^1(M)$, dan wordt θ in lokale coördinaten voorgesteld door $\theta = f(x)dx$ en definiëren we $\int \theta$ als de gewone riemannintegraal
\[\int \theta = \int_{\mathbb{R}} f(x)dx. \] (4-3.1)

Noteer dat, bij overgang op een nieuwe positieve kaart x' de jacobiaan $\partial x/\partial x'$ 'automatisch' zijn intrede doet, zodat deze definitie coördinaatonaafhankelijk is: als $\theta = f(x)dx = g(x')dx'$, dan is $g(x') = f(x(x')) |\frac{\partial x}{\partial x'}| = f(x(x')) |\frac{\partial x}{\partial x'}|$ zodat
\[\int_{\mathbb{R}} f(x)dx = \int_{\mathbb{R}} g(x')dx'. \]

Bekijken we nu het geval $n = 2$ met, t.o.v. een positieve kaart (x, y), $\theta = f(x, y)dx \wedge dy$ en definiëren we opnieuw $\int \theta$ als de gewone riemannintegraal,
\[\int \theta = \int_{\mathbb{R}^2} f(x, y)dx\,dy. \] (4-3.2)

Opnieuw stellen we vast dat deze definitie coördinaatonaafhankelijk is, omdat in de transformatiefor-
mules voor 2-vormen ‘automatisch’ met de jacobiaan wordt rekening gehouden:

\[\omega = f(x, y)dx \wedge dy = f(x', y', y(x', y'))(\frac{\partial x}{\partial x'}dx' + \frac{\partial y}{\partial y'}dy') \]

\[= f(x', y'), y(x', y'))(\frac{\partial x}{\partial x'} \frac{\partial y}{\partial y'}dy' - \frac{\partial y}{\partial x'} \frac{\partial x}{\partial y'}dx')dx' \wedge dy' \]

\[= f(x', y'), y(x', y')) |\text{det} \left(\begin{array}{cc} \frac{\partial x}{\partial x'} & \frac{\partial y}{\partial x'} \\ \frac{\partial x}{\partial y'} & \frac{\partial y}{\partial y'} \end{array} \right) | dx' \wedge dy' \]

\[= g(x', y')dx' \wedge dy' \]

een dus \[\int f(x, y)dx \wedge dy = \int g(x', y')dx' \wedge dy' \]

Deze eigenschap blijft algemeen geldig en toont aan dat de natuurlijke objecten die in aanmerking komen voor integratie op een n-dimensionale variëteit precies de n-vormen zijn:

zij U open \(\subset \mathbb{R}^n \) en \(\omega \in \Omega^n(U) \) met compacte drager in U (m.a.w. \(\omega_{1\ldots n} = \omega(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}) \) heeft een compacte drager in U). We definiëren dan \(\int \omega \) als de riemannintegraal,

\[\int \omega = \int_{\mathbb{R}^n} \omega_{1\ldots n} dx^1 \ldots dx^n, \quad (4-3.3) \]

wat, t.g.v. de transformatieformules voor \(\omega_{1\ldots n} \), onafhankelijk is van de gekozen coördinaten:

\[\omega_{1\ldots n'} = \frac{\partial x^{i_1}}{\partial x^{i'_1}} \ldots \frac{\partial x^{i_n}}{\partial x^{i'_n}} \omega_{1\ldots i_n} \]

\[= e_{i_1\ldots i_n} \frac{\partial x^{i_1}}{\partial x^{i'_1}} \ldots \frac{\partial x^{i_n}}{\partial x^{i'_n}} \omega_{1\ldots n} \]

\[= \text{det}(\frac{\partial x}{\partial x'}) \omega_{1\ldots n} \quad (4-3.4) \]

\((e_{i_1\ldots i_n} = e^{i_1\ldots i_n} \text{ is het permutatiesymbool op de n indices } i_1, \ldots, i_n; \text{ dit zijn geen tensorcomponenten!})\).

Stel nu dat \(\omega \in \Omega^n(M) \) een compacte drager heeft, gelegen in U, met (U, Φ) een kaart in M. We kunnen dan \(\Phi^* \omega \in \Omega^n(\mathbb{R}^n) \) vormen en m.b.v. de transformatieformules aantonen dat, voor elke andere kaart (V, Ψ) met drager van \(\omega \subset V \), \(\int \Phi^* \omega = \int \Psi^* \omega \). Vandaar de definitie

\[\int \omega = \int \Phi^* \omega \quad (4-3.5) \]

In lokale coördinaten \(x^i \), met \(\omega = u(x)dx^1 \wedge \cdots \wedge dx^n \), komt deze definitie gewoon neer op de bepaling van de riemannintegraal \(\int u(x)dx^1 \ldots dx^n \). In de differentiaalmeetkunde wordt aangetoond dat deze procedure te veralgemenen is voor n-vormen waarvan de drager niet noodzakelijk gelegen is binnen het domein van één enkele kaart (hiervoor worden dan z.g. particles van de eenheid gebruikt).

Belangrijk is dat de zo gedefinieerde integraal invariant is onder diffeomorfismen: als \(F: M \rightarrow N \) een (oriëntatiebewarend) diffeomorfisme is, dan geldt

\[\int \omega = \int F^* \omega \quad (4-3.6) \]

Om de hierboven aangehaalde redenen noemt men een n-vorm \(\Omega \in \Omega^n(M) \) op een n-dimensionale variëteit M (zó dat \(\Omega \) nergens 0 is) ook wel een volumevorm op M.

In ouderen literatuur wordt integratie op een variëteit meestal ingevoerd via scalar dichtheden of densities, nl. objecten \(S \) die bij een verandering van lokale coördinaten transformeren als \(S'(x') = \text{det}(\frac{\partial x'}{\partial x}) S(x) \), zodat

\[\int S'dx^{i'} \ldots dx^{n'} = \int Sdx^1 \ldots dx^n. \quad (4-3.7) \]
Het bestaan van dergelijke objecten komt dus duidelijk neer op het bestaan van een volumevorm Ω, die toelaat om voor een gegeven scalaire functie met compacte drager $f \in F(\mathcal{M})$ de integraal van f m.b.t. Ω te definiëren als

$$\int f = \int f\Omega.$$

(4-3.8)

Later zullen we zien dat het bestaan van een metrische structuur op \mathcal{M} toelaat om een canonieke volumevorm Ω te definiëren, zodat we op intrinsieke wijze zullen kunnen spreken van ‘de’ integraal van f als $f \in F(\mathcal{M})$ een compacte drager heeft.

We eindigen deze paragraaf met de stelling van Stokes en definiëren hiertoe eerst het begrip van een variëteit met een rand:

stel $\frac{1}{2}\mathbb{R}^n = \{ x \in \mathbb{R}^n; x^1 \leq 0 \}$ en vervang in de definitie van kaarten, atlassen etz. \mathbb{R}^n door $\frac{1}{2}\mathbb{R}^n$: we bekomen dan een variëteit \mathcal{M} met rand $\partial\mathcal{M}$, die in lokale coördinaten gegeven is door $x^1 = 0$. Stel nu $\alpha \in \Omega^{n-1}(\mathcal{M})$ met compacte drager en stel \mathcal{M} oriënteerbaar. De stelling van Stokes zegt dan

$$\int_{\partial\mathcal{M}} \alpha = \int_{\mathcal{M}} d\alpha,$$

(4-3.9)

waarbij het linkerlid eigenlijk staat voor $\int_{\partial\mathcal{M}} i^* \alpha$ met i de inclusie $\partial\mathcal{M} \to \mathcal{M}$. Let op het verschil met bv. Hawking & Ellis, waar het rechterlid van 4-3.9 een extra factor n bevat: dit vindt zijn verklaring in de verschillende definities van het uitwendig product.

We schetsen het bewijs. T.g.v. de definities van integratie van vormen en van 4-3.6 volstaat het in locale coördinaten te werken met $\alpha = u(x^1, x^2, \ldots x^n)dx^2 \wedge \ldots dx^n \in \Omega^{n-1}(U), U \subset \mathbb{R}^n, \partial U$ gegeven door $x^1 = 0$ en met de drager van u compact. We hebben dan $d\alpha = \frac{\partial u}{\partial x^1}dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$, zodat

$$\alpha_{2\ldots n} = u \text{ en } (d\alpha)_{1\ldots n} = \frac{\partial u}{\partial x^1}.$$

Als $\partial U = \emptyset$ dan is

$$\int_{\partial U} \alpha = 0 = \int_{\mathbb{R}^{n-1}} (\int_{\mathbb{R}} \frac{\partial u}{\partial x^1}dx^1)dx^2 \cdots dx^n = \int_{U} d\alpha$$

(vermits de drager van u compact is).

Anderzijds geldt als $\partial U \neq \emptyset$

$$\int_{\partial U} \alpha = \int_{\mathbb{R}^{n-1}} u(0, x^2, \ldots x^n)dx^2 \cdots dx^n = \int_{\mathbb{R}^{n-1}} (\int_{-\infty}^{0} \frac{\partial u}{\partial x^1}dx^1)dx^2 \cdots dx^n = \int_{U} \frac{\partial u}{\partial x^1}dx^1 dx^2 \cdots dx^n = \int_{U} d\alpha.$$

Opmerking: vervangen we in bovenstaande eigenschap α door $d\alpha$, dan stellen we vast (gebruik makend van $dd\alpha = 0$) dat voor alle α voldaan is aan

$$\int_{\partial U} \alpha = 0,$$

wat verklaart waarom de eigenschap $d^2 = 0$ soms uitgedrukt wordt als de rand van een rand is nul ...

4-4 Lie-afleiding

Wat volgt is van belang bij de behandeling van symmetriën op een variëteit. We beginnen met een lokale congruentie van krommen te beschouwen (m.a.w. een familie van krommen, zó dat door elk
punt \(p \in U \subset \mathcal{M} \) precies één kromme \(\gamma_p \) gaat), evenals het erme geassocieerde vectorveld \(\mathbf{v} \in \mathcal{X}(U) \), waarvoor dus geldt \(\mathbf{v}_p = [\gamma_p]_p \).

De krommen \(\gamma_p \) worden in lokale coördinaten gegeven door \(x^i = y^i(t) \), met de functies \(y^i \) oplossingen van het stelsel differentiaalvergelijkingen

\[
\frac{dy^i}{dt} = v^i(y^1(t), \ldots, y^n(t)) \tag{4-4.1}
\]

onder de beginvoorwaarden \(y^i(0) = x^i(p) \).

Voor \(|t| \) voldoende klein en vast gekozen, kunnen we elk punt \(p \in U \) meeslepen langs \(\gamma_p \) over een parameterafstand \(t \), door \(p \) af te beelden op \(\gamma_p(t) \). Men toont aan dat deze afbeelding \(\Phi_t : p \mapsto \gamma_p(t) \) (4-4.2)

een lokaal diffeomorfisme is voor voldoend kleine waarden van \(|t| \) en bovendien dat \(\Phi_t \circ \Phi_s = \Phi_{t+s} \).

Kiezen we in een omgeving van een punt lokale coördinaten \(z^k \) zo dat \(\mathbf{v} = \frac{\partial}{\partial z^1}, \) dan wordt in deze omgeving (de coördinaatvoorstelling van) \(\Phi_t \) gegeven door

\[
\Phi_t(p) = (z^1_p + t, z^2_p, \ldots, z^n_p). \tag{4-4.3}
\]

De\(\textit{lie-afgeleide} \) van een tensorveld \(T \in T^r_s(\mathcal{M}) \) wordt nu bekomen door de pull-back van \(T_{\Phi_t(p)} \) te vergelijken met \(T_p \) zelf:

\[
\mathcal{L}_v T = \lim_{t \to 0} \frac{1}{t}(\Phi_t^* T - T) = \frac{d}{dt} (\Phi_t^* T) |_{t=0} \tag{4-4.4}
\]

(noteer dat \(\Phi_t^* T \) en \(T \) behoren tot \textit{dezelfde} vectorruimte \(T^r_s(p) \)).

Uit de eigenschappen van de pull-back volgt onmiddellijk dat \(\mathcal{L}_v \):\

1. tensoren van een bepaald type omzet in tensoren van hetzelfde type,
2. een lineaire operator is die commuteert met contracties,
3. aan de leibnizeigenschap voldoet:

\[
\mathcal{L}_v (T^1 \otimes T^2) = (\mathcal{L}_v T^1) \otimes T^2 + T^1 \otimes (\mathcal{L}_v T^2). \tag{4-4.5}
\]

We vermelden enkele belangrijke eigenschappen van de lie-afgeleide:

i) Voor \(f \in \mathcal{F}(\mathcal{M}) \) geldt

\[
\mathcal{L}_u f = u(f). \tag{4-4.6}
\]

\textbf{Bewijs:}

\[
\mathcal{L}_u f|_p = \lim_{t \to 0} \frac{1}{t}[(\Phi_t^* f)(p) - f(p)]
= \lim_{t \to 0} \frac{1}{t}[f \circ \Phi_t(p) - f(p)]
= \lim_{t \to 0} \frac{1}{t}[f(y^i(t)) - f(y^i(0))]
= \frac{\partial f}{\partial y^i_p} \frac{dy^i}{dt}(0)
= u(f)|_p.
\]
of, gebruik makend van de lokale coördinaten z^k:

$$\mathcal{L}_u f|_p = \lim_{t \to 0} \frac{1}{t} \left[f(z^1 + t, z^2, \ldots, z^n) - f(z^1, z^2, \ldots, z^n) \right]$$

$$= \frac{\partial f}{\partial z^1}|_0$$

$$= \mathcal{L}_p(f).$$

ii) Voor een vectorveld $v \in X(M)$ is

$$\mathcal{L}_u v = \frac{\partial v^i}{\partial x^j} u^j \frac{\partial}{\partial x^i} - v^i \frac{\partial u^i}{\partial x^j} \frac{\partial}{\partial x^j} = [u, v].$$

Bewijs:

$$(\mathcal{L}_u v)^i = \lim_{t \to 0} \frac{1}{t} \left[v^i(z^1 + t, z^2, \ldots, z^n) - v^i(z^1, z^2, \ldots, z^n) \right]$$

$$= \frac{\partial v^i}{\partial z^1}|_0$$

$$= \mathcal{L}_p(v^i)$$

$$= \mathcal{L}_p(v^i) - v_p(u^i) \text{ (want } u^i = 1 \text{ of } 0)$$

iii) Gebruik makend van 4-4.7 en van het feit dat lie-afleiding commuteert met contracteren, geldt voor 1-vormen ω:

$$\mathcal{L}_u \omega = \frac{\partial \omega_i}{\partial x^j} u^j dx^i + \omega_j \frac{\partial u^i}{\partial x^j} dx^i.$$

(4-4.8)

Immers,

$$\mathcal{L}_u (\omega \otimes \frac{\partial}{\partial x^i}) = (\mathcal{L}_u \omega) \otimes \frac{\partial}{\partial x^i} + \omega \otimes \mathcal{L}_u \frac{\partial}{\partial x^i},$$

zodat na contractie,

$$\mathcal{L}_u (\omega_i) = (\mathcal{L}_u \omega)_i + \omega_j [u, \frac{\partial}{\partial x^i}]^j,$$

of

$$\mathcal{(L_u\omega)}_i = u(\omega_i) + \omega_j \left[\frac{\partial}{\partial x^i}, u \right]^j$$

$$= \omega_i,j u^j + \omega_j u^j,m \delta^m_i = \omega_i,j u^j + \omega_j u^j,i.$$

iv) Voor $\omega \in \Omega^k(M)$ geldt

$$\mathcal{L}_u \omega = i_u(d\omega) + d(i_u \omega)$$

wat we ook kort noteren als

$$\mathcal{L}_u = i_u d + d i_u,$$

(4-4.10)

de z.g. cartan-homotopiebetrekking.

We tonen de betrekking aan voor een 1-vorm ω. Wegens 4-4.5 werkt de 1-vorm $\mathcal{L}_u \omega$ op een vectorveld v als volgt:

$$\mathcal{(L_u\omega)}(v) = \mathcal{L}_u (\omega(v)) - \omega (\mathcal{L}_u v) = u(\omega(v)) - \omega([u, v]).$$

58
Vergelijken we dit met betrekking (4-2.8) voor dω dan blijkt dat

\[(\mathcal{L}_u \omega)(v) = (d\omega)(u,v) + v(\omega(u))\].

We herschrijven dit als

\[(\mathcal{L}_u \omega)(v) = (i_u (d\omega))(v) + v(i_u \omega)\].

Merk op dat \(i_U \omega\) een scalair is en dus

\[v(i_u \omega) \equiv (d(i_u \omega))(v)\].

Alzo vinden we

\[(\mathcal{L}_u \omega)(v) = (i_u (d\omega) + d(i_u \omega))(v)\].

Voor willekeurige \(k\)-vormen kan de betrekking bekomen worden uit het feit dat linker- en rechterlid van 4-4.10 zich gedragen als derivaties en door deze te laten werken op een uitwendig product van vormen van lagere orde.

v) Een gevolg van (iv) is dat lie-afleiding commuteert met uitwendige afleiding: voor \(\omega \in \Omega^k(M)\) geldt

\[d(\mathcal{L}_u \omega) = \mathcal{L}_u d\omega\]. (4-4.11)

vi) Voor een willekeurige tensor \(T\) veralgemenen 4-4.7 en 4-4.8 zich tot

\[(\mathcal{L}_u T)^{ij\ldots}_{kl\ldots} = u^m T^{ij\ldots}_{kl\ldots} - T^{mij\ldots}_{kl\ldots} u^i_{\cdot m} - \ldots \text{ [alle boven-indices]} + T^{ij\ldots}_{ml\ldots} u^m_{\cdot k} \ldots \text{ [alle onder-indices]}\] (4-4.12)

Let op: bovenstaande formules gelden enkel in holomone basissen. In een anholomone basis komt er

\[(\mathcal{L}_u T)^{a}_{\cdot \cdot \cdot} = u^c v^a |_c - v^c u^a |_c + u^c v^d D^a_{\cdot c d}\].

vii) Toon aan dat

\[\mathcal{L}_u \circ \mathcal{L}_v - \mathcal{L}_v \circ \mathcal{L}_u = \mathcal{L}_{[u,v]}\]. (4-4.13)

Aanwijzing: toon eerst aan dat het linkerlid lineair is, aan de leibnizeigenschap voldoet en commuteert met contracties. Het volstaat dan om de betrekking enkel nog te bewijzen voor scalareen en vectorvelden.
Hoofdstuk 5
Connecties en kromming

5-1 Covariante afleiding

Alhoewel de lie-afgeleide van een afbeelding $f \in \mathcal{F}(\mathcal{M})$ m.b.t. een vector v in een punt p precies de richtingsafgeleide is van f (zie 4-4.6), is de lie-afgeleide van een tensor duidelijk geen geschikte veralgemening van het begrip richtingsafgeleide in een punt: in 4-4.12 treden immers nog de afgeleiden op van de componenten van v zelf! Om over de ‘richtingsafgeleide van een tensor’ te kunnen spreken, zijn we verplicht een extra structuur op de variëteit \mathcal{M} op te leggen: een connectie ∇ (in een punt van \mathcal{M}) is een operator, die met elk vectorveld v een operator $\nabla_v : \mathcal{X}(\mathcal{M}) \rightarrow \mathcal{X}(\mathcal{M})$ associeert, zó dat

(i) voor $u, v, w \in \mathcal{X}(\mathcal{M})$ en $f, g \in \mathcal{F}(\mathcal{M})$

$$\nabla_{fu+gv}(w) = f\nabla_u w + g\nabla_v w,$$

(ii) voor $u, v, w \in \mathcal{X}(\mathcal{M})$ en $\alpha, \beta \in \mathbb{R}$

$$\nabla_u(\alpha v + \beta w) = \alpha \nabla_u v + \beta \nabla_u w,$$

(iii) voor $u, v \in \mathcal{X}(\mathcal{M})$ en $f \in \mathcal{F}(\mathcal{M})$

$$\nabla_u(fv) = u(f)v + f\nabla_u v.$$

Met behulp van de differentiaalstructuur op \mathcal{M} alléén is het niet mogelijk zulke operator ∇ te construeren. Het bestaan van ∇ is dus een extra veronderstelling die men over \mathcal{M} maakt. De gegeven definitie is vrij abstract, maar in de volgende paragrafen zal blijken dat aan het opleggen van de ∇-structuur wel degelijk een fysische interpretatie gekoppeld is.

Noteer dat voorwaarde (i) garandeert dat $\nabla_v w|_p$ enkel afhangt van de componenten van v in p en niet van hun afgeleiden. Immers als $v_p = \tilde{v}_p$ dan bestaan lokale coördinaten zodat $\nabla_v w|_p = v^i(p)\nabla_{\partial\beta} w|_p = \tilde{v}^i(p)\nabla_{\partial\beta} \tilde{w}|_p = \nabla_{\partial\beta} \tilde{w}|_p$.

We noemen $(\nabla_v u)_p$ de covariante afgeleide (m.b.t. de connectie ∇) van u in de richting van v_p. Dan is ook ∇u het tensorveld van type (1,1) dat, wanneer gecontracteerd met v, het vectorveld $\nabla_v u$ oplevert:

$$\nabla u = \nabla_v u \otimes \omega^h,$$

waarbij we $\nabla_{e_h} = \nabla_{\beta}$ noteren.

De werking van de covariante afgeleide kan d.m.v. lineairiteit uitgebreid worden tot willekeurige tensorvelden door af te spreken dat voor alle $u \in \mathcal{X}(\mathcal{M})$, $f \in \mathcal{F}(\mathcal{M})$ en tensorvelden T, S: (i) de leibnizregel geldt,
\[\nabla_u (T \otimes S) = (\nabla_u T) \otimes S + (T \otimes \nabla_u S), \quad (5-1.5) \]

en (ii)
\[\nabla_u f = u(f). \quad (5-1.6) \]

Hieruit volgt dat de covariante afgeleide commuteert met contracties (toon aan) en dat \(\nabla_u \) tensoren afbeeldt op tensoren van het zelfde type. We zullen voortaan \(\omega^a (\nabla_u u) \) noteren als \(u^a, b \): dit is dus de \(a \)-component van \(\nabla_u u \), \(\text{nieu} \) de \(\nabla_u \) van de functie \(u^a \).

De covariante afgeleide van \(u \) in de richting van \(v \) zal dan gegeven worden door
\[\nabla_v u = (u^a, b) e_a \cdot (5-1.7) \]

In het algemeen geldt dus voor \(T = T^{a_1 \cdots b_1 \cdots} e_{a_1} \otimes \cdots \otimes \omega^{b_1} \otimes \cdots \):
\[\nabla_u T = u^c \nabla_c T = T^{a_1 \cdots b_1 \cdots} u^c e_{a_1} \otimes \cdots \otimes \omega^{b_1} \otimes \cdots . \quad (5-1.8) \]

In overeenstemming met 5-1.4 definiëren we het tensorveld \(\nabla T \) dan door
\[\nabla T = T^{a_1 \cdots b_1 \cdots} e_{a_1} \otimes \cdots \otimes \omega^{b_1} \otimes \cdots \omega^c. \quad (5-1.9) \]

T.g.v. de eigenschappen 5-1.5-1.6 zal het volstaan om de covariante afgeleiden van de basisvectoren te bepalen om de covariante afgeleide van een willekeurige vector te kennen. Daartoe voeren we de componenten \(\Gamma^c_{ab} \) van de vectoren \(\nabla e^b e^a \) in, die we kort ook noteren als \(\nabla e^b e^a \):
\[\nabla_b e_a = \Gamma^c_{ab} e_c \quad (5-1.10) \]

(let op de volgorde van de indices en het verschil met bv. Hawking & Ellis). We noemen dan
\[\Gamma^c_{ab} = \omega^c (\nabla_b e_a) \quad (5-1.11) \]

de \textit{conectiecoëfficiënten}.

Gebruik de eigenschappen van \(\nabla \) (\textit{oefening!}) om aan te tonen dat voor de duale basis volgt
\[\nabla_b \omega^a = -\Gamma^a_{cb} \omega^c \quad (5-1.12) \]

en, meer algemeen, voor \(u, v \in T^1_0 \) en \(\sigma \in T^1_1 \),
\[(\nabla_u \sigma) v = u (\sigma (v)) - \sigma (\nabla_u v). \quad (5-1.13) \]

De componenten \(u^a, c \) van de covariante afgeleide van \(u \in T^1_0 (\mathcal{M}) \) kunnen dan afgelezen worden uit
\[\nabla_c u = \nabla_c (u^a e_a) = (u^a | c + \Gamma^a_{dc} u^d) e_a = u^a, c e_a : \]
\[u^a, c = u^a | c + \Gamma^a_{dc} u^d. \quad (5-1.14) \]

Voor 1-vormvelden \(\sigma \in T^0_1 (\mathcal{M}) \) kan nu gemakkelijk worden aangetoond (\textit{oefening!}) dat
\[\sigma_{a|c} = \sigma_{a|c} - \Gamma^d_{ac} \sigma_{d|c}, \quad (5-1.15) \]

terwijl voor tensorvelden \(T \in T^r_s (\mathcal{M}) \)
\[T^{a_1 \cdots a_r b_1 \cdots b_s, c} = (T^{a_1 \cdots a_r b_1 \cdots b_s}) | c + \Gamma^a_{dc} T^{a_1 \cdots a_r b_1 \cdots b_s} + \cdots \ [alle boven-indices] \\
- \Gamma^d_{b_1 c} T^{a_1 \cdots a_r d \cdots b_s} - \cdots \ [alle beneden-indices]. \quad (5-1.16) \]

N.B.: let op de tekenverschillen met de lie-afgeleide!
Uit 3.2.5, 3.3.11 en 5.1.11 volgt dat de connectiecoëfficiënten niet transformeren zoals de componenten van een tensor:

$$\Gamma^a_{b'c'} = \Gamma^a_{b'c'}(L_{b'}{}^a(L_{c'{}^a} + L_{b'}^b L_{c'{}^b} \Gamma^a_{b'c'}))$$ \hspace{1cm} (5.1.17)

of, i.h.b. voor lokale coördinaten x en x',

$$\Gamma'_{j'k'} = \frac{\partial x'^i}{\partial x^j} \left(\frac{\partial^2 x^i}{\partial x'^j \partial x'^k} + \frac{\partial x^i}{\partial x'^j} \frac{\partial x^j}{\partial x'^k} \Gamma^j_{jk} \right).$$ \hspace{1cm} (5.1.18)

Noteer echter dat voor twee connecties ∇ en ∇ geldt $\nabla u - \nabla u = (\Gamma^a_{b'c'} - \Gamma^a_{b'c'}) u^b \omega^c$, zodat, gezien het linkerlid een tensor is voor alle u, $(\Gamma^a_{b'c'} - \Gamma^a_{b'c'}) u^b \omega^c \otimes \omega^c$ wél een tensor is. Kort zeggen we dat ‘het verschil van twee connecties een tensor is’.

5.2 Parallel transport

Het bestaan van een connectie laat toe om de covariante afgeleide van een tensor langs een kromme te bepalen: zij $\gamma : I \to M$ een kromme in M, waarvan de vergelijking in lokale coördinaten gegeven is door $x^i = x^i(t)$. Zij u de rakende vector aan γ, nl. $u^i = \frac{dx^i}{dt}$ en zij T een tensorveld gedefinieerd op $\gamma(I)$. We extenderen dit tensorveld vervolgens op een omgeving van $\gamma(I)$ en definiëren de covariante afgeleide van T langs γ als het tensorveld $\nabla_u T$. We noteren dit als $\frac{D}{dt} T$ en men kan aantonen dat de evaluatie van dit veld op γ onafhankelijk is van de oorspronkelijk gekozen extensie. Voor een 1-vorm σ geldt dus

$$\left(\frac{D}{dt} \sigma \right)_a = \sigma_{a,b} u^b,$$ \hspace{1cm} (5.2.1)

terwijl voor een vector v en gebruik makend van lokale coördinaten x,

$$\frac{Dv^i}{dt} = \left(\frac{D}{dt} v \right)^i = v^j \frac{dx^j}{dt} = \frac{dv^i}{dt} + \Gamma^i_{jk} v^k \frac{dx^j}{dt}.$$ \hspace{1cm} (5.2.2)

We zeggen dat de tensor T **parallel getransporteerd wordt langs γ** als

$$\frac{D}{dt} T = 0.$$ \hspace{1cm} (5.2.3)

Parallel transport langs een kromme van een punt p naar een punt q is duidelijk een lineaire afbeelding van $T_p^* (p)$ naar $T_q^* (q)$ en is, vermits basisvectoren worden omgezet in basisvectoren (toon aan!), bovendien een isomorfisme tussen $T_p(M)$ en $T_q(M)$. Een *(affiene)* *geadopteerd* wordt gedefinieerd als een kromme in M waarvan de rakende vector parallel langs zichzelf getransporteerd wordt:

$$\frac{D}{dt} u = \nabla u = f(t) u,$$ \hspace{1cm} (5.2.4)

(met $u^i = \frac{dx^i}{dt}$ en met $x^i = x^i(t)$ de voorstelling van γ in lokale coördinaten).

Toon aan dat steeds een gepaste herparametrizerings bestaat *(oefening!)* van de parameter van γ, zodat de geodetische vergelijking 5.2.4 te herschrijven valt als $\nabla u = 0$, m.a.w.

$$\frac{Du^i}{ds} = \frac{d^2 x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0.$$ \hspace{1cm} (5.2.5)

Zulke parameter s (uniek op affiene transformaties $s \mapsto as + b$ nà) noemen we een *affiene parameter* langs γ. Noteer dat we m.bv. een affiene parameter affiene afstanden kunnen vergelijken tussen punten gelegen op een zelfde geodeet (echter niet tussen punten gelegen op verschillende geodeten, t.g.v. de onbepaaldheid in de affiene parameters).

1 strikt gezien zouden we de naam geodeeet moeten voorbehouden voor de maximale extensie van de oplossingen van 5.2.4
5-3 Normale coördinaten

Uit de existentiestelling voor stelsels van gewone differentiaalvergelijkingen volgt dat, voor elke keuze van \(p = \gamma(0) \) en \(v|_p = \dot{\gamma}(0) \), een unieke geodeet \(\gamma_v(s) \) bestaat, waarbij \(s \) gelegen is in een open interval \(I \subset \mathbb{R} \) (als \(I =]-\infty, +\infty[\) dan noemen we \(\gamma \) een volledige geodeet). Als \(\gamma(s) \) een geodeet is, dan is \(\gamma(\lambda s) \) \(\lambda \in \mathbb{R} \) eveneens een geodeet, met beginsnelheid \(\lambda \dot{\gamma}(0) \). Voor een voldoende kleine omgeving \(V \) van \(0 \in T_p(M) \) zijn alle geodeten dus zeker gedefinieerd op \([0, 1] \). Dit laat toe om elk element \(v_p \) af te beelden op het punt \(\gamma(1) \), dat een parameter-afstand 1 verwijderd is van \(p \) langs de geodeet \(\gamma_v \), die voldoet aan \([\gamma_v]|_p = v_p \). Dit definieert de exponentiële afbeelding:

\[
\exp_p : V \subset T_p(M) \to M : v_p = [\gamma_v]|_p \mapsto \gamma_v(1).
\]

Uit de homogeniteit van de geodetische vergelijkingen volgt dan tevens, vermits \(\gamma_v(\lambda) = \gamma_v(\lambda t) \), \(\exp_p(\lambda v) = \gamma_v(t) \).

Men kan aantonen dat \(\exp_p \) een diffeomorfisme is van een omgeving \(V \) van \(0 \in T_p(M) \) op een omgeving \(N \) van \(p \in M \). Bovendien kan men ook \(V \) klein genoeg kiezen zodat \(N \) convex is (d.w.z. door elk paar punten van \(N \) gaat precies één, volledig in \(N \) gelegen, geodeet). Dit diffeomorfisme bepaalt een lokale kaart \(\varphi \), door aan punten \(q \in N \) de standaard coördinaten \(x^i \) van \(\exp_p^{-1}(q) \) te geven. In het coördinatenstelsel \(x^i \) corresponderen de geodeten door \(p \) dan precies met de rechten door 0. In het bijzonder geldt \(\frac{dx^i}{ds}|_0 = 0 \) of

\[
\Gamma^i_{(jk)}(p) = 0.
\]

Men noemt deze \((geodetische) \) normale coördinaten en de omgevingen \(N \) convex normale omgevingen.

5-4 Symmetrische connecties

Uit 5-2.5 volgt duidelijk dat informatie over de geodeten van \(M \) enkel informatie zal kunnen verschaffen over het symmetrische deel \(\Gamma^i_{(jk)} \) van de connectie in lokale coördinaten. Daarom zullen we voortaan onderstellen dat \(\Gamma^i_{(jk)} = 0 \), m.a.w. \(\forall f \in \mathcal{F}(M) \)

\[
f_{i:j} = f_{j:i}.
\]

Voor twee willekeurige vectoren \(u \) en \(v \) impliciete dit

\[
(\nabla_u v - \nabla_v u)^i = [u, v]^i,
\]

zodat het symmetrisch zijn van een connectie op invariante wijze kan uitgedrukt worden door

\[
T(u, v) = \nabla_u v - \nabla_v u - [u, v] = 0.
\]

De tensor van type (1,2) die door het linkerlid gedefinieerd wordt (oefening: toon aan dat dit wel degelijk een tensor is), noemen we de torsietensor en een connectie die aan 5-4.2 voldoet een torsievrĳe connectie. Uitgedrukt in basisvectoren geldt dan

\[
2\Gamma^c_{[ab]} = -D^c_{ab}
\]

en dus i.h.b. voor een coördinaatbasis \(\Gamma^i_{(jk)} = 0 \). Hieruit volgt bovendien dat 5-4.1 geldig is in een willekeurige anholonome basis: \(f_{i:ab} = f_{j:ca} \).

We noemen zulke connectie daarom ook wel een symmetrische connectie. Een torsievrĳe connectie kan dus volledig bepaald worden uit de studie van haar geodeten.
Met bovenstaande uitspraak bedoelen we wel degelijk dat de geodetische afbeeldingen $s \mapsto \gamma(s)$ gekend moeten zijn. Kent men enkel de beelden in \mathcal{M} van deze afbeeldingen, dan is hieruit —voor een torsievrije connectie— de connectie enkel op projectieve transformaties,

$$\Gamma^c_{ab} \mapsto \Gamma'^c_{ab} = \Gamma^c_{ab} + \delta^c_a \psi_b + \delta^c_b \psi_a,$$ \hspace{1cm} (5-4.4)

na te bepalen (met ψ een willekeurig vectorveld). We zeggen in dat geval dat Γ en Γ' projectief equivalent zijn.

Oefening

Toon aan dat 5-4.4 inderdaad een nodig en voldoende voorwaarde is voor projectieve equivalentie. Aanwijzing: dat de voorwaarde voldoende is, is gemakkelijk te bewijzen. Om aan te tonen dat ze ook nodig is, veronderstel je eerst het bestaan van twee connecties ∇ en ∇', zó dat voor willekeurige vectoren u geldt dat $\nabla_u u = f u$ (f een functie), van zodra $\nabla_u u = 0$. Deduceer hieruit het bestaan van een tensor C^i_{jk} met de eigenschap dat

$$\left(C^i_{jk} \delta^m_n - C^m_{jk} \delta^i_n \right) u^j u^k u^n = 0.$$ \hspace{1cm} (5-4.5)

Enige index-manipulaties laten je vervolgens toe om het bestaan aan te tonen van een 1-vormveld ψ zó dat $C^i_{jk} = \delta^i_j \psi_k + \delta^i_k \psi_j$.

Een torsievrije connectie biedt bovendien het voordeel dat in uitdrukkingen voor de uitwendige afgeleide of de lie-afgeleide 'komma's vervangen mogen worden door punt-komma's'. Zo betekent bv. 5-4.2 dat

$$\mathcal{L}_u v = \nabla_u v - \nabla_v u.$$ \hspace{1cm} (5-4.5)

Ook geldt nu voor de basis-1-vormen dat

$$d\omega^a = \omega^a_{i,j} dx^j \wedge dx^i = \omega^a_{i,j} dx^j \wedge dx^i = \Gamma^a_{bc} \omega^b \wedge \omega^c.$$ \hspace{1cm} (5-4.6)

Bij de afleiding van deze betrekking maken we gebruik van 5-1.12, nl.

$$\Gamma^c_{ab} = -\omega^c_{j;i} e_b^i e_a^j.$$ \hspace{1cm} (5-4.7)

Er geldt immers dat $\nabla_b \omega^a = e^i_b \nabla_j \omega^a = e^i_b \omega^a_{i,j} dx^i$. Toon ook aan (oefening!) dat

$$\Gamma^c_{ab} = \omega^c_{b;i} e_b^i e_a^j.$$ \hspace{1cm} (5-4.8)

Introduceren we ten slotte de connectievormen $\Gamma^a_{b} \in \Omega^1(\mathcal{M})$ door

$$\Gamma^a_{b} = \Gamma^a_{bc} \omega^c,$$ \hspace{1cm} (5-4.9)

dan bekomen we uit 5-4.6 de z.g. eerste structuurvergelijkingen van Cartan

$$d\omega^a = -\Gamma^a_{b} \wedge \omega^b.$$ \hspace{1cm} (5-4.10)

Merk op dat, voor een gegeven basis, enkel de combinaties $\Gamma^c_{[ab]}$ uit 5-4.10 kunnen opgelost worden, wat volledig consistent is met 5-4.3. De combinaties $\Gamma^c_{(ab)}$ vormen dus duidelijk extra informatie op de variëteit \mathcal{M}, die niet uit de differentiaalstructuur alleén te verkrijgen is, maar wel bv. uit de kennis van de geodetische structuur.

We noemen een connectie integreerbaar als voor alle punten p het parallel transport van vectoren van p naar q (met q in een voldoende kleine omgeving van p) onafhankelijk is van de gevolgde weg. Een connectie heet affien vlak als een basis bestaat waarin $\Gamma^a_{bc} = 0$. Beide begrippen zijn equivalent: als
\(\nabla \) integereerbaar, kan een basis \(\{ e_a \} \) in een punt \(p \) door parallel transport uitgebreid worden tot een basis op een gehele omgeving \(V \) van \(p \). Voor de basisvectoren geldt dan \(\forall u : \nabla_u e_a = 0 \) zodat uit 5-1.10 volgt dat \(\Gamma^{c}_{ab} = 0 \) op \(V \). Het omgekeerde is triviaal.
Merk op dat, als in een bepaalde basis \(\Gamma^{c}_{ab} = 0 \), deze basis dan bovendien een coördinaatbasis is: de eerste structuurvergelijkingen impliceren dan immers \(d\omega^d = 0 \), zodat, volgens de stelling van Poincaré, lokaal functies \(x^a \) bestaan met \(\omega^d = dx^a \).

Een gemakkelijke manier om na te gaan of een connectie al dan niet vlak is, wordt gegeven in de volgende paragraaf.

5-5 Kromming

Net zoals het nemen van twee lie-afgeleiden (naar een vector \(u \) en een vector \(v \)) afhangt van de volgorde waarin dit gebeurt, zo geldt dit ook voor covariante afleiding - zelfs als de vectoren \(u \) en \(v \) commuteren.

We beschouwen daarom volgende uitdrukking voor \(u, v, w \in T^1_1(\mathcal{M}) \):

\[
Riem(u, v)w = (\nabla_u \nabla_v - \nabla_v \nabla_u - \nabla_{[u, v]})w. \tag{5-5.1}
\]

Ga zelf na dat deze uitdrukking \(\mathcal{F}(\mathcal{M}) \)-lineair is in \(u, v \) en \(w \). De tensor \(R \) die elk geordend viertal \((\sigma, w, u, v) \) (met \(\sigma \in T^0_0(\mathcal{M}) \) en \(u, v, w \in T^1_1(\mathcal{M}) \)) afbeeldt op \(\sigma(Riem(u, v)w) \) noemen we de *krommingstensor* of *riemanntensor*. Zijn componenten zijn

\[
R^d_{\ cba} = \omega^d(Riem(e_a, e_b)e_c) \tag{5-5.2}
\]

en dus

\[
\sigma_a w^b u^c v^d R^a_{\ cba} = \sigma(Riem(u, v)w). \tag{5-5.3}
\]

Bijgevolg geldt \(\forall \sigma, u, v \) en \(w \):

\[
\sigma_a w^b u^c v^d R^a_{\ cba} = \sigma_a \left[(w^{c}_{d}v^d)_a u^d - (w^{a}_{c}u^c)_d v^d - w^{a}_{c}(u^d v^{c}_{d} - v^d u^{c}_{d}) \right] = \sigma_a (w^a_{c;d} - w^a_{d;c}) u^c v^d u^d, \tag{5-5.4}
\]

zodat \(\forall w \in \mathcal{X}(\mathcal{M}) \)

\[
w^a_{c;d} - w^a_{d;c} = R^a_{\ bdc} w^b, \tag{5-5.5}
\]

wat we de *ricci-identiteit* noemen.

Oefening: bewijs zelf dat voor een 1-vorm \(\sigma \) de volgende uitdrukking geldt:

\[
\sigma_{a;c;d} - \sigma_{a;d;c} = R^b_{\ acd} \sigma_b. \tag{5-5.6}
\]

Stel eveneens een uitdrukking op voor \(T^{ab}_{\; c;d} - T^{ab}_{\; d;c} \). Met 5-1.14 vinden we hieruit

\[
R^a_{\ bcd} = \Gamma^a_{\ bdc} - \Gamma^a_{\ bcd} + \Gamma^e_{\ bdc} \Gamma^a_{\ ec} - \Gamma^e_{\ bcd} \Gamma^a_{\ ec} - D^e_{\ cd} \Gamma^a_{\ ec}. \tag{5-5.7}
\]

Deze betrekking volgt ook rechtstreeks uit de definitie 5-5.1 en uit

\[
Riem(e_a, e_b)e_c = R^m_{\ cab} e_m. \tag{5-5.8}
\]

In een coördinaatbasis laat 5-5.5 zich ook herschrijven als

\[
(\nabla_i \nabla_j - \nabla_j \nabla_i)w^k = R^k_{\ ijk} w^j. \tag{5-5.9}
\]

Let op de positie van de \((ij)\)-indices!
Men verifieert onmiddellijk dat de componenten van de riemannstensor voldoen aan de betrekkingen

\[
R^a_{\ b(cde)} = 0 \quad \text{en} \quad R^a_{\ [bcd]} = 0. \tag{5-5.10}
\]
Bewijs zelf (**oefening!**), bij voorkeur door over te gaan op normale coördinaten, de **bianchi-identiteiten**

\[R^a_{b[cd;e]} = 0. \] (5-5.11)

\[C^2_{\text{contractie van de riemanntensor levert de riccitensor}} \]

\[R_{bd} = R^a_{bad}. \] (5-5.12)

Toon eveneens aan dat

\[R^a_{abc} = 2R_{(bc)}. \] (5-5.13)

We bewijzen nu de volgende belangrijke stelling:

een nodige en voldoende voorwaarde opdat een connectie lokaal integreerbaar zou zijn, is dat de riemanntensor = 0 is.

Het nodig zijn van de voorwaarde volgt onmiddellijk uit de opmerking aan het einde van vorige paragraaf. Het klassieke bewijs dat de voorwaarde ook voldoende is, toont aan dat de verandering \(\Delta X = X^i - X \) van een vector onder parallel transport over een gesloten kromme te schrijven is als de som van \('N^2 \) bijdragen' over willekeurig kleine gesloten krommen \(\gamma \) gelegen in een convexe normale omgeving (cf. het klassieke bewijs van de stelling van Stokes). Het volstaat dan om aan te tonen dat \(R^a_{bcd} = 0 \) impliceert dat de verandering onder parallel transport over een willekeurig kleine gesloten kromme klein is van orde \(O(\delta x^3) \), opdat \(\Delta X = \lim_{N \to \infty} \delta x \) zou zijn.

![Figure 5.1:](image)

Voor dit laatste deel van het bewijs beschouwen we het parallel transport van een vector \(X \) over een kleine gesloten kromme \(\gamma \) gelegen in een convex normale omgeving \(U \) van \(p \) (met \(x^i(p) = 0 \) en \(\Gamma^i_{ij} = 0 \) langs \(\gamma \) (bepaald door \(x^i = x^i(\tau) \) en \(\gamma(0) = p \)): langs \(\gamma \) geldt \(\frac{dX^i}{d\tau} = -\Gamma^i_{kj}X^k \frac{dx^j}{d\tau}, \) zodat we met

\[X^i(\tau) = X^i(0) - \int_0^\tau x^m \left(\frac{\partial}{\partial x^m} \Gamma^i_{kj} \right) X^k(0) \frac{dx^j}{d\tau} d\tau + O(x^3). \]

Bijgevolg is \(\delta X^i = X^i(\tau_1) - X^i(\tau_0) = -\frac{\partial}{\partial x^m} \Gamma^i_{kj} |0|X^k(0) \int_0^\tau x^m d\tau + O(x^3). \) De kringintegraal is echter
antisymmetrisch in m en j, vermits $\oint d(x^m x^j) = 0$, zodat

$$\delta X^i = -\frac{1}{2} \left[\left(\frac{\partial}{\partial x^m} \Gamma^i_{kj} \right)_0 - \left(\frac{\partial}{\partial x^j} \Gamma^i_{km} \right)_0 \right] X^k(0) \oint x^m dx^j + O(x^3)$$

$$= \frac{1}{2} R^i_{kmj}(0) X^k(0) \oint x^m dx^j + O(x^3),$$ \hspace{1cm} (5-5.14)

wat inderdaad klein is van 3de orde als $R^i_{kmj} = 0$.

Een zeer efficiënte methode om de componenten van de riemanntensor te bepalen in een willekeurige basis, maakt gebruik van de *krommings-2-vormen* Θ^a_b gedefinieerd door

$$\Theta^a_b = \frac{1}{2} R^a_{bcd} \omega^c \land \omega^d.$$ \hspace{1cm} (5-5.15)

Toon zelf aan (oefening!) dat 5-5.7 dan equivalent is met de *tweede structuurvergelijkingen van Cartan*:

$$d\Gamma^a_b + \Gamma^a_c \land \Gamma^c_b = \Theta^a_b.$$ \hspace{1cm} (5-5.16)

Uitgewerkte voorbeelden van deze methode zullen gegeven worden na de invoering van de metrische structuur in het volgende hoofdstuk.
Hoofdstuk 6

Metrieken

6-1 Algemeentheden

Een metriek of metrische tensor op \mathcal{M} is een symmetrische tensor g van type $(0, 2)$. Een metriek laat toe om aan elk tweetal vectoren $u, v \in T_p(\mathcal{M})$ een scalar $g(u, v)$ te associëren, het *invendig product* van u en v genoemd. Ook kunnen we aan elke vector $v \in T_p(\mathcal{M})$ een scalar $|g(v, v)|^{1/2}$ toekennen (soms ook wel de *lengte* van v genoemd, zelfs al is de met g geassocieerde kwadratische vorm niet positief definit).

Twee vectoren u en v zijn *orthogonaal* als $g(u, v) = 0$.

De componenten van g t.o.v. een basis e_a noteren we

$$g_{ab} = g(e_a, e_b)$$

en in lokale coördinaten geldt dus

$$g = g_{ij} dx^i \otimes dx^j,$$

of $g = g_{ij} dx^i dx^j$, met $dx^i dx^j$ een notatie voor het symmetrische product

$$dx^i dx^j = \frac{1}{2}(dx^i \otimes dx^j + dx^j \otimes dx^i).$$

Als er geen verwarring mogelijk is, zullen we voor vectoren u en v vaak noteren

$$u.v = g(u, v) = g_{ab} u^a v^b,$$

evenals $u^2 = u.u$ en $|u| = |u^2|^{1/2}$.

Als voor een kromme γ (met coördinatenverstelling $x^i = x^i(t)$) de raakvector $u = \frac{d}{dt}$ de eigenschap heeft dat u^2 niet van teken verandert, dan kan de *metrische afstand* tussen twee willekeurige punten $a = \gamma(t_1)$ en $b = \gamma(t_2)$ van de kromme bepaald worden als

$$s = \int_{t_1}^{t_2} |u| dt.$$

Bijgevolg is $\frac{ds}{dt} = |g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}|^{1/2}$, wat symbolisch ook genoteerd wordt als

$$ds^2 = g_{ij} dx^i dx^j.$$ \hspace{1cm} (6-1.5)

We onderstellen altijd dat de metriek *niet-ontaard* is, m.a.w.

$$\forall v \ g(u, v) = 0 \ \text{dAN} \ u = 0.$$ \hspace{1cm} (6-1.6)
In dat geval is de matrix g_{ab} inverteerbaar, wat toelaat een symmetrische tensor van type $(2,0)$ te bepalen met componenten g^{ab} zó dat

$$g^{ab}g_{bc} = \delta^a_c. \quad (6-1.7)$$

M.bv. de tensoren g_{ab} en g^{ab} (tot dit soort foutief taalgebruik worden we verplicht, vermits we hetzelfde symbool g voor beide tensoren gebruiken) kan nu een isomorfisme geconstrueerd worden tussen $T^{a+p}(\mathcal{M})$ en $T_{a-p}(\mathcal{M})$: als bv. $T \in T^2_1(\mathcal{M})$ componenten T_{ab} heeft, dan bepaalt g unieke tensoren in $T^1_1(\mathcal{M})$ en $T^2_0(\mathcal{M})$ door $T_{ab} = g^{ac}T_{cb}$ en $T^{ab} = g^{bd}T_{ad} = g^{ac}g^{bd}T_{cd}$. Voor sommige van deze objecten zullen we een bijzondere notatie gebruiken\(^1\): is bv. $\sigma \in T^1_1(\mathcal{M})$ en $u \in T^1_0(\mathcal{M})$, dan noteren we met $\vec{\sigma}$ (soms ook σ^i) en \mathbf{u}^a de elementen van resp. $T^1_0(\mathcal{M})$ en $T^1_1(\mathcal{M})$ bepaald door

$$\vec{\sigma}^a = g^{ab}\sigma_b \text{ en } \mathbf{u}^b_a = g_{ab}u^b. \quad (6-1.8)$$

Omwille van deze notatie wordt het bovenstaande isomorfisme ook wel eens het muzikale isomorfisme genoemd.

Voor σ en $\tau \in T^1_1(\mathcal{M})$ definiëren we dan

$$\sigma \cdot \tau = g(\sigma, \tau) = \vec{\sigma} \cdot \vec{\tau}, \quad (6-1.9)$$

wat, in overeenstemming met notatie 3-3.2, ook te schrijven is als $\sigma(\vec{\tau}) = \tau(\vec{\sigma})$. Meer algemeen zullen we, als bv. $\mathbf{S} = S_{ab}\omega^a \otimes \omega^b$ en $\mathbf{T} = T_{ab}\omega^a \otimes \omega^b$, de tensor $\mathbf{S} \cdot \mathbf{T}$ definiëren door

$$(\mathbf{S} \cdot \mathbf{T})_{ab} = S_{am}T^m_{b}. \quad (6-1.10)$$

De signatuur s van een metriek is het aantal positieve eigenwaarden min het aantal negatieve eigenwaarden van de matrix g_{ab}. We zijn vooral geïnteresseerd in lorentzmetrieken (zie ook §9-2), m.a.w. metrieken met constante signatuur $n - 2$.

Een vierdimensionale (samenhangende hausdorff-) variëteit voorzien van een lorentzmetriek noemen we voortaan een ruimtetijd\(^2\).

Voor een lorentzmetriek kan dus een orthonormale basis \mathbf{e}_a geconstrueerd worden zó dat

$$g_{ab} = \text{diag} (-1, +1, \ldots, +1). \quad (6-1.11)$$

We maken hierbij de onderstelling dat de componenten \mathbf{e}_a^i van de eigenvectoren voldoend differentieerbare functies zijn op \mathcal{M}.

Passen we de in 6-1.8 vermelde operatie b toe op één van de basisvectorvelden \mathbf{e}_a, dan bekomen we een 1-vorm \mathbf{e}_a^b, met componenten $g_{ij}\mathbf{e}_a^j$, die in de literatuur meestal zonder meer genoteerd wordt als \mathbf{e}_{ai}. Voor deze 1-vormen geldt dus

$$\mathbf{e}_a^b(\mathbf{e}_b) = g_{ab}, \quad (6-1.12)$$

in tegenstelling tot de duale basis $\mathbf{\omega}^a$ waarvoor $\mathbf{\omega}^a(\mathbf{e}_b) = \delta^a_b$. De basis gevormd door de vectorvelden $\mathbf{\omega}^a$ wordt ook de reciproke basis van $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ genoemd. Orthonormale basissen zijn niet uniek: de automorfismen van $T_p(\mathcal{M})$ die 6-1.11 invariant laten, zijn precies de lorentztransformaties.

Een lorentzmetriek laat toe om de vectoren $\mathbf{u} \neq 0$ in $T_p(\mathcal{M})$ te verdelen in tijdachtige vectoren, nulvectoren en ruimteachtige vectoren, naargelang $\mathbf{u}^2 < 0$, $\mathbf{u}^2 = 0$ of $\mathbf{u}^2 > 0$. De nulvectoren genereren een dubbele kegel in $T_p(\mathcal{M})$, met top in p.

\(^1\)Voor meer algemene tensoren is het hanteren van een dergelijke intrinsieke notatie vrijwel ondoenbaar, zodat we vaak ook de z.g. abstracte index notatie zullen gebruiken. Wanneer we dan bv. spreken van de tensor T^m_{b} dan bedoelen we hiermee de tensor \mathbf{T} waarvan de componenten gegeven zijn door T^a_{b}.

\(^2\)Merk op dat bestaan van een lorentzmetriek niet impliceert dat het lijneclement ds^2 noodzakelijk moet geschreven worden in termen van één tijdachtige en drie ruimteachtige coördinaten.

69
Oefeningen

Bewijs de volgende eigenschappen:

1. Twee nulvectoren zijn parallel als en slechts als ze orthogonaal zijn. Terzijde: hoe verklaren we dan het 1+1-diagram van figuur 6.1, waarin de vectoren \(k = \mathbf{e}_0 + \mathbf{e}_1 \) en \(l = \mathbf{e}_0 - \mathbf{e}_1 \) duidelijk niet parallel zijn?

![Diagram](image)

Figure 6.1: twee niet-parallelle nulvectoren

2. Twee ruimteachtige vectoren zijn nooit tegelijk parallel en orthogonaal.

3. Twee tijdachtige vectoren zijn nooit orthogonaal.

4. Een ruimteachtige vector en een nulvector kunnen wel orthogonaal zijn, maar nooit parallel.

5. Een tijdachtige vector en een nulvector kunnen nochtans parallel, nochtans orthogonaal zijn.

Een 3d-deelruimte van \(T_p(M) \) wordt tijdachtig, ruimteachtig of nul genoemd, naargelang haar normaal ruimteachtig, tijdachtig of nul is.

Voor de classificatie van bivectoren en van het gravitatieveld is ook de aard van 2d-deelruimten van \(T_p(M) \) van belang: als \(\Sigma \) een 2d-deelruimte is dan noemen we \(\Sigma \)

- ruimteachtig (\(\Sigma = S_2 \)), als \(\Sigma \) geén nulrichtingen bevat,
- nul (\(\Sigma = N_2 \)), als \(\Sigma \) precies één nulrichting bevat,
- tijdachtig (\(\Sigma = T_2 \)), als \(\Sigma \) precies twee nulrichtingen bevat.

Toon zelf aan, gebruik makend van vorige oefening, dat er geen andere mogelijkheden zijn (m.a.w. 3 of meer verschillende nul-richtingen kunnen niet voorkomen in een 2d-deelruimte). Een gevolg is (ga na!) dat

- een \(S_2 \) enkel ruimteachtige vectoren bevat,
- een \(N_2 \) op de unieke nulrichting \(k \) na enkel ruimteachtige vectoren bevat, die bovendien orthogonaal zijn met \(k \); de richting bepaald door \(k \) wordt de principal null direction (PND) van \(\Sigma \) genoemd,
- een \(T_2 \) vectoren van elk type bevat; de twee nulrichtingen worden eveneens PND’s genoemd.
Oefening:
Toon aan dat het orthogonaal complement van een S_2 een T_2 is en omgekeerd. Toon aan dat het orthogonaal complement van een N_2 eveneens een N_2 is en dat de doorsnede van beide precies de gemeenschappelijke unieke nulrichting bepaalt (dus $N_2 + N_2^\perp = T_p(M)$!).

Beschikken we over een metriek, dan kunnen we ook het *inwendig product* van twee p-vormen definiëren door

$$g(\sigma^1 \wedge \ldots \wedge \sigma^p, \tau^1 \wedge \ldots \wedge \tau^p) = \det(\sigma^i \cdot \tau^j)$$

(6-1.13)
te stellen en door deze definitie via bilineariteit uit te breiden tot gans $\Omega^p(M)$.

Ga zelf na dat, als $(\omega^1, \ldots, \omega^n)$ een orthonormale basis is van 1-vormen, met

$$\omega^i, \omega^i = \epsilon_i \quad (\epsilon_i = \pm 1),$$

(6-1.14)
dan een orthonormale basis van $\Omega^p(M)$ gegeven wordt door de uitwendige producten

$$\omega^{i_1} \wedge \ldots \wedge \omega^{i_p} \quad (1 \leq i_1 < \ldots < i_p \leq n),$$

(6-1.15)
waarbij

$$g(\omega^{i_1} \wedge \ldots \wedge \omega^{i_p}, \omega^{i_1} \wedge \ldots \wedge \omega^{i_p}) = \epsilon_{i_1} \ldots \epsilon_{i_p}.$$

(6-1.16)
Voorbeeld: op \mathbb{R}^3 met de standaard euclidische metriek en met

$$H = H_1 \, dy \wedge dz + H_2 \, dz \wedge dx + H_3 \, dx \wedge dy$$
geldt

$$H^2 = g(H, H) = H_1^2 + H_2^2 + H_3^2.$$

(6-1.17)

Oefening

Toon aan dat in een z.g. minkowskiruimtetijd met metriek $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$, met H zoals hierboven, $E = E_1 dx + E_2 dy + E_3 dz$ en

$$F = H + E \wedge dt$$
voldaan is aan

$$-\frac{1}{2} F^2 = \frac{1}{2} (E^2 - H^2),$$

(6-1.19)
waarbij we in het rechterlid de lagrangiaan van het elektromagnetisch veld herkennen.

Tot nu toe onderstelden we geen enkel verband tussen de metrische en de affiene structuur op M: zij kunnen inderdaad volkomen onafhankelijk van elkaar gekozen worden. Belangrijk is echter dat bij een gegeven metriek g een *unieke* symmetrische connectie ∇ bestaat zó dat $\nabla g = 0$, d.w.z.

$$g_{ab;c} = 0$$

(6-1.20)
(wat impliceert dat hoeken en lengtes behouden blijven onder parallel transport).

Inderdaad, voor de basisvectoren geldt $e_a \cdot e_b = g_{ab}$ zodat

$$g_{abc} = \nabla_c (g_{ab}) = (\nabla_c e_a) \cdot e_b + e_a \cdot (\nabla_c e_b).$$

(6-1.21)
Verwisseling van b en c, respectievelijk a en c geeft

$$g_{abc} = (\nabla_b e_c) \cdot e_a + e_a \cdot (\nabla_b e_c)$$

$$g_{cab} = (\nabla_a e_c) \cdot e_b + e_b \cdot (\nabla_a e_c)$$

Verwisseling van b en c, respectievelijk a en c geeft

$$g_{abc} = (\nabla_b e_c) \cdot e_a + e_a \cdot (\nabla_b e_c)$$

$$g_{cab} = (\nabla_a e_c) \cdot e_b + e_b \cdot (\nabla_a e_c)$$

3 bekijk de dubbele contractie van $\nabla (g \otimes e_a \otimes e_b)$

71
zodat we, na optellen van de laatste twee betrekkingen en aftrekken van 6-1.21, bekomen
\[g_{ac|b} + g_{cb|a} - g_{ab|c} = e_b . (\nabla_a e_c - \nabla_c e_a) + e_a . (\nabla_b e_c - \nabla_c e_b) + e_c . (\nabla_a e_b - \nabla_b e_a) + 2e_c . (\nabla_b e_a). \]
(6-1.22)

M.bv. 5-1.10 en 5-4.3 herschrijven we het rechterlid als
\[e_a . [e_b, e_c] + e_b . [e_a, e_c] + e_c . [e_a, e_b] + 2e_c . (\Gamma^d_{ab} e_d) \]

Definiëren we
\[\Gamma_{abc} = g_{ad} \Gamma^d_{bc} \quad \text{en} \quad D_{abc} = g_{ad} D^d_{bc} \]
(6-1.23)
(let op de volgorde van de indices!) dan volgt hieruit
\[\Gamma_{cab} = \frac{1}{2} (g_{ac|b} + g_{cb|a} - g_{ab|c} + D_{acb} + D_{cba} - D_{bac}). \]
(6-1.24)

Hiermee is i.h.b. aan 5-4.3 identiek voldaan.

oefening: toon aan dat 6-1.24 in indexvrije notatie \((\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{X}(\mathcal{M}))\) de gedaante aanneemt van de z.g. koszulformule\(^4\),
\[g(\nabla_u \mathbf{v}, \mathbf{w}) = \frac{1}{2} [u(g(\mathbf{v}, \mathbf{w})) + v(g(\mathbf{w}, \mathbf{u})) - w(g(\mathbf{u}, \mathbf{v})) + g(\mathbf{v}, [\mathbf{w}, \mathbf{u}]) + g(\mathbf{w}, [\mathbf{u}, \mathbf{v}]) - g(\mathbf{u}, [\mathbf{v}, \mathbf{w}])]. \]
(6-1.25)

De unieke symmetrische connectie die hierdoor bepaald wordt, noemt men de *metrische connectie* en we zullen ons hiertoe voortaan beperken.

Twee bijzondere gevallen van de betrekkingen 6-1.24 zijn van belang

(i) het geval van een coördinaatbasis \((e_i = \frac{\partial}{\partial x^i})\):

we hebben dan \(D_{ijk} = 0\) en 6-1.24 reduceert zich tot de *christoffelbetrekkingen*
\[\Gamma_{ijk} = \frac{1}{2} (g_{ij,k} + g_{ik,j} - g_{jk,i}). \]
(6-1.26)

Er geldt dan
\[\Gamma_{ijk} = \Gamma_{ikj} \]
(6-1.27)

en, vermits \(\Gamma^i_{jk} = g^{im} \Gamma_{mjk}\), dus ook
\[\Gamma^i_{jk} = \Gamma^i_{kj}. \]
(6-1.28)

(ii) het geval van een *stijve basis* \((g_{ab} constanten)\):

dan is \(g_{ab|c} = 0\), zodat uit 6-1.24 en \(D_{abc} = -D_{acb}\) volgt
\[\Gamma_{(ab)c} = 0 \]
(6-1.29)

Met
\[\Gamma_{ab} = g_{ac} \Gamma^c_{b} \]
(6-1.30)
geldt dan
\[\Gamma_{(ab)} = 0. \]
(6-1.31)

Toon aan (oefening) dat het verband tussen de commutatiecoëfficiënten en de connectiecoëfficiënten in dit geval gegeven wordt door
\[D^c_{ab} = \Gamma^c_{ba} - \Gamma^c_{ab} \]
(6-1.32)

en
\[\Gamma_{cab} = \frac{1}{2} (D_{cba} + D_{acb} - D_{bac}). \]
(6-1.33)

\(^4\)Jean-Louis Koszul 1921–
Oefeningen

1. Toon aan dat \(g^{ij,k} = -g^{im} g^{j\ell} g_{m\ell,k} \).

2. Toon aan dat voor een 1-vorm \(\sigma \) en vectoren \(u, v \) geldt dat
\[
(\nabla \sigma)(u, v) = \nabla_v \sigma(u).
\]

3. Introduceren we voor een stijve basis \(e_a = e_a^i \partial / \partial x^i \) de 1-vormen \(\tilde{e}_a \) met componenten \(e_{ai} = g_{ij} e_a^j \), dan kunnen we hiermee de z.g. *riccirotatiecoëfficiënten*
\[
\gamma_{abc} = e_{ai,j} \tilde{e}_b^i \tilde{e}_c^j
\]
definiëren. Toon aan, steunend op de stijfheid van de basis, dat de rotatiecoëfficiënten antisymmetrisch zijn in het eerste indexpaar:
\[
\gamma_{(ab)c} = 0.
\]

4. Toon het volgende verband aan tussen de rotatie- en commutatiecoëfficiënten:
\[
D_{cab} = \gamma_{bca} - \gamma_{acb}.
\]

5. Toon aan dat voor een stijve basis
\[
\gamma_{abc} = \Gamma_{bac}.
\]

6. Toon aan dat in een willekeurige basis \(e_a \) de voorwaarde 6-1.20 (of dus 6-1.24) te schrijven is als
\[
dg_{ab} = \Gamma_{ab} + \Gamma_{ba}.
\]

7. Bekijk terug oefening 3 op p. 43 en onderstel dat de gegeven basis orthornormaal is; bereken de \(\Gamma_{ab} \) uit de \(D_{abc} \) en verifieer de eerste structuurvergelijkingen van Cartan.

Het voordeel van het werken met een stijve basis i.p.v. met een coördinatbasis is nu duidelijk: terwijl er in het algemeen in een coördinatbasis \(\frac{n^2(n+1)}{2} \) onafhankelijke christoffel-symboolen zijn (nl. 40 als \(n = 4 \)), zijn er in een stijve basis slechts \(\frac{2n^2}{n} \) onafhankelijke connectievormen (elk met \(n \) componenten), wat voor \(n = 4 \) nog slechts 24 onafhankelijke componenten oplevert.

Noteer ook dat we de connectiecoëfficiënten niet expliciet dienen te berekenen, indien we bv. enkel geïnteresseerd zijn in de vergelijkingen van de *metrische geodeten*. Deze vergelijkingen kunnen door-gaans snel bekomen worden m.b.v. een variationele methode: in een convexe normale omgeving is de metrische geodeet tussen twee punten immers precies de kromme waarvoor de metrische ‘afstand’ een extremum is onder variaties van de verbindende krommen.

Deze eigenschap is eenvoudig in te zien: bekijk een 1-parameter familie van bv. tijdsachtige krommen gegeven door \(x^i = x^i(t, u) \) met \(u \in [\epsilon, \epsilon'] \), zó dat \(\forall t_1, t_2 \) en \(u \)
\[
x^i(t_1, u) = x^i(t_1)
\]
\[
x^i(t_2, u) = x^i(t_2)
\]
\[
x^i(t, 0) = x^i(t)
\]
\[(6-1.40)\]
en herschrijf 6-1.4 als \(s = \int_{t_1}^{t_2} L dt \) met \(L = (g_{ij}\dot{x}^i \dot{x}^j)^{1/2} \) en \(\dot{x}^i = \frac{\partial x^i}{\partial t} \). Stellen we dan de variationele afgeleide \(\delta s = \frac{\partial s}{\partial u} \bigg|_{u=0} = 0 \), dan bekomen we de euler-lagrangevergelijkingen
\[
\frac{\partial L}{\partial x^i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right) = 0.
\]

\[(6-1.41)\]

\(^5 \)Sommige auteurs definiëren de riccirotatiecoëfficiënten ook gewoon als de commutatiecoëfficiënten \(D_{abc} \).
Dat deze niets anders zijn dan de geodetische vergelijkingen 5-2.5, verifiëren we door 6-1.41 met 2L te vermenigvuldigen:

\[0 = \frac{\partial L^2}{\partial x^i} - \frac{d}{dt} \left(\frac{\partial L^2}{\partial \dot{x}^i} \right) + 2 \frac{dL}{dt} \frac{\partial L}{\partial \dot{x}^i}. \]

\[= - \frac{\partial}{\partial x^i} (g_{kl} \dot{x}^k \dot{x}^l) + \frac{d}{dt} \left(g_{kl} \dot{x}^k \dot{x}^l \right) + 2 \frac{d^2 s}{dt^2} \frac{\partial}{\partial \dot{x}^i} \left(-g_{kl} \dot{x}^k \dot{x}^l \right)^{1/2} \]

\[= \frac{d}{dt} \left(2g_{ij} \dot{x}^j \right) - g_{kl,i} \dot{x}^k \dot{x}^l - 2 \frac{d^2 s}{dt^2} \left(-g_{kl} \dot{x}^k \dot{x}^l \right)^{-1/2} g_{ij} \dot{x}^j \]

\[= 2g_{ij} \ddot{x}^j + 2g_{ij,k} \dot{x}^j \dot{x}^k - g_{kl,i} \dot{x}^k \dot{x}^l - 2 \frac{d^2 s}{dt^2} \left(-g_{kl} \dot{x}^k \dot{x}^l \right)^{-1} g_{ij} \dot{x}^j \]

\[= 2g_{ij} \ddot{x}^j + 2 \dot{x}^j \dot{x}^k \left(\frac{1}{2} g_{ij,k} + \frac{1}{2} g_{k,j,i} - \frac{1}{2} g_{k,i,j} \right) - 2 \frac{s}{s} g_{ij} \dot{x}^j. \]

We bekomen dus

\[\ddot{x}^i + \Gamma^i_{jk} \dot{x}^j \dot{x}^k = \frac{s}{s} \dot{x}^i \tag{6-1.42} \]

en herparametrizering van t naar s levert dan inderdaad 5-2.5.

Deze methode werkt uiterst efficiënt voor een in lokale coördinaten gegeven metrik. Ze heeft als bijkomend voordeel dat eerste integralen onmiddellijk te identificeren zijn aan de hand van cyclische coördinaten!

Nog eenvoudiger wordt alles door op te merken dat het extremaliseren van de actie

\[- \frac{1}{2} \int_{t_1}^{t_2} L^2 dt = \frac{1}{2} \int_{t_1}^{t_2} g_{ij} \dot{x}^i \dot{x}^j dt \]

precies dezelfde vergelijkingen oplevert, met als bonus dat t nu ineens ook de eigentijd \(\tau \) blijkt te zijn! Het grootste voordeel van het gebruik van de ‘slechte’ lagrangiaan \(-L^2/2\) is echter dat een hamiltoniaanse vorm van de vergelijkingen kan worden opgesteld\(^6\): het moment toegevoegd aan \(\dot{x}^i \) is immers

\[p_i = \frac{\partial (-L^2/2)}{\partial \dot{x}^i} = g_{ij} \dot{x}^j, \]

zodat

\[H = p_i \dot{x}^i - \frac{1}{2} g_{ij} \dot{x}^i \dot{x}^j = \frac{1}{2} g_{ij} \dot{x}^i \dot{x}^j = \frac{1}{2} \dot{g}^{ij} p_i p_j. \]

De hamiltonvergelijkingen

\[\dot{p}_i = -\frac{\partial H}{\partial x^i} \tag{6-1.43} \]

\[\dot{x}^i = \frac{\partial H}{\partial p_i} \tag{6-1.44} \]

leveren dan onmiddellijk de bewegingsvergelijking.

Voorbeeld: we construeren de geodeten van de statisch en sferisch symmetrische metrik (zie ook hoofdstuk 6)

\[ds^2 = -B(r)dt^2 + A(r)dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2. \]

Met \((g^{ij}) = \text{diag}(B^{-1}, A^{-1}, r^{-2}, r^{-2} \sin^{-2} \theta)\) is

\[H = \frac{1}{2} \left(-B^{-1} p_0^2 + A^{-1} p_1^2 + r^{-2} p_2^2 + r^{-2} \sin^{-2} \theta \phi^2 \right). \tag{6-1.45} \]

\(^6\)dit mislukt bij de lagrangiaan \(L \), omdat de hamiltoniaan dan identiek 0 is!
waaruit

\[\dot{p}_0 = \dot{p}_3 = 0, \]
\[\dot{p}_1 = r^{-3}(p_2^0 + \sin^{-2} \theta p_3^0) + \frac{1}{2}(B^{-1})' p_0^2 - \frac{1}{2}(A^{-1})' p_1^2, \]
\[\dot{p}_2 = r^{-2} \sin^{-3} \theta \cos \theta p_3^0, \]

en

\[i = -B^{-1} p_0, \]
\[\dot{r} = A^{-1} p_1, \]
\[\dot{\theta} = r^{-2} p_2, \]
\[\dot{\phi} = r^{-2} \sin^{-2} \theta p_3. \]

Kiezen we de coördinaten zó dat de beweging begint in het \(\theta = \frac{\pi}{2} \)-vlak (\(\dot{\theta}_0 = 0 \) en \(\theta_0 = \frac{\pi}{2} \)), dan is \(p_2 = 0 \) zodat de beweging beperkt blijft tot dit vlak. Verder zijn \(p_0 \) en \(p_3 = J \) constanten, waarbij we \(p_0 = -1 \) kunnen stellen, zodat

\[H = \frac{1}{2}(-B^{-1} + A^{-1} p_2^1 + r^{-2} J^2) \]

een constante van de beweging oplevert. De baanvergelijking wordt bijgevolg gegeven door

\[-B^{-1} + A^{-1} J^2 r^{-4} \left(\frac{dr}{d\phi} \right)^2 + r^{-2} J^2 = 2H. \]

Noteer dat voor een statische metriek de lagrangiaan niet expliciet van de tijd afhangt, zodat \(H \) een constante van de beweging is (i.h.b. \(H = 0 \) voor een nulgeodeet, nl. een geodeet waarvan de snelheidsvector in elk punt rakend is aan de lichtkegel).

6-2 Eigenschappen van de riemanntensor

Het ligt voor de hand dat bij het gebruik van een metrische connectie ook de riemanntensor aan bijkomende eigenschappen zal voldoen. Bekijken we hiertoe normale coördinaten in een omgeving van een punt \(p \in M \): er geldt dan \(\Gamma^i_{jk} \mid_p = 0 \) en dus \(\partial g_{ij} \mid_p = 0 \). Onder een lineaire transformatie met constante coëfficiënten blijven deze relaties behouden, zodat we bovendien \(g_{ij} \mid_p \) tot \(\pm \delta_{ij} \) kunnen herleiden.

Met normale coördinaten in een (convexe normale) omgeving van \(p \) bedoelen we voortaan dus coördinaten waarvoor, naast de voorwaarden besproken in § 5-3, tevens voldaan is aan

\[g_{ij} \mid_p = \pm \delta_{ij} \quad \text{en} \quad \partial g_{ij} \mid_p = 0. \]

Deze coördinaten kunnen in een punt \(p \) praktisch geconstrueerd worden door (1) een tijdachtige geodeet \(\gamma \) door \(p \) te beschouwen en \(e_0 \) te definiëren als de eenheidsraakvector aan \(\gamma \) in \(p \), m.a.w. door een vrijvallende waarnemer te beschouwen (2) \(e_0 \) aan te vullen tot een orthonormaal referentiestelsel \(e^\alpha \) in \(p \) (3) alle geodeten te beschouwen vertrekkend vanuit \(p \) in willekeurige ruimteachtige richtingen \(n = n^\alpha e_\alpha \) en ten slotte door de punten langs deze geodeten de coördinaten \(x^\alpha = sn^\alpha \) toe te kennen (dit laatste kan slechts in een voldoend kleine omgeving waar deze geodeten elkaar niet snijden).

Geldt nu bovendien dat, in elk punt van elke lokale coördinatenomgeving, \(g_{ij} \mid_p = \pm \delta_{ij} \) dan noemen we de metriek \(g \) (lokaal) vlak. Aangezien \(0 = g_{ij;k} = g_{ij,k} - g_{im} \Gamma^m_{jk} - g_{jm} \Gamma^m_{ik} \) levert de stelling op het einde van paragraaf 5-5 dan onmiddellijk het volgende resultaat:

Een nodige en voldoende voorwaarde opdat een metriek lokaal vlak zou zijn, is dat de riemanntensor \(0 \) is.
In het algemeen geldt voor de riemanntensor in normale coördinaten in het punt p

$$R_{ijkl}|_p = (\Gamma_{ijl,k} - \Gamma_{ijk,l})|_p = (g_{il,jk} - g_{jl,ik} + g_{jk,il} - g_{ik,jl})|_p,$$

waaruit blijkt dat de symmetriëén 5.5.10 kunnen uitgebreid worden tot

$$R_{abcd} = R_{cdab} \quad (6-2.2)$$

en

$$R_{(ab)cd} = R_{ab(cd)} = R_{a|bcd|} = 0. \quad (6-2.3)$$

Uit 5.5.13 volgt nu ook dat de riccitensor symmetrisch is:

$$R_{[ab]} = 0. \quad (6-2.4)$$

Contractie van de bianchi-identiteiten 5.5.11 levert

$$R_{bcd} - R_{b|cd|} + R_{a|bcd|} = 0. \quad (6-2.5)$$

We definiëren nu de \textit{ricciscalar} als de contractie van de riccitensor en noteren deze functie eveneens met het symbool R:

$$R = R^a_a. \quad (6-2.6)$$

We bekomen dan, door 6.2.5 nogmaals te contracteren, de belangrijke betrekking

$$(R^a_b - \frac{1}{2} R^a_d \delta^d_b)_{;a} = 0. \quad (6-2.7)$$

De tensor

$$G_{ab} = R_{ab} - \frac{1}{2} R g_{ab} \quad (6-2.8)$$

die hierin optreedt, noemen we de \textit{einsteinstensor}.
Toon zelf aan dat

$$R_{ab} = i_{e_a} i_{e_m} \Theta^m_b \quad (6-2.9)$$

en

$$R = \Theta^{ab}(e_a, e_b). \quad (6-2.10)$$

\textbf{Oefening:} gebruik de resultaten van oefening 7 van p. 73 om de componenten van de riccitensor te bepalen voor de metrik $ds^2 = dx^2 + e^{-2x}dz^2 + e^{-2x}(dy - xdz)^2$ t.o.v. de gegeven orthonormale basis.

Het aantal \textit{algebraisch} onafhankelijke componenten van de riemanntensor kan gevonden worden door R_{abcd} te bekijken als een symmetrische tensor in de $N = \frac{1}{2}n(n-1)$ indexkoppels (ab) en (cd). Deze tensor heeft $\frac{1}{2}N(N+1)$ componenten, waartussen nog de betrekkingen $R_{a|bcd|} = 0$ bestaan. Het linkerlid van deze laatste gelijkheid is echter antisymmetrisch in elk paar indices en bevat dus $\frac{n}{4}n(n-1)(n-2)(n-3)$ onafhankelijke termen. Het aantal onafhankelijke componenten van de riemanntensor wordt bijgevolg

$$\frac{1}{2} \frac{1}{2} n(n-1) \left[\frac{1}{2} n(n-1) + 1 \right] - \frac{n(n-1)(n-2)(n-3)}{4!} = \frac{1}{12} n^2(n^2 - 1):$$

- als $n = 1$, dan is $R_{abcd} = 0$

- als $n = 2$, dan is er slechts 1 onafhankelijke component, namelijk de ricciscalar R. Er geldt dan

$$R_{abcd} = R g_{a|e|g_{d|b}}. \quad (6-2.11)$$

- als $n = 3$, dan is de riemanntensor volkomen bepaald door de 6 componenten van de riccitensor

76
als $n > 3$, dan wordt slechts een deel van de componenten van de riemanntensor (b.v. 10 van de 20 als $n = 4$) bepaald door de riccitensor. De overblijvende componenten worden bepaald door de weyltensor C_{abcd}, gedefiniërd door

$$R_{abcd} = C_{abcd} + \frac{2}{n-2} (g_a[eR_d|b + g_b[dR_e]a) - \frac{2}{(n-1)(n-2)} R g_a[eR_d]b. \quad (6-2.12)$$

De weyltensor heeft dezelfde symmetriëëns als de riemanntensor, maar bovendien zijn al zijn contracties 0 ($C^a_{bcd} = 0$).

Oefeningen

1. Toon aan dat als $X_{(ab)cd} = X_{ab(cd)} = 0$, dan

$$X_{a[bc]d] = 0 \Rightarrow X_{abcd} = X_{cdab}. \quad (6-2.13)$$

2. Gebruik de symmetriëëns van de weyltensor om aan te tonen dat $C^a_{bcd} = 0$ voor elke 3-dimensionale ruimte.

Veruit de belangrijkste eigenschap van de weyltensor is zijn invariantie onder conforme transformaties: dit zijn overgangen van een metriek g naar een metriek $g = \Omega^2 g$, met $\Omega \neq 0 \in \mathcal{F}(M)$, zodat de nulkegelstructuur van beide lorentzmetrieken identiek is. Met enig rekenwerk bepaalt men de connectievormen en de riemanntensor van de metriek g in functie van deze van de metriek g, wat met 6-2.12 leidt tot

$$C^a_{bcd} = C^a_{bcd}. \quad (6-2.14)$$

Een metriek wordt conform vlak genoemd, als een functie Ω bestaat zodat g een vlakke metriek is. De volgende stelling geldt:

een nodige en voldoende voorwaarde opdat een metriek op een n ($n > 3$) dimensionale variëteit conform vlak zou zijn is dat de weyltensor 0 is.

3. Het luik ‘nodig’ hierboven kan met wat rekenwerk gecontroleerd worden: doe dit! Het ‘voldoende’ luik (het zg. weyl-schoutentheorema) is een ander paar mouwen . . .

4. Toon aan dat een 2-dimensionale variëteit altijd conform vlak is.

Het geval $n = 3$ vereist de studie van 3de orde afgeleiden van de metriek (net zoals de riemanntensor bevat de weyltensor enkel 2de orde afgeleiden). Een nodige en voldoende voorwaarde is dan dat de cotton-yorktensor $C^d = (R_{ab} - \frac{1}{2} g_{ab} R)_{cd} 0$ is.

5. Een voor de algemene relativiteitstheorie niet onbelangrijk resultaat (J. Ehlers, F. Pirani en A. Schild) is een stelling van H. Weyl, die zegt dat (voor $n \geq 2$) twee metrieken g en g' conform én projectief equivalent zijn als en slechts als ze homothetisch zijn: $g' = kg$ met k een constante. Bewijs dit!

6-3 Uitgewerkte voorbeelden

In deze paragraaf laten we zien hoe, voor een gegeven metriek, de riemanntensor, riccitensor enz., snel kunnen bepaald worden. Een handige eigenschap hierbij is (toon zelf aan) dat voor een hypervlak-orthogonale basis $d.w.z$ elke basis 1-vorm is te schrijven als $\omega^a = fdg$, of, equivalent hiermee, $\forall a : \omega^a \wedge d\omega^a = 0$
Kies een orthonormale basis met
\[\omega^1 = dx \]
\[\omega^2 = f dy \]
zodat \(g = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 \). Dan is \(d\omega^1 = 0 \) en \(d\omega^2 = f_x dx \wedge dy = \frac{d}{dx} \omega^1 \wedge \omega^2 \). Van de connectievormen dient enkel \(\Gamma_{12} \) beschouwd te worden, vermits \(\Gamma_{11} = \Gamma_{22} = 0 \). Uit de eerste structuurvergelijkingen \(d\omega^a = -\Gamma^a_b \wedge \omega^b \) leiden we af (voor \(a = 1 \)) dat \(\Gamma_{12} = \lambda(x) \omega^2 \). De coëfficiënt \(\lambda \) volgt uit dezelfde vergelijkingen met \(a = 2 \) en levert \(\Gamma_{12} = -f_x/f \omega^2 \). De kromming bepalen we met de tweede structuurvergelijkingen:
\[\Theta_{12} = d\Gamma_{12} + \Gamma_{1c} \wedge \Gamma^c_{12} = d\Gamma_{12} \]
\[= -d(f_x dy) = -\frac{f_{xx}}{f} \omega^1 \wedge \omega^2. \]
De enige niet-triviale component van de riemannitensor is de ricciscalar
\[R = 2\Theta_{12}^2(e_1, e_2) = -2\frac{f_{xx}}{f} \]
(= 2 x de gaußkromming). M.a.w. we bekomen een constante krommingsmetriek als \(f \) lineair is of een lineaire combinatie van \(\sin, \cos \) of \(\sinh, \cosh \). Dit zijn echter lang niet de enige mogelijkheden:

Oefening: toon aan dat b.v. ook \(ds^2 = dx^2 + \sin^2(x + \phi(y))dy^2 \) een constante krommingsmetriek voor \(\text{willekeurige } \phi! \)

2)
\[ds^2 = e^{2t}(-dt^2 + dx^2) + dy^2 + dz^2. \]
Kies een orthonormale basis zodat \(g = \sum_{\alpha=1}^3 \omega^\alpha \otimes \omega^\alpha - \omega^4 \otimes \omega^4 \) en stel
\[\omega^1 = e^t dx, \]
\[\omega^2 = dy, \]
\[\omega^3 = dz, \]
\[\omega^4 = e^{4t} dt. \]
Er volgt \(d\omega^1 = d\omega^3 = d\omega^4 = 0 \) en \(d\omega^1 = e^{-t} \omega^4 \wedge \omega^1 \). Na een blik op de eerste structuurvergelijkingen gokken we dat \(\Gamma_{2a} = \Gamma_{3a} = 0 \) en \(\Gamma_{14} = \lambda(t) \omega^1 \). Hiermee is inderdaad \(d\omega^4 = 0 \), terwijl \(d\omega^1 = -\Gamma^1_{b} \wedge \omega^b = -\Gamma^1_{4} \wedge \omega^4 \) resulteert in \(\lambda = e^{-t} \). De enig mogelijke niet-triviale component van de kromming is \(\Theta_{14} \), waarvoor de tweede structuurvergelijkingen geven \(\Theta_{14} = d\Gamma_{14} = d(e^{-t} e^t dx) = 0 \), wat betekent dat de metriek 6-3.4 vlak is. Inderdaad, de coördinaattransformatie
\[
\begin{aligned}
t &\rightarrow t' = e^t \cosh x \\
x &\rightarrow x' = e^t \sinh x
\end{aligned}
\]
zet 6-3.4 om in de minkowskimetriek \(ds^2 = -dt'^2 + dx'^2 + dy^2 + dz^2 \).
N.B. Als men weet dat een metriek vlak is (bv. door berekening van de kromming), dan is het vinden van een gepaste coördinaattransformatie, zoals 6-3.6, niet altijd even gemakkelijk. Zo is de metriek
\[ds^2 = dx^2 + dy^2 - 2dudv + \frac{4v}{x}dudx + \frac{v^2}{x^2}du^2 \]
vlak (zie verder), maar is het vinden van een coördinaattransformatie naar de minkowskvorm niet trivial...
(f en h > 0 ondersteld). Dit is een z.g. statische en sferisch symmetrische metriek; zie ook hoofdstuk 13. Kies opnieuw een orthonormale basis met nu \(\omega^1 = h^{1/2}dr, \omega^2 = r d\theta, \omega^3 = r \sin \theta d\phi \) en \(\omega^4 = f^{1/2}dt. \) Met \(\frac{d}{dt} = 0 \) geldt dan

\[
d\omega^1 = 0, \quad (6-3.9) \\
d\omega^2 = -h^{-1/2} \omega^1 \wedge \omega^2, \quad (6-3.10) \\
d\omega^3 = -h^{-1/2} \omega^1 + \cot \theta \omega^2 \wedge \omega^3, \quad (6-3.11) \\
d\omega^4 = \frac{1}{2} h^{-1/2} f' f \omega^1 \wedge \omega^4. \quad (6-3.12)
\]

Uit 6-3.9 en \(d\omega^1 = -\Gamma^1_b \wedge \omega^b \) zouden we ons kunnen laten verleiden tot het besluit \(\Gamma_{1b} = 0. \) Dan is echter ook \(\Gamma_{21} = \Gamma_{31} = \Gamma_{41} = 0, \) wat niet consistent is met 6-3.10 - 6-3.12! Een betere gok lijkt daarom \(\Gamma_{1b} \sim \omega^b \) (hiermee blijft nog steeds \(d\omega^1 = 0. \)) Analoog stellen we op basis van 6-3.10 en 6-3.11 dat \(\Gamma_{23} \sim \omega^3 \) (dan is er immers geen \(\omega^2 \wedge \omega^3 \) term in \(d\omega^2 = -\Gamma^2_b \wedge \omega^b, \) maar wél een \(\omega^2 \wedge \omega^3 \) term in \(d\omega^3 = -\Gamma^3_b \wedge \omega^b). \) We stellen dus \(\Gamma_{12} = U \omega^2, \Gamma_{13} = V \omega^3, \Gamma_{14} = W \omega^4 \) en \(\Gamma_{23} = X \omega^3). \) De coëfficiënten \(U, V, W \) en \(X \) halen we onmiddellijk uit de eerste structuurvergelijkingen (let op: \(\Gamma^4_1 = +\Gamma_{14}. \))

\[
\begin{align*}
\Gamma_{12} &= -r^{-1} h^{-1/2} \omega^2, \\
\Gamma_{13} &= -r^{-1} h^{-1/2} \omega^3, \\
\Gamma_{14} &= \frac{1}{2} h^{-1/2} f' f \omega^4, \\
\Gamma_{23} &= -r^{-1} \cot \theta \omega^3.
\end{align*}
\quad (6-3.13)
\]

De tweede structuurvergelijkingen geven nu

\[
\begin{align*}
\Theta_{12} &= \frac{1}{2} r^{-1} h^{-2} h' \omega^1 \wedge \omega^2, \\
\Theta_{13} &= \frac{1}{2} r^{-1} h^{-2} h' \omega^1 \wedge \omega^3, \\
\Theta_{14} &= \frac{1}{2} (fh)^{-1/2} \left((fh)^{-1/2} f' \right)' \omega^1 \wedge \omega^4, \\
\Theta_{23} &= r^{-2} (1 - h^{-1}) \omega^2 \wedge \omega^3, \\
\Theta_{24} &= \frac{1}{2} r^{-1} h^{-1} f' f \omega^2 \wedge \omega^4, \\
\Theta_{34} &= \frac{1}{2} r^{-1} h^{-1} f' f \omega^3 \wedge \omega^4.
\end{align*}
\quad (6-3.14)
\]

waaruit, m.bv. 6-2.9, onmiddellijk volgt

\[
R_{11} = r^{-1} h^{-2} h' - \frac{1}{2} (fh)^{-1/2} \left((fh)^{-1/2} f' \right)', \\
R_{22} = R_{33} = \frac{1}{2} r^{-1} h^{-1} (h' f' - f f' / f) + r^{-2} (1 - h^{-1}), \\
R_{44} = (rfh)^{-1} f' + \frac{1}{2} (fh)^{-1/2} \left((fh)^{-1/2} f' \right)'.
\quad (6-3.15)
\]

en alle andere \(R_{ab} = 0. \)

Bepaal voor bovenstaande metriek (oefening!) opnieuw de componenten van de riccitensor t.o.v. de duale basis \(\{dt, dr, d\theta, d\phi\}, \) maar nu gebruik makend van de christoffelsymbolen en de relaties 5-5.7. Vergelijk de hoeveelheid rekenwerk met de hierboven gebruikte methode.
In de vorige voorbeelden werd uitsluitend gebruik gemaakt van orthonormale basissen. In vele toepassingen in de relativiteitstheorie maakt men ook gebruik van stijve basissen, waarin de basisvectoren \(nulvectoren \) zijn. Stel \(n = 4 \) en \(s = 2 \) en bekijk de orthonormale basis \(\{E_1, E_2, E_3, E_4\} \). De geïnduceerde metriek op de vectorruimte voortgebracht door \(E_3 \) en \(E_4 \) is lorentz, zodat we als basis in deze deelruimte ook twee nulvectoren \(e_3 \) en \(e_4 \) kunnen gebruiken, gewoonlijk genoteerd als \(l \) en \(k \):

\[
\begin{align*}
k &= e_4 = \frac{1}{\sqrt{2}} (E_4 + E_3), \\
l &= e_3 = \frac{1}{\sqrt{2}} (E_4 - E_3).
\end{align*}
\]

Anderzijds is de geïnduceerde metriek op de vectorruimte voortgebracht door \(E_1 \) en \(E_2 \) positief definiet, zodat we voor een basis van nulvectoren noodzakelijk beroep moeten doen op complexe vectoren \(e_1 \) en \(e_2 \), die we gewoonlijk noteren als \(m \) en \(\overline{m} \):

\[
\begin{align*}
m &= e_1 = \frac{1}{\sqrt{2}} (E_1 - iE_2), \\
\overline{m} &= e_2 = \frac{1}{\sqrt{2}} (E_1 + iE_2).
\end{align*}
\]

We noemen \(\{e_a\} \) dan een (complex) nultetrad. Is \(\{\theta^a\} \) de duale basis van \(\{E_a\} \) en \(\{\omega^a\} \) de duale basis van \(\{e_a\} \), dan geldt dus

\[
\begin{align*}
\omega^4 &= \frac{1}{\sqrt{2}} (\theta^4 + \theta^3), \\
\omega^3 &= \frac{1}{\sqrt{2}} (\theta^4 - \theta^3), \\
\omega^2 &= \frac{1}{\sqrt{2}} (\theta^1 - i\theta^2), \\
\omega^1 &= \frac{1}{\sqrt{2}} (\theta^1 + i\theta^2).
\end{align*}
\]

Met \(\alpha\beta \) een korte schrijfwijze voor \(\frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha) \) kan de metriek dan geschreven worden als

\[
g = \theta^{12} + \theta^{23} + \theta^{32} - \theta^{42} = 2\omega^1\omega^2 - 2\omega^3\omega^4
\]

en heeft t.o.v. \(\{\omega^a\} \) de componenten

\[
g_{ab} = g^{ab} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{bmatrix}.
\]

Dit impliceert dat alle contracties van de basisvectoren 0 zijn, behalve

\[
k^a l_a = -1 \quad \text{en} \quad m^a m_a = 1.
\]

Noteer dat uit \(g_{12} = -g_{34} = 1 \) volgt

\[
\omega^1 = \overline{m}^0, \omega^2 = m^0, \omega^3 = -k^0, \omega^4 = -\ell^0.
\]

Nultetrad zijn in de eerste plaats handig omwille van de eenvoudige gedaante die wordt aangenomen door de lorentztransformaties:
Oefening:
1. Toon aan dat de volgende transformaties lorentztransformaties zijn:
 - boosts
 \[k' = A k, \ell' = A^{-1} \ell, m' = m \quad (A > 0) \]
 - rotaties
 \[m' = e^{i \theta} m, k' = k, \ell' = \ell \quad (\theta \in \mathbb{R}) \]
 - nulrotaties omheen \(\ell \):
 \[k' = k + E m + |E|^2 l, m' = m + E \ell, \ell' = \ell \quad (6-3.22) \]
 \[\ell' = \ell + B m + |B|^2 k, m' = m + B k, k' = k \quad (6-3.23) \]

2. Toon aan dat elke eigenlijke lorentztransformatie te schrijven is als een product van boosts, rotaties en nulrotaties.

Complexen nultetrads zijn verder van belang omdat ze, bij het berekenen van connectiecoëfficiënten, de hoeveelheid rekenwerk aanzienlijk verder reduceren, omdat
\[\Gamma_{24} = \Gamma_{14}, \Gamma_{13} = \Gamma_{23} \]

en bovendien
\[\Gamma_{34} \in \mathbb{R}, \Gamma_{12} \in i \mathbb{R}. \]

We illustreren dit met de metriek 6-3.7, die we herschrijven als
\[ds^2 = dx^2 + dy^2 - 2dv(-\frac{v^2}{2x^2}du - \frac{2v}{x}dx + dv) \quad (6-3.24) \]

zodat
\[\omega^1 = \overline{\omega^2} = \frac{1}{\sqrt{2}}(dx + idy), \]
\[\omega^3 = du, \]
\[\omega^4 = dv - \frac{2v}{x}dx - \frac{v^2}{2x^2} du. \quad (6-3.25) \]

Er volgt dan
\[d\omega^1 = 0, \]
\[d\omega^3 = 0, \]
\[d\omega^4 = -\frac{2}{x}dv \wedge dx - \frac{v}{x^2}dv \wedge du + \frac{v^2}{x^2}dx \wedge du \]
\[= \left(\frac{v}{x^2} \omega^3 + \sqrt{2} (\omega^1 + \omega^2) \right) \wedge \omega^4. \quad (6-3.26) \]

Schrijven we de eerste structuurvergelijkingen uit (let op: nu is \(\Gamma^4_{14} = -\Gamma_{34} \) en \(\Gamma^2_{22} = \Gamma_{12} \)), dan bekomen we
\[d\omega^1 = \Gamma_{12} \wedge \omega^1 - \Gamma_{23} \wedge \omega^3 - \Gamma_{24} \wedge \omega^4, \]
\[d\omega^3 = -\Gamma_{14} \wedge \omega^1 - \Gamma_{24} \wedge \omega^2 - \Gamma_{34} \wedge \omega^3, \]
\[d\omega^4 = -\Gamma_{13} \wedge \omega^1 - \Gamma_{23} \wedge \omega^2 + \Gamma_{34} \wedge \omega^4, \quad (6-3.27) \]
wat, na enig wikken en wegen, suggereert dat de niet-triviale connectievormen gegeven zijn door

\[
\begin{align*}
\Gamma_{14} &= \alpha \omega^3, \\
\Gamma_{13} &= \beta \omega^4, \\
\Gamma_{34} &= \gamma \omega^1 + \overline{\gamma} \omega^2 + a \omega^3,
\end{align*}
\]

met \(\alpha, \beta, \gamma \in \mathbb{C} \) en \(a \in \mathbb{R} \). Substitutie toont dat hiermee aan 6-3.26 voldaan is, op voorwaarde dat \(\alpha = \beta = \gamma = \frac{1}{\sqrt{2}} \) en \(a = vx^{-2} \). Berekening van \(\Theta_{12}, \Theta_{13}, \Theta_{14} \) en \(\Theta_{34} \) (alle andere \(\Theta_{ab} \) zijn triviale combinaties van deze vier!) toont dat \(\Theta_{ab} = 0 \), zodat de metriek vlak is.

Oefening

\[
ds^2 = 2d\zeta \overline{\zeta} - 2duv - 2Hdu^2
\]

met \(H \) een reëlle functie waarvoor geldt

\[
H = H(u, \zeta, \overline{\zeta}) \text{ en } \zeta = \frac{x + iy}{\sqrt{2}}
\]

is de metriek van z.g. *vlakke gravitatiegolven* (zie ook hoofdstuk 11).

Herschrijf \(ds^2 \) in de vorm 6-3.19 met

\[
\begin{align*}
\omega^1 &= d\zeta \\
\omega^3 &= du \\
\omega^4 &= dv + Hdu
\end{align*}
\]

Als \((m, \overline{m}, l, k) \) de duale basis is van \{\(\omega^a \)\}, bewijs dan dat de riccitensor voldoet aan

\[
R_{ab} = 2H_{\zeta \overline{\zeta}}k_ak_b.
\]

Toon ook aan dat \(k_{a;b} = 0 \) (we noemen \(k \) dan een *constant vectorveld*).

6-4 Geodetische afwijking en kinematische grootheden

6-4.1 Geodetische afwijking

De volgende geometrische interpretatie van de riemanntensor speelt een fundamentele rol bij het opstellen van de einsteinveldvergelijkingen en bij de studie van singulariteiten:

bekijk een familie van tijdachtige geodeten \(\gamma_s(t) \) (met \(t \) een affiene parameter) en onderstel dat de afbeelding \((t, s) \mapsto \gamma_s(t) \) een diffeomorfisme is tussen een open deel van \(\mathbb{R}^2 \) en een 2-dimensionale deelvariëteit \(\Sigma \subset \mathcal{M} \) (m.a.w. \(\Sigma \) wordt ‘opgespannen door de familie van geodeten’).

Kiezen we \(t \) en \(s \) als twee van de lokale coördinaten in \(\mathcal{M} \) en stellen we \(T = \frac{\partial}{\partial t} \) en \(X = \frac{\partial}{\partial s} \). Deze vectoren zijn niet uniek bepaald t.g.v. de resterende vrijheid in de keuze van de affiene parameter: \(t \mapsto u(s)t + v(s) \). We maken nu gebruik van deze vrijheid om \(T \) en \(X \) zo te definiëren dat \(T^2 = T^aT_a \) constant is over \(\Sigma \) (door middel van een herschaling \(t \mapsto t' = u(s)t \) van de \(t \)-coördinaat)\(^8\).

Hiermee is dan ook \(T_aX^a \) langs elke geodeet constante, want \(\nabla_T(T.X) = T.\nabla_TX = (\text{vermits } X \text{ en } T \text{ commuteren}) T.\nabla_X^2T = T.\nabla_X(T^2) = 0 \).

Met een translatie \(t \mapsto t' = t + v(s) \) kan vervolgens \(T.X = 0 \) gemaakt worden langs een willekeurige kromme \(C \) die de gegeven familie geodeten transversaal snijdt, zodat uiteindelijk \(T.X = 0 \) over

\(^8\) \(T^2 \) is reeds constant langs elke geodeet afzonderlijk, want \(\nabla_T(T.T) = 2T.\nabla_T^2T = 0 \).
gans Σ. Het zo geconstrueerde connecterende vectorveld X noemen we het \textit{deviatiectorveld} en $v = \nabla_T X$ de \textit{relatieve snelheid van een infinitesimaal nabije geodeet} ($v^a = T^b \nabla_b X^a$ is een maat voor de snelheid waarmee het deviatievectorveld verandert langs een gegeven geodeet). Analoog definiëren we de \textit{relatieve versnelling} $a = \nabla_T v$. Er geldt dan

$$
a = \nabla_T \nabla_T X
= \nabla_T \nabla_X T
= \nabla_T \nabla_X T - \nabla_X \nabla_T T - \nabla_{[T,X]} T
= R(T,X) T
$$

(6-4.1)

of, in componenten,

$$
a^a = R^a_{\ bcd} T^b \nabla^c X^d,
$$

(6-4.2)

ook wel de \textit{geodetische deviatievergelijking} genoemd. Oplossingen X van 6-4.2 worden jacobi-velden genoemd en spelen een belangrijke rol in de z.g. singulariteitstheorema's. We kunnen, aangezien $|T|$ constant is, ook een orthonormale basis construeren waarvoor $e_0 = T$ zodat we, met een voor de hand liggende notatie voor de versnelling, ook nog kunnen schrijven

$$
\dot{X}^a = R^a_{\ 00b} X^b.
$$

(6-4.3)

In een vlakke ruimte blijven initieel parallelle geodeten dus parallel; in een gekromde ruimte bewegen initieel parallelle geodeten zich daarentegen naar elkaar toe of van elkaar weg. De tensor $E^a_{\ bcd} = R^a_{\ cdb} T^b \nabla^c$ die optreedt in het rechterlid (t.o.v. de vast gegeven tijdcijntige congruentie) noemen we de \textit{getijdentensor} van de congruentie en is het algemeen relativistische analogon van de newtoniaanse getijdentensor.

6-4.2 Kinematische grootheden van een tijdcijntige congruentie

Een familie van krommen zoals hierboven wordt een \textit{congruentie} in een open deel $U \subset \mathcal{M}$ genoemd. Meer algemeen is dit dus een familie met de eigenschap dat door elk punt van U precies één kromme van de familie gaat. We noemen de congruentie tijdcijntig, ruimte-achtig of nul al naar gelang alle krommen uit de congruentie deze eigenschappen bezitten. We zullen ons verder beperken tot congruenties van tijdcijntige \textit{geodeten}, waarbij de raakvectoren u genormaliseerd zijn zó dat $u^2 = -1$ (m.a.w. $u = \frac{\partial}{\partial \tau}$ met τ de eigentijd langs elke geodeet). Hieruit volgt dat het tensorveld $B = \nabla u$ ruimte-achtig is, in de zin dat

$$
B_{ab} = u_{a;b}
$$

(6-4.4)
voldoet aan \(u^a B_{ab} = u^b B_{ab} = 0 \). Is nu \(X \) de hierboven geconstrueerde deviatievector, waarvoor dus \(\mathcal{L}_u X = 0 \), dan kunnen we \(B \) interpreteren als een maat voor het falen van parallel transport van \(X \):

\[
\dot{X} = \nabla_u X = \nabla_X u = B \cdot X.
\] (6-4.5)

Een vrij vallende waarnemer zal m.a.w. een wolk van testdeeltjes in zijn nabije omgeving onderhevig zien aan een rotatie, en expansie (of contractie) en een afschuiving. Introduceren we de orthogonale projector \(h^a_b = g^a_b + u^a u_b \) in de ogenblikkelijke ruimteachtige loodrecht op \(u \), dan wordt deze beweging gekarakteriseerd door de (ruimteachtige) tensoren

\[
\omega_{ab} = B_{[ab]} \quad \text{(rotatie of vorticity),}
\]

\[
\sigma_{ab} = B_{(ab)} - \frac{1}{3} \theta \quad \text{(afschuiving of shear),}
\]

en de scalaire functie

\[
\theta = B_{ab} h^{ab} = u^a \cdot u \quad \text{(expansie),}
\]

zodat

\[
u_{a;b} = \sigma_{ab} + \omega_{ab} + \frac{\theta}{3} h_{ab}.
\] (6-4.9)

Herschrijven we met 6-4.5 de geodetische deviatievergelijking 6-4.3 als \((B \cdot X)' = E \cdot X \) en houden we rekening met het feit dat dit geldt voor elke ruimteachtige deviatievector \(X \), dan volgt voor de (ruimteachtige) tensor \(B \)

\[
\dot{B} + B^2 = E.
\]

Het spoor van deze matrixvergelijking wordt hierdoor

\[
\dot{\theta} + B_{ab} B^{ab} = \text{tr}(R^a_{\ bcd} u^b \cdot u^c) = -R_{bc} u^b \cdot u^c,
\]

of

\[
\dot{\theta} = -\frac{1}{3} \theta^2 - \sigma_{ab} \sigma^{ab} + \omega_{ab} \omega^{ab} - R_{bc} u^b \cdot u^c,
\] (6-4.10)

wat de raychaudhurivergelijking genoemd wordt.

Merk op dat de bijdragen \(\sigma_{ab} \sigma^{ab} \) en \(\omega_{ab} \omega^{ab} \) (doorgaans \(2\sigma^2 \) en \(2\omega^2 \) genoteerd) \(\geq 0 \) zijn. Voor een niet-roterende congruentie die voldoet aan de voorwaarde \(R_{bc} u^b \cdot u^c \geq 0 \) of, gebruik makend van de einsteinvergelijkingen \(R_{ab} - \frac{1}{2} R g_{ab} = T_{ab} \), \(T_{ab} u^a \cdot u^b - \frac{2}{3} T \geq 0 \) (de z.g. sterke energievoorwaarde, zie p. 142), betekent dit dat steeds

\[
\dot{\theta} + \frac{1}{3} \theta^2 \leq 0,
\] (6-4.11)

of, na integratie, \(\theta^{-1}(\tau) \geq \theta_0^{-1} + \frac{1}{3} \tau \). Indien de congruentie dus op een initiële tijdstip convergeert (\(\theta_0 < 0 \)), dan volgt dat \(\theta^{-1} \) nul wordt (en dus \(\theta = -\infty \)) na een eindige eigentijd \(\tau \in \left[0, \frac{3}{\theta_0} \right] \).
Hoofdstuk 7

Hypervlakken

7-1 Inleiding

Een deelverzameling $\Sigma \subset M$ wordt een hypervlak of korter een hypervlak van de n-dimensionale variëteit M genoemd, als Σ in de spoortopologie van M homeomorf is met een $(n-1)$-dimensionale variëteit S ($\Sigma = \theta(S)$) en wel zó dat $\theta: S \rightarrow M$ een diffeomorfisme is tussen open delen $U \subset S$ en $\theta(U) \subset \Sigma$ (we noemen de afbeelding θ dan een inbedding).

Voor elke $p \in S$ is $\theta_* T_p S$ dan een $(n-1)$-dimensionale deelvectorruimte in $T_{\theta(p)} M$, waarvan de normaal n loodrecht staat op elke $\theta_* X$ ($X \in T_p S$).

Kaarten invoerend op omgevingen van p en $\theta(p)$, toont men aan dat Σ lokaal gegeven wordt door een vergelijking $f = 0$ ($f \in F(M)$) met $n^\nu \sim df \neq 0$.

In wat volgt zullen we steeds S identificeren met Σ, m.a.w. voor $v \in S$ schrijven we in plaats van $\theta_*(v)$ gewoon v en analoog voor tenors. In het bijzonder zullen we de pull-back op S van de metriek g op M als de geïnduceerde metriek op Σ noemen, of ook de eerste fundamentele vorm van Σ, of ook de 3-metriek op Σ:

$$h := \theta^* g. \quad (7-1.1)$$

Merk op dat

$$\forall u, v \in T_p \Sigma, \quad u \cdot v = g(u, v) = h(u, v). \quad (7-1.2)$$

Is g een lorentzmetriek op M dan noemen we

- Σ een tijdachtig hypervlak, als n een ruimteachtige vector is,
• Σ een nulhypervlak, als n een nulvector is,
• Σ een ruimteachtig hypervlak, als n een tijdachtige vector is.

De verklaring voor deze terminologie is te zoeken in de aard van de door g geïnduceerde metriek h op Σ: in de drie bovenstaande gevallen heeft, voor n = 4, h respectievelijk de signatuur (−, +, +), (0, +, +) of (+, +, +). Onderstel bv. dat n tijdachtig is, nl. n² < 0. We construeren dan in M de basis (n, θ∗(e₂), ..., θ∗(eₙ)) met (e₂, ..., eₙ) een basis in S. Vermits n en θ∗(eₙ) orthogonaal zijn, wordt g hierin voorgesteld door de matrix \[
\begin{bmatrix}
n² & 0 \\
0 & h(e₂, eₙ)
\end{bmatrix}
\]. Deze matrix heeft signatuur n − 2, zodat h positief definit is, wat de benaming ruimteachtig hypervlak rechtvaardigt.

Merk ook op dat in lokale coördinaten (x¹, ..., xⁿ⁻¹) op S en (y¹, ..., yⁿ) op M, met Σ gegeven door de vergelijkingen yᵢ = yᵢ(ₓⱼ), we de geïnduceerde metriek gewoon vinden door 'substitutie':

\[
ds² = g_{ij}(y(x)) \frac{∂y^i}{∂x^k} \frac{∂y^j}{∂x^m} dx^k dx^m.
\]

Voor een ruimteachtige of tijdachtige n nemen we de gewoonte aan n te normaliseren zó dat n² = ±1.

Oefening

Toon aan dat een lid van een nulcongruentie gelegen in een nulhypervlak altijd een nulgeodeet is.

Voor later gebruik is de volgende terminologie nog van belang: een vectorveld u ∈ X(M) heet hypervlakorthogonaal (afgekort: HSO) als door elk punt p van M een hypervlak Σₚ kan gevonden worden, zodat, in een voldoende kleine omgeving van p, voor alle punten x ∈ Σₚ uₓ loodrecht staat op Tₓ(Σₚ).

Stel nu dat voor een gekozen punt p Σₚ bepaald is door f = 0, met normaal df. Als u hypervlakorthogonaal is, dan is voor alle v ∈ TₓΣₚ

\[
u^♭(v) = 0 = df(v),
\]

waaruit onmiddellijk volgt dat een functie h bestaat zó dat u^♭ = h df en dus u^♭ ∧ du^♭ = 0. Omgekeerd volgt uit deze laatste betrekking en de frobeniusstelling dat u loodrecht staat op de hypervlakken met vergelijking f = 0. We bekomen dus volgend resultaat:

een vectorveld is hypervlakorthogonaal als en slechts als voor de geassocieerde 1-vorm u^♭ geldt dat u^♭ ∧ du^♭ = 0 (7-1.4)

(merk op dat in twee dimensies dus elk vectorveld hypervlakorthogonaal is: in klassieke terminologie betekent dit dat er voor elke differentiaalvergelijking u(x, y)dx + v(x, y)dy = 0 een integrerende factor λ bestaat die het linkerlid exact maakt).

Uitgedrukt in componenten betekent dit

\[
u_αu_β;γ = 0.
\]

(7-1.5)

7-2 Intrinsieke kromming

Is Σ ruimte- of tijdachtig, dan is de geïnduceerde metriek h niet-ontaard en bestaat er dus een unieke torsievrije connectie D op Σ waarvoor

\[D h = 0.\] (7-2.1)
De krommingstensor geassocieerd met D is de z.g. *intrinsieke kromming* van (Σ, h). We zullen deze noteren als Riem en de componenten als \bar{R}^k_{ij}. De bijhorende riccitensor noteren we als Ric en de componenten als R_{ij}. Voor de ricciscalar, ook wel de *gaufkromming* van Σ genoemd, schrijven we \bar{R}.

Uit de ricci-identiteit [5-5.9]

$$\forall v \in T(\Sigma), \ (D_i D_j - D_j D_i)v^k = \bar{R}^k_{ij} v^l$$

bekomen we het verband tussen D en Riem. Vermits Σ 3-dimensionaal is, is Riem volledig bepaald door Ric (zie 6-2.12):

$$R_{ijkl} = 2(h_{ij[k} \bar{R}_{lj]} + h_{j[l} \bar{R}_{k]i}) - \bar{R}h_{ij[k}g_{lj]};$$

(7-2.3)

7-3 Uitwendige kromming

Terwijl de intrinsieke kromming onafhankelijk is van de manier waarop Σ is ingebed in \mathcal{M}, kunnen we de kromming van Σ in \mathcal{M} proberen te bestuderen aan de hand van de variatie van de normaal in p op Σ, wanneer het punt p van plaats verandert. Daartoe introduceren we de *vormoperator* χ, ook wel de *veingartenafbeelding* genoemd, als het endomorfisme van $T_p(\Sigma)$ dat aan elke rakende vector uit $T_p(\Sigma)$ de variatie van de normaal langs deze vector toekent, waarbij de variatie bepaald wordt t.o.v. de ruimtetijd connectie ∇:

$$\chi : T_p(\Sigma) \rightarrow T_p(\Sigma) : v \mapsto \nabla_v n.$$

(7-3.1)

Dat het beeld $\chi(v)$ terug naar $T_p(\Sigma)$ behoort, volgt uit $n^2 = \text{constant}$

$$n \cdot \chi(v) = n \cdot \nabla_v n = \frac{1}{2} \nabla_v (n \cdot n) = 0.$$

(7-3.2)

(n is een eenheidsnormaal).

Dat deze afbeelding lineair is, spreekt vanzelf. Als Σ een nulhypervlak is, dan is de vormoperator niet uniek bepaald en treden bijkomende complicaties op.

Een fundamentele eigenschap van de vormoperator is dat hij *zelftoegevoegd* is m.b.t. de geïnduceerde metriek h:

$$\forall u, v \in T(\mathcal{M}) : u, v \in T(\Sigma) \Rightarrow u \cdot \chi(v) = \chi(u) \cdot v,$$

waarbij · staat voor het inwendig product m.b.t. h. Inderdaad, uit de definitie van χ bekomen we

$$u \cdot \chi(v) = u \cdot \nabla_v n = \nabla_v (u \cdot n) - n \cdot \nabla_v u = -n \cdot (\nabla_u v - [u, v])$$

$$= -\nabla_u (n \cdot v) + v \cdot \nabla_u n + n \cdot [u, v]$$

$$= v \cdot \chi(u) + n \cdot [u, v].$$

(7-3.4)

De commutator $[u, v]$ van twee rakende vectoren uit $T(\Sigma)$ behoort echter opnieuw tot $T(\Sigma)$: met Σ bepaald door $f = \text{constant}$ geldt

$$\nabla f \cdot [u, v] = \nabla_\mu f (u^\nu \nabla_\nu v^\mu - v^\nu \nabla_\nu u^\mu)$$

$$= u^\nu (\nabla_\nu f) v^\mu - v^\nu (\nabla_\nu f) u^\mu - v^\nu (\nabla_\nu f)^\mu u^\nu - u^\mu (\nabla_\mu f) v^\nu + u^\nu (\nabla_\mu f) v^\nu$$

$$= u^\mu v^\nu (\nabla_\nu f - \nabla_\mu f) = 0,$$

(7-3.5)

omdat de connectie ∇ symmetrisch is. Een kortere werkwijze maakt gebruik van 4-2.8:

$$0 = \text{dd}f(u, v)$$

$$= u(df(v)) - v(df(u)) - df([u, v])$$

$$= 0 - df([u, v]),$$

(7-3.6)
Vermits n^a parallel is aan ∇f, geldt dus ook $n \cdot [u, v] = 0$.

De eigenwaarden κ_i van de vormoperator (die reëel zijn als gevolg van de zelftoegevoegdheid van χ) zijn de z.g. hoofdkrommingen van Σ en de corresponderende eigenvectoren zijn de hoofdrichtingen van Σ in p. We definiëren de gemiddelde kromming van Σ in p als het gemiddelde van de hoofdkrommingen van χ:

$$H := \frac{1}{3} \text{tr}(\chi) = \frac{1}{3} (\kappa_1 + \kappa_2 + \kappa_3).$$

(7-3.7)

In tegenstelling tot de intrinsieke kromming zijn de hoofdkrommingen en de gemiddelde kromming afhankelijk van de manier waarop Σ is ingebed in M.

Het zelf-toegevoegd zijn van χ t.o.v. h laat verder toe om op $T_p(\Sigma)$ een symmetrische bilineaire vorm te definiëren:

$$K : T_p(\Sigma) \times T_p(\Sigma) \rightarrow \mathbb{R} : (u, v) \mapsto u \cdot \chi(v)$$

(7-3.8)

of dus

$$\forall u, v \in T_p(\Sigma) : K(u, v) = u \cdot \nabla_v n.$$

(7-3.9)

We noemen dit de tweede fundamentele vorm of de uitwendige (extrinsieke) kromming van Σ. De uitwendige kromming bevat dezelfde informatie als de vormoperator en is dus eveneens afhankelijk van de manier waarop Σ is ingebed in M.

Het spoor van de bilineaire vorm K m.b.t. h zullen we noteren als K. Er geldt dus

$$K := h^{ab} K_{ab} = 3H.$$

(7-3.10)

Opmerking: in numerieke algemene relativiteit wordt de voorgaande uitdrukking voor de uitwendige kromming meestal voorzien van een extra - teken.

7-4 Voorbeelden van hypervlakken in \mathbb{R}^3

We illustreren voorgaande definities aan de hand van enkele hypervlakken ingebed in de vlakke euclidische ruimte $M = \mathbb{R}^3$ m.a.w. g heeft signatuur $(+, +, +)$. De hypervlakken zijn dan gewone 2-dimensionale oppervlakken. We spreken af dat in de volgende voorbeelden griekse indices behoren tot $\{1, 2, 3\}$ en latijnse indices tot $\{1, 2\}$.

een vlak in \mathbb{R}^3

Is Σ een vlak met eenheidsnormaal n en kiezen we coördinaten $(X^\alpha) = (x, y, z)$ in \mathbb{R}^3 zó dat Σ wordt voorgesteld door de vergelijking $z = 0$, dan vormt $(x^i) = (x, y)$ een coördinatstelsel op Σ en heeft de eerste fundamentele vorm h de componenten $h_{ij} = \text{diag}(1, 1)$. Uiteraard is de intrinsieke kromming dan 0: $\text{Riem}(h) = 0$. Omdat n als componenten $n^\alpha = (0, 0, 1)$ heeft (en omdat covariante afleiding zich in M reduceert tot gewone partiële afleiding), geldt echter ook dat de uitwendige kromming 0 is, $\nabla n = 0$. Zowel de tweede fundamentele vorm als de uitwendige kromming zijn dus 0.

een cilinder in \mathbb{R}^3

Als Σ een cilinder is gedefinieerd door $t := \rho - R = 0$, met $y^\alpha = (\rho, \varphi, z)$ standaard cilinderoördinaten op \mathbb{R}^3, dan vormen $(x^i) = (\varphi, z)$ een coördinatstelsel op Σ. De componenten van de eerste fundamentele vorm zijn dan

$$ds_\Sigma^2 = h_{ij} dx^i dx^j = R^2 d\varphi^2 + dz^2,$$

(7-4.1)

wat duidelijk een lokaal vlakke metriek is.
Om de uitwendige kromming van Σ te bepalen beschouwen we de eenheidsnormaal n. T.o.v. de coördinaten $(X^\alpha) = (x, y, z)$ worden de componenten van n gegeven door
\[n^\alpha = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, 0 \right) . \] (7-4.2)

Berekening van $\nabla_\beta n^\alpha = \partial n^\alpha / \partial X^\beta$ levert
\[\nabla_\beta n^\alpha = (x^2 + y^2)^{-3/2} \begin{pmatrix} y^2 & -xy & 0 \\ -xy & x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} . \] (7-4.3)

T.o.v. de coördinaten $(x^i) = (\varphi, z)$ bekomen we hiermee
\[K_{ij} = K(\partial_i, \partial_j) = \nabla_\beta n^\alpha (\partial_i)^\alpha (\partial_j)^\beta , \] (7-4.4)
waarbij $(\partial_i) = (\partial_x, \partial_z) = (\partial/\partial \varphi, \partial/\partial z) = (-y \partial_x + x \partial_y, \partial_z)$ en dus (controleer!)
\[K_{ij} = \begin{pmatrix} K_{\varphi \varphi} & K_{\varphi z} \\ K_{z \varphi} & K_{zz} \end{pmatrix} = \begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix} . \] (7-4.5)

Vermits $h^{ij} = \text{diag}(R^{-2}, 1)$, wordt het spoor van K dan gegeven door
\[K = \frac{1}{R} . \] (7-4.6)

een 2-sfeer in \mathbb{R}^3

Als laatste voorbeeld beschouwen we een 2-sfeer met straal R en vergelijking $r - R = 0$, met $(X^\alpha) = (r, \theta, \varphi)$ standaard sferische coördinaten in \mathbb{R}^3 en met $(x^i) = (\theta, \varphi)$ coördinaten op Σ. De eerste fundamentele vorm h wordt dan gegeven door
\[h_{ij} \, dx^i \, dx^j = R^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) . \] (7-4.7)
Zoals aangetoond op p. 78 is dit een constante-kromming metriek met ricciscalar, riccitensor en riemannensor resp. gegeven door

\[
R = \frac{2}{R^2}, \quad R_{ij} = \frac{1}{R^2} h_{ij}, \quad R_{ijkl} = \frac{1}{R^2} \left(\delta^i_k \delta^j_l - \delta^i_l \delta^j_k \right).
\]

(7-4.8)

De uitwendige eenheidsnormaal \(n \) op \(\Sigma \) heeft t.o.v. \((X^\alpha) = (x, y, z)\) de componenten :

\[
n^\alpha = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right).
\]

(7-4.9)

waaruit we \(\nabla_\beta n^\alpha = \partial n^\alpha / \partial X^\beta \) bekomen:

\[
\nabla_\beta n^\alpha = (x^2 + y^2 + z^2)^{-3/2} \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix}.
\]

(7-4.10)

De coördinaatbasis geassocieerd aan \((x^i) = (\theta, \varphi)\) op \(\Sigma \) is

\[
\partial_\theta = (x^2 + y^2)^{-1/2} \left[xz \partial_x + yz \partial_y - (x^2 + y^2) \partial_z \right],
\]

\[
\partial_\varphi = -y \partial_z + x \partial_y,
\]

(7-4.11)

(7-4.12)

zodat de componenten van de uitwendige kromming in deze basis gegeven worden door

\[
K_{ij} = K (\partial_\theta, \partial_\varphi) = \nabla_\beta n^\alpha (\partial_\theta)^\alpha (\partial_\varphi)^\beta:
\]

\[
K_{ij} = \begin{pmatrix} K_{\theta\theta} & K_{\theta\varphi} \\ K_{\varphi\theta} & K_{\varphi\varphi} \end{pmatrix} = \begin{pmatrix} R & 0 \\ 0 & R \sin^2 \theta \end{pmatrix} = \frac{1}{R} h_{ij},
\]

(7-4.13)

wat te verwachten was gezien de isotropie van \(\Sigma \). Het spoor van \(K \) m.b.t. \(h \) wordt ten slotte gegeven door

\[
K = \frac{2}{R}.
\]

(7-4.14)
7-5 Orthogonale projector op een ruimteachtig hypervlak

Notaties en conventies

We bekijken nu het geval van een ruimteachtig hypervlak meer in detail (een analoge behandeling kan gegeven worden voor het tijdachtige geval): de eerste fundamentele vorm h van Σ is dan positief definit en de eenheidsnormaal n is tijdachtig.

Voor elk punt $p \in \Sigma$ bestaat de volgende orthogonale decompositie van $T_p(M)$,

$$T_p(M) = T_p(\Sigma) \oplus \mathbb{R}n,$$

wat toelaat om de tensor $h^\sharp \in T^1_1(M)$, met componenten

$$h^{\sharp a}_b = \delta^a_b + n^a n_b,$$

i.e.

$$h^\sharp(v, \tau) = \tau(v) + (n \cdot v)\tau(n),$$

te interpreteren als *orthogonale projector op* Σ. Met deze tensor correspondeert immers in elk punt $p \in \Sigma$ een uniek endomorfisme van $T_p(M)$, dat we eveneens noteren als h^\sharp en dat gedefinieerd is door

$$h^\sharp(v) = v + (n \cdot v)n.$$

Er geldt dan duidelijk

$$h^\sharp(n) = 0$$

(wat een gevolg is van $n^2 = -1$), terwijl h^\sharp de identiteit is op $T_p(\Sigma)$:

$$\forall v \in T_p(\Sigma), \quad h^\sharp(v) = v.$$

Samen met de push-forward θ_* van de afbeelding θ, die we gebruiken om *contravariante* tensoren over te hevelen van Σ naar M, laat voorgaand endomorfisme toe om in elk punt p gelijk welk (3-D) tensorieel object T (gedefinieerd op Σ) te beschouwen\footnote{We zullen deze afspraak vanaf nu stilzwijgend hanteren. Dit vermijdt het invoeren van ‘3-D indices’ vs. ‘4-D indices’ en brengt een aanzienlijke vereenvoudiging van de notatie met zich mee.} als een 4-D object op M, de *extensie* van T.

\[Figure 7.4: \text{een 2-sfeer als hypervlak } \Sigma \text{ in } \mathbb{R}^3.\]
genoemd. Zo is bv. met \(\tau \in \Omega^1(\Sigma) \) de extensie van \(\tau \) gegeven door \(\tilde{\tau} \in \Omega^1(M) \), met \(\tilde{\tau}(v) = \tau(h^2(v)) \).

Oefening:

Ga na dat de extensie van \(h \), de eerste fundamentele vorm van \(\Sigma \), gegeven is door \(\tilde{h} = h^2 h \), met componenten bepaald door \(\tilde{h}_{ab} = g_{ab} + n_a n_b \). Meestal laten we het symbool \(\tilde{\tau} \) weg en noteren we gewoon \(h_{ab} = g_{ab} + n_a n_b \). Dit toont trouwens aan dat de \(h^2 \) notatie voor de orthogonale projector consistent is met de \(\sharp \) operatie zoals geïntroduceerd op p. 69: ‘ophalen’ van de \(a \)-index in voorgaande betrekking leidt opnieuw tot \(7-5.2 \).

De normaal evolutievector \(m = N n \), waarvoor geldt dat \(dt(m) = -\frac{1}{N} N n^a(n) = 1 \), of
\[
L_m t = m(t) = 1.
\]
Anderzijds is
\[
(-N \nabla_n dt)_a = -NN^b t_{a;b} = -NN^b t_{b;a} = -NN^b(-\frac{1}{N} n_b) = -N \frac{1}{N} n_b n_b N_{,a},
\]
zoat
\[
- \nabla_m dt = d \log N.
\]

Vermits \(n^2 = -1 \), is het vectorveld \(n \) te beschouwen als de 4-snelheid van een familie waarnemers, soms de eulse waarnemers genoemd, die bij constructie een hypervlakorthogonale congruentie bepalen. De hypervlakken \(\Sigma_t \) zijn dan de ogenblikkelijke rustruimtes van deze waarnemers en voor twee naburige events \(p(t) \) en \(p'(t + \delta t) \) op de wereldlijn van een eulse waarnemer geldt dat \(p' = p + m \delta t \) (correcter: de meesleepafbeelding met parameter \(t \) is precies de stroming geassocieerd aan het vectorveld \(m \)). De corresponderende eigentijd verlopen tussen \(p \) en \(p' \) is dan \(-g(m \delta t, m \delta t))^{1/2} = N \delta t \). We definiëren nu de versnelling van de eulse waarnemers door
\[
a := \nabla_n n.
\]
Er geldt dan dat \(a \perp n \) en dus rakend is aan \(\Sigma \):
\[
n \cdot a = n \cdot \nabla_n n = \frac{1}{2} \nabla_n(n \cdot n) = \frac{1}{2} \nabla_n(-1) = 0.
\]
Bekijken we nu, met de afspraken uit voorgaande paragraaf, de extensie van de tweede fundamentele vorm van \(\Sigma \), \(h^2 \nabla n^2 \), die we voor de eenvoud eveneens \(K \) zullen noteren. Laten we deze werken op
een willekeurig koppel vectoren \((u, v)\), dan komen dwe

\[
\forall u, v \in T_p(M), \quad K(u, v) = K(h^2(u), h^2(v)) = h^2(u) \cdot \nabla h^2(v)n
\]

\[
= h^2(u) \cdot \nabla_{v+(n \cdot v)n} n
\]

\[
= [u + (n \cdot u)n] \cdot [\nabla v n + (n \cdot v)\nabla n n] = u \cdot \nabla v n + (n \cdot v) u \cdot \nabla n n + (n \cdot u) n \cdot \nabla v n = 0
\]

\[
= u \cdot \nabla v n + (a \cdot u)(n \cdot v),
\]

\[
= \nabla n^b(u, v) + a^b(u)n^b(v).
\]

(7-5.11)

Vermits 7-5.11 geldig is voor elk koppel vectoren \((u, v)\) in \(T_p(M)^2\), besluiten we dat

\[
K = \nabla n^b + a^b \otimes n^b,
\]

(7-5.12)

of, in componenten,

\[
K_{bc} = \nabla c n_b + a_b n_c.
\]

(7-5.13)

Nemen we het spoor van voorgaande betrekking m.b.t. de metriek \(g\), dan zien we dat de gemiddelde kromming niets anders is dan 1/3 van de divergentie van \(n\):

\[
H = \frac{1}{3} \nabla \cdot n.
\]

(7-5.14)

Verband tussen \(\nabla\) en \(D\)

We tonen nu aan dat voor een willekeurige tensor \(T\) op \(\Sigma\), de (intrinsieke) covariante afgeleide \(DT\) uit te drukken is in functie van de covariante afgeleide op \(M\) door middel van de betrekking

\[
DT = h^2 \nabla T,
\]

(7-5.15)

of, in componenten t.o.v. een willekeurige basis,

\[
D_p T^{a_1 \cdots a_p}_{b_1 \cdots b_q} = h^{a_1}_{m_1} \cdots h^{a_p}_{m_p} h^{n_1}_{b_1} \cdots h^{n_q}_{b_q} h^\rho_r T^{m_1 \cdots m_p}_{n_1 \cdots n_q}.
\]

(7-5.16)

Het bewijs van de betrekking 7-5.15 verloopt in twee stappen. Vooreerst is het gemakkelijk om na te gaan dat \(h^2 \nabla\) voldoet aan alle voorwaarden om een torsievrije connectie te zijn op \(\Sigma\). Vervolgens moeten we bewijzen dat deze connectie de levi-civitaconnectie is geassocieerd aan \(h\): dit volgt, steunend op de unicititeit van de levi-civitaconnectie, uit

\[
(h^2 \nabla h)_{abc} = h^m_a h^k_b h^r_c \nabla_r h_{mk} = h^m_a h^k_b h^r_c (\nabla_r g_{mk} + \nabla m n_k + n_m \nabla r n_k) = h^r_c (h^m_a h^k_b n_k \nabla r n_m + h^m_a n_m \nabla r n_k) = 0.
\]

(7-5.17)

Wanneer \(u, v\) rakend zijn aan \(\Sigma\) bekomen we uit 7-5.15 nog de volgende uitdrukking voor \(D_u v\):

\[
(D_u v)^a = u^a D_s v^s = u^a h^k_s h^m_a \nabla_k v^m = u^k (\delta^s_m + n^a n_m) \nabla_k v^m = u^k \nabla_k v^a + n^a n_m \nabla_k v^m = u^k \nabla_k v^a - n^a u^k n_m \nabla m n_k,
\]

(7-5.18)

93
waar we gebruik maakten van $n_mv^m = 0$ (v is rakend aan Σ) om te besluiten dat $n_m\nabla_kv^m = -v^m\nabla_kn_m$. Uit 7-3.9 volgt echter $u^k_v^m\nabla_mn_k = K(u, v)$, zodat

$$\forall u, v \in T(\Sigma), \quad K(u, v)n = \nabla_un - D_uv.$$ (7-5.19)

Aldus zien we dat de uitwendige kromming ook kan geïnterpreteerd worden als het verschil tussen de ruimtetijd connectie ∇ en de intrinsieke connectie D (voor zover beide werken op vectoren in $T_p(\Sigma)$) en dat dit verschil steeds loodrecht staat op Σ.

Gebruik makend van 7-5.9 en 7-5.15 zien we ook dat de 4-versnelling van de eulerse waarnemers niets anders is dan de logarithmische gradiënt (t.o.v. Σ) van de lapse N:

$$a^b = \nabla_b(n^b) = \nabla_b(-Nd)$$
$$= n^b\nabla_b\log N + d\log N = h^b\log N$$
$$= D\log N.$$ (7-5.20)

Uit 7-5.12 bekomen we hiermee de volgende uitdrukkingen voor de covariante afgeleiden van de normaal en de normale evolutievector in functie van de uitwendige kromming en de afgeleide van de lapse:

$$\nabla n^b = K - D\log N \otimes n^b$$ (7-5.21)
$$\nabla m^b = NK - DN \otimes n^b + n^b \otimes \nabla N.$$ (7-5.22)

oefening: Ga na dat hiermee de lie-afgeleide t.o.v. m van de eerste fundamentele vorm van Σ zich herleidt tot $2N \times$ de tweede fundamentele vorm:

$$\mathcal{L}_m h = 2NK,$$ (7-5.23)

of

$$K = \frac{1}{2}\mathcal{L}_n h.$$ (7-5.24)

Vooral deze laatste uitdrukking is van belang voor de z.g. beginvoorwaardenformulering van de Einstein veldvergelijkingen. In tegenstelling tot de uitdrukkingen 7-3.9 en 7-5.19 is ze uiteraard enkel geldig voor hypervlakken Σ die behoren tot een foliatie $(\Sigma_t)_{t \in \mathbb{R}}$.

oefening: Bepaal op dezelfde manier als hierboven (maar nu door berekening van de lie-afgeleiden van h^a_b) de lie-afgeleiden van de orthonormale projector:

$$\mathcal{L}_m(h^b) = 0,$$ (7-5.25)

wat de benaming normale evolutievector rechtvaardigt: een tensorveld T dat rakend is aan Σ ($T = h^bT$) blijft, onder propagatie langs de integraalkrommen van m, rakend aan Σ_t. Dit in tegenstelling tot n, waarvoor $\mathcal{L}_n(h^b) \neq 0$!

Beschouwen we ten slotte een geodeet γ in (Σ, h) met snelheidsvector u zo dat $D_uu = 0$. Uit (7-5.19) vinden we dan $\nabla_u u = K(u, u)n$. Dit betekent dat γ tevens een geodeet is van (M, g), op voorwaarde dat $K(u, u) = 0$. Wanneer de uitwendige kromming 0 is, dan vallen beide betekenis van ‘geodeet’ samen en spreken we van een totaal geodetisch oppervlak Σ.

Voorbeeld: een vlak in de 3-d euclidische ruimte is een totaal geodetisch oppervlak, een 2-sfeer duidelijk niet.

Dat vlakken de enige totaal geodetische oppervlakken zijn in \mathbb{R}^3 volgt uit het *theorema egregium* van Gauß, dat we in de volgende paragraaf in een veralgemeend kader behandelen.
7-6 3+1 splitsing van de krommingstensor

De volgende paragraaf vormt de basis voor het z.g. 3+1 formalisme (of, naargelang de gebruikte variabelen, ADM formalisme) van algemene relativiteitstheorie. Het laat toe om de kromming van de ruimtetijd te bestuderen aan de hand van de inwendige en uitwendige kromming van ruimteachtige hypervlakken die een foliatie vormen van \mathcal{M}. De eerste twee sub-paragrafen leiden tot de formulies van Gauß en Codazzi en zijn geldig voor een willekeurig hypervlak (niet noodzakelijk behorend tot een foliatie). In de derde subparagraaf (formule van Ricci) wordt twee keer op \mathbf{n} geprojecteerd en twee keer op Σ en is het bestaan van een foliatie essentieel.

Formule van Gauß

We beginnen met de ricci-identiteit 7-2.2 voor de kromming van Σ te beschouwen:

$$(D_a D_b - D_b D_a)v^c = R^c_{\quad mab} v^m,$$ \hspace{1cm} (7-6.1)

waarbij v een vectorveld is in $T(\Sigma)$. Steunend op 7-5.16 wordt de 4-d versie van deze betrekking

$$D_a D_b v^c = D_b D_a v^c$$

$$= h^m_a h^b_c \nabla_m (D_n v^f)$$

$$= h^m_a h^b_c \nabla_m \left(h^r_s h^r_l \nabla_s v^l \right).$$ \hspace{1cm} (7-6.2)

Steunend op 7-5.2 vinden we $\nabla_m h^s_n = \nabla_m (\delta^s_n + n^s n_n) = \nabla_m n^s n_n + n^s \nabla_m n_n$, zodat met $h^a_b n_n = 0$,

$$D_a D_b v^c = h^m_a h^b_c \nabla_m \left(n^s \nabla_m n_n h^r_i \nabla_s v^l + h^s_n \nabla_m n^r \ n_l \nabla_s v^l + h^s_r h^r_l \nabla_m \nabla_s v^l \right)$$

$$= h^m_a h^b_c \nabla_m n_n n^i \nabla_s v^l - h^m_a h^s_b h^c_l \nabla_m n^r \nabla_s n_l + h^m_a h^s_b h^c_l \nabla_m \nabla_s v^l$$

$$= K_{ab} h^c_i n^i \nabla_s v^l - K^c_{\quad kl} v^l + h^m_a h^s_b h^c_l \nabla_m \nabla_s v^l,$$ \hspace{1cm} (7-6.3)

waarbij we op de tweede lijn gebruik gemaakt hebben van de idempotentie van de projectie-operator h^2, nl. $h^c_i, h^r_i = h^c_i$, evenals van $h^m_a h^b_c \nabla_m n_n = K_{ba}$ (zie 7-5.13). Permuteren we de indices a en b en trekken we beide vergelijkingen van elkaar af, dan valt de eerste term in het rechterlid weg wegens de symmetrie van de tweede fundamentele vorm en blijft er

$$D_a D_b v^c - D_b D_a v^c = (K_{am} K^c_b - K_{bm} K^c_a) v^m + h^r_d h^s_b h^c_l \left(\nabla_r \nabla_s v^l - \nabla_s \nabla_r v^l \right).$$ \hspace{1cm} (7-6.4)

Steunend op de ricci-identiteit voor de connectie ∇ volgt hieruit

$$D_a D_b v^c - D_b D_a v^c = (K_{am} K^c_b - K_{bm} K^c_a) v^m + h^r_d h^s_b h^c_l R^{\quad c}_{\quad d i} v^l \ n_m \ n_k v^m = 0,$$ \hspace{1cm} (7-6.5)

wat na substitutie in 7-6.1 leidt tot

$$(K_{am} K^c_b - K_{bm} K^c_a) v^m + h^r_d h^s_b h^c_l R^{\quad c}_{\quad d i} v^l \ n_m \ n_k v^m = R^c_{\quad mab} v^m,$$ \hspace{1cm} (7-6.6)

of,

$$h^m_a h^b_c h^r_d R^{\quad c}_{\quad d i} n_m v^l = R^c_{\quad lab} v^l + (K^c_{\quad a} K_{lb} - K^c_{\quad b} K_{al}) v^l.$$ \hspace{1cm} (7-6.7)

Aangezien deze betrekking geldt voor willekeurige $v \in T(\Sigma)$ en vermits zowel K als Riem rakend zijn aan Σ, bekomen we uiteindelijk de formule van Gauß:

$$h^m_a h^b_c h^r_d R^{\quad c}_{\quad d i} n_m v^l = R^c_{\quad dab} + K^c_{\quad a} K_{db} - K^c_{\quad b} K_{ad}.$$ \hspace{1cm} (7-6.8)

Contractie over de indices a en c leidt, gebruik makend van $h^m_a h^a_r = h^r_r = \delta^r_r + n^r n_r$, tot de gecontracteerde formule van Gauß, die een verband geeft tussen de 4-d en 3-d riccitensoren:

$$h^m_a h^b_n R^{\quad a}_{\quad mn} + h^a_m h^b_n h^s_r R^{\quad a}_{\quad nrs} = R_{ab} + K_{ab} - K_{am} K^m_{\quad b}.$$ \hspace{1cm} (7-6.9)
Nemen we hiervan het spoor m.b.t. \(h\) en houden we rekening met \(K_{nn}^m = K\) dan bekomen we

\[
h_{ab} h_{am} n^a h_{bn} n^b R_{nrs}^m = h_{rn} n^r n^s n^m R_{nrs}^m = R_{rs}^m n^r n^s + R_{rns}^m n_{rn} n^n = R_{mn} n^m n^n, \tag{7-6.10}
\]

wat leidt tot de volgende veralgemening van Gauß' *theorema egregium*

\[
R + 2 R_{mn} n^m n^n = R + K^2 - K_{ij} K^{ij}. \tag{7-6.11}
\]

De oorspronkelijke versie van het *theorema egregium* had betrekking op 2d-oppervlakken in de 3-d euclidische ruimte \(\mathbb{R}^3\). Het linkerlid van (7-6.11) is dan 0 en bovendien hebben we te maken met een riemannse ruimte i.p.v. met een pseudoriemannse: als gevolg hiervan heeft de term \(K^2 - K_{ij} K^{ij}\) in het rechterlid een ander teken, zodat het *theorema egregium* de gedaante \(R - K^2 + K_{ij} K^{ij} = 0\) aanneemt.

Ten slotte kunnen we in twee dimensies gemakkelijk de bijdrage van de uitwendige kromming berekenen in termen van de hoofdkrommingen \(\kappa_1, \kappa_2\) van \(\Sigma\): diagonaliseren we \(K\) dan volgt immers \(K = \kappa_1 + \kappa_2\) en \(K_{ij} K^{ij} = \kappa_1^2 + \kappa_2^2\) zodat voorgaande betrekking zich verder vereenvoudigt tot \(R = 2\kappa_1\kappa_2\). Voorbeeld: in het geval van een vlak of een cilinder in \(\mathbb{R}^3\) (dus \(\kappa_1\) en/of \(\kappa_2 = 0\)) geldt inderdaad \(R = 0\), terwijl voor een 2-sfeer met straal \(r\) geldt dat \(R = 2/r^2\) en \(\kappa_1 = \kappa_2 = 1/r^2\).

Formule van Codazzi

Opnieuw beschouwen we de ricci-identiteit (maar nu 4-D) en passen deze toe op (een extensie van) het normaalvectorveld \(n\) op \(\Sigma\):

\[
R^c_{mab} n^m = (\nabla_a \nabla_b - \nabla_b \nabla_a) n^c. \tag{7-6.12}
\]

Na projectie op \(\Sigma\) bekomen we

\[
h^m_a h^n_b h^c_r R_{rs}^m n^a = h^m_a h^n_b h^c_r (\nabla_m \nabla_n n^r - \nabla_n \nabla_m n^r). \tag{7-6.13}
\]

Gebruik makend van 7-5.13, namelijk

\[
h^m_a h^n_b h^c_r \nabla_m \nabla_n n^r = h^m_a h^n_b h^c_r (\nabla_m K_{rn}^c - a^r \nabla_m n_n) = a^r D_k K_{rk} - a^r a^s \nabla_m n^s. \tag{7-6.14}
\]

waarbij we gesteund hebben op 7-5.16, evenals op \(h^n_a n_n = 0, h^c_r a^r = a^c\) en \(h^m_a h^n_b \nabla_m n_n = K_{ab}\), bekomen we uiteindelijk uit 7-6.13 de *formule van Codazzi*:

\[
h^m_r n^s h^n_a h^c_b R_{rs}^m = D_k K_{rk} - D_k K_{rc}. \tag{7-6.15}
\]

Contractie van de *formule van Codazzi* over de indices \(a\) en \(c\) resulteert in

\[
h^m_r n^s h^n_b R_{rs}^m = D_m K_{rk} - D_k K. \tag{7-6.16}
\]

Schrijven we nu \(h^m_r n^s h^n_b R_{rs}^m = (\delta^m_r + n^m r_n) n^s h^n_b R_{rs}^m = n^s h^n_b R_{rs}^m + h^n_b R_{rs}^m n_r n^m n^m,\) dan volgt wegens de antisymmetrie van de riemannstensor in het eerste index-paar uiteindelijk de *gecontracteerde formule van Codazzi*,

\[
h^m_a n^r R_{rm} = D_m K_{rn}^m - D_a K. \tag{7-6.17}
\]

Voorbeeld: in het geval van een vlak, een cilinder of een 2-sfeer in \(\mathbb{R}^3\) is \(K\) constant en is aan deze laatste betrekking triviaal voldaan.

\[\text{2de orthogonal projector is dan } h^a_b = \delta^a_b - n^a n_b \text{ i.p.v. } h^a_b = \delta^a_b + n^a n_b\]
Riccivergelijking

We projecteren ten slotte 7-6.12 twee keer op \mathbf{n} en twee keer op Σ en bekomen, gebruik makend van 7-5.21 en 7-5.20, (verifieer!)

$$h_{am}n^rh^rn^sR^m_{\ rns} = -K_{as}K^s_b + \frac{1}{N}D_bD_aN - h^rn^s\nabla_sK_{mn}.$$

(7-6.18)

Herschrijven we met 7-5.22 de lie-afgeleide van K als

$$\mathcal{L}_mK_{ab} = Nh^m_ah^rn^s\nabla_sK_{mn} + 2NK_{am}K^m_b - K_{am}D^mNn_b - K_{bm}D^mNn_a,$$

(7-6.19)

of, gebruik makend van $h^4\mathcal{L}_mK = \mathcal{L}_mK$, als

$$\mathcal{L}_mK_{ab} = Nh^m_ah^rn^s\nabla_sK_{mn} + 2NK_{am}K^m_b,$$

(7-6.20)

dan reduceert 7-6.18 zich tot de riccivergelijking,

$$h_{am}n^rh^rn^sR^m_{\ rns} = -\frac{1}{N}\mathcal{L}_mK_{ab} + \frac{1}{N}D_aD_bN + K_{am}K^m_b.$$

(7-6.21)

Met 7-6.9 laat dit zich verder herschrijven als

$$h^m_ah^rn^sR_{mn} = \frac{1}{N}\mathcal{L}_mK_{ab} - \frac{1}{N}D_aD_bN + R_{ab} + KK_{ab} - 2K_{am}K^m_b.$$

(7-6.22)

Nemen we hiervan het spoor, dan bekomen we (verifieer!)

$$R + R_{mn}n^m_\ n^n = R + K^2 + \frac{1}{N}m(K) - \frac{1}{N}D_aD^nN.$$

(7-6.23)

Na eliminatie, m.b.v. de gecontracteerde formule van Gauß, van de kwadratische riccitermen volgt hieruit ten slotte een uitdrukking voor de 4d ricciscalar:

$$R = R + K^2 + K_{ab}K^{ab} + \frac{2}{N}m(K) - \frac{2}{N}D_aD^nN.$$

(7-6.24)
Hoofdstuk 8

Dualiteit

8-1 Inleiding

In paragraaf 4-3 merkten we reeds op dat we, om scalaire functies \(f \in \mathcal{F}(\mathcal{M}) \) over een variëteit te integreren, dienen te beschikken over een \textit{volumevorm} op \(\mathcal{M} \). Op zichzelf is het construeren van volumevormen geen probleem: neem een willekeurige basis \(e_a \), construeer de duale basis \(\omega^a \) en bekijk bv.

\[
\sigma = \omega^1 \wedge \cdots \wedge \omega^n. \quad (8-1.1)
\]

Deze vorm is echter niet invariant onder basistransformaties. Indertdad, als \(\omega^a' = L^a'_a \omega^a \) een andere basis is, dan is

\[
\sigma' = \det(L^a'_a) \sigma. \quad (8-1.2)
\]

Beschikken we nu over een metriek \(g \), dan geldt

\[
\det(g_{a'b'}) = \det(L^a'_a)^2 \det(g_{ab}),
\]

of korter

\[
g' = \det(L^a'_a)^2 g.
\]

Zijn beide basissen gelijkgeoriënteerd (d.w.z. \(\det L > 0 \)) en stellen we \(|g| \) de absolute waarde van \(\det g_{ab} \), dan is dus

\[
|g'|^{1/2} = \det(L^a'_a)^{-1} |g|^{1/2}, \quad (8-1.3)
\]

wat m.bv. 8-1.2 volgende z.g. \textit{canonieke volumevorm} \(\epsilon \) oplevert

\[
\epsilon = |g|^{1/2} \sigma, \quad (8-1.4)
\]

ook de \textit{levi-civitatensor} genoemd (bij een basistransformatie naar een \textit{gelijkgeoriënteerde} basis geldt dan \(\epsilon' = \epsilon \)). Het is helemaal niet evident dat globaal een dergelijke volumevorm \(\epsilon \) kan geconstrueerd worden: dit komt immers neer op de globale constructie van een ‘positieve’ orthonormale basis en, zoals het voorbeeld van de mòbius-strip aantoont, is dit niet altijd mogelijk! Kan dit wél gebeuren, dan zeggen we dat \(\mathcal{M} \) \textit{oriënteerbaar} is. Orthonormale basissen, nl. basissen met \(g_{ab} = s_a \delta_{ab} \) en \(s_a = \pm 1 \) waarvoor

\[
\omega^1 \wedge \cdots \wedge \omega^n = +\epsilon, \quad (8-1.5)
\]

worden dan \textit{positieve orthonormale basissen} genoemd.
Oefening:
Toon aan dat t.o.v. de metrische connectie
\[\nabla \epsilon = 0. \]

Aanwijzing: gebruik een (bij voorkeur normale) coördinaatbasis!
Het bestaan van de volumevorm \(\epsilon \) laat verder nog toe om in een \(n \)-dimensionale variëteit aan een \(p \)-vorm \(\omega \) een unieke \((n-p) \)-vorm te associëren, de *hodgeduale* (of kortweg de duale) van \(\omega \) genoemd.

We noteren deze \((n-p) \)-vorm als \(\ast \omega \): hij wordt op een basis-onafhankelijke manier gedefinieerd door
\[\mu \wedge \ast \omega = g(\mu, \omega) \epsilon, \quad \forall \mu \in T^p(\mathcal{M}), \quad (8-1.6) \]
of, in componenten, door
\[(\ast \omega)_{a_1 \ldots a_{n-p}} = \frac{1}{p!} \epsilon^{b_1 \ldots b_p} \epsilon_{b_1 \ldots b_p a_1 \ldots a_{n-p}}. \quad (8-1.7) \]

Is \((\omega^1, \ldots, \omega^n) \) een *positieve orthonormale basis*\(^1\), dan bestaat er voor de duale van de basis-\(p \)-vormen \(\omega^1 \wedge \ldots \wedge \omega^p \) een eenvoudige uitdrukking: met \(1 \leq i_1 < \ldots < i_p \leq n \) is
\[\ast(\omega^{i_1} \wedge \ldots \wedge \omega^{i_p}) = (-1)^s s_{i_1} \ldots s_{i_p} \omega^{i_{p+1}} \wedge \ldots \wedge \omega^{i_n}. \quad (8-1.8) \]

Hierbij is \((i_{p+1}, \ldots, i_n) \) de rij die ontstaat uit \((1, \ldots, n) \) door er \((i_1, \ldots, i_p) \) uit weg te laten:
\[(i_{p+1}, \ldots, i_n) = (1, \ldots, n) - (i_1, \ldots, i_p) \quad (8-1.9) \]
een \(\sigma \) de permutatie die \((1 \ldots n) \) afbeeldt op \((i_1 \ldots i_n) \).

Ga na dat, met \(n-2s \) de signatuur van de kwadratische vorm \(g \), voor een \(p \)-vorm \(\omega \) geldt
\[\ast \ast \omega = (-1)^{s+p(n-p)} \omega, \quad (8-1.10) \]
zodat 8-1.6 ook kan geschreven worden als
\[\mu \wedge \omega = (-1)^s g(\ast \mu, \omega) \epsilon, \quad \forall \mu \in T^p(\mathcal{M}). \quad (8-1.11) \]

In \(\mathbb{R}^2 \) met de standaard euclidische metrik is dualiteit dus niets anders dan de afbeelding gedefinieerd door
\[*dx = dy, \quad *dy = -dx. \quad (8-1.12) \]

Verder geldt in \(\mathbb{R}^2 \) ook
\[*1 = dx \wedge dy, \quad *(dx \wedge dy) = 1. \quad (8-1.13) \]

Ga ook na dat de 2d-laplace-operator geschreven kan worden als
\[\Delta = *d \ast d, \quad (8-1.14) \]
terwijl, steunend op de cauchy-riemannvergelijkingen, *holomorfe functies* \(f \) gekarakteriseerd worden door de eigenschap dat hun uitwendige afgeleiden *zelfduaal* zijn:
\[*df = -idf. \quad (8-1.15) \]

oefening
Toon aan dat op de eenheidssfeer \(S^2 \) in \(\mathbb{R}^3 \) de laplace(-beltrami)-operator \(\Delta \) gegeven wordt door
\[*d \ast d f = f_{\theta \theta} + \cotan(\theta) f_\theta + \cosec(\theta)^2 f_{\phi \phi} \quad (8-1.16) \]

(aanwijzing: gebruik de orthonormale basis \(\omega^1 = d\theta, \omega^2 = \sin(\theta)d\phi \).

\(^1\)Let op: de betrekkingen 8-1.8 zijn dus bv. *niet* geldig in een nul-tetrad!
oefening

Toon aan dat de standaardmetriek op de eenheidssfeer ook geschreven kan worden als
\[ds^2 = \text{sech}(w)^2 (dv^2 + dw^2), \quad 0 < w < \infty, \quad |v| < \pi \]
(8-1.17)
(de z.g. mercatormetriek) en dat in deze coördinaten de laplace-beltrami-operator gegeven wordt door
\[*d*d f = \cosh(w)^2 (f_{vv} + f_{ww}). \]
(8-1.18)
In \(\mathbb{R}^3 \) met de standaard euclidische metrik is dualiteit de afbeelding die toelaat om aan de 1-vormen \(dx, dy \) en \(dz \) de 2-vormen
\[*dx = dy \wedge dz, \quad *dy = dz \wedge dx, \quad *dz = dx \wedge dy \]
(8-1.19)
te associëren en omgekeerd:
\[*(dx \wedge dy) = dz, \quad *(dy \wedge dz) = dx, \quad *(dz \wedge dx) = dy. \]
(8-1.20)
Tevens geldt dan
\[*1 = dx \wedge dy \wedge dz \quad \text{en} \quad *(dx \wedge dy \wedge dz) = 1. \]
(8-1.21)
In het 3-d euclidische geval is dus
\[** = 1. \]
(8-1.22)
Bovenstaande eigenschappen tonen expliciet aan dat het uitwendig product een directe veralgemening is van het vectorieel product: in de standaard euclidische ruimte \(\mathbb{R}^3 \) kunnen we immers (vermits \(g_{ij} = g^{ij} = \delta_{ij} \)) vectoren \(u^i \partial_i \) identificeren met 1-vormen \(u^i dx_i \). Indien we beide objecten aanduiden met hetzelfde symbool \(u \), dan kunnen we dus de eigenschap
\[*(u_1 dx + u_2 dy + u_3 dz) \wedge (v_1 dx + v_2 dy + v_3 dz) = \]
\[(u_2 v_3 - u_3 v_2)dy \wedge dz + (u_3 v_1 - u_1 v_3)dz \wedge dx + (u_1 v_2 - u_2 v_1)dx \wedge dy \]
(8-1.23)
herschrijven als
\[*(u \wedge v) = u \times v. \]
(8-1.25)
De analogie met de vectoranalyse gaat nog veel verder: vermits
\[*u = *(u_1 dx + u_2 dy + u_3 dz) = u_1 dy \wedge dz + u_2 dz \wedge dx + u_3 dx \wedge dy, \]
is
\[d* u = (\partial u_1/\partial x + \partial u_2/\partial y + \partial u_3/\partial z)dx \wedge dy \wedge dz \]
waaruit,
\[*d* u = \nabla \cdot u. \]
(8-1.26)
Anderzijds is (ga na)
\[d(u_1 dx + u_2 dy + u_3 dz) = (\partial u_3/\partial y - \partial u_2/\partial z)dy \wedge dz + (\partial u_1/\partial z - \partial u_3/\partial x)dz \wedge dx + (\partial u_2/\partial x - \partial u_1/\partial y)dx \wedge dy, \]
waaruit volgt
\[*d u = \nabla \times u. \]
(8-1.27)
De twee befaamde identiteiten uit de vectoranalyse, rot grad = 0 en div rot = 0 blijken alzo bijzondere gevallen te zijn van de eigenschap \(d^2 = 0 \)! Hiermee wordt ook duidelijk dat de klassieke stellingen van Stokes en Gauß bijzondere gevallen zijn van de eigenschap 4-3.9.
Oefening

1. Beschouw in een 3-d euclidische ruimte de z.g. prolate spheroidal coordinates, gedefinieerd in functie van standaard cilindercordinaten \(r, \phi, z \) door

\[
z = Axy, \quad r = A \sqrt{x^2 - 1} \sqrt{1 - y^2}
\]

(1 < x < \infty, -1 < y < 1, |\phi| < \pi). Toon aan dat de metriek dan gegeven wordt door

\[
ds^2 = A^2 (x^2 - y^2) \left(\frac{dx^2}{x^2 - 1} + \frac{dy^2}{1 - y^2} \right) + A^2 (x^2 - 1)(1 - y^2) d\phi^2
\]

en dat de laplacean gegeven wordt door

\[
*d^*df = \left[\frac{(x^2 - 1) f_x x}{A^2 (x^2 - y^2)} + \frac{1}{A^2 (x^2 - 1)(1 - y^2)} f_{\phi \phi} \right].
\]

2. Toon aan dat de divergentie van een vectorveld, \(\nabla \cdot u = u^a_{;a} \) kan geschreven worden als

\[
\nabla \cdot u = (−1)^s *d^*u^s.
\]

8-2 Bivectoren en dualiteit in een ruimte-tijd

Wordt in een ruimte-tijd met signatuur \((- ++ +)\) een positieve orthonormale basis \((E_0, E_1, E_2, E_3)\) gekozen met duale basis \(\theta^0, \ldots, \theta^3\), dan is, met \(E_4 := E_0 \) en \(\theta^4 := \theta_0 \wedge \theta_1 \wedge \theta_2 \wedge \theta_3\),

\[
\theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4 = -\theta^0 \wedge \theta^1 \wedge \theta^2 \wedge \theta^3,
\]

zodat, in plaats van 8-1.5, dikwijls de canonieke volumevorm gedefinieerd wordt als

\[
\epsilon = -\theta^1 \wedge \cdots \wedge \theta^4
\]

en dus ook

\[
\epsilon_{1234} = -1.
\]

Let op: dit betekent dat, wanneer we dualen berekenen m.b.v. de betrekkingen 8-1.8, ook daar een extra − teken moet worden in acht genomen!

Definiëren we vervolgens een complex nultetrad \((e_a) = (m, \bar{m}, \ell, k)\) zoals op p. 80, met duale \((\omega^a)\), dan volgt (ga na!)

\[
e = i \omega^1 \wedge \omega^2 \wedge \omega^3 \wedge \omega^4 \quad \text{en} \quad \epsilon_{abcd} \omega^a \omega^b \omega^c \omega^d = i.
\]

en dus ook

\[
\epsilon_{1234} = \epsilon_{1234} = i.
\]

Oefening:

Toon aan dat (ook in een complex nultetrad) voldaan is aan de volgende betrekkingen:

\[
\epsilon_{abcd} \epsilon_{fgh} = -24 \delta^{[e}_{[a} \delta^{f}_{b} \delta^{g}_{c} \delta^{h}_{d]},
\]

\[
\epsilon_{abcd} a_{fgh} = -6 \delta^{[e}_{[a} \delta^{f}_{b} \delta^{g}_{c} \delta^{h}_{d]},
\]

\[
\epsilon_{abcd} a_{gh} = -6 \delta^{[e}_{[a} \delta^{f}_{b} \delta^{g}_{c} \delta^{h}_{d]},
\]

\[
\epsilon_{abcd} a_{gh} = -6 \delta^{[e}_{[a} \delta^{f}_{b} \delta^{g}_{c} \delta^{h}_{d]},
\]

\[
\epsilon_{abcd} a_{gh} = -24.
\]

\footnote{Voor een orthonormale basis geldt daarentegen met signatuur \((- + ++)\) dat \(\epsilon_{1234} = -\epsilon_{1234}\)}

101
In het algemeen kan deze betrekking geschreven worden als (met M, N, I lijsten van indices, van lengte $n - p, n - p, p$ en met $n - 2s$ de signatuur van de kwadratische vorm g):

$$
\epsilon^{LM} \epsilon_{IN} = (-1)^s p! (n - p)! \delta_{[MI]}^{[N]}.
$$

(8-2.10)

Een bijzondere rol wordt gespeeld door 2-vormen, $X = \frac{1}{2} X_{ab} \omega^a \wedge \omega^b$, ook soms bivectoren genoemd. De duale van X moet volgens 8-1.6 voldoen aan $(\omega^a \wedge \omega^b) \wedge (\ast X) = g(\omega^a \wedge \omega^b, X)\epsilon$ voor alle a, b, wat impliciet dat (ga na!)

$$
\ast X_{ab} = \frac{1}{2} \epsilon_{abcd} X^{cd}.
$$

(8-2.11)

Merk op dat in een 4d ruimte-tijd voldaan is aan

$$
\ast \ast X = -X \ \forall X \in \Omega^2(M).
$$

(8-2.12)

Definiëren we dus voor elke 2-vorm X de complexe 2-vorm X^+ door

$$
X^+ = X + i \ast X,
$$

(8-2.13)
dan is X^+ duidelijk self-duaal, in de zin dat:

$$
\ast X^+ = -i X^+
$$

(8-2.14)

en omgekeerd: als X^+ zelf-duaal is, dan bestaat een reële X zó dat $X^+ = X + i \ast X$.

Oefening:

1. Toon aan dat voor twee bivectoren X, Y geldt dat

$$
X^{ac} Y_{bc} = \ast Y_{ac} \ast X_{bc} = \frac{1}{2} X^{mn} Y_{mn} \delta^a_b.
$$

(8-2.15)

2. Toon aan dat voor elke bivector X

$$
\frac{1}{2} X^+ a X^+ b = X_{ab} X^{ab} + i X_{ab} \ast X^{ab}.
$$

(8-2.16)

3. Toon aan dat de rang van een bivector $X \neq 0$ (i.e. van de corresponderende matrix X_{ab}) 2 of 4 is. Is de rang 2, toon dan aan dat X simpel is,

$$
X = u \wedge v \iff X_{ab} = 2u_{[a}v_{b]} \iff \text{rang}(X_{ab}) = 2.
$$

X kan dan geënterpreteerd worden als het oppervlakte-element opgespannen door u, v en de span van deze twee vectoren wordt de eigenblad genoemd van X (het eigenblad is een invariant deelruimte van X^a_b). Een simpele bivector voldoet uiteraard aan de voorwaarde dat $X_{a[b} X_{cd]} = 0$, maar het omgekeerde geldt ook: contractie van deze betrekking met een vector r^a waarvoor $u_a = X_{ab} r^b \neq 0$ geeft immers $u_{[b} X_{cd]} = 0$, waarna contractie met een vector v^b waarvoor $u_b v^b \neq 0$ aantoont dat $X_{ab} \sim u_{[a} w_{b]}$ met $w_a = X_{ab} r^b$. Merk verder op dat, t.g.v. 8-2.15, $\ast X_{ab} X^{ab} = 0 \Rightarrow \ast X_{ab} X^{bc} = 0$: uit deze laatste betrekking volgt dat een $q \neq 0$ bestaat zódat $X_{ab} q^b = 0$ (contracteer met een vector r waarvoor $q_a = \ast X_{ab} r^b \neq 0$) en dus X simpel is. De omgekeerde eigenschap is triviaal. Deze beschouwingen leiden tot de volgende equivalentie eigenschappen:

$$
X(\neq 0) \text{ is simpel} \iff \text{rang}(X_{ab}) = 2,
$$

$$
\iff \det X_{ab} = 0,
$$

$$
\iff \exists v \neq 0 : X_{ab} v^b = 0,
$$

$$
\iff X_{a[b} X_{cd]} = 0,
$$

$$
\iff \ast X_{ab} X^{bc} = 0,
$$

$$
\iff X_{ab} X^{ab} = 0,
$$

$$
\iff X \wedge X = 0,
$$

$$
\iff X^+ a X^+ b \text{ is re閟el}.
$$

(8-2.17)

(8-2.18)

(8-2.19)

(8-2.20)

(8-2.21)

(8-2.22)

(8-2.23)

(8-2.24)
Oefening:

1. Toon aan dat X simpel is als en slechts als *X simpel is en dat dan de eigenbladen van beide bivectoren loodrecht op elkaar staan.

2. Een reële simpele bivector $^\alpha X$ wordt ruimteachtig, tijdachtig of nul genoemd naargelang $X_{ab}X^{ab} > 0$, < 0 of $= 0$. Toon aan dat dit betekent dat de corresponderende eigenbladen ruimteachtig, tijdachtig resp. nul zijn.

Voor een reële bivector X volgt dan dat

\[\begin{align*}
 i) & \quad X \text{ nul is (en dus ook simpel)} \iff (8-2.25) \\
 ii) & \quad \exists k \neq 0: X_{ab}k^b = 0 = ^*X_{ab}k^b \iff (8-2.26) \\
 iii) & \quad X_{ab}X^{ab} = X_{ab}^*X^{ab} = 0 \iff (8-2.27) \\
 iv) & \quad X \wedge ^*X = X \wedge X = 0. \quad (8-2.28)
\end{align*} \]

3. Ga na dat de volgende bivectoren zelf-duaal zijn: $m^\flat \wedge \ell^\flat$, $k^\flat \wedge m^\flat$, $m^\flat \wedge m^\flat − k^\flat \wedge \ell^\flat$.

Het is ook gemakkelijk na te gaan dat deze drie bivectoren een basis vormen voor de 3-dimensionale (complexe) vectorruimte van de zelfduale bivectoren. We noteren ze als

\[\begin{align*}
 Z^1 &= U = \overline{m} \wedge \ell \\
 Z^2 &= V = k \wedge m \\
 Z^3 &= W = m \wedge \overline{m} − k \wedge \ell. \quad (8-2.29)
\end{align*} \]

Er geldt dus

\[\begin{align*}
 U_{ab} &= −\ell_a\overline{m}_b + \ell_b\overline{m}_a \\
 V_{ab} &= k_a m_b − k_b m_a \\
 W_{ab} &= m_a\overline{m}_b − m_b\overline{m}_a − k_a\ell_b + k_b\ell_a. \quad (8-2.30)
\end{align*} \]

Ga na dat alle contracties van deze drie tensoren 0 zijn, met uitzondering van

\[U_{ab}V^{ab} = 2, \quad W_{ab}W^{ab} = −4, \quad (8-2.31) \]

waarbij de laatste betrekking expliciet toont dat W niet simpel is.

oefening:

Toon aan dat de nullrotaties 6.3.23.6.3.22 het volgende effect hebben op de bivectoren Z^α:

\[\begin{align*}
 U_{ab}′ &= U_{ab}, V_{ab}′ = V_{ab} − EW_{ab} + E^2U_{ab}, W_{ab}′ = W_{ab} − 2EU_{ab} \quad (8-2.32) \\
 V_{ab}′ &= V_{ab}, U_{ab}′ = U_{ab} − BW_{ab} + B^2V_{ab}, W_{ab}′ = W_{ab} − 2BV_{ab}. \quad (8-2.33)
\end{align*} \]

Voor een gegeven tijdachtig vectorveld u ($u^2 = −1$) bepaalt elke zelfduale bivector X^+ een unieke (complexe) vector

\[X_a = X^+_{ab}u^b \quad (8-2.34) \]

in het orthogonaal complement van u: $X_a u^a = 0$. Omgekeerd bepaalt ook elke vector X_a, loodrecht op u een zelf-duale bivector met componenten (ga na):

\[X^+_{ab} = 2u_{[a}X_{b]} + i\epsilon_{abcd}u^cX^d. \quad (8-2.35) \]

\(^3\) Een complexe X wordt nul genoemd als $X^+_{ab}X^+{ab} = 0$

\(^4\) m.a.w. voor een gegeven congruentie van waarnemers
Hiervoor geldt dan
\[X_{+}^{ab}X_{+}^{ab} = -4X_{a}X_{a}. \] (8-2.36)

We proberen nu om een gegeven bivector \(X \) zo eenvoudig mogelijk voor te stellen door een gepaste keuze van waarnemers te maken (d.w.z. door in elk punt een geschikte lorentz-transformatie uit te voeren). Beginnen we met de geassocieerde zelf-duale 2-vorm \(X_{+} \) uit te schrijven t.o.v. de basis \(U, V, W \) als \(^{5} \)
\[
\frac{1}{2} X^{+} = \Phi_{0}U + \Phi_{1}W + \Phi_{2}V. \] (8-2.37)

Als de invariant
\[X_{+}^{ab}X_{+}^{ab} = 16(\Phi_{0}\Phi_{2} - \Phi_{1}^{2}) \] (8-2.38)
verschillend is van 0, dan zeggen we dat \(X \) niet-nul is. Is de invariant 0 dan spreken we van een nul-bivector. Een reële nul-bivector wordt dus gekarakteriseerd door de eigenschappen dat
\[X_{ab}X_{ab} = X_{ab}^{*}X_{ab} = 0 \]

en is dus simpel. De nul-eigenvectoren van een bivector spelen een belangrijke rol bij de verdere classificatie: we zeggen dat een nul-vector \(k \) een principal null direction (PND) is van \(X \), als
\[X_{a[b}k_{c]}k^{a} = 0, \] (8-2.39)
wat betekent dat \(k \) een eigenvector is van \(X^{a}_{b} \). Is \(k \) een reële PND, dan volgt (gebruik makend van het hierboven geïntroduceerde nul-tetrad) dat \(\Phi_{0} = 0 \). Omgekeerd volgt uit \(\Phi_{0} = 0 \) dat \(X_{ab}k^{a} \) in de span van \((k, \ell) \) ligt, wat enkel mogelijk is (ga na!) als \(k \) een eigenvector is van \(X^{a}_{b} \). Bestaan zulke reële PND’s wel? Inderdaad, want m.b.v. een lorentztransformatie kunnen we altijd \(\Phi_{0} = 0 \) stellen: vertrekken we van een willekeurig nul-tetrad waarin
\[
\frac{1}{2} X^{+} = \Phi_{0}'U' + \Phi_{1}'V' + \Phi_{2}'W', \]
dan volgt onder een nul-rotatie 6-3.22 omheen \(\ell \) dat
\[
\frac{1}{2} X^{+} = (\Phi_{0}' - 2E\Phi_{1}' + E^{2}\Phi_{2}')U + \ldots, \]
zodat we de coëfficiënt van \(U \) kunnen 0 maken door een oplossing te construeren van
\[\Phi_{0}' - 2E\Phi_{1}' + E^{2}\Phi_{2}' = 0. \]
Deze vergelijking heeft uiteraard twee complexe wortels: is de invariant \(\Phi_{0}\Phi_{2} - \Phi_{1}^{2} \neq 0 \) dan resulteren er twee verschillende reële PND’s (dit zijn dan dan precies de vectoren \(k \) en \(\ell \) uit het canonieke tetrad) en is de invariant 0, dan is er slechts 1 (dubbele) PND \(k \).

De volgende mogelijkheden treden dus op:

- **\(X \) is niet-nul**: het nultetrad kan dan verder gespecificeerd worden (ga na!) zodat
\[
\frac{1}{2} X^{+} = \Phi_{1}W. \] (8-2.40)

Dit nultetrad is –op boosts in het \((k, \ell) \)-vlak en rotaties in het \((m, \bar{m}) \)-vlak na— uniek, met de vectoren \(k, \ell \) precies de reële eigenvectoren van \(X^{a}_{b} \).

- **\(X \) is nul** en dus
\[
\frac{1}{2} X^{+} = \Phi_{2}V. \] (8-2.41)

Het canonieke nul-tetrad is in dit geval slechts bepaald op een nulrotatie na. Bovendien blijkt dat de uniek bepaalde nulrichting \(k \) precies ook de gemeenschappelijke PND is (volgens de discussie op p. 70) van de onderling loodrechte nul-eigenbladen van \(X \) en \(^{*}X \).

\(^{5}\)De labels hebben betrekking op het z.g. boost-gewicht van de basisvormen: uit de definities 8-2.29 en 6-3 blijkt dat onder een boost \(U \rightarrow A^{-1}U, W \rightarrow A^{0}W \) en \(V \rightarrow A^{1}V \). De factor 1/2 in het linkerlid is zuiver conventioneel.
Oefening:

Toon aan dat een (reële) niet-nul bivector een uniek (modulo boosts in het \(k, \ell\))-vlak en rotaties in het \(m, m\))-vlak) complex nultetrad bepaalt waarin

\[
X_{ab} = \alpha k_{[a} \ell_{b]} + \beta m_{[a} m_{b]}.
\]

8-3 Maxwellveld

We verwijzen terug naar het hoofdstuk 2-6.1 over maxwellvelden in de minkowskiruimte-tijd en proberen om de maxwellvergelijkingen te herschrijven in termen van 2-vormen. Bekijken we eerst het paar vergelijkingen (2-6.3, 2-6.4),

\[
\nabla \cdot \vec{H} = 0,
\]

\[
\nabla \times \vec{E} = -\frac{\partial \vec{H}}{\partial t}.
\]

Bedenken we dat, om het magnetisch veld te definiëren, we het verschil moeten kennen tussen ‘links’ en ‘rechts’, dan suggereert dit dat we met \(\vec{H}\) een 2-vorm laten overeenkomen en met \(\vec{E}\) een 1-vorm:

\[
\vec{E} = E_1 dx + E_2 dy + E_3 dz\text{ en }\vec{H} = H_1 dy \wedge dz + H_2 dz \wedge dx + H_3 dx \wedge dy.
\]

In het statische geval zijn dan de vergelijkingen \(\nabla \cdot \vec{H} = 0\) en \(\nabla \times \vec{E} = 0\) eenvoudig te schrijven als \(d\vec{H} = d\vec{E} = 0\). Wat wordt dit in het niet-statische geval? Beschouwen we daartoe de volgende 2-vorm, (de maxwell-2-vorm van het elektromagnetisch veld)

\[
\vec{F} = \vec{H} + \vec{E} \wedge dt.
\]

Splitsen we de uitwendige afgeleide van een p-vorm \(\omega\) op in een ruimteachtig deel en tijdachtig deel, door

\[
d\omega = d^{(3)}\omega + dt \wedge \frac{\partial \omega}{\partial t},
\]

dan blijkt dat

\[
d\vec{F} = d\vec{H} + d\vec{E} \wedge dt
\]

\[
= d^{(3)}\vec{H} + dt \wedge \partial_t \vec{H} + (d^{(3)}\vec{E} + dt \wedge \partial_t \vec{E}) \wedge dt
\]

\[
= d^{(3)}\vec{H} + (\partial_t \vec{H} + d^{(3)}\vec{E}) \wedge dt.
\]

Het koppel vergelijkingen 8-3.1 kan dus geschreven worden als

\[
d\vec{F} = 0 (\Leftrightarrow \nabla [a F_{bc}] = 0).
\]

Noteer dat, volgens de poincaréstelling (zie p. 53), lokaal dan een 1-vorm \(A\) bestaat, de elektromagnetische potentiaal genoemd, waarvoor (zie ook 2-6.14)

\[
\vec{F} = dA.
\]

Merken we ten slotte nog op dat \(A\) slechts op een totale differentiaal \(d\varphi\) na bepaald is, aangezien \(\vec{F} = d(A + d\varphi)\) en dat een willekeurige waarnemer met snelheid \(u\) in een elektromagnetisch veld \(\vec{F}\) een electrisch veld \(\vec{E}\) en een magnetisch veld \(\vec{H}\) zal waarnemen, met

\[
E' = F^{ij} u_j \text{ en } H' = * F^{ij} u_j,
\]

zoals gemakkelijk te verifiëren valt door \(u_i = -\delta^0_{i}\) te kiezen.
Oefening

Ga na dat, met de stroomdichtheid \mathbf{J} gedefinieerd als de 1-vorm

$$\mathbf{J} = j_\alpha dx^\alpha - \rho dt,$$

het tweede koppel maxwellvergelijkingen kan geschreven worden als

\[\ast d^* \mathbf{F} = 4\pi \mathbf{J} (\Leftrightarrow \nabla_m F_a^m = 4\pi J_a), \]

waaruit dan weer de continuïteitsvergelijking $d^* \mathbf{J} = 0$ volgt!

In een willekeurige gekromde ruimte-tijd wordt een maxwellveld als gevolg van het minimale koppelingstheorem (zie p. 136) op precies dezelfde wijze beschreven, met name door een 2-vorm \mathbf{F} die voldoet aan de vergelijkingen 8-3.5 en 8-3.9.

Definiëren we $\mathbf{F} = \mathbf{F}^+$ dan wordt de energie-impulstensor van het maxwellveld gegeven door 10-6.18 en kan herschreven worden (ga na!)

\[4\pi T_{ab} = F_a F_b - \frac{1}{4} g_{ab} F_c F_d = \frac{1}{2} (F_a F_b^c + \ast F_a^c F_b^c) = \frac{1}{2} \mathbf{F}_a \mathbf{F}_b^c. \]

Omdat maxwellvelden beschreven worden m.b.v. bivectoren, blijft de classificatie uit voorgaande paragraaf van toepassing:

- Als \mathbf{F} niet-nul is, dan bestaat een nul-tetrad met de eigenschap dat $\mathbf{F} = \Phi_1 \mathbf{W}$ en is de energie-impuls tensor van het maxwellveld te schrijven als

\[4\pi T_{ab} = 4|\Phi_1|^2 (m_{(a} \mathbf{m}_{b)} + k_{(a} \ell_{b)}). \]

\mathbf{T} heeft dan degre type $[(11), (1, 1)]$. Er zijn twee dubbele eigenwaarden, $\lambda_1 = \lambda_2 = -\lambda_3 = -\lambda_4 = 2|\Phi_1|^2$.

Oefening

Bepaal voor het veld 8-2.40 t.o.v. de orthonormale basis \mathbf{E}_a ($\mathbf{u} = \mathbf{E}_4$) de componenten van de elektrische en magnetische veldvector, gedefinieerd door

\[E_a + iB_a = \ast F_{ab} u^b, \]

\[4\pi T_{ab} = 2|\Phi_2|^2 k_a k_b. \]

\mathbf{T} heeft nu duidelijk 0 als 4-voudige eigenwaarde en heeft degre type $[(11, 2)]$. Elke dergelijke energie-impulstensorverdeling (met $k^2 = 0$) (ook als ze niet afkomstig is van een maxwellveld) wordt gedefinieerd als zuivere straling. Het canonieke nultetrad is dan enkel bepaald op nulrotaties omheen \mathbf{k}, boosts en rotaties in het (\mathbf{m}, \mathbf{m})-vlak na.

Oefening:

1. Toon aan dat een maxwellveld nul is als en slechts als, met \mathbf{E} en \mathbf{B} gedefinieerd door 8-3.11, $E^2 - B^2 = 0$ en $\mathbf{E} \perp \mathbf{B}$.
2. Toon aan dat voor een zuiver stralingsveld $\nabla_b T_{ab} = 0$ impliceert dat de integraalkrommen van \mathbf{k} nulgeodeten zijn.

6Corrado Segre, Torino 1863–1924
7bv. van een massaloos scalair veld
8-4 Petrovclassificatie van de weyltensor

De voorgaande classificatie van bivectoren (en van het maxwellveld) staat model voor de classificatie van de weyltensor C (zie 6-2.12). Omdat het ricci-gedeelde van de kromming rechtstreeks bepaald wordt via de einstein-veldvergelijkingen (zie verderop) door de energie-impulsverdeling, zeggen we ook dat de weyltensor het z.g. vrije deel van het gravitatieveld bepaalt. Doorgaans is een algebraische transformeren deze coëfficiënten als volgt:

\[C_{abcd} = \frac{1}{2} \epsilon_{abef} C^{ef}_{\ cd}, \quad C^*_{abcd} = \frac{1}{2} \epsilon_{cdef} C_{abef}, \quad \] (8-4.1)

die echter, omwille van de vermelde symmetrie-eigenschappen, aan elkaar gelijk zijn (ga na!). Net zoals voorheen geeft dit dan aanleiding tot de constructie van een zelf-duale tensor

\[C^+ = C + iC, \] (8-4.2)
die, omwille van de antisymmetrie in de beide indexparen en het spoorvrij zijn, te schrijven is in termen van de zelfduale bivectoren U, V, W als

\[\frac{1}{2} C^+_{abcd} = \Psi_0 U_{ab} W_{cd} + \Psi_1 (U_{ab} W_{cd} + W_{ab} U_{cd}) + \Psi_2 (U_{ab} V_{cd} + V_{ab} U_{cd} + W_{ab} W_{cd}) + \Psi_3 (V_{ab} W_{cd} + W_{ab} V_{cd}) + \Psi_4 V_{ab} V_{cd}, \] (8-4.3)

met de vijf complexe coëfficiënten Ψ_i gedefinieerd door

\[\Psi_0 = C_{abcd} k^a m^b k^c m^d, \quad \Psi_1 = C_{abcd} k^a k^c m^d, \quad \Psi_2 = C_{abcd} k^a m^b k^c m^d - \frac{1}{2} C_{abcd} k^a k^b (k^c m^d - m^c k^d), \] (8-4.4)

waarin C_{abcd} mag vervangen worden door $\frac{1}{2} C^+_{abcd}$. Gebruik makend van de geodetische deviatievergelijkingen 10-7.6 kan aangetoond worden dat (in vacuüm) Ψ_0, Ψ_4 een transversale component voorstellen van het gravitatieveld in resp. de ℓ en k richting, Ψ_1, Ψ_3 een longitudinale component in resp. de ℓ en k richting en Ψ_2 een coulombcomponent voorstelt.

Onder de lorentztransformaties 6-3.23 en 6-3.22 transformeren deze coëfficiënten als volgt:

nulrotaties omheen ℓ:

\[\begin{align*}
\Psi'_0 &= \Psi_0, \\
\Psi'_1 &= \Psi_1 + E \Psi_4, \\
\Psi'_2 &= \Psi_2 + 2E \Psi_3 + E^2 \Psi_4, \\
\Psi'_3 &= \Psi_3 + 3 E \Psi_2 + 3 E^2 \Psi_3 + E^3 \Psi_4, \\
\Psi'_4 &= \Psi_0 + 4 E \Psi_1 + 6 E^2 \Psi_2 + 4 E^3 \Psi_3 + E^4 \Psi_4,
\end{align*} \] (8-4.7)

nulrotaties omheen k:

\[\begin{align*}
\Psi'_0 &= \Psi_0, \\
\Psi'_1 &= \Psi_1 + B \Psi_0, \\
\Psi'_2 &= \Psi_2 + 2B \Psi_1 + B^2 \Psi_0, \\
\Psi'_3 &= \Psi_3 + 3B \Psi_2 + 3B^2 \Psi_1 + B^3 \Psi_0, \\
\Psi'_4 &= \Psi_4 + 4B \Psi_3 + 6B^2 \Psi_2 + 4B^3 \Psi_1 + B^4 \Psi_0.
\end{align*} \] (8-4.8)

\[^{8}\text{wat niet betekent dat dit deel van de kromming willekeurig te kiezen is \ldots}
^{9}\text{P. Szekeres, J.Math.Phys. (1965) 6, 1387: The Gravitational Compass} \]
Net zoals voor bivectoren (zie 8-2.34 en 8-2.35) kunnen we voor een gegeven tijdachtige congruentie ($u^2 = -1$) een spoorvrij endomorfisme Q definiëren van de (complexe) span van u^a, door $X^a \mapsto Q^a_b X^b$ met

$$-Q_{ac} = C^+_{abcd} u^b u^d = E_{ac} + iH_{ac}. \quad (8-4.15)$$

De matrix Q_{ab} bepaalt de weyltensor éénuidig aangezien

$$-\frac{1}{2}C^+_{abcd} = 4u^a Q^a_d[d u_c] + g_{a[c}Q_{d]b} - g_{b[c}Q_{d]a} + i\varepsilon_{abcdef} u^e u_{[a}Q^f_{b]} + i\varepsilon_{abcdef} u^e u_{[a}Q^f_{b]}. \quad (8-4.16)$$

Omdat (zie 8-2.35) $C u^\perp$ isomorf is met de complexe ruimte S^+ van zelfduale bivectoren, bepaalt de matrix Q_{ab} ook een endomorfisme van S^+ door $X^+_{ab} \mapsto -\frac{1}{2}C^+_{ab} X^+_{cd}$. In analogie met het maxwellveld worden de tensoren E, H het electricisch en magnetisch deel van de weyltensor genoemd. Q (en dus ook E en H) voldoet aan de betrekkingen

$$Q_{ab} = Q_{ba}, \quad Q^a_a = 0, \quad Q_{ab} u^b = 0. \quad (8-4.17)$$

Drukken we Q uit t.o.v. de orthonormale basis ($E_α, E_4 = u$), dan bekomen we de complex symmetrische matrix (omwille van de eenvoud eveneens Q genoteerd)

$$Q = \begin{bmatrix}
\Psi_2 - \frac{1}{4}(\Psi_0 + \Psi_4) & \frac{1}{4}(\Psi_4 - \Psi_0) & \Psi_1 - \Psi_3 \\
\frac{1}{4}(\Psi_4 - \Psi_0) & \Psi_2 + \frac{1}{4}(\Psi_0 + \Psi_4) & i(\Psi_1 + \Psi_3) \\
\Psi_1 - \Psi_3 & i(\Psi_1 + \Psi_3) & -2\Psi_2.
\end{bmatrix} \quad (8-4.18)$$

De petrovclassificatie (van de weyltensor in een gegeven punt van de ruimte-tijd) is nu niets anders dan de jordanclassificatie van deze matrix. De eigenwaarden zijn de wortels van de karakteristieke vergelijking

$$\lambda^3 - I\lambda - 2J = 0, \quad (8-4.19)$$

waarbij I en J de volgende weyl polynomiale invarianten zijn:

$$I = \frac{1}{2} \text{tr} Q^2 = \Psi_0 \Psi_4 - 4 \Psi_1 \Psi_3 + 3 \Psi_2^2 = \frac{1}{2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2) = -(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1) \quad (8-4.20)$$

$$J = \frac{1}{6} \text{tr} Q^3 = \text{det} \begin{bmatrix}
\Psi_4 & \Psi_3 & \Psi_2 \\
\Psi_3 & \Psi_2 & \Psi_1 \\
\Psi_2 & \Psi_1 & \Psi_0
\end{bmatrix} = \frac{1}{6} (\lambda_1^3 + \lambda_2^3 + \lambda_3^3) = \frac{1}{2} \lambda_1 \lambda_2 \lambda_3. \quad (8-4.21)$$

De drie diagonaliseerbare gevallen worden petrovtypes I (drie verschillende eigenwaarden, segretype [111]), D ($\lambda_1 = \lambda_2 = -\lambda_3/2$, segretype [(11)1]) en O ($Q = 0$) genoemd. De niet-diagonaliseerbare gevallen zijn

- petrovtype II, met minimale veelterm $(x + \lambda/2)^2(x - \lambda)$, segretype [21]
- petrovtype III, met minimale veelterm x^3, segretype [3]
- petrovtype N, , met minimale veelterm x^2, segretype [(21)].
De types II, III, D, N, O worden *algebraisch speciaal* genoemd en het type I *algebraisch algemeen*. De algebraisch speciale gevallen worden gekarakteriseerd (ga na!) door

\[I^3 - 27J^2 = 0 \] \hfill (8-4.22)

en types III, N en O door $I = J = 0$.

Voor elk petrovtype kan nu, door middel van lorentztransformaties, in elk punt een canonieke vorm van de weyltensor geconstrueerd worden:

- voor types I en D:

\[Q = \text{diag}(\lambda_1, \lambda_2, \lambda_3) \]

(met $\lambda_1 = \lambda_2$ voor D), d.w.z.

\[\Psi_0 = \Psi_4 = (\lambda_2 - \lambda_1)/2, \Psi_1 = \Psi_3 = 0, \Psi_2 = -\lambda_3/2 \]

- voor types II en N:

\[
Q = \begin{bmatrix}
1 - \lambda/2 & -i & 0 \\
-\lambda/2 - 1 & 0 & 0 \\
0 & 0 & \lambda
\end{bmatrix}
\]

(met $\lambda = 0$ voor type N)

d.w.z. $\Psi_0 = \Psi_1 = \Psi_3 = 0, \Psi_2 = -\lambda/2, \Psi_4 = -2$

- voor type III:

\[
Q = \begin{bmatrix}
0 & 0 & i \\
0 & 0 & 1 \\
i & 1 & 0
\end{bmatrix}
\]

d.w.z. $\Psi_0 = \Psi_1 = \Psi_2 = \Psi_4 = 0, \Psi_3 = -i$.

Voor de niet-ontaarde gevallen (I, II en III) geeft dit aanleiding tot een uniek bepaald canoniek tetrad (E_a), het z.g. *weyl principal tetrad*. Voor gevallen D en N is het tetrad dat de canonieke vorm bepaalt niet uniek (ga na!): voor type N is er een residuele vrijheid van nulrotaties omheen k, terwijl voor type D er een vrijheid blijft van boosts in het (k, ℓ) vlak en ruimtelijke rotaties in het (m, \overline{m}) vlak.

De vorige classificatie weerspiegelt zich in de classificatie van de *principal null directions* van de weyltensor (die parallel loopt aan de classificatie van bivectoren zoals gegeven op p. 104). Beginnen we met, voor een gegeven nullvector k de tensor $C(k)$ te definiëren door

\[C(k)_{ad} = C_{abcd}k^bk^c. \]

In analogie met 8-2.39 zeggen we dan dat k een *weyl-PND* is als

\[k_icC(k)_{ja}[b\overline{k}d] = 0 \] \hfill (8-4.23)

Net zoals 8-2.39 voor de geassocieerde bivector betekent dat $\Phi_0 = 0$, kan men aantonen, steunend op 8-4.3, dat 8-4.23 equivalent is met $\Psi_0 = 0$. Het bepalen van de weyl-PND’s komt dus neer op het zoeken van een nulltetrad waarin $\Psi_0 = 0$: d.m.v. een nulrotatie omheen ℓ kunnen we dit bewerkstelligen (zie 8-4.3) door het oplossen van de vergelijking

\[\Psi_0 + 4E\Psi_1 + 6E^2\Psi_2 + 4E^3\Psi_3 + E^4\Psi_4 = 0. \]

Elk van de vier wortels van deze vergelijking geeft aanleiding tot de constructie van één PND k (rekening houdend met de multipliciteiten). Voor elk van de hierboven besproken canonieke vormen kunnen we deze multipliciteiten berekenen en we bekomen:

- type I: 4 enkelvoudige PND’s
- type II: 2 enkelvoudige PND’s, 1 dubbele PND
• type D: 2 paren van dubbele PND’s
• type III: 1 enkelvoudige en 1 drievoudige PND
• type N: 1 viervoudige PND
• type O: conform vlak.

Algebraisch speciale ruimte-tijden worden dus gekenmerkt door het optreden van 1 of 2 meervoudige PND’s en hebben dan, na k te aligneren met een meervoudige PND, $\Psi_0 = \Psi_1 = 0$. Kiezen we voor petrovtype D i.h.b. k,ℓ parallel aan de dubbele PND’s van de weyltensor, dan is enkel $\Psi_2 \neq 0$, met Ψ_2 reëel voor een zuiver electrische weyltensor en imaginair voor een zuiver magnetische.
Hoofdstuk 9

Isometrieën

9-1 Inleiding
Symmetrieën spelen een fundamentele rol bij de constructie en de classificatie van oplossingen van de einsteinvergelijkingen. We beginnen met op te merken dat elke (surjectieve) transformatie L tussen twee inwendig-productruimten, met metrieken g_1 en g_2, die de metrische eigenschappen behoudt, noodzakelijk een lineaire transformatie is:

$$\forall x, y : g_1(x, y) = g_2(Lx, Ly) \implies L \text{ lineair}.$$

Het bewijs is eenvoudig:

$$g_2(L(x + \lambda y), Lz) = g_1(x + \lambda y, z) = g_1(x, z) + \lambda g_1(y, z) = g_2(Lx, Lz) + \lambda g_2(Ly, Lz) = g_2(Lx + \lambda Ly, Lz),$$

waaruit, wegens het niet-ontaard zijn van de metriek en de surjectiviteit van L, volgt dat $L(x + \lambda y) = Lx + \lambda Ly$ en dit voor alle x, y.

Wanneer we spreken over een isometrie tussen twee variëteiten, dan moet er dus in elk punt een lineaire afbeelding bestaan die de metrische structuur van de ene rakende ruimte overhevelt naar de andere. Vandaar de volgende definitie: een isometrie is een diffeomorfisme $\phi : M \rightarrow M$ waaronder de metriek invariant is, in de zin dat $\phi_*g = g$.

M.a.w. ϕ is een isometrie als voor alle u en $v \in T_p(M)$ en voor alle p

$$g(u, v)|_p = g(\phi_*u, \phi_*v)|_{\phi(p)},$$

(9-1.1)

In 4-4 hebben we gezien hoe met elk vectorveld X een lokale 1-parametergroep van diffeomorfismen Φ_t geassocieerd is, en omgekeerd. Onderstel nu dat deze Φ_t isometrieën zijn, zodat we beschikken over een lokale 1-parameter groep van isometrieën of een 1-dimensionale symmetriegroep. Er geldt dan dat

$$\mathcal{L}X g = \lim_{t \to 0} \frac{1}{t}(\Phi_t^*g - g) = 0$$

(9-1.2)

en we noemen X dan een killingvectorveld. Ook zeggen we dat X de generator is van de symmetriegroep $\{\Phi_t\}$. Intuïtief betekent dit dus dat in elk punt p alle metrische betrekkingen onveranderd blijven onder een infinitesimaal kleine translatie in de richting X_p.

111
Voorbeeld

Beschouw de schwarzschildmetriek

\[
g = - \left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 \left(d\theta^2 + (\sin^2 \theta) d\phi^2\right).
\]

Deze metriek heeft duidelijk \(\partial_t\) en \(\partial_\phi\) als killingvectoren. We zeggen dat deze ruimtetijd daarom (lokaal) stationair en axisymmetrisch is. Merk op dat deze vectoren commuteren, \([\partial_t, \partial_\phi] = 0\), en dat elke (constante) lineaire combinatie van beide uiteraard opnieuw een killingvector is. De schwarzschildmetriek bevat nog meer (onafhankelijke) symmetriëen, waarop we verder nog in detail zullen ingaan.

M.bv. bekomen we uit \(9-1.2\) dat

\[0 = \mathcal{L}_X g_{ab} = g_{ab;c} X^c + g_{mb} X^m;a + g_{an} X^n;b,\]

wat we de killingvergelijkingen noemen.

Omgekeerd kan men aantonen dat elk vectorveld dat voldoet aan de killingvergelijkingen ook de generator is van een lokale 1-parameter groep van isometriëën. De integraalkrommen worden dan ook wel de killingtrajecten (Killing trajectories) genoemd. Een aanschouwelijker voorstelling van killingvectoren wordt verkregen door een hypervlak \(\Sigma\) te kiezen, met \(p \in \Sigma\) zó dat \(\Sigma\) niet rakend is aan \(X_p\) (wat mogelijk is in elk punt \(p\) waar \(X_p \neq 0\)). Definiëren we in \(\Sigma\) coördinaten \((x^2, \ldots x^n)\), dan zijn in een voldoend kleine omgeving \(V\) van \(p\) alle punten \(a' \in V\) uniek te karakteriseren m.b.v. de parameter \(x^1 = t\) en de coördinaten \(x^2(a), \ldots x^n(a)\) van \(a\), waarbij \(\Phi_{-1} a'd' = a \in \Sigma\). M.a.w. we kiezen de coördinaten zó dat de eerste coördinaatkrommen precies de integraalkrommen zijn van \(X\). M.bv. \(4-4.1\) vinden we dan voor de componenten van \(X\) dat \(X^1 = \frac{dx^1}{dt} = 1\), \(X^2 = \frac{dx^2}{dt} = 0\) enz.:

\[X^i = \delta^i_1 \text{ of } X = \frac{\partial}{\partial t}.
\]

Gesubstitueerd in \(9-1.2\) levert dit \(\frac{\partial g_{ij}}{\partial t} = 0\) en dus

\[g_{ij} = g_{ij}(x^2 \ldots x^n),\]

wat expliciet toont dat de metrische componenten niet veranderen langs de integraalkrommen van \(X\).

Als voorbeeld bekijken we de minkowskiruimtetijd.

\[\text{1Dikwijls wordt verondersteld dat de corresponderende strömung } \phi_t \text{ gedefinieerd is voor alle } t \in \mathbb{R}; \text{ de killingtrajecten zijn dan compleet. Deze veel sterkere eis speelt o.a. een belangrijke rol in de z.g. black hole uniciteitstheorema's.}\]
9-2 Isometrië van de minkowskiruimtetijd

We tonen aan dat de isometrië van de minkowskiruimtetijd precies gegeven zijn door de inhomogene lorentztransformaties (een klassiek bewijs werd reeds gegeven op p. 23): we bepalen eerst de generatoren van deze isomorfismen, namelijk de oplossingen van de killingvergelijkingen $X_{(i,j)} = 0$ in de minkowskiruimtetijd:

Toon zelf aan dat de oplossingen van deze vergelijkingen gegeven worden door

$$X^0 = -X_0 = a_1 x^1 + a_2 x^2 + a_3 x^3 + c_0,$$
$$X^1 = X_1 = a_1 x^0 + b_1 x^2 - b_2 x^3 + c_1,$$
$$X^2 = X_2 = a_2 x^0 + b_2 x^3 - b_1 x^1 + c_2,$$
$$X^3 = X_3 = a_3 x^0 + b_3 x^1 - b_2 x^2 + c_3,$$

met a_i, b_i en c_i constanten.

De killingvectoren liggen bijgevolg in de opspanning van de volgende 10 vectoren:

$$T = \frac{\partial}{\partial x^0},$$
$$S_{\alpha} = \frac{\partial}{\partial x^\alpha},$$
$$R_{\alpha} = \epsilon_{\alpha \beta \gamma} (x^\beta \frac{\partial}{\partial x^\gamma} - x^\gamma \frac{\partial}{\partial x^\beta}),$$
$$B_{\alpha} = -x^0 \frac{\partial}{\partial x^{\alpha}} - x^{\alpha} \frac{\partial}{\partial x^0}. \quad (9-2.1)$$

Elk van deze vectoren genereert een isomorisme ϕ_i (in de notatie van par. 4-4), dat we nu noteren als T, S_{α}, R_{α} en B_{α}. We bepalen deze isomorfismen m.b.v. de in 4-4 besproken methode.

(1) Voor T lossen we eerst $dy^0/d\lambda = 1$, $dy^\alpha/d\lambda = 0$ op onder de beginvoorwaarden $y^i(0) = X^i$ (bij x^i zijn de coördinaten van een gegeven punt P) en vinden $y^0(\lambda) = \lambda + X^0$ en $y^\alpha(\lambda) = X^\alpha$. Hieruit volgt dat

$$T(P(X^0, X^\alpha)) = P'(X^0 + \lambda, X^\alpha)$$

Bijgevolg is T een *tijdstranslatie*.

(2) Analoog zijn S_{α} de drie *ruimteachtige translaties*.

(3) We bekijken bv. R_3: oplossen van $dy^1/d\lambda = -y^2$, $dy^2/d\lambda = y^1$, $dy^0/d\lambda = dy^3/d\lambda = 0$ geeft, onder dezelfde beginvoorwaarden als hierboven, $y^1 = X^1 \cos \lambda - X^2 \sin \lambda$, $y^2 = X^1 \sin \lambda + X^2 \cos \lambda$, $y^3 = X^3$, $y^0 = X^0$. Bijgevolg geldt dat

$$R_3(P(X^0, X^\alpha)) = P'(X^0, X^1 \cos \lambda - X^2 \sin \lambda, X^1 \sin \lambda + X^2 \cos \lambda, X^3)$$

zodat R_3 een *rotatie* voorstelt in het $(1, 2)$-vlak, en analoog voor R_1 en R_2.

(4) Bekijken we ten slotte B_1: oplossen van $dy^0/d\lambda = -y^1$, $dy^1/d\lambda = -y^0$, $dy^2/d\lambda = dy^3/d\lambda = 0$ geeft $y^0 = X^0 \cosh \lambda - X^1 \sinh \lambda$, $y^1 = -X^0 \sinh \lambda + X^1 \cosh \lambda$, $y^2 = X^2$, $y^3 = X^3$, zodat

$$B_1(P(X^0, X^\alpha)) = P'(X^0 \cosh \lambda - X^1 \sinh \lambda, -X^0 \sinh \lambda + X^1 \cosh \lambda, X^2, X^3)$$

Dit zijn precies de lorentztransformaties (i.h.b. *boosts langs de x-as*), want met $v = \tanh \gamma = 1/\sqrt{1 - v^2} = \cosh \lambda$, zodat inderdaad $X^0 = \gamma(X^0 - X^1 v)$ en $X^1 = \gamma(X^1 - X^0 v)$.
De verzameling van alle lorentztransformaties heeft duidelijk een groepsstructuur, voor \(c_i \neq 0 \) de poincarégroep of de inhomogene lorentzgroep genoemd. Voor \(c_i = 0 \) bekomen we de homogene lorentzgroep. Een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrices \(L^i_j \) waarvoor \(\det L^i_j = +1 \) en \(L^0_i \geq 1 \) (noteer dat \(-1 = \eta_{00} = \eta_{ij} L^i_0 L^j_0 \) impliceert dat \((L^0_i)^2 = 1 + \sum_{a=1}^{3} (L^a_0)^2 \geq 1 \)). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatie behoudend zijn en (2) toekomst gerichte vectoren afbeelden op toekomst gerichte vectoren: \(u, L u \neq 0 \) voor alle tijdachtige \(u \). Eigenlijke lorentztransformaties die de tijdsas

\((Le_0 = e_0) \)

vormen precies de speciale rotatiegroep \(SO(3, \mathbb{R}) \). Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden \((e_0, e_\alpha) \) en \((e_0', e_\alpha') \) kunnen we immers eerst \(e_0 \) op \(e_0' \) afbeelden d.m.v. een boost, om vervolgens de tetrad \((e_0', e_\alpha') \) d.m.v. een rotatie af te beelden op \((e_0^*, e_\alpha^*) \).

Oefening

1. Toon aan dat

\[
\mathcal{L}_u g = \mathcal{L}_v g = 0 \implies \mathcal{L}_{[u,v]} g = 0
\]

waaruit volgt dat de killingvectorvelden een lie-algebra vormen t.o.v. de bewerking \([,] \).

2. Toon aan dat symmetriegroepen aanleiding geven tot behoudswetten, in de zin dat, als \(u = \frac{\partial}{\partial \lambda} \) de raankvector is aan een geodeet \((s \rightarrow \lambda) \), dan \(u, X \) een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrizen \(L^i_j \) waarvoor \(\det L^i_j = +1 \) en \(L^0_i \geq 1 \) (noteer dat \(-1 = \eta_{00} = \eta_{ij} L^i_0 L^j_0 \) impliceert dat \((L^0_i)^2 = 1 + \sum_{a=1}^{3} (L^a_0)^2 \geq 1 \)). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatie behoudend zijn en (2) toekomst gerichte vectoren afbeelden op toekomst gerichte vectoren: \(u, L u \neq 0 \) voor alle tijdachtige \(u \). Eigenlijke lorentztransformaties die de tijdsas

\((Le_0 = e_0) \)

vormen precies de speciale rotatiegroep \(SO(3, \mathbb{R}) \). Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden \((e_0, e_\alpha) \) en \((e_0', e_\alpha') \) kunnen we immers eerst \(e_0 \) op \(e_0' \) afbeelden d.m.v. een boost, om vervolgens de tetrad \((e_0', e_\alpha') \) d.m.v. een rotatie af te beelden op \((e_0^*, e_\alpha^*) \).

3. Toon aan dat symmetriegroepen aanleiding geven tot behoudswetten, in de zin dat, als \(u = \frac{\partial}{\partial \lambda} \) de raankvector is aan een geodeet \((s \rightarrow \lambda) \), dan \(u, X \) een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrizen \(L^i_j \) waarvoor \(\det L^i_j = +1 \) en \(L^0_i \geq 1 \) (noteer dat \(-1 = \eta_{00} = \eta_{ij} L^i_0 L^j_0 \) impliceert dat \((L^0_i)^2 = 1 + \sum_{a=1}^{3} (L^a_0)^2 \geq 1 \)). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatie behoudend zijn en (2) toekomst gerichte vectoren afbeelden op toekomst gerichte vectoren: \(u, L u \neq 0 \) voor alle tijdachtige \(u \). Eigenlijke lorentztransformaties die de tijdsas

\((Le_0 = e_0) \)

vormen precies de speciale rotatiegroep \(SO(3, \mathbb{R}) \). Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden \((e_0, e_\alpha) \) en \((e_0', e_\alpha') \) kunnen we immers eerst \(e_0 \) op \(e_0' \) afbeelden d.m.v. een boost, om vervolgens de tetrad \((e_0', e_\alpha') \) d.m.v. een rotatie af te beelden op \((e_0^*, e_\alpha^*) \).

Oefening

1. Toon aan dat

\[
\mathcal{L}_u g = \mathcal{L}_v g = 0 \implies \mathcal{L}_{[u,v]} g = 0
\]

waaruit volgt dat de killingvectorvelden een lie-algebra vormen t.o.v. de bewerking \([,] \).

2. Toon aan dat symmetriegroepen aanleiding geven tot behoudswetten, in de zin dat, als \(u = \frac{\partial}{\partial \lambda} \) de raankvector is aan een geodeet \((s \rightarrow \lambda) \), dan \(u, X \) een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrizen \(L^i_j \) waarvoor \(\det L^i_j = +1 \) en \(L^0_i \geq 1 \) (noteer dat \(-1 = \eta_{00} = \eta_{ij} L^i_0 L^j_0 \) impliceert dat \((L^0_i)^2 = 1 + \sum_{a=1}^{3} (L^a_0)^2 \geq 1 \)). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatie behoudend zijn en (2) toekomst gerichte vectoren afbeelden op toekomst gerichte vectoren: \(u, L u \neq 0 \) voor alle tijdachtige \(u \). Eigenlijke lorentztransformaties die de tijdsas

\((Le_0 = e_0) \)

vormen precies de speciale rotatiegroep \(SO(3, \mathbb{R}) \). Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden \((e_0, e_\alpha) \) en \((e_0', e_\alpha') \) kunnen we immers eerst \(e_0 \) op \(e_0' \) afbeelden d.m.v. een boost, om vervolgens de tetrad \((e_0', e_\alpha') \) d.m.v. een rotatie af te beelden op \((e_0^*, e_\alpha^*) \).

Oefening

1. Toon aan dat

\[
\mathcal{L}_u g = \mathcal{L}_v g = 0 \implies \mathcal{L}_{[u,v]} g = 0
\]

waaruit volgt dat de killingvectorvelden een lie-algebra vormen t.o.v. de bewerking \([,] \).

2. Toon aan dat symmetriegroepen aanleiding geven tot behoudswetten, in de zin dat, als \(u = \frac{\partial}{\partial \lambda} \) de raankvector is aan een geodeet \((s \rightarrow \lambda) \), dan \(u, X \) een deelgroep hiervan, de eigenlijke lorentzgroep genoemd, wordt gevormd door die matrizen \(L^i_j \) waarvoor \(\det L^i_j = +1 \) en \(L^0_i \geq 1 \) (noteer dat \(-1 = \eta_{00} = \eta_{ij} L^i_0 L^j_0 \) impliceert dat \((L^0_i)^2 = 1 + \sum_{a=1}^{3} (L^a_0)^2 \geq 1 \)). Deze eigenlijke lorentztransformaties zijn volkomen gekarakteriseerd door het feit dat ze (1) oriëntatie behoudend zijn en (2) toekomst gerichte vectoren afbeelden op toekomst gerichte vectoren: \(u, L u \neq 0 \) voor alle tijdachtige \(u \). Eigenlijke lorentztransformaties die de tijdsas

\((Le_0 = e_0) \)

vormen precies de speciale rotatiegroep \(SO(3, \mathbb{R}) \). Alle andere eigenlijke lorentztransformaties zijn producten van één boost en één dergelijke rotatie. Voor twee gegeven lorentztetraden \((e_0, e_\alpha) \) en \((e_0', e_\alpha') \) kunnen we immers eerst \(e_0 \) op \(e_0' \) afbeelden d.m.v. een boost, om vervolgens de tetrad \((e_0', e_\alpha') \) d.m.v. een rotatie af te beelden op \((e_0^*, e_\alpha^*) \).
7. Zij X een tijdachtig killingvectorveld. Definieer de *twistvector* ω door

$$\omega_{a} = \epsilon_{abcd}X^{b}\nabla^{c}X^{d}$$

en stel $F = X^{a}X_{a}$. Toon aan dat

$$2\nabla_{b}X_{a} = \frac{1}{F}(2X_{[a}\nabla_{b]}F + \epsilon_{abcd}\omega^{d}).$$

9-3 Maximaal symmetrische variëteiten

Vermits t.g.v. 9-2.3 ook alle hogere orde afgeleiden $\nabla(\nabla(\ldots(\nabla X \ldots)))$ kunnen gevonden worden in functie van X en ∇X, is een killingvectorveld lokaal volledig bepaald door het vastleggen van de getallen X_{a} en $X_{a;b}$ in één willekeurig punt. Voor een gegeven lie-algebra bepalen deze $n + \frac{1}{2}n(n - 1)$ getallen dus het maximum aantal lineair onafhankelijke vectoren in de algebra. Is de dimensie van de lie-algebra r, dan zeggen we dat de variëteit *een groep* G_{r} van *isometrieën* bezit. Er geldt dus

$$r = \dim G_{r} \leq \frac{1}{2}n(n + 1).$$

Voor de deelgroep $H \subset G_{r}$ van *isotropieën* (nl. de isometrieën die een gegeven punt p vast laten: $\Phi_{t}(p) = p$) toont men analoog aan dat

$$\dim H \leq \frac{1}{2}n(n - 1).$$

Als $r = \frac{1}{2}n(n + 1)$ dan noemen we de variëteit *maximaal symmetrisch*. We vermelden drie belangrijke eigenschappen van maximaal symmetrische variëteiten (voor de bewijzen zie bv. Weinberg):

(i) Elke maximaal symmetrische variëteit is *homogeen*, d.w.z. voor elk tweetal punten p en $q \in M$ bestaat een isometrie Φ_{t} zodat $\Phi_{t}(p) = q$

(ii) Een variëteit is maximaal symmetrisch als en slechts als ze een *constante kromming* heeft:

$$R_{abcd} = K(g_{ac}g_{bd} - g_{ad}g_{bc}) = 2Kg_{[a[c}g_{d]b]}$$

met K constant. Ga na dat de ricciscalar dan gegeven wordt door $R = n(n - 1)K$.

Gevolg: elke maximaal symmetrische variëteit is conform vlak (wat niet triviaal is in 3 dimensies!).

(iii) Elke maximaal symmetrische variëteit is (lokaal en op diffeomorfismen na) uniek bepaald door haar dimensie n, de signatuur s van haar metriek g en de constante K.

Tengevolge van deze laatste eigenschap volstaat het om voor elke n, s en K een voorbeeld van een maximaal symmetrische variëteit te constueren. Vermits 9-3.3 impliceert dat de weyltensor 0 is, ligt het voor de hand om lokale coördinaten te gebruiken waarvoor $g_{ij} = e^{2U}\hat{g}_{ij}$ met $\hat{g}_{ij} = \text{diag}(\pm 1, \pm 1, \cdots \pm 1)^{3}$. Substitutie in de voorwaarden 9-3.3 levert dan de vergelijkingen

$$2(e^{-U})_{ij} = K\hat{g}_{ij},$$

$$\hat{g}^{ij}(e^{-U})_{,i}(e^{-U})_{,j} = K(e^{-U} - 1),$$

waaruit we oplossen $e^{-U} = 1 + \frac{K}{4}\hat{g}_{ij}x^{i}x^{j}$, zodat

$$ds^{2} = \frac{\hat{g}_{ij}dx^{i}dx^{j}}{(1 + \frac{K}{4}\hat{g}_{ij}x^{i}x^{j})^{2}}.$$

3Dat dit ook mogelijk is voor $n = 3$ wordt gegarandeerd door 9-3.3
De corresponderende maximaal symmetrische ruimtes kunnen alle bekomen worden door inbedding van een (pseudo-) sfeer in een $(n + 1)$-dimensionale vlakke ruimte (voor een gedetailleerde discussie, zie Weinberg).

Enkele bijzondere gevallen, die in de algemene relativiteitstheorie een belangrijke rol spelen, zijn

(i) $(n = 2)$

$$ds^2 = a^2[(dx^1)^2 \pm \Sigma(x^1, \epsilon)^2(dx^2)^2]$$ \ (9-3.6)

met $K = \epsilon a^{-2}$ en $\Sigma(x^1, \epsilon)$ als in 9-3.10. Vaak voorkomende vormen voor signatuur 2 en $K < 0$ zijn ook

$$ds^2 = a^2(dx^2 + \cosh^2 xdy^2)$$ \ (9-3.7)

of

$$ds^2 = a^2(dx^2 + e^{2x}dy^2)$$ \ (9-3.8)

(ii) $n = 3, s = 3$ (bv. een ruimteachtig hypervlak in een 4-dimensionale lorentzvariëteit)

$$ds^2 = \frac{dx^2 + dy^2 + dz^2}{[1 + \frac{K}{4}(x^2 + y^2 + z^2)]^2}$$ \ (9-3.9)

of, na overgaan op sferische coördinaten ρ, θ, ϕ door $x = \rho \sin \theta \cos \phi, y = \rho \sin \theta \sin \phi, z = \rho \cos \theta$:

$$ds^2 = a^2[d\rho^2 + \Sigma(\rho, \epsilon)^2(d\theta^2 + \sin^2 \theta d\phi^2)],$$ \ (9-3.10)

met $K = \epsilon a^{-2}$ en

$$\Sigma(\rho, \epsilon) = \begin{cases} \sin r & (\epsilon = +1) \\ r & (\epsilon = 0) \\ \sinh r & (\epsilon = -1) \end{cases} .$$

Hierbij is r een functie van de sferische coördinaat ρ gedefinieerd door $\rho = 2a \tan \frac{r}{2} (\epsilon = 1), \rho = 2a \tanh \frac{r}{2} (\epsilon = -1)$ of $\rho = ar (\epsilon = 0)$. Bovenstaande metrieken 9-3.10 spelen een fundamentele rol in de kosmologie.

(iii) $n = 4, s = 2$

$$ds^2 = \frac{-dx^4^2 + dx^1^2 + dx^2^2 + dx^3^2}{[1 + \frac{K}{4}(x^1^2 + x^2^2 + x^3^2 - x^4^2)]^2}$$ \ (9-3.11)

Voor $K = 0$ is dit de minkowski-ruimtetijd. Voor $K \neq 0$ blijkt dat, gebruik makend van de coördinaattransformatie $x^a = 2X^a/1 + [1 - K(X^1^2 + X^2^2 + X^3^2 - X^4^2)]^{1/2}$, dit precies de geinduceerde metriek is in het hyperoppervlak $X^{1^2} + X^{2^2} + X^{3^2} - X^{4^2} + kX^{5^2} = ka^2$ (met $K = ka^{-2}$ en $k = \pm 1$) van een 5-d vlakke ruimte met metriek $dx^2 = dX^1^2 + dX^2^2 + dX^3^2 - dX^4^2 + kdX^5^2$.

Voor $k = +1$ bekomen we de de sitter-ruimte. Vermeld hyperoppervlak wordt dan een 4-dimensionale hyperboloïde, waarop we coördinaten kunnen invoeren door

$$X^5 = \alpha \cosh(\alpha^{-1}t) \cos \chi,$$

$$X^4 = \alpha \sinh(\alpha^{-1}t),$$

$$X^3 = \alpha \cosh(\alpha^{-1}t) \sin \chi \cos \theta,$$

$$X^2 = \alpha \cosh(\alpha^{-1}t) \sin \chi \sin \theta \cos \phi,$$

$$X^1 = \alpha \cosh(\alpha^{-1}t) \sin \chi \sin \theta \sin \phi .$$ \ (9-3.12)
We bekomen dan een friedmann-lemaitre-robertson-walker (FLR) metriek (zie ook Hoofdstuk 12),
\[ds^2 = -dt^2 + a^2 \cosh^2(\alpha^{-1}t)[d\chi^2 + \sin^2 \chi(d\theta^2 + \sin^2 \theta d\phi^2)] \] (9-3.13)

Met \(-\infty < t < \infty, 0 < \chi < \pi, 0 < \theta < \pi, 0 \leq \phi \leq 2\pi\) overdekken deze coördinaten de gehele hyperboloïde (met uitzondering van de coördinaatsingulariteiten bij \(\chi = 0\) of \(\theta = 0\) of \(\phi\)). De \(t = constant\) ruimtelijke hypervlakken hebben een constante positieve kromming en de topologie van de FLR-ruimtes wordt dan doorgaans gekozen als \(\mathbb{R} \times S^1\). Met een andere keuze van coördinaten kan (een deel van) de de sitterruimte echter ook geschreven worden als een FLR-metriek waarvoor de \(t = constant\) secties een constante negatieve kromming hebben. Een coördinaatstelsel dat slechts de helft van de sitter overdekt, is gegeven door \(\tilde{t} = \alpha \log \frac{X^i + X^5}{\alpha}, \tilde{\chi} = \frac{\alpha X^i}{X^4 + X^5} (i = 1, 2, 3)\), zodat
\[ds^2 = -d\tilde{t}^2 + \exp(2\alpha^{-1}\tilde{t})(d\chi^2 + d\tilde{t}^2 + d\chi^2 + dx^2) \] (9-3.14)

Dit is de metriek van het z.g. steady state heelal met topologie \(\mathbb{R} \times \mathbb{R}^3\). Eveneens interessant zijn de coördinaten \((T, R, \theta, \phi) (0 < R < \alpha\) bepaald door \(X^4 = \sqrt{\alpha^2 - R^2} \sinh(T\alpha^{-1}), X^5 = \sqrt{\alpha^2 - R^2} \cosh(T\alpha^{-1}), X^3 = R \cos \theta, X^2 = R \sin \theta \cos \phi, X^1 = R \sin \theta \sin \phi\), waardoor \(een\ deel\ van\ de\ sitterruimte\ isometrisch\ wordt\ met\ de\ metriek\)
\[ds^2 = -(1 - \frac{\Lambda}{3}R^2)dT^2 + (1 - \frac{\Lambda}{3}R^2)^{-1}dR^2 + R^2(d\theta^2 + \sin^2 \theta d\phi^2) \] (9-3.15)

(\(\Lambda = 3\alpha^{-2}\)), die voor \(0 < R < \alpha\) duidelijk een statische, sferisch symmetrische ruimtetijd voorstelt. In Hoofdstuk 13 zullen we zien dat dit deel op een natuurlijke manier uit te breiden is (door niet-statistische blokken toe te voegen) tot de gehele sitterruimte.

Voor \(k = -1\) komen we de anti-de sitterruimte, die eveneens wordt voorgesteld als een 4-dimensionale hyperboloïde ingebed in een 5-dimensionale vlakke ruimte. De coördinaten zijn dan b.v.
\[X^5 = \alpha \cosh \chi \cos(\alpha^{-1}t), \]
\[X^4 = \alpha \cosh \chi \sin(\alpha^{-1}t), \]
\[X^3 = \alpha \sinh \chi \cos \theta, \]
\[X^2 = \alpha \sinh \chi \sin \theta \cos \phi, \]
\[X^1 = \alpha \sinh \chi \sin \theta \sin \phi. \] (9-3.16)

en de metriek wordt
\[ds^2 = -\cosh^2 \chi dt^2 + a^2[d\chi^2 + \sinh^2 \chi(d\theta^2 + \sin^2 \theta d\phi^2)]. \] (9-3.17)

Omdat \(t\) en \(t + 2\pi\alpha\) dezelfde punten op de hyperboloïde voorstellen, is de natuurlijke topologie van de anti-de sitterruimte deze van \(S^1 \times \mathbb{R}^3\). Omdat er dan gesloten tijdachtige krommen optreden wordt doorgaans voor de onderliggende variëteit van (9-3.16) de universele overdekking gekozen. Stellen we ten slotte \(R = \alpha \sinh \chi\), dan bekomen we dezelfde (statische) metriek als (9-3.15), maar nu met \(\Lambda = -3\alpha^{-2}\).

117
Hoofdstuk 10

Beginselen en experimentele testen

Na de mathematische fundamenten bekijken we nu de fysische en filosofische grondslagen. Hierbij wordt geen historische volgorde gerespecteerd: de besproken beginselen zijn dus geenszins vergelijkbaar met de beginselen die Einstein zelf hanteerde bij de opbouw van de theorie. Wat volgt is ook geen axiomatische of formele benadering: er wordt enkel getracht om binnen een zo breed mogelijk referentiekader een plausibele weg te schetsen, die naar de algemene relativiteitstheorie leidt.

10-1 Beginsel van Mach

Eén der belangrijkste pijlers van de klassieke mechanica (in haar gangbare, moderne formulering) is de eerste wet van Newton, die het bestaan postuleert van een bijzondere klasse van waarnemers, de *inertiële waarnemers*, die t.o.v. elkaar in éénparig rechtlijnige beweging verkeren. Enkel en alleen voor deze waarnemers geldt de tweede wet van Newton ($\vec{F} = ma$): deeltjes waarop geen kracht werkt bewegen bijgevolg éénparig en rechtlijnig t.o.v. de inertiële waarnemers. Voor willekeurige waarnemers treden correctieversnellingen op, zoals de *sleepversnelling* \vec{a}_s, de *centripetale versnelling* \vec{a}_c en de *coriolisversnelling* \vec{a}_C, die toelaten de tweede wet te herschrijven als

$$\vec{F} - ma_s - ma_c - ma_C = ma.$$ \hspace{1cm} (10-1.1)

De extra termen in het linkerlid worden in de klassieke mechanica de *fictieve of schijnbare krachten* genoemd en de eerste wet is essentieel om hen te onderscheiden van de ‘werkelijke’ krachten. Er bestaat m.a.w. geen *dynamisch* onderscheid tussen beide grootsheden. Newton probeerde dit op te vangen door de inertiële waarnemers zelf een dynamische status te geven en ze te definiëren door de ‘afwezigheid van
krachten’. Om niet in een cirkeldrenering gevangen te raken —en zéér tegen zijn zin, want hij is een galileaan in hart en nieren— verplichte dit hem om het concept van een absolute ruimte in de theorie in te voeren, waardoor hij zich blootstelde aan de kritieken van relationisten, zoals Leibniz en Berkeley. Zij betoogden dat enkel relativie bewegingen betekenisvol waren en weigerden het bestaan te aanvaarden van een niet-observeerbare absolute ruimte, die enerzijds op geen enkele manier beïnvloed werd door de materie, maar anderzijds wel alle materie kon beïnvloeden. Een bekend tegenargument, waarmee Newton het belang probeerde te benadrukken van absolute, eerder dan van relativie bewegingen, ligt vervat in het gedachten-experiment, waarbij een met water gevulde emmer aan het draaien wordt gebracht rond een vertikale as. Na een poosje stelt men vast dat het wateroppervlak gekromd is en Newton merkt op

- dat op het ogenblik waarop de relativie rotatie van emmer en water het grootst is, het wateroppervlak nog horizontaal is
- dat, wanneer de relativie rotatie van emmer en water klein is, het wateroppervlak daarentegen gekromd is

en besluit dat niet de relativie beweging van water en emmer het oppervlak doen krommen, maar wel de absolute beweging van het water! Het zal meer dan 200 jaar duren voor iemand op deze spitsvondigheid correct weet te reageren ...

We moeten wachten op de Oostenrijkse wetenschapsfilosoof Ernst Mach (1893), die net als Leibniz de opvatting verdedigt dat enkel relativie bewegingen zinvol zijn. Ernst Mach was een van de lei- dinggevende figuren van de positivistische school van de 19de eeuw en Einstein werd hierdoor sterk beïnvloed. I.h.b. zal Mach’s vraag naar de observationele status van de inertiaalwaarnemer in de klassieke mechanica hem rechtstreeks leiden naar het equivalentiebeginsel. Voor Mach was het zinloos om te spreken over de beweging van een testdeeltje in een leeg universum. In een niet-leeg universum daarentegen, zou het volgens Mach mogelijk zijn om inertiaalwaarnemers te definiëren als waarnemers, die in rust zijn of eenparig rechtlijnig bewegen t.o.v. de ‘gemiddelde materie-verdeling’ in dit universum (de ‘vaste sterren’ zijn hiervoor een goede benadering). M.b.t. bovenstaand gedachtenexperiment van Newton stelt Mach dat het wateroppervlak enkel gekromd is, omdat het water roteert t.o.v. de vaste sterren.

We kunnen ook het volgende (gedachten)experiment uitvoeren: stellen we een foucaultslinger op aan de noordpool, dan blijkt dat de slinger precies 24 uur nodig heeft om over 360° te draaien. In Newton’s wereldbeeld betekent dit dat de aarde 24 uur nodig heeft om over 360° te draaien t.o.v. de absolute ruimte. Nu blijkt dit ook precies de tijd te zijn om over 360° te draaien t.o.v. de vaste sterren. Deze coincidentie (ook het samenvallen genoemd van het locaal inertiaal kompas met het locaal lichtkompas) is binnen het newtoniaanse beeld zuiver toeval (en wordt alleszins niet verklaard), maar vindt daarentegen binnen de standpunten van Mach een natuurlijke verklaring! Mach’s opvattingen—alhoewel vrij vaag en zonder expliciete uitwerking van b.v. de manier waarop inertiële massa zou moeten afhangen van de materieverdeling in het universum— hadden een zeer diepe invloed op Einstein. Hij probeerde deze ideeën in zijn theorie te verwerken, maar lukte hierin slechts gedeeltelijk (het z.g. lense-thirringeffect). Zo zal bij een algemeen relativistische analyse van Newton’s gedachtenexperiment, met een voldoend zware emmer, blijken dat het wateroppervlak inderdaad reeds in het begin (wanneer relativie rotatie van water en emmer maximaal is) lichtjes gekromd is: de rotatie van de draaiende emmer zal het locaal inertiaal kompas rechtstreeks beïnvloeden (gebruik makend van Newtoniaanse terminologie zouden we zeggen dat de rotatie van materie een extra bijdrage levert tot het gravitatieveld)!

kwartsgyroscopen met een spinfrequentie van 150 Hz in een polaire baan op 640 km hoogte worden gebracht. De ‘vrij vallende’ gyroscopen (die ondertussen een laboratorium testperiode van ongeveer 10^5 uur achter de rug hadden) hebben een geodetische precessie gemeten van 6601.8 ± 18 milliarcsec per jaar (door A.R. voorspelde waarde 6606) en een meesleep-effect t.g.v. de rotatie van de aarde (het lense-thirring-effect) van 37.2 ± 7.2 milliarcsec per jaar (door AR voorspelde waarde 39.2).

10-2 Zwak Equivalentiebeginsel

![Figure 10.1: WEP](image)

Aan het equivalentiebeginsel werd de openingsparagraaf van Newton’s Principia gewijd, terwijl Einstein het in 1907 gebruikte als hoeksteen voor de algemene relativiteitstheorie. Vandaag beschouwen we dit beginsel als fundament van een ganse klasse van gravitatietheorieën, die gebaseerd zijn op de brede, onderliggende gedachte dat de ruimtetijd gekromd is.

Het zwak equivalentiebeginsel (Weak Equivalence Principle, WEP) is het beginsel waar Newton op doelde, toen hij stelde dat de eigenschap ‘massa’ (van een lichaam) evenredig was met de eigenschap ‘gewicht’. Vandaag zeggen we dat inertiemassa m_I evenredig is (en dus, door een geschikte keuze van eenheden, gelijk is) aan passieve gravitationele massa m_P. In een gravitatieveld V vallen beide massa’s dan t.o.v. elkaar weg in de bewegingsvergelijking

$$- m_P \nabla V = m_I a, \quad (10-2.1)$$

zodat alle testdeeljes bij gelijke beginvoorwaarden dezelfde baan volgen. We bekomen alzo de volgende formulering:

- als een ongeladen testdeeltje in een punt P van de ruimtijd geplaatst wordt en er een welbepaalde beginsnelheid krijgt, dan is de daarop volgende beweging onafhankelijk van de interne structuur en samenstelling van dit deeltje.

Het principe oogt —op eerste zicht— vrij vanzelfsprekend en onschuldig, maar is één van de belangrijkste peilers van de theorie. Het is aan het equivalentiebeginsel te danken dat de algemene relativiteitstheorie, vertrekkend van Einstein’s eerste pogingen om gravitatie ‘à la Maxwell’ in de beperkte relativiteitstheorie in te bouwen, is uitgegroeid tot een conceptuele revolutie in ons denken over ruimte en tijd.
Alhoewel de eerste kwalitatieve testen van WEP worden toegeschreven aan Simon Stevin en Galileo Galilei op het einde van de 16de eeuw, moeten we voor de eerste quantitatieve resultaten wachten op Newton. Newton beseft dat de inertiële massa m, die optreedt als maat voor de ‘traagheid’ van een deeltje ($m\vec{a} = \vec{F}$), en de passieve gravitationele massa m_p, die de kracht bepaalt waarmee een deeltje wordt aangetrokken in een gravitationeel veld ($\vec{F} = -m_p \nabla V$), een verschillende rol speelden in zijn theorie. Om over de massa van een deeltje te kunnen spreken, was het essentieel dat de verhouding m_1/m_p constant was voor deeltjes van verschillende samenstelling. Pas dan kon de wet $m_1a = m_p\vec{g}$ voor zorgen dat de baan van dergelijke deeltjes onafhankelijk was van hun samenstelling. Newton controleerde dit m.b.v. een slinger: de bewegingsvergelijking $m_1\ddot{\theta} + \sin \theta m_\text{rot} g = 0$ geeft een periode $T \approx 2\pi m_1g/m_p$, wat toeliet om met een relatieve nauwkeurigheid van ongeveer 10^{-3} te verifiëren dat m_1/m_p onafhankelijk was van de samenstelling der gebruikte testmassa’s:

$$22^1 \frac{|m_1^{(1)} - m_1^{(2)}|}{m_1^{(1)} + m_1^{(2)}} < 10^{-3}.$$

(10-2.2)

Aan het linkerlid van bovenstaande uitdrukking kunnen we een interpretatie geven, door b.v. te veronderstellen dat de verschillende inwendige energievormen (rustenergie en bindingsenergieën t.g.v. de wisselwerkingen) op verschillende wijzen bijdragen tot m_p en m_1. We kunnen dan in het algemeen schrijven dat

$$m_p = m_1 + \sum A \eta_A E_A^4/c^2,$$

(10-2.3)

met E_A de bindingsenergie t.g.v. wisselwerking A en met η_A een dimensieloze parameter, die een maat is voor de WEP-verbreking. Twee deeltjes, geplaatst in een zelfde gravitationeel veld \vec{g}, ondervinden dan een relatie versnelling

$$\eta \equiv 2 \frac{a^{(1)} - a^{(2)}}{a^{(1)} + a^{(2)}} = 2 \frac{|m_1/m_1^{(1)} - m_1/m_1^{(2)}|}{m_1/m_1^{(1)} + m_1/m_1^{(2)}}$$

$$\approx \sum A \eta_A \left(\frac{E_A^{(1)}/m_1^{(1)} c^2}{E_A^{(2)}/m_1^{(2)} c^2} - \frac{E_A^{(2)}/m_1^{(2)} c^2}{E_A^{(1)}/m_1^{(1)} c^2} \right).$$

(10-2.4)

De parameter η wordt de éötvösparameeter genoemd, naar Lorand von Eötvös (1848-1919), die er op het einde van de 19de eeuw in slaagde Newton’s resultaten te verbeteren met 5 grootte-ordeën. In het experiment van Newton was de rotatie van de slinger verantwoordelijk voor de termen in het linkerlid van de bewegingsvergelijking, zodat variaties in de slingerlengte een natuurlijke limiet plaatsten op de nauwkeurigheid van het experiment. Eötvös daarentegen gebruikte de rotatie van de aarde om haar as en een torsiebalans, waarvan de arm loodrecht stond op een meridiaanvlak: op de deeltjes (1) en (2), opgehangen aan de balans, worden dan nettokrachten $\vec{f} = -m_1 GM/m^2 \vec{r} + m_1 \vec{a}_S$ uitgeoefend, zodat een nettomoment ontstaat

$$n = (\vec{d}_1 \times \vec{f}_1 + \vec{d}_2 \times \vec{f}_2) \vec{s}.$$

Met $\vec{s} \sim \vec{f}_1 + \vec{f}_2$ en $\vec{d}_1 \approx -\vec{d}_2 \approx \vec{d}$, is dan

$$n = 2 \frac{\vec{f}_1 \times \vec{f}_2}{|\vec{f}_1 + \vec{f}_2|} \vec{d}$$

$$\approx - \eta \frac{m_1 m_2}{m_1 + m_2} GM \omega^2 d \frac{\sin \theta \cos \theta}{rs}.$$

1De actieve gravitationele massa is de grootte M_A, die optreedt in $V = -GM_A/r$

2Gebruik makend van de torsiedraden van Charles Vernon Boyce (1855-1944), die erin geslaagd was om tot 9m lange kwartsdraden te produceren met een doormeter van 10^{-2} tot $2 \cdot 10^{-3}$ mm!
Natuurlijk is de resulterende afwijking van de torsiebalans niet direct waarneembaar, maar door de ganse opstelling over 180° te draaien, kan wél een waarneembaar effect ontstaan (want $\vec{n} \rightarrow -\vec{n}$): de eerste resultaten op deze manier bekomen ($\eta \lesssim 10^{-8}$) werden door Eötvös in 1890 gepubliceerd. Een belangrijk nadeel van het experiment was de noodzaak om het ganse instrumentarium over 180° te moeten omkeren: daarom werd door Eötvös voorgesteld om de balans vast op te stellen in een meridiaanvlak. Weliswaar verdwijnt dan het nettomoment t.g.v. de dagelijkse rotatie van de aarde, maar de aantrekkingskracht van de zon zorgt nu voor een moment, dat bovendien t.g.v. de dagelijkse rotatie een duidelijk herkenbaar signaal vertoont. Eötvös en zijn medewerkers bereikten hiermee $\eta \lesssim 6 \times 10^{-9}$ en recentere versies van het experiment resulteerden in $\eta \lesssim 10^{-11}$ (3), $\eta \lesssim 10^{-12}$ (4) en $\eta \lesssim 10^{-13}$ (5). Een verbetering met nogmaals 2 tot 6 grootte-ordes mag verwacht worden van het MICROSCOPE (2016) en het STEP-experiment (Satellite Test of the Equivalence Principle, 20xx?), waarbij in een z.g. ‘drag-free satellite’ de beweging rond de aarde zal gevolgd worden van deeltjes met verschillende samenstelling.

10-3 Covariantiebeginsel

In de klassieke mechanica zijn alle inertiële waarnemers equivalent en zijn de wetten invariant onder galileitransformaties. Ook in de beperkte relativiteitstheorie zijn alle inertiële waarnemers equivalent, maar zijn de wetten invariant onder lorentztransformaties. Wens we nu gravitatie in de theorie in te bouwen, dan heeft het geen enkele zin meer om aan de inertiële waarnemers nog een bijzondere status te geven (zie figuur 10.3): Newtoniaans geredeneerd zou de linker waarnemer (in rust op een statische aarde) immers een inertiële waarnemer zijn, terwijl de rechter waarnemer (een éénparig versnelde) dit zeker niet is. Beseffend dat er geen enkel experiment bestond 6, zag Einstein in dat men geen onderscheid kon maken tussen het labo in rust in het uniform gravitatieveld \vec{g}, en het labo dat wordt voortgestuwd met uniforme versnelling $-\vec{g}$. Het klassieke begrip ‘inertiële waarnemer’ moest dus zijn betekenis verliezen in een relativistische gravitatietheorie. Hij stelde daarom het volgende algemene relativiteitsbeginsel voor:

- alle waarnemers zijn equivalent.

Deze versie staat enigszins open voor kritiek, aangezien in nogal wat oplossingen van A.R. waarnemers duidelijk niet equivalent zijn. Dit is b.v. het geval in elke stationaire ruimtetijd, waar de integraalkrommen van de tijdschijnende killingvectoren geprivilegieerde families van waarnemers vormen! Ook

3 Roll, Krotkov en Dicke, 1964
4 Braginsky en Panov, 1968
5 Anderson en Williams, 2001
6 Zie de paragrafen i.v.m. de equivalentiebeginsels!
laten uiterst nauweurige metingen van de dipool-anisotropie in de kosmische microgolf achtergrondstraling toe om een vorm van ‘absolute rust’ te definiëren, namelijk die bewegingstoestand waarvoor de straling isotroop is.

Het is dus van belang om niet zozeer de nadruk te leggen op equivalentie van waarnemers (of coördinatensystemen), maar eerder op de mogelijkheid om de theorie zo te formuleren dat de wetten invariant zijn onder willekeurige coördinaattransformaties. Vandaar dat men het relativiteitsbeginsel soms herformuleert als het covariantiebeginsel:

- de wetten van de fysica moeten\(^7\) een tensoriële vorm aannemen.

Het covariantiebeginsel heeft een vreemde geschiedenis achter de rug: reeds kort na de publicatie in 1905 van de beperkte relativiteitstheorie had Einstein al de belangrijkste ingrediënten klaar voor de algemene theorie (equivallentiebeginsel, covariantiebeginsel) en wijdde hij zich aan een studie van de differentiaalmeetkunde om een stel covariante veldvergelijkingen voor het gravitatieveld op te stellen. In 1912, op het ogenblik dat alle stukjes van de puzzel op tafel lagen, nam hij echter opnieuw afstand van de algemene covariantie\(^8\). De verklaring was in de eerste plaats te zoeken bij de hierna volgende (maar in moderne terminologie geformuleerde) bedenking (het z.g. ‘Loch argument’):

stel dat men beschikt over een ruimtetijd variëteit \(\mathcal{M}\) bestaande uit een materieverdeling met bijhorende metriek en dat zich daarin een ‘gat’ \(L\) bevindt (een *Loch*), waarbij men zich tot doel stelt de metriek in het gat te bepalen op basis van een stel covariante veldvergelijkingen, uitgaande van randvoorwaarden die vastliggen op de rand van het gat. Stel dat deze procedure als resultaat de metriek \(g\) oplevert. Beschouw nu een punt \(p \in L\) en een actief diffeomorfisme \(\Phi\) (zie paragraaf 3-4) van het gebied \(L\), dat zich buiten en op de rand van \(L\) tot de identiteit reduceert. Als \(g\) een oplossing is van het randwaardenprobleem, dan is t.g.v. algemene covariantie, ook \(g' = \Phi^*(g)\) een oplossing. Men vindt dan voor de metriek in \(p\) twee, in het algemeen verschillende uitdrukkingen, \(g_p\) en \(g'_p\), leidend tot verschillende observationele consequenties (de ricciscalar in \(p\) kan b.v. voor de ene metriek

\(^7\) ‘Moeten’ is met een korrel zout te nemen, aangezien fermionen beschreven worden met spinoren en niet met tensoren. Beide begrippen zijn wel nauw aan elkaar verwant.

\(^8\) Des te merkwaardiger omdat op dat ogenblik een nek aan nek race aan de gang was met David Hilbert, die eveneens op zoek was naar een formulering van de veldvergelijkingen.
Zulk gedrag hoort op eerste zicht niet thuis in een deterministische theorie en Einstein formuleerde pas in 1915 een bevredigend antwoord. Zijn oplossing kwam er — in een moderne formulering — op neer dat het zinloos is om een fysische betekenis toe te kennen aan het (mathematische) punt \(p \) van de ruimtetijd variëteit \(\mathcal{M} \): lokalisatie van punten heeft \textit{enkel en alleen} zin m.b.t. de aanwezige deeltjes (en velden)! Bekijken we b.v. hetzelfde probleem, waarbij we nu in \(L \) twee wereldlijnen van deeltjes \(\gamma_1 \) en \(\gamma_2 \) beschouwen, die elkaar snijden in het punt \(p \): onder het diffeomorfisme \(\Phi \) worden deze wereldlijnen afgebeeld op nieuwe wereldlijnen \(\Phi \circ \gamma_1 \) en \(\Phi \circ \gamma_2 \) die elkaar snijden in het punt \(p' = \Phi(p) \). Als b.v. de ricciscalar voor de metriek \(g \) was in het punt \(p \), dan is hij ook 0 voor de metriek \(g' \) in het punt \(p' \): \(R_p = R'_{p'} \). De twee oplossingen \((L, g)\) en \((L, g')\) zijn dus equivalent in de zin dat ze dezelfde fysische situatie beschrijven. Een vergelijkbaar fenomeen doet zich voor in de theorie van het elektromagnetisme, in de zin dat we te maken hebben met \textit{ijkinvariancie} (gauge invariance): de ikgroep is nu de groep van de actieve diffeomorfismen! Einstein brengt hiermee de genadestoot toe aan de newtoniaanse fysica en verwezenlijkt in zekere zin de oude droom van Leibniz en Descartes: niet alleen tijd en ruimte worden opzij geschoven, maar de ruimtetijd variëteit zelf. Deze variëteit op zichzelf is een wiskundige artefact zonder enige fysische betekenis: fysische velden en deeltjes leven niet ‘in’ een ruimtetijd variëteit, maar vormen samen met hun onderlinge betrekkingen de ruimtetijd zelf.

Door een aantal critici van Einstein (b.v. E. Kretschmann) werd aangevoerd dat het covariantiebeginsel eigenlijk ‘leeg’ is, aangezien elke theorie (ook de newtoniaanse mechanica) in tensoriële vorm kan gekomen worden. Dit is ten dele correct: de newtoniaanse fysica kan inderdaad in algemeen covariante vorm gekomen worden, net zoals het mogelijk is om de algemene relativiteitstheorie op een niet-covariante manier te formuleren (door op één of andere manier een coördinaatstelsel te fixeren). Beide theorieën (covariante newtoniaanse en niet-covariante A.R.) zijn echter conceptueel weinig aantrekkelijk …. Dat covariantie dus wel degelijk een leidraad is (het was Einstein’s belangrijkste leidraad!) blijkt dan ook uit dit zelfde voorbeeld: als men zich tot taak zou stellen om de newtoniaanse fysica op algemeen covariante wijze te beschrijven, dan zou men extra dynamische velden moeten introduceren (corresponderend met tijd en ruimte) en vervolgens de dynamica van deze velden op een vreemde manier moeten beperken om tot een absolute tijd te komen en een volledige dynamische theorie te ontwikkelen. Het zou op dat ogenblik een natuurlijke stap zijn om deze beperkingen op de dynamica te laten vallen en een volledig dynamische theorie te ontwikkelen: Kretschmann’s argument toont dus eerder de grote cognitieve sterkte aan van het covariantiebeginsel, dan de zwakte ervan!

10-4 Einstein’s Equivalentiebeginsel

Einstein ging nog een stap verder dan WEP, door te stellen dat, in een vrijvallend labo, niet alleen de wetten van de \textit{mechanica} zich gedragen alsof er geen gravitatie aanwezig is, maar dat \textit{alle} wetten van de fysica zich zo gedragen. Hij noemde dit later ‘der glücklichste Gedanke meines Lebens’ en het vormt, samen met het covariantiebeginsel, inderdaad de hoeksteen van de ganse theorie. Tegenwoordig formuleren we Einstein’s Equivalentiebeginsel (Einstein Equivalence Principle, EEP) als volgt:

(i) WEP geldt,

(ii) het resultaat van elk locaal en niet-gravitationeel experiment is onafhankelijk van de snelheid van het vrijvallend referentiestelsel waarin dit experiment wordt uitgevoerd,

(iii) het resultaat van elk locaal en niet-gravitationeel experiment is onafhankelijk van de plaats en het tijdstip waarop het experiment wordt uitgevoerd.

Delen (ii) en (iii) noemen we, respectievelijk, het \textit{LLI–beginsel} (Local Lorentz Invariance) en het \textit{LPI–beginsel} (Local Position Invariance). In de formulering hierboven slaat de term ‘lokaal’ op het feit dat het experiment wordt uitgevoerd in een voldoend kleine omgeving, zodat b.v. effecten t.g.v. getijdenwerking verwaarloosbaar zijn. De term ‘niet-gravitationeel’ spreekt voor zichzelf: de meting van b.v. de

124
elektrostatische aantrekkingskracht tussen twee geladen deeltjes is een niet-gravitationeel experiment, terwijl de meting van de cavendishconstante G een voorbeeld is van een gravitationeel experiment. LLI wordt in principe getest door elk experiment dat B.R. test, zoals b.v. het michelson-morley-experiment. Experimenten die LLI testen door anisotropieën te zoeken, die aanleiding zouden geven tot opsplitsing van de grondtoestand van een Li7 kern in een magneteveld9, bereikten reeds in 1960 een precisie van 10^{-16}. Recente verbeteringen hebben de ‘anisotropieparameter’ δ verder gereduceerd tot $\delta \lesssim 10^{-20}$, waarmee LLI één der best geverifieerde hypothesen uit de fysica geworden is. De voorwaarden (i, ii, iii) staan niet geheel los van elkaar. Het is zelfs vrij waarschijnlijk dat elke volledige en zelfconsistente gravitatieetheorie, die aan WEP voldoet, noodzakelijk ook EEP impliceert. Dit is de z.g. Schiffconjectuur10. Een theorie wordt hierbij volledig genoemd, als ze voorzien is van de nodige basisprincipes om het resultaat van een willekeurig experiment effectief te voorspellen. Het volstaat b.v. niet dat een theorie postuleert dat twee deeltjes met verschillende samenstelling even snel vallen in een gravitatieveld: dergelijk gedrag moet afleidbaar zijn uit de wetten die de verschillende inwendige structuren vastleggen! Strikt beschouwd verdient vandaag geen enkele gravitatieetheorie het etiket ‘volledig’. In de praktijk blijkt echter dikwijls, dat het al voldoende is om over een gravitationeel genomideerde stel maxwellvergelijkingen te beschikken om experimenteel verifieerbaar uitspraken te kunnen doen over het gedrag van deeltjes met een verschillende chemische samenstelling. De eigenschap van zelfconsistentie slaat op de uniciteit van de voorspellingen voor een gegeven experimentele situatie. Zo wordt gewoonlijk geëist dat de berekening van de afbuiging van het licht nabij de zon (zie verder) hetzelfde resultaat moet opleveren, zowel in de geometrische-optica-limiet van de maxwellvergelijkingen, als in de $m_0 = 0$-limiet van massieve testdeeltjes. Schiff’s conjectuur is moeilijk —zonder omwegelijk — te bewijzen. We besparen immers niet over een algemeen model van volledige en zelfconsistente gravitatieetheorieën, waarin van LLI of LPI wordt afgeweken. Gedeeltelijke bewijzen zijn geformuleerd, waarin afwijkingen van EEP b.v. gemodelleerd werden, door op zeer algemene wijze lorentzinvariant verbrekkende termen in de actie-integraal van het elektromagnetisch veld te introduceren. Het blijkt dan dat lichamen met een verschillende chemische samenstelling (waarvoor dus de elektromagnetische bindingsenergie op verschillende wijze bijdraagt tot de totale relativistische energie) inderdaad een verschillend valgedrag vertonen in een gegeven gravitationeel veld!

Het belang van EEP ligt in het feit dat het het bestaan impliceert van een unieke symmetrische tensor g van type $(2,0)$, die zich in elk vrij vallend referentiestelsel reduceert tot de minkowskimetriek en die instaat voor de koppeling tussen gravitatie en de niet-gravitationele velden. Onderstel immers het bestaan van twee zulke metrieken: één die het gedrag bepaalt van neutrale testdeeltjes, en één die optreedt in de gravitationeel genomideerde maxwellvergelijkingen: tenminste voor theorieën gebaseerd op een actiebeginsel, zou dit resulteren in een plaatsafhankelijke verhouding van elektromagnetische bindingsenergie tot totale energie en dus, zoals hiervoor, in een verbreking van EEP. De uniciteit van de tensor g laat nu toe om de niet-gravitationale wetten van de fysica in de aanwezigheid van gravitatie te bepalen, door op covariante wijze over te gaan van hun beperkte relativistische vorm naar de algemene vorm. We vatten dit samen in de volgende twee regels11:

- vervang η door g.
- vervang partiële afgeleiden door covariante afgeleiden.

We stellen dus vast dat er een vrij nauw afgebakend pad bestaat dat, van WEP via EEP, leidt naar de z.g. metrische gravitatietheorieën. Deze theorieën gaan ervan uit dat

(i) de ruimtetijd voorzien is van een lorentzmetriek,

11Zoals zal blijken in de volgende paragraaf, verloopt dit proces echter niet altijd op triviale wijze . . .
(ii) de banen van ongeladen testdeeltjes gegeven worden door de geodeten van deze metriek,

(iii) de niet-gravitationele wetten van de fysica uitsluitend via deze metriek (en evt. de ervan afgeleide geometrische objecten) gekoppeld zijn aan de structuur van de ruimtetijd, en wel zó dat deze wetten in geodetische normale coördinaten hun standaard B.R. vorm aannemen (supersnaar theorie b.v. is geen metrische gravitatietheorie).

Het principe dat slechts één metriek verantwoordelijk is voor de koppeling tussen de ruimtetijd en de lokale fysica, wordt soms ook het universeel koppelingsbeginsel genoemd. Gebruik makend van newtoniaanse terminologie zeggen we dat gravitatie een ‘universele kracht’ is. De universaliteit is precies wat toelaat om gravitatie te promoveren tot een eigenschap van de ruimtetijd, eerder dan een extra fysisch veld op de ruimtetijd! Hieromtrent bestaan nog steeds misvattingen, b.v. m.b.t. het gedrag van klokken in een gravitatieveld (zie verder).

Voorbeelden van enkele klassieke metrische theorieën zijn, naast A.R., de Brans-Dicke en de ermee verwante scalar-tensor theorieën, de vector–tensor theorieën (Nordtvedt) en Rosen’s bimetrische theorieën. Op de laatste na, zijn dit bovendien gevallen van z.g. zuiver dynamische theorieën: de optredende tensorvelden \((\phi, g, v, \ldots)\) beïnvloeden (samen met de ‘conventionele’ materievormen) via de veldvergelijkingen de structuur van de ruimtetijd, terwijl deze laatste op zijn beurt—maar uitsluitend via \(g\)—het gedrag van de materie bepaalt.

Hier tegenover staan de absolute theorieën, waarin z.g. absolute elementen voorkomen. Dit zijn b.v. velden waarvan de structuur of de evolutie onafhankelijk is van de evolutie van de overige velden uit de theorie: dit kan een vlakke achtergrondmetriek zijn (Rosen), een kosmische tijd \(t\), of zelfs algebraische betrekkingen van de vorm \(g_{ab} = h_{ab} + k_a k_b\) met \(h\) en \(k\) dynamische velden.

EEP wordt in de eerste plaats getest door middel van gravitationele frequentieverschuivingsexperimenten: deze werden door Einstein beschouwd als één der drie belangrijkste testen van A.R., maar vandaag zien we ze eerder als testen van EEP (i.h.b. van LPI), omdat ze in alle metrische gravitatieetheorieën identieke resultaten opleveren. Het mag dan ook geen verwondering wekken dat Einstein al in een vroeg stadium —nog voor de meeste wiskundige details van de theorie geformuleerd waren—in staat was om enkel op basis van het equivalentiebeginsel de frequentieverschuiving te voorspellen. We herhalen eerst Einstein’s redenering en reproduceren vervolgens het resultaat vertrekkend van een statische en gekromde ruimtetijd, waarbij we ook rekening houden met mogelijke afwijkingen van EEP.

In een gravitationeel frequentieverschuivingsexperiment wordt de frequentie- of golflengteverschuiving \(z = \Delta \nu/\nu = -\Delta \lambda/\lambda\) gemeten tussen twee frequentiestandaarden (ideale klokken, atomen, \ldots), die geplaatst zijn op verschillende hoogtes in een gravitatieveld. Is het hoogteverschil tussen de twee waarnemers (b.v. A op het oppervlak van de aarde en B op een hoogte \(h\)) niet te groot, dan zegt het
equivalentiebeginsel dat het effect van het gravitationeel potentiële verschil \(\Delta V = V_A - V_B = -gh \) op het gedrag van elektromagnetische signalen, uitgewisseld tussen A en B, identiek moet zijn aan het effect dat ontstaat wanneer we A (achteraan) en B (vooraan) in een space shuttle plaatsen die onderhevig is aan een versnelling van \(1g \). Kiezen we de \(z \)-as van A naar B en zorgen we ervoor dat A zich in de oorsprong bevindt op \(t = 0 \), dan wordt de positie van A en B resp. gegeven door

\[
 z_A = \frac{1}{2}gt^2 \quad \text{en} \quad z_B = h + \frac{1}{2}gt^2.
\]

Zendt nu B twee signalen met een tussenpaauze van \(\Delta \tau_B \) naar A (vertrekkend op resp. \(t = 0 \) en \(\Delta \tau_B \) en aankomend op resp. \(t_1 \) en \(t_1 + \Delta \tau_A \)), dan legt het eerste signaal een afstand

\[
 z_B(0) - z_A(t_1) = t_1
\]

af en het tweede signaal een afstand

\[
 z_B(\Delta \tau_B) - z_A(t_1 + \Delta \tau_A) = t_1 + \Delta \tau_A - \Delta \tau_B.
\]

Invullen van de uitdrukkingen voor \(z_A \) en \(z_B \) geeft

\[
 h - \frac{1}{2}gt_1^2 = t_1 \quad \text{en} \quad h - \frac{1}{2}gt_1^2 - gt_1\Delta \tau_A = t_1 + \Delta \tau_A - \Delta \tau_B,
\]

waarna lid aan lid aftrekken resulteert in

\[
 \Delta \tau_A = \Delta \tau_B(1 - gh) = \Delta \tau_B(1 + \Delta V).
\]

Is b.v. \(\Delta \tau_B \) de periode van een elektromagnetisch signaal vertrekkend uit B naar A, dan blijkt dat dit signaal in A ontvangen wordt met een kleinere periode (m.a.w. een grotere frequentie en een grotere energie: we spreken dan van een gravitationele blauwverschuiving). Definieren we de frequentieververschuiving \(z \) door

\[
 1 + z = \frac{\Delta \tau_A}{\Delta \tau_B} = \frac{\omega_B}{\omega_A}
\]

dan is dus

\[
 z = \Delta V.
\]

(wordt het signaal van A naar B gestuurd, dan treedt er analoge een gravitationele roodverschuiving op).

We leiden nu dit resultaat af op een meer wiskundige manier, gebruik makend van een statisch graviatieveeld, met killingvector \(\xi = \frac{\partial}{\partial t} \) en met twee statische waarnemers A en B die de eigentijd meten verlopen langs hun wereldlijn tussen de tijdstippen \(t_1 \) en \(t_2 \) (t.t.z. tussen de twee hypervlakken \(t = t_1 \) en \(t = t_2 \)). De wereldlijnen van deze waarnemers zijn dus precies de integraalkrommen van \(\xi \); als \((t, x^\alpha) \) aangepaste coördinaten zijn, dan worden deze wereldlijnen gegeven door \(x^\alpha = constant \). Alle gebeurtenissen in de hypervlakken \(t = constant \) zijn voor zulke waarnemers gelijklidig. Als A en B beschikken over ideale klokken, die de eigentijd meten tussen \(t_1 \) en \(t_2 \), dan is voor A

\[
 \Delta \tau_A = \int_{t_1}^{t_2} \sqrt{-g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt = \sqrt{-g_{tt}(x^\alpha_A)(t_2 - t_1)},
\]

terwijl voor B een analoge betrekking geldt. Bijgevolg vinden we

\[
 \frac{\Delta \tau_A}{\Delta \tau_B} = \left(\frac{g_{tt}(x^\alpha_A)}{g_{tt}(x^\alpha_B)} \right)^{1/2}.
\]

(10-4.2)
Is EEP geldig, dan gaat bovenstaande redenering op voor een eigentijd \(\Delta \tau \) gemeten door om het even welke frequentiestandaard (veer-, atoom- of biologische klok ...) Voor het bijzonder geval van de aarde zullen we in het volgend hoofdstuk afleiden dat \(g_{tt} = -(1 - 2m/r) \), zodat

\[
\frac{\Delta \tau_A}{\Delta \tau_B} = \left(\frac{1 - 2m/r_A}{1 - 2m/r_B} \right)^{1/2} \approx 1 + m \left(\frac{1}{r_B} - \frac{1}{r_A} \right),
\]

wat < 1 is als \(r_A < r_B \). Voor de z.g. *gravitationele frequentieverschuiving* \(z = \omega_B/\omega_A - 1 \) vinden we dan opnieuw

\[
z = V_A - V_B,
\]

met \(V = -m/r \) de gravitationele potentiaal.

NB: een gemakkelijke manier om in te zien dat in de Newtoniaanse benadering \(g_{tt} \approx -1 - 2V \), is van gebruik te maken van de geodetische vergelijking: uit \(\frac{d^2x^\alpha}{dt^2} \approx -\frac{\partial V}{\partial x^\alpha} \) en

\[
\frac{d^2x^\alpha}{dt^2} = -\Gamma^\alpha_{\beta\gamma} \frac{dx^\beta}{dt} \frac{dx^\gamma}{dt} \approx -\Gamma^\alpha_{44} = \frac{1}{2} \frac{\partial g_{44}}{\partial x^\alpha}
\]

volgt immers onmiddellijk dat \(g_{44} \approx -2V + const \) (zie ook p. 145).

De populaire vertaling van het resultaat (10-4.3) is dat 'identieke klokken trager lopen in A dan in B'. Dit zorgt voor redelijk wat verwarring: de correcte interpretatie is dat de klokken even snel lopen, maar verschillende wereldlijnen volgen en tussen de in de figuur aangeduide tijdstippen \(t_A \) en \(t_B \) verschillende eigentijden meten. Een moeilijkheid bij dit experiment is dat de waarnemer in A, noch de waarnemer in B, weet wanneer de tijdstippen \(t_1 \) en \(t_2 \) zijn aangebroken en dus ook niet weet wanneer hij zijn klok moet starten of stoppen ...

Een mogelijke oplossing bestaat erin beide klokken eerst te synchroniseren in A, vervolgens één der klokken te transporteren naar B en ze na voldoende lange tijd terug naar A te brengen: gebruiken we, bij wijze van illustratie, radioactief verval als frequentiestandaard, dan zou men—na terugkomst in A—kunnen vaststellen dat, van twee identieke hoeveelheden radioactief materiaal, b.v. 49% vervallen is van het materiaal dat was achtergebleven in A en 50% van het materiaal dat de trip naar B gemaakt heeft. Nogmaals: dit is *nieuw* omdat de zwakke wisselwerking zich in A en B anders zouden gedragen, maar omdat \(\Delta \tau_A < \Delta \tau_B \) ...

Experimenten die dit effect verifiëren zijn reeds uitgevoerd, maar blijven erg onnauwkeurig omdat, tijdens de verplaatsing van een frequentiestandaard een niet te verwaarlozen doppler effect optreedt. In principe kan dit opgevangen worden door het 'verblijven' in B lang genoeg te maken, zodat het (cumulatief) gravitationeel effect het doppler effect gaat domineren. Helaas zijn de meest precieze frequentiestandaarden waarover we vandaag beschikken, slechts stabiel over korte tijds Spannes 12: daarom

\[\text{[12]Cs-fountain klokken zoals NIST-F1 bereiken een nauwkeurigheid van } 10^{-15} \text{ over een periode van enkele } 10^3 \text{ s maar zijn niet erg transporteerbaar} \]
wordt gewoonlijk gebruik gemaakt van een meer indirect experiment, waarbij de frequentiestandaard in B b.v. lichtsignalen uitzendt naar A, waar deze vergeleken worden met de signalen van een in A geplaatste referentiestandaard. Voor de frequentie van de in B uitgezonden golf, \(\omega_B^{(e)} \), vinden we dan

\[
\omega_B^{(e)} = -(k_i u^i)_B = -\left(\frac{k_i \xi^i}{\parallel \xi \parallel}_B \right)
\]

uit 2-6.25:

Omdat langs de nul-geodeten \(k_i \xi^i \) behouden blijft (zie 1-12), zal in A een signaal ontvangen worden met frequentie \(\omega_A^{(r)} \) gegeven door

\[
\omega_A^{(r)} \parallel \xi \parallel_A = \omega_B^{(e)} \parallel \xi \parallel_B
\]

zodat

\[
\frac{\omega_B^{(e)}}{\omega_A^{(r)}} = \left(\frac{g_{tt}}{g_{tt}} \right)^{1/2} = 1 + V_A - V_B
\]

Nu kunnen we in de praktijk \(\omega_A^{(r)} \) niet vergelijken met \(\omega_B^{(e)} \), maar wel met \(\omega_A^{(e)} \), zodat voor de waargenomen frequentieverschuiving \(z \) geldt dat

\[
1 + z = \frac{\omega_A^{(r)}}{\omega_A^{(e)}} = \frac{\omega_A^{(r)}}{\omega_B^{(e)}} \frac{\omega_B^{(e)}}{\omega_A^{(e)}},
\]

In de eerste factor van deze uitdrukking kunnen bijdragen optreden, die te wijten zijn aan afwijkingen van EEP, zodat we bekomen dat

\[
z = (1 + \delta)(V_A - V_B)
\]

met \(\delta \) een parameter die 0 is in metrische gravitatietheorieën.

Bestaan er afwijkingen van EEP, door b.v. een plaatsafhankelijke fijnstructuurconstante \(\alpha \), dan zal b.v. een experiment met SCSO-klokken (Superconducting Cavity Stabilised Oscillators, waarvoor de periode een veelvoud is van de bohr-straal en dus van \(\alpha \)) leiden tot

\[
z = \frac{\alpha_B}{\alpha_A} (1 + V_A - V_B) - 1
\]

\[= (1 + \delta) \Delta V,
\]

met \(\delta = \Delta \alpha / \alpha \Delta V \). De eerste succesvolle experimenten werden door Pound, Rebka en Snider uitgevoerd in Harvard (1960-65), door de frequentieverschuiving te meten van \(\gamma \)-fotonen afkomstig uit een \(\text{Re}^{57} \) kern: men bewaarde hierbij dat \(|\delta| \lesssim 10^{-1} \). Tot vandaag blijft het meest precieze experiment het
Vessot-Levine (*Gravity Probe A*, 1976) experiment, waarbij de frequentie van een in een raket verplaatste H-maser vergeleken werd (gedurende een vlucht tot op 10.000 km hoogte) met de frequentie van een identieke H-maser op de grond: dit resulteerde in de beperking $|\delta| \lesssim 2 \times 10^{-4}$. Tegenwoordig worden gravitationele correcties (zowel als de meer vertrouwde dopplercorrecties) courant gebruikt bij *Global Positioning Systems*. De gravitationele correctie is hierbij zelfs groter dan de correctie t.g.v. de tijdssdilatatie: voor een satelliet in een cirkelvormige baan op een hoogte van 18000 km is immers de gravitationele correctie gegeven door $GM/r (= v^2) \approx 16 \times 10^{-11}$ terwijl $v \approx 1.3 \times 10^{-5}$ en dus $\sqrt{1-v^2} - 1 \approx 8 \times 10^{-11}$. Dit lijkt futiel, maar bedenk dat zonder deze kleine correctietermen na 5 minuten de door een GPS ontvangen klokdata al zouden resulteren in een positie-fout van 15 m! Wijzen we er ten slotte nog op dat de uitdrukking 10.4.4 voor de *roodverschuiving*, die optreedt wanneer een elektromagnetische golf zich beweegt *van A naar B*, ook te bekomen is door toepassing van de wet van behoud van energie op een foton dat uit de gravitationele potentiaalput klimt. Het effect werd trouwens waargenomen bij het onderzoek van de spectraallijnen van witte dwergen.

10-5 Sterk Equivalentiebeginsel

Bekijken we nu, binnen de klasse van zuiver dynamische theorieën, een z.g. *locaal gravitationeel experiment*. Zulke experiment speelt zich zowel in het zonnestelsel af als in het labo. Zulke experiment speelt zich per definitie af in een omgeving, die klein genoeg is om inhomogeniteiten—veroorzaakt door de ‘uitwendige’ gravitatievelden—toegestaan, maar die groot genoeg is om een locaal gravitationeel systeem te bevatten. Dergelijk systeem kan b.v. een cavendish-opstelling zijn in het labo of, desgewenst, het zonnestelsel Om het resultaat van zulke experiment te berekenen zijn twee stappen nodig:

1) bepaal het gedrag van het ‘uitwendig’ systeem en leg zo de randvoorwaarden vast voor het lokale systeem,

2) los m.b.v. de bekomen randvoorwaarden de veldvergelijkingen op voor het lokale systeem.

Via de randvoorwaarden kunnen lokale resultaten (b.v. de cavendishconstante of de evolutie-eigenschappen van een ster) dus beïnvloed kunnen worden door het uitwendig systeem. Dit geldt *niet* voor A.R., omdat in het grensgebied van de twee deelsystemen steeds een coördinatenstelsel kan gekozen worden waarin $g \approx \eta$, zodat de randvoorwaarden onafhankelijk zijn van de positie of de snelheid van het lokale systeem t.o.v. zijn omgeving. Binnen andere theorieën kan dit fenomeen echter leiden tot z.g. *preferred frame* of *preferred location effects*. Zo zal in b.v. Brans-Dicke-theorie de locaal gemeten cavendishconstante evolueren in functie van de tijd, onder invloed van de kosmische evolutie van een scalar veld $\phi(t)$. Vandaar dat nog een sterker beginsel dan EEP geïntroduceerd wordt, namelijk het Sterk Equivalentiebeginsel (Strong Equivalence Principle, SEP), waarin gesteld wordt dat:

(i) WEP geldt voor neutrale testdeeltjes en voor zelfgraviterende lichamen,

(ii) het resultaat van elk locaal experiment onafhankelijk is van de snelheid van de vrij vallende waarnemer,

(iii) het resultaat van elk locaal experiment onafhankelijk is van de plaats en het tijdstip waarop het werd uitgevoerd.

Op het ogenblik is, op A.R. na, geen enkele zuiver dynamische theorie gekend die aan SEP voldoet. Bovendien leveren experimenten binnen het zonnestelsel en waarnemingen van binaire pulsars uiterst sterke beperkingen op ‘preferred frame’ of ‘preferred location’ parameters van mogelijke andere theorieën\(^\text{14}\). We geven een korte bespreking van twee van deze testen (de twee ‘klassieke testen’ binnen de klasse van metrische gravitatietheorieën):

\(^{13}\)Kan dit wel globaal over de ganse rand, b.v. voor niet enkelvoudig samenhangende gebieden?

\(^{14}\)Wat geen van deze andere theorieën uitshui: dikkwijls komen hierin parameters voor, die zodanig aan te passen zijn, dat de theorie elke SEP test —samen met A.R.— glansrijk doorstaat
10-5.1 Metrische theorieën en het zonnestelsel: inleiding

Metrische gravitatie-theorieën verschillen in hun voorspellingen voor het gedrag van testdeeltjes en fotonen in het zonnestelsel enkel in de vorm van de metriek die dit gedrag bepaalt. Voor elke metrische theorie kan de metriek van het zonnestelsel (bekomen via oplossing van de corresponderende veldvergelijkingen), ontwikkeld worden als taylorreeks in grootheden, die zijn opgebouwd uit de newtoniaanse potentiaal en de materieverdeling van het zonnestelsel: dit leidt tot het z.g. PPN-formalisme (Parametrised Post Newtonian formalism). Aangezien een bespreking van dit formalisme veel te ver zou voeren, beperken we ons in deze paragraaf tot een model van een sferisch symmetrisch en statisch zonnestelsel, met als enige variabele de newtoniaanse potentiaal \(V = -\frac{m}{l} \), met \(m \) de massa van de zon. Ontwikkelen we de metriek naar deze variabele, dan kan aangetoond worden dat

\[
\mathrm{d}s^2 = -(1 - 2\frac{m}{l} + 2\beta\frac{m^2}{l^2} + \cdots)\mathrm{d}t^2 + (1 + 2\gamma\frac{m}{l} + \cdots)(\mathrm{d}x^1)^2 + (\mathrm{d}x^2)^2 + (\mathrm{d}x^3)^2 \quad (10-5.1)
\]

met \(l^2 = x^1^2 + x^2^2 + x^3^2 \). Voor de meeste testdeeltjes in het zonnestelsel geldt dat \(v^2 \approx \frac{m}{l} \): termen als \(g_{\alpha\beta} \) treden dus in de bewegingsvergelijking enkel op in de combinatie \(g_{\alpha\beta} m \), zodat we de coefficient van \(\mathrm{d}t^2 \) moeten ontwikkelen tot op tweede orde in \(V \), als we eerste-orde correcties op het ruimtelijk deel van de metriek in acht willen nemen.

Vervolgens voeren we z.g. standaardcoördinaten in, door de substitutie \(r = l(1 + \gamma m/l) \). Dit leidt tot de metriek (zie ook hoofdstuk 13)

\[
\mathrm{d}s^2 = -B(r)\mathrm{d}t^2 + A(r) \mathrm{d}r^2 + r^2 \mathrm{d}\theta^2 + r^2 \sin^2 \theta \mathrm{d}\phi^2 \quad (10-5.2)
\]

met

\[
B(r) \approx 1 - 2\frac{m}{r} + 2(\beta - \gamma)\frac{m^2}{r^2} \quad (10-5.3)
\]

en

\[
A(r) \approx 1 + 2\gamma\frac{m}{r}.
\]

In elke metrische theorie hebben \(\beta \) en \(\gamma \) (de z.g. eddington-robertsonparameters) welbepaalde numerieke waarden. Voor het bijzonder geval van A.R tonen we in hoofdstuk 13 dat \(\beta = \gamma = 1 \).

Om de beweging van testdeeltjes in een ruimtietijd met metriek 10-5.2 na te gaan, construeren we eerst een volledig stel integralen van de geodetische vergelijkingen, zodat er deze vergelijkingen echter expliciet op te stellen! We maken daartoe gebruik van de behoudswetten \(u_i \xi(A) = constant \), met \(u^i = \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} \) (\(\lambda \) een affiene parameter) en met \(\xi(A) \) de vier killingvectoren van een statische en sferische symmetrische metriek:

\[
\xi(1) = \frac{\partial}{\partial t}, \quad \xi(2) = \frac{\partial}{\partial \phi}, \quad \xi(3) = \cos \phi \frac{\partial}{\partial \theta} - \sin \phi \cot \theta \frac{\partial}{\partial \phi}, \quad \xi(4) = \sin \phi \frac{\partial}{\partial \theta} + \cos \phi \cot \theta \frac{\partial}{\partial \phi}.
\]

De eerste drie killingvectoren leveren de volgende behoudswetten:

\[
B \frac{\mathrm{d}t}{\mathrm{d}\lambda} = constant, \quad (10-5.4)
\]

\[
r^2 \sin^2 \theta \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} = constant, \quad (10-5.5)
\]

\[
r^2 \cos \phi \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} - \sin \phi \cot \theta \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} = constant. \quad (10-5.6)
\]

(de vierde killingvector geeft geen extra informatie).

Kiezen we het \(\theta = \frac{\pi}{2} \)-vlak zó dat de initiële positie- en snelheidsvectoren in dit vlak liggen, dan volgt uit 10-5.6 dat de beweging steeds beperkt blijft tot dit vlak (wat intuitief te verwachten was als gevolg

15 zie volgend hoofdstuk voor een verklaring van de terminologie

16 dat de eerste orde coefficient in \(g_{tt} \) dezelfde is voor alle metrische theorieën, is een gevolg van EEP!

17 zie hoofdstuk 13
van de sferische symmetrie). Normaliseren we dan de affiene parameter zó dat op oneindig \(\lambda = t \), dan reduceren de vergelijkingen 10-5.4 en 10-5.5 zich tot

\[
B \frac{dt}{d\lambda} = 1 \tag{10-5.7}
\]

en

\[
r^2 \frac{d\phi}{d\lambda} = J. \tag{10-5.8}
\]

Een laatste integraal van de bewegingsvergelijkingen volgt ten slotte uit het feit dat \(u_i u^i \) constant is:

\[
g_{ij} u_i u^j = -B \left(\frac{dt}{d\lambda} \right)^2 + A \left(\frac{dr}{d\lambda} \right)^2 + r^2 \left(\frac{d\phi}{d\lambda} \right)^2 = -E, \tag{10-5.9}
\]

met \(E = 0 \) voor massaloze en \(E > 0 \) voor massieve deeltjes. Noteer dat \(\lambda \) voor deze laatste niet de eigentijd is, want \((d\tau/d\lambda)^2 = E \).

M.b.v. 10-5.7 en 10-5.8 bekomen we dan

\[
r^2 \frac{d\phi}{dt} = JB \tag{10-5.10}
\]

en

\[
\frac{1}{B} + \frac{J^2 A}{r^4} \left(\frac{dr}{d\phi} \right)^2 + \frac{J^2}{r^2} = -E. \tag{10-5.11}
\]

Voor trage beweging in een zwak gravitatieveld reduceren deze vergelijkingen zich tot de newtoniaanse vergelijkingen

\[
r^2 \frac{d\phi}{dt} = J \tag{10-5.12}
\]

en

\[
\frac{1}{2} \left(\frac{dr}{dt} \right)^2 + r^2 \left(\frac{d\phi}{dt} \right)^2 - \frac{m}{r} = \frac{1 - E}{2} \tag{10-5.13}
\]

waarbij \(J \) het draaimoment per eenheidsmassa is en \(\frac{1 - E}{2} \) de kinetische + gravitationele energie per eenheidsmassa. Noteer dat we met het concept ‘energie’ voorzichtig moeten omspringen: de ‘echte’ (i.e. behouden) totale energie per eenheidsmassa is voor een statische waarnemer (met killingvector \(\xi = \frac{\partial}{\partial t} \)) gegeven door \(-g(\xi, u) = -g_{ij} \xi^i \frac{dx^j}{dx^t} = B \frac{dt}{dt} = \frac{d\lambda}{dt} = E^{-1/2} \). Als \(E^{-1/2} \approx 1 + \epsilon \) met \(\epsilon \) klein, dan is \(\epsilon \approx \frac{1 - E}{2} \), zodat de gravitationele + kinetische energie per eenheidsmassa = (totale energie - rustenergie) per eenheidsmassa = \(E^{-1/2} - 1 \approx \frac{1 - E}{2} \).

Definiëren we, net zoals in het newtoniaanse geval, \(u = m/r \), dan bekomen we

\[
\left(\frac{du}{d\phi} \right)^2 + \frac{1}{A} Q = 0 \tag{10-5.14}
\]

met

\[
Q = u^2 - m^2 J^{-2} \left(1 - E + 2u + 2(2 + \gamma - \beta)u^2 \right). \tag{10-5.15}
\]

Met \(A = 1 \) en \(Q = u^2 - m^2 J^{-2} (1 - E + 2u) \) bekomen we de newtoniaanse baanvergelijking met als oplossing

\[
u = m^2 J^{-2} (1 + \epsilon \cos \phi)
\]

en

\[
2a = r_+ + r_- = m(u_+^{-1} + u_-^{-1}) = \frac{2m^2 J^{-2}}{1 - \epsilon^2}.
\]

132
10-5.2 Geval van gebonden beweging

Voor een gebonden beweging wordt de kwadratische vorm Q nul voor precies twee waarden van u, namelijk $u = u_\pm = m/r_\pm$, met r_\pm de afstanden tot respectievelijk aphelium en perihelium. Er geldt dan

$$Q = k(u - u_-(u - u_+)$$

met

$$k = 1 - \frac{2m^2}{J^2}(2 + \gamma - \beta)$$

en

$$k = \frac{2m^2J^{-2}}{u_+ + u_-}$$

Uit 10-5.14 bekomen we dan, na een halve omwenteling,

$$\phi_+ - \phi_- = \int_{u_+}^{u_-} \left| \frac{A}{Q} \right|^{1/2} du = \frac{1}{\sqrt{k}} \int_{u_+}^{u_-} \frac{(1 + \gamma u) du}{\sqrt{(u - u_+)(u_+ - u_+ + u_-)}}$$

of, met $u = \frac{1}{2}(u_+ + u_-) - \frac{1}{2}(u_+ - u_+)(\sin \psi),$

$$\phi_+ - \phi_- = \frac{1}{\sqrt{k}} \left[1 + \frac{\gamma}{2} (u_+ + u_-) - \frac{\gamma}{2} (u_+ - u_+)(\sin \psi) \right] \approx \frac{\pi}{\sqrt{k}} (1 + \gamma m^2 J^{-2}) \approx \pi (1 + m^2 J^{-2}(2 + 2\gamma - \beta)).$$

Hierbij werd de benadering

$$k \approx 1 - (u_+ + u_-)(2 + \gamma - \beta)$$

gebruikt, die volgt uit het feit dat de parameter $\epsilon = m^2/J^2$ in het zonnestelsel erg klein is (voor Mercurius is $\epsilon \approx 10^{-7}$) en dus $m^2J^{-2} \approx \frac{1}{2}(u_+ + u_-)$. Per omwenteling vinden we hiermee een precessie van het perihelium

$$\Delta \phi = \frac{6\pi m^2}{J^2} \frac{2 + 2\gamma - \beta}{3},$$

waarbij in A.R. de tweede factor van het rechterlid precies 1 is.

Vermits

$$m^2J^{-2} \approx \frac{u_+ + u_-}{2} = \frac{m}{2a} \left(\frac{1}{1 + e} + \frac{1}{1 - e} \right) = \frac{m}{a(1 - e^2)},$$

met a de halve lange as en e de excentriciteit van de (in benadering) ellipsvormige baan, kunnen we dit ook nog schrijven als

$$\Delta \phi = \frac{6\pi m}{a(1 - e^2)} \frac{2 + 2\gamma - \beta}{3}.$$

Voor Mercurius, met 415 omwentelingen per eeuw, geeft A.R. dan een precessie van $43.03''$ per eeuw, wat exact overeenstemming met de experimentele gegevens. Voor de andere planeten wordt het effect snel kleiner en worden, t.g.v. de kleine excentriteiten, de onnauwkeurigheden bij de bepaling van het perihelium groter. Alleen met Icarus ($e = 0.827$) wordt een vergelijkbare nauwkeurigheid bereikt.
10-5.3 Geval van ongebonden beweging

Bekijken we ten slotte de ongebonden beweging van een deeltje met impactparameter $b \approx r \sin(\phi_{\infty} - \phi) \approx r(\phi_{\infty} - \phi)$ en met snelheid $v \approx dr/dt$: de integratieconstante E in 10-5.11 is dan gegeven door $E = 1 - v^2$ en, als we de afstand van dichtste benadering r_0 noemen (zodat $(dr/d\phi)|_{r_0} = 0$), volgt er dat

$$J = r_0 \left(\frac{1}{B(r_0)} - 1 + v^2 \right)^{1/2}$$ \hspace{1cm} (10-5.24)

Voor een nulgeodeet ($v = 1$) is i.h.b. $J^{-2} = r_0^{-2}B(r_0)$, zodat 10-5.15 gereduceerd wordt tot

$$Q = u^2 - u_0^2 B(r_0)(1 + 2u + 2(2 + \gamma - \beta)u^2)$$ \hspace{1cm} (10-5.25)

Vermits nu $B(r_0) \approx 1 - 2u_0 + 2(\beta - \gamma)u_0^2$, is

$$Q \approx (u^2 - u_0^2)(1 - \frac{2u_0^2}{u + u_0})$$ \hspace{1cm} (10-5.26)

\[\text{We gebruiken deze term alhoewel de banen nu geen gesloten krommen zijn}\]

\[\text{De anomalie in de precessie van Mercurius was ontdekt door Urbain Jean Joseph Le Verrier (1811–1877) en de overeenstemming van het experimentele resultaat met de door AR voorspelde waarde was één van de grootste initiële successen van de theorie.}\]
(let op de tweede factor!) en dus
\[
\frac{d\phi}{du} \approx 1 + \gamma u + \frac{u_0^2}{u + u_0}.
\] (10-5.27)
Na integratie wordt de **afbuing van het licht**, \(\Delta \phi\), dan uiteindelijk gegeven door
\[
\Delta \phi = 2|\phi(u_0) - \phi_\infty| - \pi
\approx \frac{4m}{r_0} \frac{1 + \gamma}{2}.
\] (10-5.28)
Voor de zon betekent dit een maximale afwijking (namelijk als \(r_0 = R_\odot\)) van
\[
\Delta \phi \approx 1.75'' \frac{1 + \gamma}{2}.
\] (10-5.29)

Deze hoek wordt gemeten door de onderlinge hoekafstand te vergelijken van twee ‘vaste’ hemellichamen, tussen een tijdstip waarop één van beide zich ‘dicht’ bij de zon bevindt en een tijdstip waarop beide zich ‘ver’ van de zon bevinden (b.v. zes maanden later). Voor waarnemingen in het optisch venster impliceert dit dat het eerste stel waarnemingen moet gebeuren tijdens een volledige eclips. Omdat in de praktijk \(r_0\) niet kleiner mag zijn dan ongeveer \(2R_\odot\) en omdat het oplossend vermogen van telescoopen van de orde 0.1'' is, mogen we van dergelijke waarnemingen geen hoge nauwkeurigheid verwachten. Desondanks waren de resultaten van Arthur Stanley Eddington’s 1919 eclips expeditie zo prachtig in overeenstemming met de voorspellingen van A.R., dat de theorie er in één klap mee in het centrum van de toenmalige belangstelling raakte.

Na 1945 werd meer en meer overgestapt op het gebruik van radio-interferometrie, zodat we met een veel hogere nauwkeurigheid (het oplossend vermogen bedraagt dan \(3 \times 10^{-4}''\)), de hoekafstanden kunnen volgen tussen QSO’s (Quasi Stellaire Objecten). Op deze wijze was men ook niet langer beperkt tot eclipswaarnemingen. Tegenwoordig is het zelfs mogelijk om met z.g. Very Long Baseline Interferometry het effect van de lichtafbuiging te meten voor bronnen, die zich op een hoek van 90° van de zon bevinden (\(\Delta \phi\) is dan \(\approx 4 \times 10^{-3}''\)! De gecumuleerde metingen van de laatste decennia hebben alzo geleid tot het resultaat
\[
\gamma = 1.000 \pm 0.004.
\] (10-5.30)

Een vergelijkbare nauwkeurigheid wordt bereikt met de **tijdoponthoud experimenten**. Hierbij wordt een radarsignaal vanop aarde doorheen het zonnestelsel gezonden en, na reflectie op het oppervlak van een planeet, weer ontvangen. Met 10-5.2 kan de precieze tijd berekend worden, die verloopt tussen emissie en ontvangst van het signaal. Het verschil met de newtoniaanse ‘heen-en-terug-tijd’ is het z.g. **relativistische tijdoponthoud**. Voor Mercurius in bovenconjunctie bedraagt dit ongeveer 240 \(\mu s\) op een totaal van 20 minuten. Dergelijke experimenten werden lang benoemd door de reflecterende planeet en onzekereheid m.b.t. het reflecterende oppervlak. Beide moeilijkheden werden opgevangen met de plaatsing van de Viking-landingstoestellen op het oppervlak van Mars. Hiermee kon een uiterst betrouwbare ephemeris voor Mars worden opgesteld (door radarwaarnemingen vóór van bovenconjunctie), waarna een kleinste-kwadratenanalyse van waarnemingen heen-en-terug-tijd uiteindelijk leidde tot \(\gamma - 1 = \pm 0.002\) (Reasenberg, 1979). De meest precieze data werden bekomen uit dopplermetingen van de CASSINI-satelliet (2002): \(\gamma - 1 = (6 \pm 4) \times 10^{-5}\).

Oefening
Toon aan dat in de schwarzschildmetriek (\(B = A^{-1} = 1 - \frac{2m}{r}\) in 10-5.2) een cirkelvormige nulgeodeet bestaat bij \(r = 3m\). Toon ook aan dat, voor een welbepaalde waarde van \(J\), er nulgeoden bestaan waarvoor
\[
\frac{1 - 3u}{(\sqrt{3} \pm \sqrt{1 + bu})^2} = ae^\phi,
\] (10-5.31)
(a, b constanten). Omschrijf het gedrag van dergelijke geodeten voor \(\phi \to -\infty\).
10-6 Minimale koppeling

Beperkt men zich binnen de klasse van zuiver dynamische theorieën tot de meest eenvoudige — en wellicht ook tot de enige theorie waarin strikt aan SEP voldaan is — dan belandt men bij de algemene relativiteitstheorie. We merkten reeds eerder echter al op dat de overgang van B.R. naar A.R. niet uniek vastligt. Bekijken we b.v. de behoudswetten van B.R., namelijk

\[\partial_b T^{ab} = 0, \quad \text{(10-6.1)} \]

dan is de eenvoudigste covariante veralgemening weliswaar

\[\nabla_b T^{ab} = 0, \quad \text{(10-6.2)} \]

maar anderzijds reduceren ook de vergelijkingen

\[\nabla_b T^{ab} + R^{abcd} \nabla_c T_{bd} = 0 \quad \text{(10-6.3)} \]

zich, in afwezigheid van gravitatie, tot 10-6.1. Een bijkomend principe is dus nodig om de stap van B.R. naar A.R. op éénmalige wijze te kunnen zetten. We aanvaarden daarom volgend z.g. *minimale koppelingsbeginsel*:

- bij de overgang van B.R. naar A.R. mogen geen termen gebruikt worden waarin de krommingstensor expliciet optreedt.

Dit beginsel is erg vaag: een preciezere formulering kan gegeven worden voor theorieën gebaseerd op een actiebeginsel (door in de lagrangiaan voor de niet-gravitationele velden enkel bijdragen in \(g \) en zijn eerste afgeleiden toe te laten), maar dient zelfs dan met de nodige omzichtigheid gehanteerd te worden. Dat neemt niet weg dat het minimale koppelingsbeginsel een leidraad geeft om de wetten van de fysica op te stellen in de aanwezigheid van gravitatie. We bekijken in de volgende paragrafen achtereenvolgens het gedrag van testdeeltjes, van perfecte vloeistoffen en van elektromagnetische velden.

10-6.1 Testdeeltjes

Net zoals in B.R. stellen we de beweging van massieve en van massaloze testdeeltjes voor d.m.v. tijdachtige, respectievelijk nulkrommen. Voor tijdachtige krommen normeren we de snelheid \(u \) steeds zó dat

\[u^2 = g_{ab} u^a u^b = -1, \quad \text{(10-6.4)} \]

i.e. \(u^i = dx^i/d\tau \) met \(\tau \) de eigentijd langs de kromme. Vrije deeltjes bewegen op geodeten:

\[a = \nabla u = 0, \quad \text{(10-6.5)} \]

wat, in componenten uitgedrukt, betekent dat

\[u^a \nabla_a u^b = 0, \quad \text{(10-6.6)} \]

of

\[\frac{d^2 x^i}{d\tau^2} + \Gamma_{jk}^i \frac{dx^j}{d\tau} \frac{dx^k}{d\tau} = 0. \quad \text{(10-6.7)} \]

Is \(a \neq 0 \), dan zeggen we dat er op het deeltje een kracht \(f \) werkt met, per definitie, \(f = ma \) (voortaan gebruiken we \(m \) voor de rustmassa). Voor een geladen deeltje in een elektromagnetisch veld bekomen we dan b.v. de lorentzwet

\[u^a \nabla_a u^b = \frac{q}{m} F_{ab} u^a. \quad \text{(10-6.8)} \]

20In vele modellen wordt hier trouwens vandaag bewust van afgeweken!
Het impuls van het deeltje blijft gedefinieerd door
\[p = mu \] (10-6.9)
en een waarnemer (waarvan de baan deze van het deeltje snijdt in een punt \(P \)) met snelheid \(v \) (\(v^2 = -1 \)) schrijft aan het deeltje in \(P \) een energie
\[E = -p_av^a \] (10-6.10)
toe.

Tot besluit van deze paragraaf wezen opgemerkt dat een beperkt aantal fysisch plausibele hypotheses m.b.t. het gedrag van massieve en massaloze testdeeltjes volstaat om het bestaan aan te tonen van een —op een constante schaalfactor na— unieke lorentzmetriek \(g \) met de eigenschap dat testdeeltjes bewegen op resp. geodeten en nullgeodeten van \(g \). Hypothesen over het gedrag van fysieke klokken en meetstaven zijn dus totaal overbodig bij het opstellen van de fundamenten van de theorie!

10-6.2 Perfecte vloeistoffen

De gehele bespreking van 2-5.2 kan nu herhaald worden, mits \(\eta_{ab} \) te vervangen door \(g_{ab} \). We herhalen even de hoofdpunten:

een perfecte vloeistof wordt gekenmerkt door een energie-impulstensor
\[T_{ab} = \rho u_a u_b + p(g_{ab} + u_a u_b) \] (10-6.11)
die voldoet aan de behoudswetten
\[\nabla_b T^b_a = 0. \] (10-6.12)
Hieruit volgen dan de algemeen relativistische versies van
i) de continuïteitsvergelijking
\[\dot{\rho} + (\rho + p)\Theta = 0, \] (10-6.13)
waarbij we de notaties \(\dot{\rho} = \rho_{,a} u^a \) en \(\Theta = \nabla_a u^a \) gebruiken, en
ii) de navier-stokesvergelijkingen:
\[(p + \rho)a^b + (g^{ab} + u^a u^b)\nabla_a p = 0. \] (10-6.14)

10-6.3 Elektromagnetisme

In een gekromde ruimtetijd worden de maxwellvergelijkingen gegeven door
\[F_{ab,\,b} = 4\pi J^a \] (10-6.15)
en
\[F_{[abc]} = 0, \] (10-6.16)
of resp. *d * F = 4\pi J en dF = 0 in een 2-vorm formalisme. T.g.v. de antisymmetrie van \(F \) is dan automatisch voldaan aan de behoudswet
\[J^{b,\,b} = 0. \] (10-6.17)
De energie-impulstensor van het elektromagnetisch veld is gegeven door
\[T^{ab} = \frac{1}{4\pi} (F^a_c F^{bc} - \frac{1}{4} g^{ab} F_{cd} F^{cd}) \] (10-6.18)

21 Ehlers-Pirani-Schild 1971
en voldoet, t.g.v. 10-6.15 en 10-6.16, aan
\[\nabla_a T^{ab} = -F^{ab} J^b, \]
(10-6.19)
zodat voor een vrij maxwellveld \((J = 0)\) opnieuw de behoudswetten 10-6.12 geldig zijn. Voeren we net zoals in 2-6 de vectorpotentiaal \(A\) in, zodat \(F_{ab} = 2A[A_{[b,c]}]\), dan volgt nu echter dat in de z.g. *lorentzijk* \((\nabla_b T^{ab} = -F^{ab} J^b)\)
\[-4\pi J_b = \nabla^a (A_{b;a} - A_{a;b}) \]
\[= \nabla^a \nabla_a A_b - \nabla^a \nabla_b A_a \]
\[= \nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a + g^{ac}(\nabla_b \nabla_c - \nabla_c \nabla_b)A_a \]
\[= \nabla^a \nabla_a A_b + g^{ac} R^{m}_{abc} A_m \]
\[= \nabla^a \nabla_a A_b - R^{m}_{cb} A_m \]
\[= \nabla^a \nabla_a A_b - R^m_{bA_m}, \]
 wat wijst op dubbelzinnigheden bij de toepassing van de minimale koppelingenregel. Een ander gevolg is dat de standaard behandeling van elektromagnetische golven zoals in beperkte relativiteit enkel geldt in de algemene theorie op voorwaarde dat de kromming slechts \(weinig\) verandert over afstanden die vergelijkbaar zijn met de golflengtes!

10-6.4 Behoudswetten

We blijven de vergelijkingen 10-6.12 de *behoudswetten* voor de energie-impulstensor noemen. Een belangrijk onderscheid met beperkte relativiteit is echter, dat met deze wetten niet zonder meer behouden *grootheden* te construeren zijn! Begrippen als ‘totale energie’ of ‘totaal impuls’ van b.v. een wolk niet-interagerende deeltjes zijn dus, in het algemeen, niet meer gedefinieerd. Dit in tegenstelling tot een begrip als b.v. ‘totale lading’, dat zijn oorsprong vindt in het divergentievrij zijn van een *vectoriële* grootheid: als \(J \in \Omega^1(\mathcal{M})\) en \(d \ast J = 0\), dan volgt uit de wet van Gauß (zie p. 56) dat
\[\int_{\partial U} \ast J = 0. \]

Integratie over de rand van een ‘wereldbuis’ met randen \(\Sigma_1 \subset \{x^0 = \text{const}_1\}\), \(\Sigma_2 \subset \{x^0 = \text{const}_2\}\), levert dan voor \(J \rightarrow 0\) op de tijdachtige rand van de buis en met \(dV = \sqrt{-g}\Sigma dx^1 dx^2 dx^3\), dat
\[-\int_{\Sigma_1} J^0 dV_1 + \int_{\Sigma_2} J^0 dV_2 = 0, \]
m.a.w. \(\int_{\Sigma} J^0 dV\) is een behouden grootheid! Als de ruimtetijd symmetrieën toelaat (zoals het geval is in de minkowskasruimte), dan kunnen behouden grootheden echter ook geconstrueerd worden uit de energie-impulstensor zelf:

is immers \(K\) een killingvector, dan voldoet \(P^a = T^{ab} K_b\), t.g.v. 10-6.12 en de anti-symmetrie van \(K_{a;b}\), aan
\[P^a_{;a} = T_{a;b} K_b + T^{ab} K_{b;a} \]
\[= 0. \]
(10-6.21)

M.b.v. de stelling van Gauß resulteert dus voor elke generator \(K\) van een isometrie een behoudswet, in de zin dat de \(K\)-flux van energie-impuls doorheen een gesloten oppervlak verdwijnt:
\[\int_{\partial U} P_a d\sigma^a = 0 \]
(10-6.22)
voor elk compact en oriënteerbaar gebied \(U\) met rand \(\partial U\).
10-7 Correspondentiebeginsel

Een laatste beginsel heeft te maken met het feit dat (succesvolle) fysische theorieën over een welbepaald geldigheidsgebied beschikken en dat nieuwe theorieën consistent dienen te zijn met de voorspellingen van oude, binnen het geldigheidsgebied van deze laatste. I.h.b. verwachten we van A.R. dat ze overeenstemt met B.R. in de afwezigheid van gravitatie en overeenstemt met Newton’s gravitatietheorie in de limit van traag bewegende lichamen en zwakke gravitationele velden. Dit is de inhoud van het correspondentiebeginsel, dat bij het opstellen van de veldvergelijkingen een belangrijke rol speelt: we gebruiken de studie van geodeten, i.h.b. van de geodetische deviatie, hierbij als leidraad. Het is immers het optreden van deviatie dat karakteristiek is voor gravitatie!

Stellen we eerst de newtoniaanse deviatievergelijking op voor twee testdeeltjes, die in vacuüm bewegen langs naburige krommen C_1 en C_2. Stel dat de vergelijkingen van deze krommen respectievelijk gegeven zijn door $\vec{r}_1 = \vec{ρ}(t)$ en $\vec{r}_2 = \vec{ρ}(t) + \vec{X}(t)$, met \vec{X} de deviatievector: noemen we Φ de gravitationele potentiaal, dan is

$$\ddot{\vec{ρ}} = - \nabla \Phi|_{C_1} \quad (10-7.1)$$

en

$$\ddot{\vec{ρ}} + \ddot{\vec{X}} = - \nabla \Phi|_{C_2}. \quad (10-7.2)$$

Nu is, voor $|\vec{X}|$ voldoende klein, $\nabla \Phi|_{C_2} \approx \nabla \Phi|_{C_1} + \vec{X} \cdot \nabla(\nabla \Phi)|_{C_1}$, zodat

$$\ddot{\vec{X}} + \vec{X} \cdot \nabla(\nabla \Phi) = 0. \quad (10-7.3)$$

In componenten uitgedrukt betekent dit (met $\alpha, \beta = 1, 2, 3$)

$$\ddot{X}^{\alpha} + K^{\alpha \beta}X^{\beta} = 0, \quad (10-7.4)$$

waarbij K (de getijdentensor genoemd) de symmetrische tensor is met

$$K_{\alpha \beta} = \nabla_\alpha \nabla_\beta \Phi. \quad (10-7.5)$$
Bekijken we nu terug de relativistische deviatievergelijkingen uit 1-1 en noteren we \(\dot{\mathbf{\nabla}} = \nabla T \), met \(T \) de eenheidsvector rakend aan de deeltjesbaan:

\[
\ddot{X}^a - R_{\beta\alpha}^a T^b T^c X^d = 0. \tag{10-7.6}
\]

Kiezen we een orthonormale basis met \(\mathbf{e}_0 = T \), dan worden de ruimtelijke componenten van deze vergelijkingen gegeven door

\[
\ddot{X}^a - R_{\alpha\beta}^0 X^\beta = 0, \tag{10-7.7}
\]

wat precies van dezelfde vorm is als 10-7.4, mits we de tensor \(K^{\alpha\beta} \) identificeren met \(-R_{\alpha\beta}^0\). Nu reduceren in newtoniaanse gravitatie de vacuumvergelijkingen zich tot de laplacevergelijking, i.e. tot het spoor-vrij zijn van \(K \):

\[
\text{tr}(K) = \nabla_a \nabla_a \Phi = 0, \tag{10-7.8}
\]

zodat het correspondentiebeginsel suggereert om aan de krommingstensor de eis op te leggen dat \(R_{\alpha\beta}^0 = 0 \). Met 5-5.12 betekent dit dat \(R_{0\alpha} = 0 \) voor elke keuze van de tijdachtige eenheidsvector \(\mathbf{e}_0 \), waarmee we afleiden dat de volledige ricci-tensor moet zijn: stel \(\mathbf{t} \sim \mathbf{e}_0 + \lambda \mathbf{e}_\alpha \) met \(\lambda \) klein genoeg opdat \(\mathbf{t}^2 < 0 \). Uit \(R_{\alpha\beta} \mathbf{t}^\alpha \mathbf{t}^\beta = 0 \) volgt dan

\[
\forall \lambda : \quad \lambda R_{0\alpha} + 2 R_{\alpha\beta} e_\alpha e_0 = 0
\]

en dus \(R_{0\alpha} = 0 \). Bijgevolg bestaat er een basis waarin \(R_{\alpha\beta} \) diagonaal is\(^{22} \) en een herhaling van dezelfde redenering toont dat dan ook de diagonaal-elementen \(R_{\alpha\alpha} = 0 \) zijn.

We besluiten dus, op basis van het correspondentiebeginsel, dat de vacuumvergelijkingen van A.R. gegeven zijn door \(R_{\alpha\beta} = 0 \), of, volkomen equivalent hiermee, door

\[
G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} = 0. \tag{10-7.9}
\]

Opmerking: een eerste lezing van de paragrafen over het equivalentiebeginsel suggereert wellicht dat 'echte' gravitationele effecten (m.a.w. effecten die niet weg te transformeren zijn door over te gaan op een locaal vrij vallend referentiestelsel) eindigdig herkend kunnen worden aan het niet 0 zijn van de getijdentensor \(K^{\alpha\beta} = -R_{\alpha\beta}^0 \). Dit is een heikel punt —zelfs in vacuum— omdat de weyltensor nog een ander, zogenaamd 'magnetisch', deel bevat dat zich onafhankelijk van het 'coulombgedeelte' \(K^{\alpha\beta} \) gedraagt. Het al dan niet bestaan van dergelijke 'zuiver magnetische' vacuum oplossingen of 'gravitomagnetische monopolen' is nog steeds een open probleem.

10-8 Veldvergelijkingen in de aanwezigheid van materie

In de inleiding beklemtoonden we reeds dat de energie-impulsverdeling in de ruimtetijd moet leiden tot het ontstaan van kromming. Op basis van de in vorige paragraaf bekomen vacuümvergelijkingen en van het feit dat de energie-impulstensor een symmetrische tensor is, die net zoals de einsteinstensor voldoet aan de behoudswetten \(\nabla_b T^a_b = 0 \), ligt het voor de hand om voor de volledige veldvergelijkingen te postuleren dat

\[
G_{\alpha\beta} = \kappa T_{\alpha\beta} \tag{10-8.1}
\]

met \(\kappa \) een constante. De waarde van \(\kappa \) volgt dan opnieuw uit het correspondentiebeginsel en de newtoniaanse limiet:

herschrijven we 10-8.1 eerst als

\[
R_{\alpha\beta} = \kappa (T_{\alpha\beta} - \frac{1}{2} T g_{\alpha\beta}) \tag{10-8.2}
\]

\(^{22}\) Dit is niet triviaal: de signatuur van de metriek maakt dat een symmetrische tensor, zoals \(R_{\alpha\beta} \), niet zonder meer te diagonaliseren is: er bestaat dus niet noodzakelijk een lorentztransformatie zodat \(R_{\alpha\beta} \Lambda^\alpha_{\alpha'} \Lambda^\beta_{\beta'} \) diagonaal is.
en bekijken we, t.o.v. een bepaalde waarnemer met snelheid $= e_0$, een energie-impulsverdeling waarvoor druk en energie-impulsstroom verwaarloosbaar zijn t.o.v. $T_{00} = \rho$. Er geldt dan $T \approx -\rho$, zodat 10-8.2 impliceert dat $R_{00} \approx \frac{1}{2} \kappa \rho$. Stellen we dan, zoals hiervoor, $K^\alpha_\beta = -R^\alpha_{00\beta}$, dan is dus $\text{tr}(K) = \frac{1}{2} \kappa \rho$. Nu voldoet in newtoniaanse gravitatietheorie K aan de poissonvergelijking,
\[
\text{tr}(K) = \nabla^\alpha \nabla_\alpha \Phi = 4\pi \rho,
\]
(zodat het correspondentiebeginsel impliceert dat $\kappa = 8\pi$). We bekomen dus voor de volledige veldvergelijkingen de gedaante
\[
G_{ab} = 8\pi c^2 T_{ab}.
\]
N.B. Dit is de vorm van de vergelijkingen in z.g. gravitationele eenheden (zie bijgevoegde tabel), namelijk $G = 1$ en $c = 1$. In willekeurige eenheden geldt dat
\[
G_{ab} = \frac{8\pi G}{c^2} T_{ab},
\]
met G en c de waarden van de cavendishconstante en van de lichtsnelheid in de gekozen eenheden ($G \approx 6,67 \times 10^{-11} m^3 kg^{-1}s^{-1}$ en $c \approx 3 \times 10^8 m s^{-1}$). In onderstaande tabel geven we enkele standaardgrootheden in gravitationele eenheden:

<table>
<thead>
<tr>
<th>massa</th>
<th>straal</th>
</tr>
</thead>
<tbody>
<tr>
<td>elektron</td>
<td>2.10^{-66} s $\lesssim 10^{-26}$ s</td>
</tr>
<tr>
<td>proton</td>
<td>4.10^{-61} s 10^{-23} s</td>
</tr>
<tr>
<td>aarde</td>
<td>$1.5.10^{-11}$ s 2.10^{-5} s</td>
</tr>
<tr>
<td>zon</td>
<td>5.10^{-6} s 2.3 s</td>
</tr>
<tr>
<td>sterrenstelsel</td>
<td>$\approx 10^3$ s $\approx 10^{13}$ s</td>
</tr>
<tr>
<td>Hubble-volume van het heelal</td>
<td>$\gtrsim 6.10^{15}$ s $\gtrsim 5.10^{17}$ s</td>
</tr>
</tbody>
</table>

Men kan zich de vraag stellen of de einstein-tensor de enige divergentie-vrije tensor is, die is opgebouwd m.b.v. de metriek en zijn eerste en tweede orde partiële afgeleiden (op de triviale veralgemening $G_{ab} + \Lambda g_{ab}$ na, met Λ een constante). Het antwoord op deze vraag is bevestigend, op voorwaarde dat de dimensie van de ruimtetijd $= 4$ is (in tegenstelling tot wat beweerd wordt in [Weinberg], is het niet nodig de bijkomende eis op te leggen dat de tweede orde partiële afgeleiden hoogstens lineair optreden). Pas als de dimensie groter is dan 4, ontstaan er problemen met de uniciteit van de einsteintensor.

10-8.1 Energievoorwaarden

Niet elke symmetrische en divergentievrije tensor T_{ab} stelt een fysisch zinvolle ‘energie-impulstensor’ voor. We vermelden een aantal voorwaarden waarvan wordt aangenomen dat een klassieke energie-impulstensor er moet aan voldoen.

De eerste twee voorwaarden beperken de grootte van mogelijke negatieve drukken:

- de zwakke energievoorwaarde stelt dat de locaal gemeten energiedichtheid T^{00} niet negatief mag zijn: voor alle tijdachtige ξ is
 \[
 T(\xi, \xi) \equiv T_{ab}\xi^a\xi^b \geq 0.
 \]

Aangezien nulvectoren te beschouwen zijn als limieten van tijdachtige vectoren, volgt hieruit ook de nul-energievoorwaarde, namelijk
\[
T(\xi, \xi) \geq 0 \forall \xi^2 = 0.
\]

Afwijkingen van deze voorwaarden kunnen optreden onder zeer extreme situaties, b.v. wanneer quantum effecten niet langer te verwaarlozen zijn.
Voor het bijzonder geval van een perfecte vloeistof is \(T_{ab} = (\rho + p)u_a u_b + p g_{ab} \), zodat uit \(u^2 = \xi^2 = -1 \) volgt dat \(T(\xi, \xi) = (\rho + p)(u \cdot \xi)^2 - p \). Aangezien \(|u \cdot \xi| \geq 1 \) (want \(\xi^2 = 1 + \sum \alpha \xi^\alpha \)) impliceert de zwakke energievoorwaarde dus
\[
\rho \geq 0 \text{ en } \rho + p \geq 0.
\]

De nul-energievoorwaarde zegt dus enkel dat
\[
p + \rho \geq 0.
\]

- de sterke energievoorwaarde stelt dat voor alle tijdachtige \(\xi \) met \(\xi^2 = -1 \) geldt \(\text{Ric}(\xi, \xi) \geq 0 \) of, equivalent hiermee,
\[
(T_{ab} - \frac{1}{2} \eta_{ab} T) \xi^a \xi^b \geq 0.
\]
Zoals aangetoond op p. 84 drukt dit het ‘attractief’ karakter uit van gravitatie.

Voor een perfecte vloeistof wordt deze voorwaarde \((p + \rho)(u \cdot \xi)^2 \geq \frac{1}{2}(\rho - p) \), wat voldaan is voor alle \(\xi \) met \(\xi^2 = -1 \) als
\[
\rho + 3p \geq 0 \text{ en } \rho + p \geq 0.
\]

Merk op dat de zwakke energievoorwaarde geen gevolg is van de sterke energievoorwaarde!

- ten slotte drukt de dominante energievoorwaarde uit dat de locaal gemeten energie-impulsstromen niet sneller dan het licht bewegen:

voor elke tijdachtige en toekomstgerichte \(\xi \) (i.e. \(\xi^0 > 0 \)) is de waargenomen energie-impulsflux
\[-T^{ab} \xi_b \text{ tijdachtig of nul en toekomstig gericht.}\]

Voor perfecte vloeistoffen reduceert deze voorwaarde zich tot
\[
\rho \geq |p|.
\]

Is \(p = \rho \) dan spreken we van een ‘stijve vloeistof’. Perturbatieanalyse toont aan dat kleine perturbaties zich in een vloeistof voortbewegen met de ‘geluidssnelheid’ \(c_s = \left(\frac{\partial p}{\partial \rho} \right)^{1/2} \). Voor een stijve vloeistof is de geluidssnelheid dus maximaal: \(c_s = 1 \).

Oefening

Ga na of een massaloos en minimaal gekoppeld scalair veld,
\[
T_{ab} = \phi, a \phi, b - \frac{1}{2} g_{ab} \phi, m \phi^m,
\]

voldoet aan de energievoorwaarden. Maak een onderscheid tussen \(\nabla \phi \) ruimte-achtig of tijdachtig.

142
Hoofdstuk 11

De veldvergelijkingen nader bekeken

Om enige intuïtie te verkrijgen voor de inhoud van de veldvergelijkingen beginnen we dit hoofdstuk met een kijkje op de lineaire benadering. De geometrie van de ruimtetijd wordt bepaald door de energie-impulsverdeling. We verwachten daarom dat een kleine ‘verandering’ in de energie-impulsverdeling, bij niet stationaire fenomenen, aanleiding kan geven tot kleine ‘rimpeltjes’ in de geometrie. In tegenstelling tot de newtoniaanse action at a distance verwachten we —bij gebrek aan een andere karakteristieke snelheid die in de theorie optreedt— dat de rimpeltjes zich golfsgewijs verplaatsen met de lichtsnelheid. Als gevolg van de zwakte van gravitatie verwachten we ook dat gravitationele straling een zeer zwak verschijnsel is. Dit heeft als nadeel dat de straling zeer moeilijk detecteerbaar is (een internationaal netwerk van laser-interferometers staat nog steeds in zijn kinderschoenen en resultaten zijn tot dusver amper geboekt), maar dit maakt het fenomeen precies ook weer interessant: moeilijke detecteerbaarheid gaat hand in hand met zwakke absorptie, zodat gravitatiestraling in principe een heel nieuwe en ‘doordringende’ kijk op het heelal kan leveren. Er zijn immers heel wat bronnen in het heelal die dergelijke gravitatiegolven kunnen veroorzaken, zoals binaire sterren, niet-sferische collaps of botsingen van zwarte gaten. We beperken ons in de eerste paragraaf tot zwakke gravitatiegolven in een z.g. asymptotisch vlakke ruimtetijd, waarvoor de lineaire benadering van de veldvergelijkingen volstaat.

Vervolgens bekijken we de structuur van de veldvergelijkingen vanuit een algemener standpunt: we beginnen met enkele inleidende beschouwingen in paragraaf 2 en behandelen vervolgens in paragraaf 3 de 3+1 splitsing van de veldvergelijkingen.

11-1 De lineaire benadering

Onderstel dat de metriek g kan geschreven worden als een vlakke metriek η en een kleine perturbatie:

$$g = \eta + \epsilon h$$ \hfill (11-1.1)

met $|\epsilon| \ll 1$ en $|h| \approx 1$ (we bedoelen hiermee dat coördinaten x bestaan zó dat

$$g_{ij} = \eta_{ij} + \epsilon h_{ij},$$ \hfill (11-1.2)

met $|\epsilon| \ll 1$ en $|h_{ij}| \approx 1 \forall x^i, x^j$).

Een eerste moeilijkheid hierbij is dat een ruimtetijd eigenlijk een equivalentieklasse is van lorentzvarieteiten (\mathcal{M}, g) die slechts op een diffeomorfisme na bepaald zijn. Herinneren we ons dat, met Φ een diffeomorfisme van \mathcal{M}, de metrieken $g^\prime = \Phi^* g$ en g dezelfde fysische eigenschappen hebben: dat
geldt i.h.b. voor de 1-parametergroepen van diffeomorfismen geassocieerd aan een vectorveld ξ (zie paragraaf 4-4) waarvoor

$$\mathcal{L}_\xi g = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\Phi^*_\epsilon g - g) \quad (11-1.3)$$

en dus

$$\Phi^*_\epsilon g \approx g + \epsilon \mathcal{L}_\xi g \approx \eta + \epsilon h + \epsilon \mathcal{L}_\xi \eta. \quad (11-1.4)$$

Nu is $(\mathcal{L}_\xi \eta)_{ij} = \eta_m \xi^m_{ij} + \eta_{jm} \xi^m_{i} = \xi_{i,j} + \xi_{j,i}$, wat impliceert dat de metrieken $g_{ij} = \eta_{ij} + \epsilon h_{ij}$ en $g'_{ij} = \eta_{ij} + \epsilon (h_{ij} + \xi_{i,j} + \xi_{j,i})$ dezelfde ruimtetijd representeren. M.a.w. h_{ij} en

$$h'_{ij} = h_{ij} + \xi_{i,j} + \xi_{j,i} \quad (11-1.5)$$

stellen dezelfde fysische perturbatie voor.

We spreken nu verder af indices te ‘verhogen’ en te ‘verlagen’ met de tensor η, m.a.w.

$$h_{ij} = \eta^{im} \eta^{jn} h_{mn} \quad (11-1.6)$$

zodat (alle gelijkheden dienen nu gelezen te worden als geldend tot op orde 1 in ϵ)

$$g_{ij} = \eta_{ij} - \epsilon h_{ij} \quad (11-1.7)$$

Voor de christoffelsymbolen resulteert dit in

$$\Gamma^i_{jk} = \frac{1}{2} \epsilon (h^i_{j,k} + h^i_{k,j} - h^i_{jk}) \quad (11-1.8)$$

en dus voor de riemannntensor in

$$R_{ijkl} = \frac{1}{2} \epsilon (h_{il,jk} + h_{jk,il} - h_{ik,jl} + h_{jl,ik}) \quad (11-1.9)$$

Opmerking:

1) Dit toont nogmaals dat h'_{ij} en h_{ij} dezelfde fysische perturbatie voorstellen, aangezien tot op 1ste orde in ϵ

$$R'_{ijkl} = R_{ijkl} + \epsilon (\mathcal{L}_\xi R)_{ijkl} \quad (11-1.10)$$

$$= R_{ijkl} + \epsilon \left(\xi^m R_{ijkl,m} + R_{mijk}\xi^m_i + \ldots \right) \quad (11-1.11)$$

$$= R_{ijkl} + O(\epsilon^2) \quad (11-1.12)$$

2) $11-1.9$ voldoet automatisch aan de bianchi-identiteiten.

Hiermee bekomen we voor de riccitensor

$$R_{ij} = \frac{1}{2} \epsilon (h^m_{i,jm} + h^m_{j,im} - \Box h_{ij} - h_{i,j}) \quad (11-1.13)$$

met $h = h^m_m$ en $\Box = \eta^{ij} \partial_i \partial_j$ en dus

$$R = \epsilon (h^{mn, mn} - \Box h) \quad (11-1.14)$$

Enige vereenvoudiging treedt op door over te gaan op de nieuwe veranderlijke

$$\psi_{ij} = h_{ij} - \frac{1}{2} \eta_{ij} h \quad (11-1.15)$$
(de z.g. *trace-reversed amplitudes*, vanwege *ψ = −h*). We bekomen dan

\[R_{ij} = \frac{1}{2} \epsilon (\psi_i^m,jm + \psi_j^m,im - \Box h_{ij}), \]
\[R = \frac{1}{2} \epsilon (2\psi_{mn}^{mn} - \Box h) \]
\hspace{1cm} (11-1.16)

(11-1.17)

en dus

\[G_{ij} = (8\pi T_{ij}) = \frac{1}{2} \epsilon \left(\psi_i^m,jm + \psi_j^m,im - \Box \psi_{ij} - \eta_{ij} \psi_{mn}^{mn} \right). \]
\hspace{1cm} (11-1.18)

De volgende stap is cruciaal: merk op dat voorgaande vergelijking zich reduceert tot een gewone golfvergelijking

\[\epsilon \Box \psi_{ij} = -16\pi T_{ij}, \]
\hspace{1cm} (11-1.19)

mits we aan *ψ* de bijkomende voorwaarde opleggen dat

\[\psi_i^m,im = 0. \]
\hspace{1cm} (11-1.20)

Aan deze voorwaarde kan nu altijd voldaan worden door middel van een transformatie 11-1.5, of, in termen van *ψ*,

\[0 = \psi_i^m,im = \psi_i^m,im - \Box \xi_i. \]
\hspace{1cm} (11-1.21)

Naar analogie met het electromagnetisme noemen we zulke keuze van het diffeomorfisme Φ de *lorentz-ijk*\(^1\). Het diffeomorfisme is daarmee vastgelegd op transformaties 11-1.5 na, die nog voldoen aan de voorwaarden \(\Box \xi_i = 0 \).

Merk nog op dat 11-1.19 te herschrijven is als

\[\epsilon \Box h_{ij} = -16\pi (T_{ij} - \frac{1}{2} \eta_{ij} T) \]

en dus

\[\epsilon \Box h_{00} = -16\pi (\rho + \frac{1}{2} (-\rho)) = -8\pi \rho. \]

In de newtoniaanse benadering reduceert dit zich tot

\[\epsilon \Delta h_{00} = 8\pi \rho, \]

wat aantoont dat \(\epsilon h_{00} \approx 2\phi \) (\(\phi \) de newtoniaanse gravitationele potentiaal) en dus

\[ds^2 \approx -(1 + 2\phi)dt^2 + dx^2 + dy^2 + dz^2. \]
\hspace{1cm} (11-1.22)

11-2 Vlakke gravatietiegolven

In vacuüm reduceren de vergelijkingen 11-1.19 zich tot

\[\Box h_{ij} = 0, \]
\hspace{1cm} (11-2.1)

waarbij *h* tevens moet voldoen aan de ijkvoorwaarden

\[Y_i \equiv h_i^m,im - \frac{1}{2} h_{ii} = 0. \]
\hspace{1cm} (11-2.2)

\(^1\)ook wel de ijk van Einstein, de Donder, Hilbert of Fock genoemd
De oplossingen van 11-2.1 zijn superposities van vlakke golven

\[h_{ij} = a_{ij}e^{ik\cdot x}, \quad (11-2.3) \]

met \(a_{ij} \) de constante amplitudematrix en met \(k^2 = 0 \): de golfvector \(k \) is een nulvector en gravitatiegolven planten zich dus voort met de

\[\text{lichtsnelheid}. \]

Men kan nu aantonen dat de resterende diffeomorfismevrijheid (met \(\Box \xi = 0 \)) kan gebruikt worden om aan de amplitudematrix de volgende voorwaarden op te leggen (waarbij de coördinaten \(x^0 = t, x^1 = x, x^2 = y, x^3 = z \) zo gekozen zijn dat \(\eta_{ij}dx^idx^j = -dt^2 + dx^2 + dy^2 + dz^2 \)):

\[h = h^{0\alpha} = 0 \quad (\alpha = 1, 2, 3) \quad (11-2.4) \]

(vanwege de keuze \(h = 0 \) noemt men dit ook de spoorvrije ijk). De voorwaarden \(Y_i = 0 \) reduceren zich hiermee tot

\[Y_0 \equiv \frac{\partial}{\partial t}h_0^0 = a_{00}i\omega e^{ik\cdot x} = 0, \quad (11-2.5) \]

waarbij we \(k = (\omega, \vec{k}) \) gesteld hebben en \(\omega = |\vec{k}| \), zodat \(a_{00} = 0 \). De voorwaarden

\[Y_\alpha = \frac{\partial}{\partial x^m}h_0^\alpha = \frac{\partial}{\partial x^m}h_0^\beta = a_{\alpha\beta}k^\beta e^{ik\cdot x} = 0 \quad (11-2.6) \]

tonen dan aan dat, na oriëntatie van het assenstelsel zó dat de golf zich in de \(z \)-richting voortplant, \(a_{\alpha 3} = 0 \).

Er blijven dus slechts twee fysische vrijheidsgraden over en de amplitudematrix neemt de volgende gedaante aan,

\[a_{ij} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & b & -a & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \quad (11-2.7) \]

De corresponderende golf bestaat uit een superpositie van twee lineair gepolariseerde golven, \(e_1 \) en \(e_2 \),

\[h^{ij} = ae_1^{ij} + be_2^{ij}, \quad (11-2.8) \]

met

\[e_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} e^{i\omega(z-t)} \quad \text{en} \quad e_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} e^{i\omega(z-t)}. \quad (11-2.9) \]

Dat we hier werkelijk met een fysisch golfverschijnsel (en niet met een artefact van het coördinatensstelsel) te maken hebben, blijkt uit de studie van het onderling gedrag van testdeeltjes. Men kan gemakkelijk nagaan dat \(\Gamma_{\alpha\beta}^{00} = 0 \) zodat de wereldlijnen \(x^\alpha = \text{constante} \) geodeten beschrijven. Bekijken we echter twee testdeeltjes met constante \(x^\alpha \) coördinaten en met coördinatsafstand \(d^\alpha = \Delta x^\alpha \), dan wordt hun onderlinge eigenafstand \(d \) gegeven door

\[d^2 = g_{\alpha\beta}d^\alpha d^\beta = d^\alpha d_\beta + \epsilon h_{\alpha\beta}d^\alpha d^\beta. \quad (11-2.10) \]

Dit betekent dat voor deeltjes gelegen langs de \(z \)-as \(d \) een constante is, terwijl deeltjes gelegen in het \(xy \)-vlak een tijdsafhankelijke \(d \) vertonen: we spreken daarom van de

\[\text{transverse-traceless gauge} \quad \text{of de TT gauge}. \]

De beweging in het \(xy \)-vlak is het gemakkelijkst voor te stellen door invoering van een euclidisch vlak, waarin de positie van de deeltjes gegeven wordt door de coördinaten \(X_\alpha = d_\alpha + \epsilon/2h_{\alpha\beta}d^\beta \) (immers \(d^2 = X_\alpha X^\alpha \) tot op eerste orde in \(\epsilon \)). De golven \(h = e_1 \) geven dan aanleiding tot het volgende gedrag in het \(XY \)-vlak,
Een op \(t = 0 \) cirkelvormige ring van testdeeltjes zal dus in de \(X \) en \(Y \) richtingen samengekomen resp. uitgeraakt worden tot een ellips. Onder invloed van de \(e_2 \) golf treedt een analoog effect op, maar nu met ellipsen waarvan de assen gelegen zijn langs de bissectrices van de \(X \), \(Y \) assen:

\[
\begin{bmatrix}
X(t) \\
Y(t)
\end{bmatrix} = \begin{bmatrix}
X(0)(1 + \frac{e_2}{2}\cos\omega t) \\
Y(0)(1 - \frac{e_2}{2}\cos\omega t)
\end{bmatrix},
\]

(11-2.11)

Het bestaan van dergelijke golven werd recent bevestigd door gebruik te maken van laserinterferometrie (LIGO, februari 2016).

11-3 Structuur van de veldvergelijkingen

11-3.1 Inleiding

Voor een gegeven energie-impulstensor vormen de veldvergelijkingen een stelsel van 10 niet-lineaire partiële differentiaalvergelijkingen voor de 10 metrische componenten \(g_{ab} \). Deze vergelijkingen zijn echter niet onderling functioneel onafhankelijk, t.g.v. de gecontracteerde bianchi-identiteiten:

\[
\nabla_b G_{a}^{\ b} = 0
\]

(11-3.1)

De resulterende onderbepaaldheid van energieimpulstensor was te verwachten, aangezien dit een tensorvergelijking is en dus invariant is onder diffeomorfismen \(F : M \rightarrow \mathcal{M} \). Als \(g \) een oplossing van de veldvergelijkingen, dan is ook \(F \cdot g \) een oplossing: stellen we \(F \) voor door het stel vergelijkingen \(x^{\alpha} = x^{\alpha}(x) \), dan komt deze uitspraak gewoon neer op het feit dat de componenten \(g_{ij} \) slechts bepaald zijn op coördinaatttransformaties \(x^{\alpha} \rightarrow x^{\alpha} \) na. M.b.v. deze coördinaatttransformaties kunnen we 4 van de 10 metrische componenten vrij kiezen. Een mogelijke keuze (de z.g. gauß-normale coördinaten, zie verder) kan b.v. leiden tot \(g_{00} = 1 \) en \(g_{0\alpha} = 0 \) (\(\alpha = 1, 2, 3 \)). De zes componenten \(g_{\alpha\beta} \) kunnen dan in principe uit de zes resterende onafhankelijke vergelijkingen bepaald worden. We leggen de nadruk op ‘in principe’, omdat —zelfs voor vacuüm— een algemene oplossing van de veldvergelijkingen niet gekend is. De grote moeilijkheid ligt in de niet-lineariteit van de vergelijkingen, wat resulteert in het ontbreken van een superpositieprincipe.

Een aanzienlijk aantal bijzondere oplossingen (voor vacuüm, zowel als voor verschillende materievormen) is echter niet onderling functioneel onafhankelijk, t.g.v. de gecontracteerde bianchi-identiteiten: 11-3.1 herschrijven als

\[
\partial_0 G_{0i} = -\partial_0 G^{0i} - \Gamma^j_{mj} G^{mi} - \Gamma^i_{mj} G^{jm}
\]

(\(\alpha = 1, 2, 3 \)). Het rechterlid bevat geen derde orde afgeleiden van \(g_{ij} \) naar \(t \), zodat de termen \(G_{0i} \) in het linkerlid hoogstens 1ste orde afgeleiden naar \(t \) kunnen bevatten. De corresponderende \((0i)\) vergelijkingen zijn bijgevolg geen evolutievergelijkingen, maar wel bindingsvoorwaarden (constraints)op de
beginwaarden. Dit toont opnieuw aan dat er slechts 6 ‘echte’ evolutievergelijkingen zijn, namelijk

\[G_{\alpha\beta} = 8\pi T_{\alpha\beta} \]

voor 10 onbekenden, waarvan er 4 vrij te kiezen zijn.

Een gevolg van de invariantie van de veldvergelijkingen onder diffeomorfismen, is dat —zoals eerder reeds bekendtoond— een ruimtetijd gezien moet worden als een equivalentieklasse van koppels \((M, g) \sim (M, g')\), waarbij \((M, g) \sim (M, g')\) als \(g' = F \cdot g\). Dit leidt onmiddellijk tot de vraag of, voor twee gegeven metrieken een methode bestaat om te bepalen of ze al dan niet representanten zijn van dezelfde klasse. Dit is het z.g. equivalentieprobleem (dat in 1869 reeds door E.B. Christoffel gesteld was).

Door E. Cartan werd een methode ontwikkeld, die o.a. de berekening inhoudt van alle covariante afgeleiden van de beide riemanntensoren, tot en met de 10de orde! Recent werd, m.b.v. tetradmethodes, een verbetering bekomen door A. Karlhede, waarbij in het slechtst denkbare geval maximaal 7de orde afgeleiden dienen te worden berekend. Met computeralgebra pakketten en speciaal ontworpen programma’s, zoals SHEEP, CLASSI en STENSOR, is momenteel een database samengesteld van exacte oplossingen, die toelaat om de originaliteit van elke ‘nieuwe’ oplossing op invariante wijze te controleren.

11-3.2 3+1 splitsing van de veldvergelijkingen

We veronderstellen dat de ruimte-tijd globaal hyperbolisch is, met een foliatie \((\Sigma_t) \in \mathbb{R}\) van ruimtelijke hypervlakken. In het 3+1 formalisme ontbinden we de veldvergelijkingen door orthogonaal te projecteren op deze hypervlakken en hun normale congruentie (zie hoofdstuk 7). Voor de eenvoud bekijken we in deze paragraaf enkel de vacuumvergelijkingen \(R_{ab} = 0\).

Een volledige projectie op \(\Sigma_t\) resulteert met 7-6.22 in

\[
\mathcal{L}_m K = DDN - N (\text{Ric} + KK - 2K^2),
\]

(merk op dat elke term een tensor is in \(\Sigma_t\)).

Volledige projectie loodrecht op \(\Sigma_t\) resulteert met de genecontracteerde vergelijking van Gauß, 7-6.11, in de z.g. hamiltoniaanse bindingsvoorwaarde

\[
\mathcal{R} + K^2 - \text{tr}(K^2) = 0,
\]

(11-3.3)

terwijl m.b.v. de genecontracteerde codazzivergelijking 7-6.15 de gemengde projectie leidt tot de z.g. momentum bindingsvoorwaarde

\[
D \cdot K - DK = 0.
\]

(11-3.4)

In overeenstemming met wat eerder al is opgemerkt, zijn er dus slechts 6 evolutievergelijkingen (11-3.2), aangevuld met 1 scalaire (11-3.3) en 1 vector¨ ele bindingsvoorwaarde.

We introduceren nu ruimtelijke co¨ ordinaten \((x^\alpha) = (x^1, x^2, x^3)\) in elk hypervlak \(\Sigma_t\), zó dat \((x^t) = (t, x^\alpha)\) een (glad) coördinaatstelsel wordt op \(\mathcal{M}\).

Let op: alhoewel de gradi¨ ent van \(t\), \((\partial_t)^\sharp\), een tijdachtige vector is, is de \(t\)-co¨ ordinaat zelf niet noodzakelijk tijdachtig: dit is enkel het geval als \((\partial_t)^2 < 0\). Het verschil tussen \(\partial_t\) en \(m\) noemen we de shift vector:

\[
\beta = \partial_t - m = \partial_t - Nn.
\]

(11-3.5)

Er geldt dan, gebruik makend van \(dt(\partial_t) = 1\) en 7-5.8 dat \(dt(\beta) = 0\), zodat \(\beta\) rakend is aan \(\Sigma_t\).

M.a.w. \(t\) is enkel een tijdachtige coördinaat als \(\beta^2 < N^2\). Noteer dat, met \(\beta = \beta^\alpha \partial_\alpha\), de contravariante

\[\phi_{\alpha\beta} = \phi_{\alpha\beta}(g, \dot{g})\]

**Elk van de gedaante \(\phi_{\alpha\beta}\) is niet volledig algorithmisch: de enige niet-algorithmische stap kon—tot op heden—echter steeds ‘op zicht’ genomen worden.

4R. Milson en N. Pelavas, Class. Quantum Grav. 25, 012001, 2008

5We nemen verder aan dat grieke indices steeds lopen over 1,2,3, terwijl latijnse indices lopen over 1,2,3 en 4.
componenten van \(\mathbf{n} \) gegeven worden door

\[
(n^i) = \frac{1}{N}(1, -\beta^a),
\]

(11-3.6)

terwijl de covariante componenten onmiddellijk volgen uit \(n^b = - Nd \):

\[
(n_i) = (-N, 0, 0, 0).
\]

(11-3.7)

Definiëren we de \(x^\alpha \) componenten van \(g \) als \(\gamma_{\alpha \kappa} := g_{\alpha \kappa} = g(\partial_\alpha, \partial_\kappa), \) met \(\gamma^\alpha{}^\mu \) bepaald door \(\gamma^\alpha{}^\mu \gamma_{\mu \nu} = \delta^\alpha_\nu, \) evenals \(\beta_\alpha := \gamma_{\alpha \beta} \beta^\beta, \beta^2 := \beta^\alpha \beta_\alpha \), dan kan men nagaan (oefening!) dat

\[
[g_{ij}] = \begin{bmatrix} \beta_1^{} & \beta_2^{} \\ \beta_1^{} & \gamma_{ij} \end{bmatrix}, \quad [g^{ij}] = \begin{bmatrix} -N^{-2} & \gamma^{ij} N^{-2} \\ \beta^j N^{-2} & \gamma^{ij} - N^{-2} \gamma^{ij} \end{bmatrix},
\]

(11-3.8)

terwijl

\[
[h_{ij}] = \begin{bmatrix} \beta_1^{} & \beta_2^{} \\ \beta_1^{} & \gamma_{ij} \end{bmatrix}, \quad [h^{ij}] = \begin{bmatrix} 0 & 0 \\ 0 & \gamma^{ij} \end{bmatrix}, \quad [h_t^i] = \begin{bmatrix} 0 & 0 \\ 0 & I_3 \end{bmatrix}.
\]

(11-3.9)

Het lijnelement kan dan geschreven worden als

\[
ds^2 = -N^2 dt^2 + \gamma_{\mu \nu} (dx^\mu + \beta^\mu dt)(dx^\nu + \beta^\nu dt),
\]

(11-3.10)

en met \(g \) en \(\gamma \) de determinanten van resp. de matrices \([g_{ij}]\) en \([\gamma_{\alpha \beta}]\) geldt dat

\[
\sqrt{-g} = N \sqrt{\gamma}.
\]

(11-3.11)

We bekomen ten slotte de veldvergelijkingen als een systeem van tweede orde partiële differentiaalvergelijkingen in de coördinaten \((t, x^\alpha)\), door in 11-3.2 de lie-afgeleide naar \(\mathbf{m} \) te herschrijven als \(\mathcal{L}_m = \partial_t - \mathcal{L}_\beta \) en door \(K_{\mu \nu} \) m.b.v. 7-5.23 te herschrijven als (ga naar)

\[
K_{\mu \nu} = \frac{1}{2N}(\partial_t - \mathcal{L}_\beta) \gamma_{\mu \nu} = \frac{1}{2N}(\partial_t \gamma_{\mu \nu} - 2 D_{(\mu} \beta_{\nu)}).
\]

(11-3.12)

Noteer dat alle opdrefende \(\mathcal{L}_\beta \) afgeleiden enkel functies zijn van de eerste en tweede fundamentele vorm van \(\Sigma_t \), de connectie van \(D \) en de partiële afgeleiden van de tweede fundamentele vorm naar \(x^\alpha \) en dat er geen evolutievergelijkingen optreden voor de lapse en shift variabelen (in overeenstemming met het feit dat deze vrij te kiezen zijn). De vergelijkingen voor \(\beta = 0 \) werden opgesteld door A. Lichnerowicz in 1939 en Y. Choquet-Bruhat in 1948. Gebruiken we in plaats van \(K \) de toegevoegde impuls \(\pi = \sqrt{\gamma}(K \gamma - K) \), dan bekomen we de vergelijkingen van het z.g. ADM-formalisme (Arnowitt, Deser en Misner 1962). De gedaante van de vergelijkingen voor \(\beta = 0 \) en \(N = 1 \) (de z.g. gauß-normale coördinaten) werd al eerder gevonden door Darmois in 1927: we bekomen dan

\[
\ddot{\gamma}_{\alpha \beta} = -2R_{\alpha \beta} - \frac{1}{2} \gamma_{\mu \nu} \dot{\gamma}_{\mu \nu} \dot{\gamma}_{\alpha \beta} + 2 \gamma_{\mu \nu} \dot{\gamma}_{\alpha \mu} \dot{\gamma}_{\beta \nu},
\]

(11-3.13)

\[
R + \frac{1}{4} (\gamma_{\mu \nu} \dot{\gamma}_{\mu \nu})^2 - \frac{1}{4} \gamma_{\alpha \beta} \gamma_{\mu \nu} \dot{\gamma}_{\alpha \mu} \dot{\gamma}_{\beta \nu} = 0,
\]

(11-3.14)

\[
D_\beta (\gamma_{\alpha \mu} \dot{\gamma}_{\beta \nu}) - \partial_\alpha (\gamma_{\mu \nu} \dot{\gamma}_{\epsilon \nu}) = 0.
\]

(11-3.15)

Merk op dat gauß-normale coördinaten het nadeel hebben dat ze altijd aanleiding geven tot de vorming van coördinaatsingulariteiten: uit bovenstaande vergelijkingen is immers eenvoudig af te leiden (oefening!) dat \(K \), het spoor van de uitwendige kromming, voldoet aan de ongelijkheid

\[
\frac{\partial K}{\partial t} \leq \frac{1}{3} K^2
\]

(11-3.16)

en dus divergeert binnen een eindige tijd \(t \)!
Aangezien de tweede afgeleiden van $\gamma_{\alpha\beta}$ in 11-3.13 lineair optreden en de eerste afgeleiden polynomi-aal, zou men in afwezigheid van de bindingsvoorwaarden de stelling van Cauchy-Kovalevski kunnen gebruiken om de (lokale) existentie van oplossingen van 11-3.13 aan te tonen voor beginvoorwaarden $\gamma_{\alpha\beta}, \dot{\gamma}_{\alpha\beta}$ die *analytische functies* zijn van de coördinaten x^{α} op Σ_0. De beginvoorwaarden moeten echter voldoen aan de bindingsvoorwaarden en de vraag stelt zich of deze wel behouden blijven onder tijdsevolutie. Darmois en Lichnerowicz toonden aan dat het antwoord op deze vraag bevestigend is, tenminste voor vacuüm en voor analytische beginvoorwaarden. Dit betekent dus dat, gegeven een stel (γ, K), met γ de metriek van een 3D-riemannse ruimte Σ_0, zó dat voldaan is aan de bindingsvoorwaarden 11-3.3, 11-3.4, er een ruimtetijd (M, g) bestaat waarin Σ_0 in te bedden is, zó dat γ de geïnduceerde metriek en K de extrinsieke kromming is van Σ_0 in M. De grote doorbraak in dit domein kwam er in 1952 met het afzwakken van de analyticiteitsvoorwaarden door Choquet-Bruhat tot gladde beginvoorwaarden (C^k met $k \geq 5$, naderhand door Hawking en Ellis verder afgezwakt tot $k \geq 4$), waarbij tevens werd aangetoond dat het corresponderende cauchyprobleem *goed gesteld (well posed)* was in de zin dat de oplossingen continu afhangen van de beginvoorwaarden. Het *global* existentie- en uniciteitstheorema ten slotte werd bewezen (steunend op het keuzeaxioma) door Choquet-Bruhat en Geroch in 1969. Dit theorema impliceert dat in de verzameling van alle globaal hyperbolische ruimtetijden met (Σ_0, γ, K) als ingebeg cauchy-hypervlak, een *maximaal* element (M^*, g^*) bestaat dat bovendien uniek is. We noemen dit dan *de maximale global hyperbolische cauchy-ontwikkeling* (MGHCD) van (Σ_0, γ, K). Een bewijs van het bestaan van dit maximaal element, zonder beroep te doen op het keuzeaxioma, werd onlangs geleverd door J. Sbierski (2015). Binnen de klasse van niet globaal hyperbolische extensies is, zoals we later zullen zien, de MGHCD zeker niet uniek; of ze al dan niet uniek is voor *generieke* beginvoorwaarden binnen asymptotisch vlakke ruimtetijden, is het onderwerp van de z.g. (sterke) *cosmic censorship* conjectuur.

Veralgemeningen van al deze resultaten bestaan voor verschillende materievormen (maxwellvelden, ‘Λ-type’ materie, scalaire velden, yang-millsvelden, perfecte vloeistoffen, . . .).

$maximaal in de zin dat elke andere ruimtetijd die aan de voorwaarden voldoet isometrisch is met een open deel van (M^*, g^*)$
Hoofdstuk 12

Inleiding tot de kosmologie

12-1 Standaard model

Twee soorten van waarnemingen liggen aan de basis van de moderne kosmologie: (1) waarnemingen van individuele bronnen (sterrenstelsels, radiobronnen, QSO's, ...) en (2) waarnemingen van de stralingsachtergrond (radio-, microgolf-, infrarood-, ...). Het oerknal (of big bang) model is het resultaat van deze waarnemingen en wordt algemeen aanvaard als het standaardmodel waarbinnen kosmologisch onderzoek zich dient te situeren.

De meest in het oog springende kenmerken van het heelal, zoals beschreven door het standaardmodel, zijn:

- dat het een sterke symmetrie vertoond (het heelal ziet er ‘overal’ ongeveer hetzelfde uit),
- dat het zeer groot is.\(^1\)

\(^1\)op het eerste zicht een vrij triviale opmerking; cf. echter de ‘small universe’ theorie van Ellis, recent terug in de belangstelling (J.P. Luminet)
dat het evolueert in de tijd,

• dat het een eindige ouderdom heeft.

Het standaardmodel dient bekeken te worden als een 0-de orde-model dat toelaat om welbepaalde fysische vragen over het heelal te formuleren. Waarnemingen kunnen vervolgens binnen dit model aanwijzingen verstrekken over bepaalde aspecten die verder moeten verlijfd worden. Als eerste stap bij de constructie van zulk 0-de orde-model, vertrekken we van de hypothese dat het heelal kan beschreven worden als een 4-dimensionale differentiaalvariëteit, voorzien van een lorentzmetriek g en een energie-impuls tensor T. We stellen $T = \sum T_M$, met T_M de bijdragen van alle materievelden in het heelal aanwezig. Voor elke component dienen de noodzakelijke toestandsvergelijkingen afzonderlijk gegeven te worden. De metriek wordt bekomen door oplossen van de einsteinvergelijkingen

$$G_{ab} + \Lambda g_{ab} = 8\pi T_{ab}. \quad (12-1.1)$$

Voor de algemeenheid houden we ook rekening met een eventuele kosmologische constante Λ. De kosmologische constante werd door Einstein in de veldvergelijkingen ingevoerd om een statische en homogene oplossing mogelijk te maken: nadat de waarnemingen van Hubble 3 hadden aangetoond dat het heelal niet in een toestand van statisch evenwicht verkeerde, maar onderhevig was aan een expansie, werd deze modificatie van de veldvergelijkingen door Einstein enkele jaren later bestempeld als ‘de grootste blunder van zijn leven’. De kosmologische constante heeft een bewogen geschiedenis achter de rug: hij werd regelmatig ingevoerd en naderhand afgevoerd al naargelang de stand van zaken in de observationele kosmologie. De kosmologische constante kan geïnterpreteerd dient te worden als de energiedichtheid van het vacuüm: deze energiedichtheid is de som van een groot aantal op eerste zicht niet gecorreleerde bijdragen, die elk op zich echter vele grootte-ordes groter zijn dan de (astronomisch bepaalde) observationele bovenlimiet van Λ. Het vinden van een verklaring van dit gigantische verschil tussen de voorspelde en de waargenomen waarde van de energiedichtheid van het vacuüm is uitgegroeid tot één van de grootste problemen van de hedendaagse fysica. Vandaag lijkt het er sterk op dat de waarnemingen opnieuw suggereren dat er wel degelijk rekening moet worden gehouden met een ‘effectieve’ kosmologische constante in de veldvergelijkingen. We zullen dus in de volgende paragrafen stelselmatig de veldvergelijkingen hanteren in de gedaante 12-1.1.

We aanvaarden verder dat in elk punt van het model een geprefereerd tijdachtig vectorveld u aanwezig is, met

$$u^2 = u_a u^a = -1, \quad (12-1.2)$$

dat de ‘gemiddelde beweging’ van de materie voorstelt.

De integraalkrommen van het vectorveld u worden de wereldlijnen van de fundamentele waarnemers genoemd. Noemen we τ de eigentijd van deze waarnemers, dan geldt dus $u^i = dx^i/d\tau$. De beweging van individuele sterrenstelsels valt in goede benadering samen met de beweging van de fundamentele waarnemers.

Fundamentele waarnemers beschikken in elk punt over een ogenblikkelijke rustruimte, die het orthogonaal complement zijn in $T_p(M)$ van u. De projectie op deze ogenblikkelijke rustruimte wordt beschreven door de projectietensor

$$h_{ab} = g_{ab} + u_a u_b. \quad (12-1.3)$$

M.b.v. 12-1.3 kan de metriek dan geschreven worden als

$$ds^2 = g_{ij}dx^i dx^j = -(u_i dx^i)^2 + h_{ij} dx^i dx^j \quad (12-1.4)$$

\(^2\)Zonder theoretisch model zijn er geen waarnemingen!

\(^3\)E.P. Hubble, Proc. Natl. Acad. Sci., 168 (1929)
12-2 Symmetrie en geometrie

Ondanks de respectabele ouderdom van de astronoomie, hebben we het heelal — naar kosmische maatstaven althans — tot nu toe eigenlijk maar in één punt P (‘nu’) waargenomen:

\[\Delta t \approx 15 \text{ à } 20 \text{.10}^9 \text{ jaar} \]

\[\Delta \chi \approx 2.10^9 \text{ sec} \]

\[\Delta t \approx 100 \text{ à } 3000 \text{ jaar} \]

Figure 12.1: ons beeld van het heelal

Deze waarnemingen suggereren om, na uitmiddeling op een gepaste schaal, dat het heelal is \textit{isotroop} is t.o.v. dit punt P. In het bijzonder blijkt uit waarnemingen van de kosmische microgolfachtergrondstraling (COBE 1990, WMAP 2006, Planck 2013) dat de relatieve anisotropie in de temperatuursverdeling van deze straling kleiner is dan 10^{-5}.

Gaan we er van uit dat het punt P geen bevoorrechte plaats inneemt op zijn wereldlijn, dan kunnen we bovenstaand resultaat extrapoleren en bekomen we dat het heelal is \textit{isotroop} t.o.v. de ganse wereldlijn van P. Deze redenering is een voorbeeld van toepassing van het \textit{kosmologisch beginsel}. We extrapoleren nu nogmaals door te veronderstellen dat P's wereldlijn al evenmin een bevoorrechte wereldlijn is en besluiten dat het heelal dus isotroop is t.o.v. de wereldlijn van \textit{elke} fundamentele waarnemer.

Beschouwen we nu de covariante afgeleide van u, dan kunnen we hiermee de versnellingsvector $\dot{u} = \nabla_u u$ definiëren. Aangezien $u^2 = -1$ is $u \cdot \dot{u} = 0$, zodat \dot{u} een ruimte-achtige vector is, die de isotropie zal verbreken, tenzij

\[\dot{u} = 0. \quad (12-2.1) \]

Schrijven we vervolgens $u_{a;b}$ als

\[u_{a;b} = \sigma_{ab} + \omega_{ab} + \frac{1}{3} \Theta h_{ab} \quad (12-2.2) \]

(zie 6-4.9), dan volgt uit $u^2 = -1$ dat de tensoren σ en ω orthogonaal zijn met u: $\sigma_{ab} u^b = \omega_{ab} u^b = 0$ en dus in een gepaste basis (met $e_0 = u$) kunnen voorgesteld worden door 3×3 matrices $\sigma_{\alpha\beta}$ (symmetrisch en spoorvrij) en $\omega_{\alpha\beta}$ (antisymmetrisch). Beide matrices zullen de isotropie verbreken, tenzij hun eigenwaarden 0 zijn, waaruit $\sigma_{\alpha\beta} = \omega_{\alpha\beta} = 0$. Isotropie t.o.v. elke fundamentele waarnemer leidt dus tot

\[u_{a;b} = \frac{\Theta}{3} h_{ab}, \quad (12-2.3) \]

waarbij we Θ de \textit{expansiescalar} noemen. Bovendien volgt uit $\omega_{ab} = 0$ dat u hyperoppervlakorthogonaal is, m.a.w. er bestaat een scalaire functie t zodat

\[u_a = -t_{a}, \quad (12-2.4) \]

met dus i.h.b. $t^0 = t_{a} u^a = 1$.

De op een constante na bepaalde functie t noemen we de \textit{kosmische tijd}: t.g.v. 12-2.4 meet t de eigentijd langs de wereldlijnen van de fundamentele waarnemers. De hyperoppervlakken $t = $ constant zijn precies
de hyperoppervlakken Σ_t die de ogenblikkelijke rustruimten glad aan elkaar sluiten: $\mathbf{u} \cdot \mathbf{v} = 0$ als en slechts als \mathbf{v} rakend is aan Σ_t. We noemen deze voortaan zonder meer de rustruimten.
Er zijn nog andere manieren om in deze kosmologische modellen ruimtelijke hyperoppervlakken te construeren. We vermelden er twee:

1) Vertrekkend vanuit een punt P construeren we alle ruimte-achtige geodeten, die in P loodrecht staan op \mathbf{u}_P. Deze hyperoppervlakken worden soms wel de ‘private rest spaces’ van de fundamentele waarnemers genoemd:

![private rest space](image)

Figure 12.2: private rest space

2) Vertrekkend vanuit een punt P construeren we de verzameling van alle gebeurtenissen E die ‘gelijktijdig’ zijn met P. Gelijkheid bepalen we door een lichtsignaal uit te zenden op t_A, het in E gereflecteerde signaal op te vangen op t_B en aan E de radartijd $\frac{1}{2}(t_A + t_B)$ toe te kennen: gelijktijdige gebeurtenissen zijn dan gebeurtenissen met dezelfde radartijd en de resulterende hyperoppervlakken noemt men soms de ‘radar spaces’.

In een evoluerend heelal ($\Theta \neq 0$) zullen noch de private spaces, noch de radar spaces samenvallen met de rustruimten $t = \text{constant}$! Zo is b.v. in een FLRW-model (zie verder) met $R(t) = t^{2/3}$ $r_1 = 3(t_B^{1/3} - t_A^{1/3})$ en $r_1 = 3(t_1^{1/3} - t_A^{1/3})$ (ga na!), zodat de $t_A + t_B = \text{constante}$ hypervlakken voldoen aan $3t_1 + R_t t_1^{1/3} = \text{constante}$ en niet aan $t_1 = \text{constante}$.

Voeren we nu coördinaten in door $x^0 = t$ te stellen en x^1, x^2, x^3 als labels te gebruiken voor de fundamentele wereldlijnen, dan is x^α ($\alpha = 1, 2, 3$) constant langs elke wereldlijn, i.e. $\dot{x}^\alpha = 0$. We bekomen hiermee dat

$$u^i = \delta^i_0$$

en dus (zie 12-1.4)

$$\text{d}s^2 = h_{\alpha\beta} \text{d}x^\alpha \text{d}x^\beta - \text{d}t^2.$$ (12-2.6)

Voor elke fysisch waarnembare grootte Φ moet nu gelden dat $\dot{\Phi} = \Phi(t)$, zoniet zou de ruimtelijke gradient van Φ opnieuw de isotropie van de rustruimten verbreken. In het bijzonder geldt dan

$$\Theta = \Theta(t).$$ (12-2.7)
Nu is echter $\frac{1}{3} \Theta h_{\alpha\beta} = u_{\alpha;\beta} = -u_i \Gamma^i_{\alpha\beta} = \Gamma^0_{\alpha\beta} = \frac{1}{2} \frac{\partial}{\partial t} h_{\alpha\beta}$, zodat

$$h_{\alpha\beta} = S^2(t) f_{\alpha\beta}(x^\rho),$$

met

$$\Theta = 3 \frac{\dot{S}}{S}.$$ \hspace{1cm} (12-2.8)

De op een constante factor na bepaalde functie S noemen we de *schaalfactor* van het heelal:

Zij d_1 de afstand in Σ_{t_1} tussen twee fundamentele waarnemers, gemeten langs een kromme γ_1 ($t = t_1$, $x^\alpha = \phi^\alpha(\lambda)$) en d_2 de afstand in Σ_{t_2} tussen dezelfde twee waarnemers, gemeten langs ‘dezelfde’ kromme γ_2 ($t = t_2$, $x^\alpha = \phi^\alpha(\lambda)$), dan is

$$\frac{d_2}{d_1} = \frac{S(t_2)}{S(t_1)}.$$ \hspace{1cm} (12-2.9)

Men noemt 12-2.10 de *wet van Hubble* en de verhouding

$$H \equiv \frac{\dot{S}}{S}$$

(zie 12-2.9) de *hubbleparameter*.

Uit de isotropie van de hyperoppervlakken Σ_t kunnen we afleiden (zie hoofdstuk 1.12) dat de rustruimten een constante kromming hebben en dus *homogeen* zijn. Een andere manier om dit in te zien is de volgende:

voor elke 3-dimensionale ruimte is de weyltensor 0, zodat uit 1.11.35 volgt dat

$$R^{(3)}_{\alpha\beta\gamma\delta} = 2h_{\alpha[\gamma} R^{(3)}_{\delta]\beta} + 2h_{\beta[\delta} R^{(3)}_{\gamma]\alpha} - R^{(3)} h_{\alpha[\gamma} h_{\delta]\beta}. $$

Vermits de riccitensor van de 3-ruimten isotroop moet zijn, is

$$R^{(3)}_{\alpha\beta} = \frac{1}{3} R^{(3)} h_{\alpha\beta}$$

(12-2.13)
Figure 12.4: schaalfactor

en vinden we dat

$$R^{(3)}_{\alpha\beta\gamma\delta} = \frac{R^{(3)}}{3} h_{\alpha[\gamma} h_{\beta]\delta]}$$ \hspace{1cm} (12-2.14)$$

wat ertoe leidt om dat de hyperoppervlakken Σ_{t} een constante kromming hebben.

Nooit we k de kromming van de hyperoppervlakken met metriek $f_{\alpha\beta}dx^{\alpha}dx^{\beta}$, dan is $R^{(3)}/6 = K = k/S^{2}$ de kromming van de hyperoppervlakken met metriek $h_{\alpha\beta}dx^{\alpha}dx^{\beta} = S^{2}f_{\alpha\beta}dx^{\alpha}dx^{\beta}$. We zullen hierbij, als $k \neq 0$, S steeds zo herschalen dat $k = \pm 1$.

Gebruik makend van de resultaten van hoofdstuk 1.12 bekomen we t en slotte de metriek

$$ds^{2} = -dt^{2} + S^{2}(t)[dx^{2} + \Sigma^{2}(r, k)(d\theta^{2} + \sin^{2}\theta d\phi^{2})]$$ \hspace{1cm} (12-2.15)$$

wat, na transformatie van de r–coördinaten de friedmann-lemaitre-robertson-walkermetriek oplevert

$$ds^{2} = -dt^{2} + S^{2}(t) \left(\frac{dr^{2}}{1-kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2)} \right)$$ \hspace{1cm} (12-2.16)$$

Meestal herschrijft men de ‘FLRW-metriek’ in een genormaliseerde gedaante, gebruik makend van $a(t) = S(t)/S_{0}$, waarbij een grootheid voorzien van een benedenindex 0 altijd betrekking heeft op haar momenteel gemeten waarde. Zo bekomen we dus

$$ds^{2} = -dt^{2} + a^{2}(t)S_{0}^{2} \left(\frac{dr^{2}}{1-kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2)} \right)$$ \hspace{1cm} (12-2.17)$$

Als $k = 0$, zijn de ruimten vlak en kan men euclidische coördinaten invoeren zodat

$$ds^{2} = -dt^{2} + a^{2}(t)S_{0}^{2}(dx^{2} + dy^{2} + dz^{2})$$ \hspace{1cm} (12-2.18)$$

Doorgaans kent men aan deze coördinaten het domein $]-\infty, \infty[$ toe, zodat de ruimten een oneindig volume hebben en dus ook de totale hoeveelheid materie in het heelal oneindig is (hetzelfde geldt ook voor $k = -1$, wat aan de $k = 0$ en $k = -1$ modellen de naam open modellen verleent). We kunnen de ruimten echter ook de topologie van een torus geven door de punten $(x + ma, y + nb, z + pc)$ met elkaar te identificeren $(m, n, p \in \mathbb{Z})$. De ruimten worden dan compact en de totale hoeveelheid materie in het heelal is eindig.

156
Als $k = -1$ hebben de ruimten een lobachevskigeometrie en wordt, net zoals bij $k = 0$, de topologie doorgaans zo gekozen dat ze een oneindig volume hebben. Verschillende andere topologieën kunnen echter gekozen worden, zodat ook hier een eindig volume tot de mogelijkheden behoort.

Als $k = +1$ verschilt de situatie grondig van beide voorgaande gevallen: twee, uit een willekeurig punt P, in tegengestelde zin vertrekkende geodeten zullen elkaar steeds ontmoeten in P’s antipode Q. De ruimtelijke hypervlakken zijn dan compact, tenzij we het domein van de coördinaten artificieel inperken. Deze modellen worden dan ook gesloten modellen genoemd. Het totale volume van het heelal is in dat geval

$$2 \times 4\pi S_0^3a^3 \int_0^1 \frac{r^2}{\sqrt{1-r^2}} dr = 2\pi^2a^3S_0^3.$$

Ondanks deze problemen met de topologie van de ruimten, houden we ons verder aan de ingebruik genomen benamingen van open en gesloten modellen. De termen ‘oneindige’ respectievelijk ‘eindige’ modellen (voor $k = 0$, -1 of voor $k = +1$) dienen echter beter vermeden te worden.

Merk ten slotte nog op dat $ds^2 = S_0^2a(\tau)^2(-d\tau^2 + dx^2 + dy^2 + dz^2)$ (12-2.19) met $dt = S_0a d\tau$. Deze eigenschap geldt ook als $k = \pm 1$ (alhoewel de gepaste coördinatentransformatie in deze gevallen niet op eerste zicht te herkennen is).

Metingen van de hubbleconstante H_0 gebeuren op basis van de roodverschuiving: een fundamentele waarnemer zal de frequentie van een lichtsignaal met propagatievector k meten als

$$\omega = |\xi \cdot k| / ||\xi||.$$

Vermits de propagatievector verder nog voldoet aan de nulgeodetische vergelijking $\frac{Dk}{d\lambda} = 0$, is (zie p. 75) $k \cdot \xi$ echter een behouden grootte langs elke nulgeodeet zodat

$$\omega \propto ||\xi||^{-1} \propto S(t)^{-1},$$

of

$$\lambda \propto S(t).$$

Definiëren we de roodverschuiving z als in 10-4.8 opnieuw door

$$1 + z = \frac{\lambda_1^{(r)}}{\lambda_0^{(r)}} = \frac{\lambda_1^{(e)}}{\lambda_0^{(e)}},$$

dan geldt dus

$$1 + z = \frac{S_0}{S_1} \frac{\lambda_1^{(e)}}{\lambda_0^{(e)}}.$$

Gaan we er van uit dat de fundamentele constanten van de fysica onveranderd blijven in de loop van de kosmische tijd t (een hypothese waarover de discussie regelmatig opnieuw opflakkerd), dan is $\lambda_1^{(e)} = \lambda_0^{(e)}$ en dus

$$1 + z = \frac{S_0}{S_1} = \frac{1}{a(t_1)}.$$

4Lachieze-Rey en Luminet, gr/qc/9605010, Phys. Rept. 254, 1995

5bedenk dat $r = \sin \chi$ met χ van 0 tot π
Voor kleine roodverschuivingen geldt in goede benadering

\[a(t) \approx 1 + H_0(t - t_0) - \frac{1}{2} q_0 H_0^2 (t - t_0)^2 + \ldots \]

(12-2.26)

met \(H_0 \) de hubbleconstante en \(q_0 \) de z.g. vertragingparameter

\[q_0 = -\ddot{a} H_0^{-2}, \]

(12-2.27)

zodat

\[z \approx H_0(t_0 - t_1) + H_0^2 \left(1 + \frac{1}{2} q_0 \right) (t_0 - t_1)^2 + \ldots \]

(12-2.28)

De lineaire betrekking

\[z \approx H_0 \Delta t \]

(12-2.29)

wordt de hubblewet genoemd en wordt meestal geïnterpreteerd als een dopplerverschuiving \(z \approx v/c \) met \(v \) de recessiesnelheid van de lichtbron. Vermits \(c \Delta t \) in goede benadering de 'afstand' is van de bron, verklaart dit waarom \(H_0 \) dikwijls gegeven wordt in eenheden van km/s Mpc\(^{-1}\).

Iets preciezer wordt \(\Delta t \) (de z.g. terugkijktijd) gegeven door de reeks 12-2.28 te inverteren:

\[t_0 - t_1 \approx H_0^{-1} \left(z - \left(1 + \frac{1}{2} q_0 \right) z^2 + \ldots \right). \]

(12-2.30)

De coördinatafstand \(r_1 \) waar het lichtsignaal werd uitgezonden volgt dan uit

\[0 = -dt^2 + S^2(t) \frac{dr^2}{1 - kr^2}, \]

(12-2.31)

namelijk

\[r_1 \approx \frac{1}{H_0 S_0} \left(z - \frac{1}{2} (1 + q_0) z^2 \right). \]

(12-2.32)

De grootheid \(r_1 \) is echter niet direct fysisch observeerbaar; evenmin geldt dit voor de eigenafstand \(d_p \) gedefinieerd door

\[d_p = S_0 \int_0^{r_1} \frac{dr}{\sqrt{1 - kr^2}} \]

(12-2.33)

Meer algemeen kunnen we ook \(d_p(t) \) definiëren als \(d_p(t) = d_p \frac{S(t)}{S_0} \). Dit is dus de afstand tussen de waarnemer op \(r = 0 \) en een object op \(r = r_1 \), gemeten langs een ruimtelijke geodeet in het ruimtelijk hyperoppervlak van constante \(t \).

Daarom wordt in de astronomie gebruik gemaakt van andere 'afstanden', zoals \(d_{par} \), \(d_{pm} \), \(d_a \) en \(d_l \), respectievelijk de parallax distance, proper motion distance, angular diameter distance en luminosity distance genoemd. Met \(b \) de afstand tussen twee (naburige) waarnemers in het zonnestelsel en \(\theta \) de gemeten parallactische hoek, \(v_\perp \) de snelheid van de bron (loodrecht op de zichtlijn en gemeten door een waarnemer in rust in \(r_1 \)), \(\mu \) de in \(r_0 \) gemeten eigenbeweging, \(D \) de (eigen) doormeter van de lichtbron, \(\delta \) de waargenomen schijnbare doormeter en met \(L \) en \(\ell \) de absolute respectievelijk schijnbare lichtkracht van de bron, gelden de volgende definities (gebaseerd op de corresponderende eigenschappen in een euclidische ruimte):

\[
\begin{align*}
 d_{par} &= \frac{b}{\theta}, \\
 d_{pm} &= \frac{v_\perp}{\mu}, \\
 d_a &= \frac{D}{\delta}, \\
 d_L &= \left(\frac{L}{4\pi \ell} \right)^{1/2}.
\end{align*}
\]

(12-2.34)
Omdat een bron op \((t_1, r_1)\) met schijnbare doormeter \(\delta\) een boogje opzprent met eigenlengte \(D = r_1 S_1 \delta\), geldt dan bv. \(d_a = r_1 S_1\). Analoog kan men aantonen dat de andere afstanden in een FLRW-model gegeven worden door (zie bv. Weinberg)

\[
\begin{align*}
d_{\text{par}} &= S_0 \frac{r_1}{\sqrt{1 - kr_1^2}}, \\
d_{\text{pm}} &= S_0 r_1, \\
da &= S_1 r_1, \\
d_L &= \frac{S_0}{S_1} S_0 r_1.
\end{align*}
\]

(12-2.35)

Er geldt dus \(d_a = (1 + z)^{-2} d_L\) en \(d_{\text{pm}} = (1 + z)^{-1} d_L\). De factor \(S_0/S_1 \propto 1 + z\) resulteert in een verkleining van de schijnbare lichtkracht met een factor \((1 + z)^{-2}\): dit is een gevolg van een \((1 + z)\) factor optredend in (1) het energieverlies van de individuele fotonen en (2) in de verhouding van de tijdsintervallen waarbinnen elk foton wordt uitgezonden en ontvangen. In principe kan enkel \(d_{\text{par}}\) rechtstreeks informatie verschaffen over \(q_0\) en \(H_0\): helaas is dit momenteel technisch onhaalbaar en wordt \(d_{\text{par}}\) samen met \(d_{\text{pm}}\) enkel gebruikt om de ‘eerste treden’ van de kosmische ‘afstandsledder’ te calibrieren. De hieruit bekomen informatie wordt vervolgens gebruikt om afscattingen te bekomen van de absolute lichtkracht \(L\) van verschillende klassen van objecten. Uit 12-2.32 en 12-2.34 bekomen we de relatie

\[
d_L \approx H_0^{-1} (z + \frac{1}{2} (1 - q_0) z^2),
\]

(12-2.36)

waaruit ten slotte afschattingen van \(H_0\) en \(q_0\) bekomen worden. Verschillende soorten van waarnemingen (sterrenstelsels, radiobronnen en QSO’s) lijken momenteel te convergeren naar een waarde voor \(H_0\) van ongeveer \(70 \pm 7\) km s\(^{-1}\) Mpc\(^{-1}\), i.e. \(H_0^{-1} \approx 14 \times 10^9\) jaar. Over \(q_0\) blijven de gegevens eerder beperkt; nochtans lijkt er een consensus te ontstaan (vooral gebaseerd op de type Ia supernova waarnemingen) dat alleszins \(q_0 < 0\).

Kijken we terug naar 12-2.31, dan zien we dat de verleden lichtkegel van \((t = t_0, r = 0)\), evenals de toekomstige lichtkegel van \((t = t_1, r = 0)\), gegeven worden door de vergelijking \(r_1 = r_1(t_1, t_0)\) met

\[
\int_0^{t_1} \frac{dr}{(1 - kr^2)^{1/2}} = \int_{t_0}^{t_1} \frac{dt'}{R(t')}.
\]

(12-2.37)

Gebeurtenissen buiten deze twee null-oppervlakken hebben “wijk” (in \(r = 0\)) nooit waargenomen of, vice versa, zullen nooit een lichtsignaal uit \(r = 0\) kunnen ontvangen. Als de integraal in het rechterlid convergeert voor \(t_0 \rightarrow \infty\), dan zijn er dus gebeurtenissen in het heelal die wij nooit zullen waarnemen, hoe lang we ook wachten: het oppervlak \(r_1 = r_1(t_1, \infty)\) wordt dan een kosmologische event horizon genoemd. Dit treedt niet op in de standaard FLRW modellen gedomineerd door straling en/of stof en met niet-positieve kosmologische constante (zie verder), maar bv. wel in modellen met \(\lambda > 0\), zoals in het de sitter heelal. Anderzijds kan het rechterlid van 12-2.37 convergeren voor \(t_1 \rightarrow 0\) (bij een big bang) (of naar \(-\infty\) bij een eeuwig expanderend model). In dat geval zijn er fundamentele waarnemers die wij sinds het ontstaan van het heelal nog nooit hebben waargenomen: het null-oppervlak \(r_1 = r_1(0, t_0)\) (de toekomstige lichtkegel van \((t = 0, r = 0)\)) wordt dan een deeltjeshorizon genoemd. Deze naam wordt ook gegeven aan het corresponderende getal \(r_1\), of ook (voor enige verwarring zorgend) aan de eigenafstand (op het tijdstip \(t\)) van \(0\) tot \(r_1\) en doorgaans genoteerd als \(d_{\text{ph}}(t)\): in een vlak big bang model geldt dus \(d_{\text{ph}}(t) = S(t) \int_0^t \frac{dt'}{R(t')}\). Nog een begrip dat voor enige verwarring zorgt is de z.g. hubblestraal van het heelal, gedefinieerd als de (eigen)afstand van objecten die zich met recessiesnelheid \(v_{\text{rec}} = c\) van ons verwijderen: met \(v_{\text{rec}} = S(t)r_1 = H(t)d_{\text{ph}}(t)\) vinden we dat deze eigenafstand gegeven wordt door \(d_{\text{hubble}}(t) = c/H(t)\). De hubblestraal is dus geen horizon! Deeltjeshorizons spelen een belangrijke rol in de standaard FLRW modellen, aangezien zij aanwezig zijn in stof- en stralingsgedomineerde modellen (zie verder) en liggen aan de basis van het z.g. horizonprobleem en het inflatie-idee.
12-3 Energie-impulstensor

In een orthonormale basis \((e_0, e_\alpha)\) met \(e_0 = u\), zijn de vectoren \(e_\alpha\) bepaald op rotaties in de ruimte na. Bijgevolg zijn \(8\pi T_{00} = G_{\hat{0}\hat{0}}\) en \(8\pi T_{11} = G_{\hat{1}\hat{1}} = G_{22} = G_{33}\) twee scalaire grootheden, die we respectievelijk de (fenomenologische) matriderdichtheid \(\rho\) en druk \(p\) noemen. In een willekeurige basis geldt dan

\[
T_{ab} = \rho u_a u_b + ph_{ab},
\]

waarbij \(\rho\) en \(p\) constant zijn in elke ruimte, zodat

\[
\rho = \rho(t) \quad \text{en} \quad p = p(t).
\]

De FLRW-metriek leidt dus tot de conclusie dat de materie-inhoud van het universum te beschrijven is —althans op fenomenologische wijze— als een *perfecte vloeistof*. Deze vloeistof kan echter bestaan uit verschillende fysische componenten, die zich elk afzonderlijk *niet noodzakelijk* als perfecte vloeistof moeten gedragen.

Om de veldvergelijkingen op te lossen moet nog een relatie tussen \(p\) en \(\rho\) gegeven worden (de toestandsvergelijking). Een vaak voorkomende toestandsvergelijking voor een model met één enkele vloeistof-component is de z.g. ‘\(\gamma\)-wet’

\[
p = (\gamma - 1)\rho,
\]

met \(\gamma\) een constante. Dit bevat o.a. het geval van ‘stof’ of drukvrije materie:

\[
p = 0 \quad (\gamma = 1)
\]

en het geval van ‘zuivere straling’:

\[
p = \frac{\rho}{\gamma} \quad (\gamma = \frac{4}{3}),
\]

waarbij \(\rho\) gegeven wordt de stralingswet van Stefan-Boltzmann, \(\rho = \sigma T^4\), met \(T\) de stralingstemperatuur.

Substitutie van 12-3.1 in \(T_{ab;b} = 0\) leidt nu tot de enige behoudswet

\[
\dot{\rho} + (\rho + p)3 \frac{\dot{a}}{a} = 0,
\]

i.e. \(\dot{\rho} + (\rho + p)\Theta = 0\), wat met een toestandsvergelijking van de gedaante 12-3.4 resulteert in

\[
\rho = \rho_0 a^{-3\gamma}.
\]

Voor een stofmodel geeft dit i.h.b.

\[
\rho^{(m)} = \rho_0^{(m)} a^{-3}
\]

en voor een zuiver stralingsmodel

\[
\rho^{(r)} = \rho_0^{(r)} a^{-4},
\]

zodat

\[
T = T_0 a^{-1}.
\]

Voor een gemengd model met \(\rho = \rho^{(m)} + \rho^{(r)}\) en \(p = \frac{1}{3}\rho^{(r)}\) leiden huidige schattingen tot

\[
10^{-27} \text{kg m}^{-3} < \rho^{(m)} < 10^{-26} \text{kg m}^{-3},
\]

terwijl de temperatuur van de microgolfachtergrondstraling \(T_0 \approx 2.73\Omega K\) en dus

\[
\rho^{(r)} \approx 10^{-30} \text{kg m}^{-3}.
\]
Als laatste voorbeeld bekijken we het geval van een scalar veld Φ met massa m en potentiaal $V(\Phi)$, waarvoor

$$T_{ab} = \Phi_a \Phi_b - \frac{1}{2} g_{ab} (\Phi_c \Phi^c + 2V(\Phi) + m^2 \Phi^2). \quad (12-3.13)$$

De behoudswetten resulteren dan in

$$\Box \Phi - m^2 \Phi \equiv \Phi^{\alpha\beta}a_{\alpha\beta} + m^2 \Phi = \frac{\partial V}{\partial \Phi}, \quad (12-3.14)$$

wat precies de veldvergelijking voor Φ is.

oefening: Bewijs dat in een FLRW–model noodzakelijk geldt dat $\Phi = \Phi(t)$.

Identificatie van $12-3.13$ met $12-3.1$ levert dan onmiddellijk

$$2\rho_{\Phi} = \Phi^2 + m^2 \Phi^2 + 2V(\Phi), \quad (12-3.15)$$

$$2p_{\Phi} = \Phi^2 - m^2 \Phi^2 - 2V(\Phi), \quad (12-3.16)$$

terwijl de behoudswet $12-3.14$ zich laat herschrijven als

$$a^{-3}(a^3 \dot{\Phi}) = m^2 \Phi - \frac{\partial V}{\partial \Phi}. \quad (12-3.17)$$

Voor $m = V = 0$ bekomen we hiermee de toestandsvergelijking van een *stijve vloeistof*: $p = \rho$.

12-4 Veldvergelijkingen

We bekijken nu

$$G_{ab} + \Lambda g_{ab} = 8\pi T_{ab}, \quad (12-4.1)$$

met

$$T_{ab} = \rho u_a u_b + p h_{ab}. \quad (12-4.2)$$

Noteer dat we desgewenst Λ in T_{ab} kunnen absorberen door p en ρ te herdefiniëren:

$$p' = p - \frac{1}{8\pi} \Lambda, \quad (12-4.3)$$

$$\rho' = \rho + \frac{1}{8\pi} \Lambda.$$

Voor de componenten van de riccitensor t.o.v. een orthonormale basis (e_0, e_α) met $e_0 = u$ vinden we

$$R_{00} = -3 \frac{\ddot{a}}{a}, \quad (12-4.4)$$

$$R_{\alpha\alpha} = \frac{\ddot{a}}{a} + 2 \frac{\dot{a}^2}{a^2} + 2 \frac{k}{a^2}, \quad (12-4.5)$$

en dus voor de ricciscalar

$$R = 6(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{S_0 a^2}). \quad (12-4.6)$$

De veldvergelijkingen reduceren zich hiermee tot twee differentiaalvergelijkingen voor a:

$$3 \frac{\dot{a}^2}{a^2} + 3 \frac{k}{S_0^2 a^2} = 8\pi \rho + \Lambda, \quad (12-4.7)$$

$$-2 \frac{\ddot{a}}{a} - \frac{\dot{a}^2}{a^2} - \frac{k}{S_0^2 a^2} = 8\pi p - \Lambda. \quad (12-4.8)$$
De eerste vergelijking wordt de *friedmannvergelijking* genoemd. Eliminatie van de ruimtelijke kromming uit 12-4.7 en 12-4.8 levert anderzijds de *raychaudhurivergelijking*:

\[3 \ddot{a} + 4\pi (\rho + 3p) - \Lambda = 0. \]
\[(12-4.9) \]

Deze vergelijkingen zijn niet onafhankelijk: de som van 12-4.7 en 12-4.8 geeft

\[(3 \dot{a}^2 + 3 \frac{k}{S_0^2 a^2})' = -24\pi (\rho + p) \frac{\dot{a}}{a}, \]
\[(12-4.10) \]

waaruit blijkt dat, als \(p \) en \(\rho \) aan elkaar gekoppeld zijn door de behoudswet 12-3.6, dan 12-4.7 een eerste integraal is van 12-4.8.

Merk op dat uit de raychaudhurivergelijking en uit de z.g. *sterke energievoorwaarde* \((\rho + 3p \geq 0) \) volgt dat het heelal voor \(\Lambda \leq 0 \) een singuliere oorsprong \((a = 0) \) heeft (want \(\ddot{a}(t) \leq 0 \) voor alle \(t \)), de *oerknal* of *big bang* genoemd, terwijl de friedmannvergelijking impliceert dat voor open modellen met \(\rho \) en \(\Lambda \geq 0 \) de expansie onbeperkt verder gaat. Noteer ook dat, met \(\ddot{a}(t) < 0 \) voor alle \(t \) de leeftijd van het heelal zowiezo kleiner is dan \(H_0^{-1} = 1/\dot{a}_0 \), de z.g. *hubble-leeftijd* van het heelal.

Om oplossingen van de veldvergelijkingen te bepalen, zoekt men gewoonlijk bij een gegeven toestandsvergelijking eerst een oplossing \(\rho = \rho(a), p = p(a) \) van de behoudswet, en lost hiermee de friedmannvergelijking op (dit is niet altijd mogelijk: b.v. voor een scalar veld leven 12-3.17 en de friedmannvergelijking een gekoppeld stelsel eerste-orde differentiaalvergelijkingen in \(\Phi \) en \(a \)). We illustreren deze methode in de volgende paragraaf.

Oefening

Toon aan dat de FLRW-metriek kan herschreven worden als

\[ds^2 = -(\frac{8\pi \rho + \Lambda}{3} - ke^{2\tau})^{-1} d\tau^2 + e^{-2\tau} (1 + kr^2/4)^{-2} (dx^2 + dy^2 + dz^2), \]
\[(12-4.11) \]

met \(\tau = \tau(t) \) en \(r^2 = x^2 + y^2 + z^2 \). Toon aan dat de druk gegeven wordt door

\[\rho + p = \frac{1}{3} \frac{d\rho}{d\tau}. \]

12-5 Oplossingen

Statisch einsteinheelal

Uit 12-4.7 en 12-4.8 volgt met \(\dot{a} = 0 \) dat \(\rho \) en \(p \) constanten zijn waarvoor geldt dat

\[8\pi (\rho + p) = 2 \frac{k}{S_0^2 a^2}. \]

Uit de z.g. *zwakke energievoorwaarde* \((\rho \geq 0 \text{ en } \rho + p \geq 0) \) volgt dan noodzakelijk dat \(k = +1 \). Uit 12-4.8 blijkt bovendien dat de druk \(p \) enkel \(\geq 0 \) kan zijn, als we het bestaan onderstellen van een positieve kosmologische constante (het was precies om zulk model mogelijk te maken dat Einstein de kosmologische constante aan de oorspronkelijke veldvergelijkingen had toegevoegd).

12-5.1 Niet-statische modellen

Het is nuttig om de vergelijkingen verder te vereenvoudigen door de introductie van de z.g. *kritische dichtheid*

\[\rho_{crit} = \frac{3H^2}{8\pi}. \]
\[(12-5.1) \]
Dit is (zie 12-4.7) de *totale* energiedichtheid (gewone materie + Λ term) van een $k = 0$ heelal. Voor elke mogelijke bijdrage tot de energiedichtheid, $\rho^{(i)} = \rho^{(m)}$, $\rho^{(r)}$, ..., $\Lambda/8\pi$, kunnen we vervolgens een dimensieloze parameter $\Omega^{(i)}$ definiëren door

$$\Omega^{(i)} = \frac{\rho^{(i)}}{\rho_{\text{crit}}}.$$ \hspace{1cm} (12-5.2)

Noteren we de totale energiedichtheidparameter als $\Omega = \sum \Omega^{(i)}$ dan volgt uit de friedmannvergelijking 12-4.7 onmiddellijk een verband tussen de geometrie en de huidige totale energiedichtheid:

$$\frac{k}{H_0^2 S_0^2} = \Omega_0 - 1,$$ \hspace{1cm} (12-5.3)

waarbij H_0 de huidige waarde van de hubbleparameter voorstelt: $H_0 = (\dot{a}/a)_0$.

Uit het gedrag van de individuele energiedichtheden (12-3.7) volgt voor de dichtheidsparameters

$$\Omega^{(i)} = \frac{\Omega^{(i)}_0 H_0^2}{H^2} a^{-3\gamma^i},$$ \hspace{1cm} (12-5.4)

en dus

$$\frac{\Omega^{(i)}}{\Omega^{(j)}} \sim a^{-3(\gamma^i - \gamma^j)}.$$ \hspace{1cm} (12-5.5)

Men definiert soms ook een *effectieve krommingsenergiedichtheid* $\rho^{(k)} = -3k/(8\pi S_0^2 a^2)$, waarmee de friedmannvergelijking zich laat herschrijven als

$$H^2 = \frac{8\pi}{3} \sum_{i,k} \rho^{(i)} = H_0^2 \sum_{i,k} \Omega^{(i)}_0 a^{-3\gamma^i},$$ \hspace{1cm} (12-5.6)

waarbij de som nu loopt over alle bijdragen, inclusief de Λ-term en de kromming, met

$$\Omega^{(k)}_0 = -\frac{k}{S_0^2 H_0^2}.$$ \hspace{1cm} (12-5.7)

Deze schrijfwijze heeft als voordeel dat ze duidelijk maakt op welke manier de verschillende componenten van het model bijdragen tot de expansie:

<table>
<thead>
<tr>
<th>Component</th>
<th>γ^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>stof</td>
<td>3</td>
</tr>
<tr>
<td>straling</td>
<td>4</td>
</tr>
<tr>
<td>Λ</td>
<td>0</td>
</tr>
<tr>
<td>kromming</td>
<td>2</td>
</tr>
</tbody>
</table>

Dit toont b.v. dat de bijdrage van de fotonen, voornamelijk via de kosmische achtergrondstraling, in de uitdrukking 12-5.6 momenteel weliswaar verwaarloosbaar is, aangezien 12-3.12 impliceert dat $\Omega^{(r)} \approx 5 \times 10^{-5}$, maar dat de fotonen in de vroegste fasen van het heelal de dynamica duidelijk zullen domineren.

Een andere parameter die in principe observeerbaar is, is de *vertraging parameter*

$$q_0 = -H_0^{-2} \frac{\dot{a}}{a}_0.$$ \hspace{1cm} (12-5.8)

Uit de raychaudhurivergelijking volgt dan voor een mengsel van stof, straling en Λ-term dat

$$q_0 = \frac{1}{2}(\Omega^{(m)}_0 + 2\Omega^{(r)}_0) - \Omega^{(\Lambda)}_0.$$ \hspace{1cm} (12-5.9)
Een positieve kosmologische constante zorgt dus voor een *versnelling* van de expansie. De combinatie van verschillende soorten waarnemingen leidt momenteel tot een schatting van $\Omega_0^{(\Lambda)} \approx 0.7$ en van $\Omega_0^{(m)} \approx 0.3$. Bovendien blijkt slechts een fractie ($1/3$?) van $\Omega_0^{(m)}$ te bestaan uit gekende materievoer-
men.

Samen met de friedmannvergelijking 12-5.6, evenals 12-3.11 en 12-3.12, namelijk $0.04 < \Omega_0^{(m)} < 1$ en $\Omega_0^{(r)} \approx 5 \times 10^{-5}$, toont dit hoe we —in principe althans— uit waarnemingen van q_0 en H_0 de waarden kunnen bepalen van Λ en van de ruimtelijke kromming k/S_0^2.

Modellen met $\Lambda = 0$

12-5.6 toont onmiddellijk dat de gesloten modellen expanderen tot een maximale straal bereikt wordt en vervolgens terug samentrekken, terwijl de open modellen onbeperkt expanderen.

Voor een mengsel van stof en straling wordt 12-5.6 gegeven door

$$a^2 = H_0^2 \left(\frac{\Omega_0^{(m)}}{a} + \frac{\Omega_0^{(r)}}{a^2} - \frac{k}{S_0^2 H_0^2} \right)$$

en zijn de oplossingen het eenvoudigst te bekomen door de introductie van een z.g. *conforme tijd* $\tau = \int dt/S$. We vinden dan met $\alpha = \frac{1}{2} S_0^2 H_0^2 \Omega_0^{(m)}$ en $\beta = (S_0^2 H_0^2 \Omega_0^{(r)})^{1/2}$:

i) voor $k = +1$

$$a = \alpha (1 - \cos \tau) + \beta \sin \tau,$$

$$t = S_0 [\alpha (\tau - \sin \tau) + \beta (1 - \cos \tau)], \quad (12-5.11)$$

ii) voor $k = 0$

$$a = \alpha \tau^2 + \beta \tau,$$

$$t = S_0 [\alpha \tau^3 + \beta \tau^2], \quad (12-5.12)$$

iii) voor $k = -1$:

$$a = \alpha (\cosh \tau - 1) + \beta \sinh \tau,$$

$$t = S_0 [\alpha (\sinh \tau - \tau) + \beta (\cosh \tau - 1)]. \quad (12-5.13)$$

Belangrijke bijzondere gevallen zijn (waarbij we telkens één integratieconstante elimineren d.m.v. een tijdservatie)

a) $\rho^{(r)} = 0$, $k = 0$, $q_0 = \frac{1}{2}$:

$$a \propto t^{2/3}. \quad (12-5.14)$$

 Dit is het z.g. *einstein-desittermodel*, dat een goede benadering is voor de ‘late’ evolutie van het heelal, wanneer de effecten van de straling verwaarloosbaar klein zijn. De leeftijd van dit model bedraagt $t_0 = \frac{2}{3} H_0^{-1}$.

b) $\rho^{(m)} = 0$, $k = 0$, $q_0 = 1$:

$$a \propto t^{1/2}. \quad (12-5.15)$$

164
Dit model geeft een goede benadering voor de ‘vroegere’ evolutie van het heelal, wanneer de materieinhoud gedomineerd wordt door relativistische deeltjes en straling. De leeftijd bedraagt $t_0 = \frac{1}{2}H_0^{-1}$.

c) $\rho^{(m)} = \rho^{(r)} = 0$, $k = -1$, $q_0 = 0$: $a \propto t$. (12-5.16)

Dit laatste is het z.g. milnemodel, met leeftijd $t_0 = H_0^{-1}$: dit is niets anders dan de minkowskirusimte in bijzondere coördinaten! Dit heelal beschrijft het asymptotisch gedrag van alle open modellen waarin de materiedichtheid sneller afneemt dan S^{-2} (zoals het geval is in de hoger vermelde stof-straling mengsels).

Oefening
Toon aan dat in een $k = 1$, $\Lambda = 0$ model met zuiver stof ($p = 0$) een lichtsignaal uitgezonden op $t = 0$ precies één keer omheen het heelal kan reizen. Toon ook aan dat in het geval van zuivere straling ($p = \rho/3$) het lichtsignaal slechts tot in de helft raakt.

Modellen met $\Lambda \neq 0$

Exacte oplossingen kunnen nu enkel gegeven worden voor een aantal bijzondere toestandsvergelijkingen. Zo kunnen b.v. alle modellen met $\rho^{(r)} = 0$ opgelost worden met elliptische functies. Over het algemeen leren we echter met deze analytische uitdrukkingen weinig of niets bij. Een kwalitatieve discussie aan de hand van het $\dot{a} = \dot{a}(a)$ gedrag is doorgaans instructiever. We onderscheiden volgende gevallen:

i) $\Lambda < 0$. Een negatieve kosmologische constante kan via de friedmannvergelijking geïnterpreteerd worden als een extra aantrekkende kracht (zie ook 12-4.3) die de expansie van het heelal tegenwerkt. De Λ-term zal uiteindelijk in de friedmannvergelijking domineren en zorgen voor een samentrekking van het heelal.
ii) $\Lambda > 0$. Een positieve kosmologische constante impliceert een extra repulsieve kracht die de expansie van het model versterkt. Het uiteindelijke resultaat hangt echter af van de ruimtelijke kromming:

a) Voor $k \leq 0$ wordt \dot{a} nooit 0 en gaat de expansie onbeperkt verder. Al deze modellen hebben bovendien, voor ‘normale’ materie, een singulariteit in het verleden. Een belangrijke uitzondering is het *desitterheelal* met $a \propto \exp(\sqrt{\frac{\Lambda}{3}}t)$ en $\rho^{(m)} = \rho^{(r)} = 0$, dat model stond voor het z.g. *steady state universe* van Bondi, Gold en Hoyle.

b) Voor $k = +1$ bestaat een rijk gevarieerde verzameling van oplossingen:

1) het statisch einsteinheelal ($a = a_c$) is één van deze mogelijkheden, met a_c een constante, afhankelijk van de gekozen toestandsvergelijking en van Λ.

2) Voor $a < a_c$ ($> a_c$) is $\ddot{a} < 0$ (> 0). Er bestaan bijgevolg modellen die in het verleden ‘asymptotisch’ vertrekken zoals het einsteinheelal, om vervolgens onbeperkt te expanderen ofwel samen te trekken tot een singulariteit.

Een andere mogelijkheid wordt geboden door modellen die, vertrekkend van $a = \infty$ in het verleden:

- samentrekken tot een singulariteit in de toekomst,
- asymptotisch samentrekken tot $a = a_c$,
- samentrekken tot $a_m > a_c$ om vervolgens onbeperkt te expanderen.

Ten slotte zijn er de modellen die, vertrekkend van een singulariteit in het verleden:

- opnieuw samentrekken tot een singulariteit in de toekomst,
- asymptotisch tot $a = a_c$ expanderen,
- onbeperkt expanderen.

In dit laatste geval wordt de expansiesnelheid vertraagd nabij $a = a_c$ en ontstaat de mogelijkheid om het heelal gedurende lange tijd te laten ‘sudderen’ nabij a_c. Dit zijn de z.g. *eddington-lemaîtremodellen*.

166
Hoofdstuk 13

Enkele bijzondere oplossingen

13-1 Inleiding

Vermits de einsteinvergelijkingen *partiële* differentiaalvergelijkingen zijn, ligt het voor de hand om, voor de constructie van exacte oplossingen, eerst te kijken naar situaties waarin het aantal veranderlijken zo klein mogelijk is (in sommige gevallen zullen we de vergelijkingen dan zelfs kunnen reduceren tot gewone differentiaalvergelijkingen, zoals in het vorige hoofdstuk). Daartoe maken we gebruik van opgelegde symmetrie-eisen.

Eén van de eigenschappen die we kunnen opleggen is dat de oplossingen *stationair* zijn. Intuïtief houdt dit in dat coördinaten \((t, x^\alpha)\) kunnen gekozen worden, zodat de componenten van de metriek enkel *functies* zijn van de \(x^\alpha\). Gebruik makend van wat we in hoofdstuk 1.12 gezien hebben, herformuleren we dit op coördinaatonaafhankelijke wijze als volgt:

Een ruimtetijd \((\mathcal{M}, g)\) is *stationair* als en slechts als een tijdachtig killingvectorveld \(\xi\) bestaat, met de eigenschap dat \(\mathcal{L}_\xi \Psi = 0\) voor alle materievelden \(\Psi\) gedefinieerd op \(\mathcal{M}\).

Met \(\xi = \frac{\partial}{\partial t}\) geldt dan inderdaad dat \(\frac{\partial g_{ij}}{\partial t} = 0\) \(\forall i, j\). Noteer de extra eis dat de materievelden de *symmetrie* *overerven*: als \(\frac{\partial g_{ij}}{\partial t} = 0\) dan volgt uit de veldvergelijkingen weliswaar dat \(\frac{\partial T_{ij}}{\partial t} = 0\), maar dit impliceert geenzins dat de materievelden, waaruit \(T\) is opgebouwd, voldoen aan \(\frac{\partial \Psi}{\partial t} = 0\) (tegenvoorbeelden zijn bekend o.a. voor een maxwellveld).

Analoog wordt een ruimtetijd *axisymmetrisch* genoemd als er een killingvectorveld \(K\) bestaat waarvan de banen \(2\pi\)-periodische gesloten krommen zijn, waarvoor de verzameling \(\{p \in \mathcal{M}; K_p = 0\}\) (de *omwentelingsas*) niet leeg is en waarvoor de materievelden de *symmetrie* *overerven*.

Is \((\mathcal{M}, g)\) stationair, dan geldt in lokale coördinaten dat \(g_{ij} = g_{ij}(x^\alpha)\). In het algemeen zullen in het lijnelement dus nog kruistermen \(dt\ dx^\alpha\) optreden. De aanwezigheid van deze termen impliceert (1) dat \(g\) niet noodzakelijk invariant is onder de reflectie \(t \rightarrow -t\) (wat gewoonlijk duidt op de aanwezigheid van rotaties) en (2) dat waarnemers verbonden aan de integraalkrommen van \(\xi = \frac{\partial}{\partial t}\) niet noodzakelijk eensgezinde uitspraken kunnen maken over de gelijkheid van gebeurtenissen. Voor dit laatste moeten eerst de *lokale ruimtekrachten* (de orthogonale complementen in \(T_p(\mathcal{M})\) van \(\frac{\partial}{\partial t}\)) van deze waarnemers glad aan elkaar gesloten worden. Volgens de discussie in 1.11.3 vereist dit dat \(\xi\) *hyperoppervlakorthogonaal* is. Dit brengt ons tot de volgende definitie:

Een ruimtetijd \((\mathcal{M}, g)\) is *statisch* als en slechts als een tijdachtig hyperoppervlakorthogonaal killingvectorveld bestaat, met de eigenschap dat \(\mathcal{L}_\xi \Psi = 0\) voor alle op \(\mathcal{M}\) gedefinieerde materievelden \(\Psi\).

Is \((\mathcal{M}, g)\) statisch, dan bestaan lokale coördinaten zodat

\[
\text{d}s^2 = -e^{2U(x^\nu)}\text{d}t^2 + h_{\alpha\beta}(x^\nu)\text{d}x^\alpha\text{d}x^\beta
\]

(13-1.1)
met \(-e^{2U} = \xi^2\). De metrik is dan duidelijk invariant onder de reflectie \(t \rightarrow -t\). Bovendien kan men aantonen (c.f. Weinberg) dat de metrik \(ds_{(3)}^2 = h_{\alpha\beta}(x^\nu)dx^\alpha dx^\beta\) kan gediagonaliseerd worden, zodat voor een statische ruimtetijd steeds geldt dat

\[
ds^2 = -e^{2U(x^\nu)}dt^2 + \sum_{\alpha=1}^{3} f_\alpha(x^\nu)dx^\alpha^2
\]

(13-1.2)

Zelfs met deze vereenvoudigingen blijven de einsteinvergelijkingen nog altijd een uiterst gecompliceerd stelsel: van de vacuum vergelijkingen \((R_{ij} = 0)\) zijn alle zogenaamd algebraisch ontaarde\(^1\) statische oplossingen bekend, maar slechts een handvol van de niet-ontaarde oplossingen is tot dusver gevonden!

13-2 Sferische symmetrie

De veldvergelijkingen kunnen nog sterker vereenvoudigd worden door, i.p.v. het bestaan op te leggen van één Killingvectorveld (dus het bestaan van een één-dimensionale symmetrie-groep), het bestaan te eisen van een \(r\)-dimensionale symmetrie-groep met \(r > 1\). Eén van de fysisch meest relevante gevallen is dat van sferische symmetrie, waarbij we eisen dat een ruimtetijd een met \(SO(3)\) isomorfe 3–dimensionale groep van isometriën bezit, zó dat

- a) de generatoren van deze groep ruimte-achtige vectoren zijn en
- b) de banen \(O_p\) van de groep diffeomorf zijn met de 2–sfeer (de baan van een symmetrie-groep \(G\) in een punt \(p\) van \(M\) is de verzameling van alle punten \(p'\) die bekomen worden door willekeurige elementen van \(G\) op \(p\) te laten werken).

Net zoals in vorige paragraaf eisen we bovendien dat alle materievelden de symmetrie van de groep overerven. Als we de voorwaarde (b) verzwakken en enkel opleggen dat de banen 2–dimensionaal zijn, dan zijn (zie p.115) de banen maximaal symmetrisch en hebben dus een geïnduceerde metrik hebben van de vorm 9-3.6,

\[
ds_{(2)}^2 = Y^2(dx^2 + \Sigma^2 dy^2) \quad \text{met} \quad \Sigma = \sin x, \ x, \ \text{of} \ \sinh x.
\]

(13-2.1)

Naargelang de vorm van \(\Sigma\) spreken we dan respectievelijk van een sferisch symmetrische, planair symmetrische of pseudo-sferisch symmetrische variëteit. Vervolgens kan men aantonen\(^2\) dat bovenstaande voorwaarden leiden tot het bestaan van een coördinaatstelsel waarin de metrik te schrijven is als

\[
ds^2 = f(u,v)du^2 + g(u,v)dv^2 + h(u,v)dudv + Y^2(u,v)(dx^2 + \Sigma^2 dy^2).
\]

(13-2.2)

Beperken we ons verder tot het sferisch symmetrische geval en diagonaliseren we de metrik van de \((u,v)\)-ruimte, dan bekomen we uiteindelijk

\[
ds^2 = -e^{2\nu}dt^2 + e^{2\lambda}dr^2 + Y^2(d\theta^2 + \sin^2 \theta d\phi^2),
\]

(13-2.3)

met \(\nu, \lambda\) en \(Y\) functies van \(r\) en \(t\). De killingvectoren worden dan gegeven door

\[
\xi_1 = \cos \phi \frac{\partial}{\partial \theta} - \sin \phi \cot \theta \frac{\partial}{\partial \phi},
\]

\[
\xi_2 = \frac{\partial}{\partial \phi},
\]

\[
\xi_3 = \sin \phi \frac{\partial}{\partial \theta} + \cos \phi \cot \theta \frac{\partial}{\partial \phi}.
\]

\(^1\)Levi-Civita, 1920

\(^2\)B.G. Schmidt, Isometry Groups with Surface-Orthogonal Trajectories, Z. Naturforschg. 22a 1351 (1967)
Voeren we een orthogonale basis in met $\omega^1 = Y d\theta$, $\omega^2 = Y \sin \theta d\phi$, $\omega^3 = \epsilon^\lambda dr$ en $\omega^4 = e^\nu dt$ en noteren we met $'$ en '' respectievelijk de partiële afgeleiden naar t en r, dan kan geverifieerd worden dat de
connectievormen gegeven worden door

$$\Gamma^N_3 = -\epsilon^{-\lambda} Y' Y^N, \quad \Gamma^N_4 = -\epsilon^{-\nu} \frac{Y^N}{Y}, \quad \Gamma^4_3 = -\epsilon^{-\lambda} \nu + e^\nu \lambda^3, \quad \Gamma^2_1 = \frac{1}{Y} \cot \theta \omega^2. \tag{13-2.5}$$

Hiermee vinden we voor de componenten van de einsteinstensor

$$G_{11} = G_{22} = e^{-2\lambda}(\nu'' + \nu'' - \nu'') + \frac{Y'''}{Y} + \frac{Y'}{Y} \nu' - \frac{Y'}{Y} \lambda', \quad \frac{1}{Y'^2} - \frac{2}{Y} e^{-2\nu}(\bar{Y} - \bar{Y} + \frac{Y^2}{2Y} + 2 e^{-2\lambda}(Y' \nu' + \frac{Y'^2}{2Y})), \quad \frac{1}{Y'^2} - \frac{2}{Y} e^{-2\nu}(Y' - \bar{Y} + \frac{Y^2}{2Y}), \quad \frac{1}{Y'^2} - \frac{2}{Y} e^{-\lambda}(\bar{Y} - \bar{Y} - \bar{Y}'). \tag{13-2.6}$$

Vermits Y^2 de kromming is van de maximaal symmetrische 2–ruimte, is Y een invariant en bestaat er een fysisch onderscheid tussen gebieden waar $(\nabla Y)^2 \equiv g^{ij} Y_{ij} = e^{-2\lambda} Y'^2 - e^{-2\nu} Y^2 > 0$ (R–gebied), < 0 (T–gebied), of $= 0$.

Merk ook op dat de vorm 13-2.3 niet uniek is: coördinaattransformaties die het diagonale karakter van de metrik van de (r, t) ruimte behouden zijn nog steeds toegelaten: zo kunnen in de R–gebieden coördinaten gekozen worden zodat $Y = r$. Bekijken we hiermee het bijzonder geval van vacuumoplossingen, dan blijkt onmiddellijk uit 13-2.9 dat $\bar{\lambda} = 0$, zodat 13-2.7 impliceert dat $\bar{\nu}' = 0$. Bijgevolg is e^ν separabel in r en t en kan dus, mits een herdefiniëren van de t coördinaat, e^ν onafhankelijk van t gekozen worden. In de T–gebieden komen we, mits omwisselen van r en t, tot precies dezelfde conclusie. Anderzijds kan men aantonen dat er geen open delen van (\mathcal{M}, g) bestaan waarin $(\nabla Y)^2 = 0$ en $G_{ab} = 0$. Dit is het makkelijkst te verifiëren door 13-2.3 te herschrijven als $d\lambda^2 = 2H(u, v)dudv + Y^2(u, v)(d\theta^2 + \sin^2 \theta d\phi^2)$: de voorwaarde $(\nabla Y)^2 = 0$ vereenvoudigt zich dan tot $Y = f(u)$ of $g(v)$.

Samenvattend bekomen we het volgende belangrijke jebse–birkhoffstheorema, doorgaans enkel genoemd naar G.D. Birkhoff 1923, maar reeds twee jaar eerder gepubliceerd door Jorg Tofte Jebsen:

De oorspronkelijke formulering dat sferisch symmetrische vacuumoplossingen statisch zouden zijn geldt dus enkel voor het R–gebied! De stelling kan veralgemeld worden (a) tot planaire en pseudo-

sferisch symmetrische oplossingen en (b) tot oplossingen voor energie-impulstensors van het ‘A type’ ($T_{ab} = \Lambda g_{ab}$) of van maxwellvelden. Voor deze laatste moet dan wel de extra voorwaarde $(\nabla Y)^2 \neq 0$ toegevoegd worden.

13-3 Schwarzschildoplossing

We maken nu gebruik van de jebse–birkhoffstelling om een unieke familie vacuumoplossingen van 13-2.6 tot 13-2.9 te bekomen. Om de gedachten te vestigen kijken we eerst naar het R–gebied ($Y = r$):
optellen van G_{33} en G_{44} toont dat $\lambda + \nu' = 0$ zodat, mits herdefinieren van de tijdcoördinaat, $\lambda = -\nu$. Hiermee geeft 13.2.7 $(re^{2\nu})' = 1$, wat we (met m een constante) integreren tot $e^{2\nu} = 1 - \frac{2m}{r}$. We bekomen dan de schwarzschildmetriek3

$$ds^2 = -(1 - \frac{2m}{r})dt^2 + (1 - \frac{2m}{r})^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2) \quad (13.3.1)$$

met killingvectoren gegeven door 13.2.4 en $\xi_4 = \frac{\partial}{\partial t}$ en $r > 2m$.

N.B.: Schwarzschild gebruikte bij het oplossen van de veldvergelijkingen een radiale coördinaat ρ gekoppeld aan r door

$$r^3 = 3\rho + (2m)^3 \quad (13.3.2)$$

3 Karl Schwarzschild was een bekende Duitse sterrenkundige, directeur van het Astrofysisch Observatorium in Potsdam en lid van de Pruisisch Akademie der Wetenschappen. Bij het uitbreken van de eerste wereldoorlog meldde hij zich, ondanks zijn leeftijd (40 jaar) als vrijwilliger en deed dienst in Frankrijk en Rusland. Aan het oostfront belandde hij in het hospitaal met een vreemde huidziekte (pemphigus) en vulde zijn tijd met het zoeken naar exacte oplossingen van de net in november 1915 gepubliceerde theorie van Einstein. Hij ontdekte zowel de hier beschreven vacuumoplossing, alsook de eveneens naar hem genoemde inwendige oplossing voor een ster met uniforme dichtheid. Beide oplossingen werden ingediend ter publikatie in december 1915 en verschenen, net voor het overlijden van Schwarzschild, in mei 1916.
en interpreteerde $\rho = 0$ als de positie van de centrale graviterende massa. Deze interpretatie was in de hand gewerkt door Einstein’s vasthouden\footnote{Sitzber. Deut. Akad. Wiss 18.11.1915} aan de z.g. unimodulaire gravitatiemodellen waarin $\det g = -1$ (ga zelf na wat $\det g$ is in Schwarzschild’s coördinaten $x_4 = t, x_1 = \rho, x_2 = \cos \theta, x_3 = \phi$).

Een analoge redenering in het T–gebied levert dezelfde vorm 13-3.1 op, maar met omwisseling van r en t en $t < 2m$. Vermits de naamgeving van coördinaten volstrekt irrelevant is, stelt 13-3.1 de unieke oplossing voor van de vacuum einsteinvergelijkingen met sferische symmetrie (op diffeomorfismen na).

Verliezen we hierbij echter niet uit het oog dat een ruimtetijd gedefinieerd werd als een variëteit voorzien van een niet-ontaarde en gladde metriek: vermits de coëfficiënt g_{rr} singulier is voor $r = 2m$, geldt dat 13-3.1 —ondanks de unieke schrijfwijze voor de twee gebieden— de metriek bepaalt van voldoende om in te zien dat dit precies de plek is waar aan de z.g. unimodulaire gravitatiemodellen waarin

Oefening

Toon aan dat, wanneer een kosmologische constante in acht genomen wordt, de corresponderende oplossing van de veldvergelijkingen (de z.g. Kottler metriek) bekomen wordt door in de Schwarzschild metriek de factoren $1 - \frac{2m}{r}$ te vervangen door $1 - \frac{2m}{r} - \frac{\Lambda}{3} r^2$.

Een omperkelijke eigenschap is dat het R–gebied *asymptotisch vlak* is, d.w.z. voor $r \to \infty$ benaderen de componenten van g deze van de minkowskimetriek, uitgedrukt in sferische coördinaten. Dit laat ons toe het R–gebied te beschouwen als het uitwendig gravitatieveld van een geïsoleerd lichaam: de Kottler metriek deelvarieiteiten zouden zijn (de ene ‘binnen’ de andere) van één zelfde variëteit (M, g).

Voor de studie van het uitwendig gravitationeel veld komt bijgevolg e nkel het R–gebied in aanmerking.

Deze indruk wordt nog versterkt door het feit dat we dezelfde symbolen (r, t, \ldots) gebruiken voor de coördinaatfuncties in beide variëteiten, met $r > 2m$ in de ene en $r < 2m$ in de andere.
zijn weggelaten (en waarin elk punt dus een 2–sfeer met oppervlakte \(4\pi r^2\) voorstelt), worden de twee families als volgt voorgesteld:

\[
\text{uitgaande familie}
\]

\[
\text{inkomende familie}
\]

\[r = 2m\]

Figure 13.2: R–gebied in standaardcoördinaten

In het T–gebied bekomen we met dezelfde conventies de figuur 13.3:

\[r = 2m\]

Figure 13.3: T–gebied in standaardcoördinaten

Een vraag die bij deze figuren onmiddellijk rijst, is of het singuliere gedrag van \(g_{rr}\) (in 13-3.1) wijst op één of andere fysische ‘barrière’, die ons belet van de ene variëteit (R–gebied) naar de andere (T–gebied) te raken, dan wel op de aanwezigheid van een z.g. \textit{coördinaatsingulariteit}.

Met het begrip coördinaatsingulariteit zijn we reeds vertrouwd n.a.v. de introductie van poolcoördinaten in het euclidische vlak: we definiëren dan op \(\mathcal{M} = \mathbb{R}^2 \setminus \{(0, 0)\}\) een niet-ontaarde metriek

\[g = dr \otimes dr + r^2 d\theta \otimes d\theta\]

en bekijken een radiaal geodeet \(\gamma(\lambda) \equiv (r = r_0 + \lambda, \theta = \text{constant}),\) met \(\lambda\) een affine parameter. Het domein \(I\) van \(\gamma\) is dus \(I = [-r_0, \infty[\); bewegen we ons naar de oorsprong toe, dan bevinden we ons, na een \textit{eindige afstand} \(r_0\) te hebben afgelegd, niet meer in de variëteit \(\mathcal{M}\)!

We zeggen dat de geodeet \(\gamma\) —ondanks zijn eindige lengte— geen beginpunt heeft en dus \textit{niet volledig} is
(een punt \(p \in M \) wordt een beginpunt (eindpunt) van een kromme \(\gamma : I \to M \) genoemd, als voor alle omgevingen \(V \) van \(p \) een \(t_0 \in I \) bestaat zodat voor alle \(t < t_0 \) \(\gamma(t) \in V \).

De oorzaak van deze pathologische toestand is gekend: de oorsprong was immers artificieel uit het vlak verwijderd om de metrik in poolcoördinaten te kunnen definiëren! Gaan we over op standaard cartesische coördinaten, dan stellen we vast dat \((M, g)\) een deelvarieté is van de euclidische ruimte \((\mathbb{R}^2, \eta)\) die geodetisch volledig is\(^5\). We zeggen daarom dat, bij het gebruik van poolcoördinaten, de oorsprong een coördinaatsingulariteit is, of ook wel een verwijderbare singulariteit.

Bekijken we als tweede voorbeeld een lorentzvarieté \((M, g_1)\), met \(0 < t < \infty, -\infty < x < \infty \) en

\[
g_1 = -\frac{1}{t^2} dt \otimes dt + dx \otimes dx
\]

Beschouw in \((M, g_1)\) de beweging van een testdeeltje, voorgesteld door een tijdachtige geodect \(\gamma(\lambda) \equiv ((t_0 - \lambda)^{-1}, x_0) \) met \(\lambda \) een affiene parameter. Het domein van \(\gamma \) is \([-\infty, t_0]\), wat opnieuw betekent dat na een eindige tijd \(\lambda = t_0 \) het testdeeltje niet meer tot \(M \) behoort! We noemen \((M, g_1)\) dan (toekomstig) geodetisch onvolledig. We zien echter onmiddellijk dat, onder de coördinatentransformatie \(t \to t' = 1/t \), \((M, g_1)\) isometrisch equivalent is met \((M, g_2)\), waarbij \(g_2 = -dt' \otimes dt' + dx \otimes dx \) (met \(0 < t' < \infty \) en \(-\infty < x < \infty\)). In de nieuwe coördinaten \((t', x)\) wordt \(\gamma \) gegeven door \(\gamma(\lambda) = ((t_0 - \lambda)^{-1}, x_0) \) en is nog steeds onvolledig vermits \((0, x_0) \notin M \). Nu is echter de onvolledigheid van \((M, g_2)\) duidelijk te verklaren omdat we \((M, g_2)\) herkennen als slechts de helft \((t' > 0)\) van de \(2\)-d minkowskiriem \((\mathbb{R}^2, \eta)\): in \((\mathbb{R}^2, \eta)\) houdt niets ons tegen om de affiene parameter voort te zetten in het interval \([-\infty, 0]\). Daarom zeggen we opnieuw dat we de oorspronkelijke coördinaatsingulariteit van \((M, g_1)\) verwijderd hebben door \((M, g_1)\) uit te breiden naar \((\mathbb{R}^2, \eta)\): In het algemeen is het erg moeilijk coördinaatsingulariteiten in een varieté te herkennen, behalve door de hierboven beschreven constructie van uitbreiding van de oorspronkelijke varieté. Hiervoor bestaan echter geen kant en klare recepten. Een vaak gebruikte methode bestaat erin langs een goed gekozen familie geodeten naar de kandidaat-singulariteit toe te bewegen en de affiene parameter langs de geodeten te gebruiken als één der coördinaten aan de ‘andere’ zijde van de singulariteit.

Een aanwijzing dat deze werkwijze enige kans op slagen zal hebben, is de afwezigheid van singulariteiten (in de gewone betekenis van divergerende uitdrukkingen) in de invarianten van \((M, g)\). Stel b.v. dat een scalaire uitdrukking \(S \) (zoals \(R \) of \(R_{abcd}R^{abcd} \)) singulier wordt in een punt \(p \) met \(x'(p) = x'_0 \), in de zin dat\(^6\) \(\lim_{x \to x'_0} S = \infty \). De aanwezigheid van zulke krommingssingulariteiten verhindert duidelijk de constructie van een uitbreiding van \((M, g)\) (tenminste binnen de klasse van de \(C^2\)-metrieken), waarin

\(^5\)De Hopf-Rinow-de Rham stelling —zie b.v. Kobayashi en Nomizu of Spivak, hoofdstuk 9— zegt dat voor positief definiete metrieken geodetische volledigheid equivalent is met cauchyvolledigheid. Het wegvallen van deze eigenschap voor lorentzmetrieken is de oorzaak van grote moeilijkheden bij de definitie van singulariteiten in de relativiteitstheorie.

\(^6\)\(p \) kan dan strikt gezien niet tot \(M \) behoren, zodat de terminologie ‘\(S \) is singulier in \(p \)’ eigenlijk foutief is.
de singulariteit niet langer voorkomt. Daarentegen biedt de afwezigheid van krommingssingulariteiten geenszins een garantie voor de afwezigheid van pathologisch gedrag.

13-4 Eddington-finkelsteinmetriek

Passen we nu de ideeën uit de vorige paragraaf toe op de schwarzschildoplossing 13-3.1: berekening van de invariant

\[R_{abcd}R^{abcd} = 48m^2r^{-6} \]

(13-4.1)

(1) toont aan dat in het T-gebied \(r = 0 \) een niet te verwijderen krommingssingulariteit is (en dus essentieel verschilt van de standaard coördinaatsingulariteit die optreedt bij het gebruik van sferische coördinaten)

(2) suggereert dat \(r = 2m \) een coördinaatsingulariteit kan zijn.

Ook een studie van de radiale tijdachtige geodeten wijst in deze richting: we vinden dan met \(\dot{t} = \frac{\partial}{\partial \tau} \) de afgeleide naar de affiene parameter en met \(l \) een integratieconstante

\[\dot{t} = (1 - \frac{2m}{r})^{-1}l \]

(13-4.2)

en

\[(1 - \frac{2m}{r})\dot{t}^2 - (1 - \frac{2m}{r})^{-1}r^2 = 1. \]

(13-4.3)

Hierbij volgt 13-4.2 uit de behoudswet \(\xi \cdot u = constant \) met \(\xi = \frac{\partial}{\partial t} \) en \(u = \frac{\partial}{\partial \tau} = \frac{\partial}{\partial \tau} \cdot \frac{\partial}{\partial r} + \frac{\partial}{\partial \tau} \cdot \frac{\partial}{\partial r} \), terwijl 13-4.3 uitdrukt dat \(u^2 = -1 \).

Het eenvoudigste geval \((l = 1) \) levert \(\dot{r}^2 = \frac{2m}{r} \) en laat zich onmiddellijk integreren tot

\[\frac{2}{3\sqrt{2m}}(r^{3/2} - r^{3/2}) = \tau, \]

(13-4.4)

waaruit blijkt dat \(r = 2m \) in een eindige eigentijd door vallende testdeeltjes bereikt wordt.

Om duidelijkheid te verkrijgen over de mogelijke uitbreidbaarheid van het R-gebied, bekijken we de inkomende nulgeodeten: uit 13-4.2 en 13-4.3 (met in het rechterlid 0 i.p.v. 1) volgt dat de affiene parameter \(\lambda \) dan voldoet aan \(\frac{dr}{d\lambda} = constant \) en dus, op een translatie na, evenredig is met \(r \). Uit 13-3.4 weten we echter dat \(t + 2m \log(r - 2m) + constante = -r \), zodat \(\lambda \) evenredig is met \(t + 2m \log(r - 2m) + constante \). In navolging van de hiervòór uiteengezette methode om variëteiten uit te breiden, construeren we dan een nieuwe tijdachtige coördinaat

\[\tau = t + 2m \log(r - 2m). \]

(13-4.5)

Het R-gebied van de schwarzschildoplossing wordt hierdoor isometrisch afgebeeld op het gebied \(r > 2m \) van een variëteit met metriek

\[ds^2 = -(1 - \frac{2m}{r})dr^2 + \frac{4m}{r}d\theta d\phi + (1 + \frac{2m}{r})dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2), \]

(13-4.6)

of, met een nulcoördinaat \(v \) gedefinieerd door \(v = \tau + r \),

\[ds^2 = -(1 - \frac{2m}{r})dv^2 + 2drdv + r^2(d\theta^2 + \sin^2 \theta d\phi^2), \]

(13-4.7)

Hiermee hebben we nog steeds niet gezegd wat een singulariteit is, of wat een singulariteit-vrije variëteit is. Een precieze definitie van deze concepten is uiterst moeilijk — tenminste toch voor lorentzvariëteiten — en valt buiten het kader van deze cursus. Een van de eerste rigoureuze pogingen werd gemaakt in G. Szekeres' 1960 artikel over de analytische uitbreiding van de schwarzschildmetriek.

zie hoofdstuk 5 voor een meer gedetailleerde bespreking van de geodeten in de schwarzschildgeometrie.
wat de z.g. *Kerr-Schild gedaante* van de schwarzschildmetriek oplevert,

\[ds^2 = ds^2_{\text{Minkowski}} + \frac{2m}{r}(d\tau + dr)^2. \]

De bovenstaande uitbreiding 13-4.6 van het oorspronkelijke R–gebied is de z.g. *edddington-finkelsteingedaante* van de schwarzschildoplossing, waarin de familie van inkomende geodeten eenvoudig wordt voorgesteld door \(v = \text{constant} \).

NB: reeds in 1921 werd door Paul Painlevé (en onafhankelijk hiervan in 1923 door Allvar Gullstrand, een Zweedse ophthalmoloog) een andere oplossing van de sferisch symmetrische vacuumvergelijkingen voorgesteld\(^9\),

\[ds^2 = -(1 - \frac{2m}{r})d\tau^2 + 2\sqrt{\frac{2m}{r}}drd\tau + r^2(d\theta^2 + \sin^2\theta d\phi^2), \quad (13-4.8) \]

waaruit had kunnen blijken dat \(r = 2m \) geen ‘echte’ singulariteit was, indien men de moeite gedaan om de equivalentie van 13-3.1 en 13-4.8 te verifiëren (de verwarring werd mee in de hand gewerkt door Schwarzschild’s ongelukkige interpretatie van de \(\rho \) coördinaat 13-3.2). Beiden gingen echter — net zoals Arthur Eddington drie jaar later — aan dit opmerkelijke feit voorbij en het duurde tot 1933 vooralere het verband tussen beide metrieën, namelijk

\[dt = d\tau - \frac{\sqrt{2m/r}}{1 - 2m/r}dr, \quad (13-4.9) \]

Door de coördinaattransformatie

\[T = t + 2m\log(2m - r) \]

wordt bovendien het T–gebied van de schwarzschildoplossing isometrisch afgebeeld op het \(0 < r < 2m \) gebied van 13-4.6, zodat 13-4.6 een uitbreiding blijkt te zijn van zowel het R- als het T–gebied! Hiermee kunnen figuren 13.2 en 13.3 verenigd worden in figuur 13.5.

Hieruit blijkt duidelijk dat het hyperoppervlak \(r = 2m \) werkt als een half-doorlaatbaar *membraan*: toekomstgerichte (\(\frac{dT}{dt} > 0 \)) tijdachtige geodeten en nullgeodeten worden enkel van ‘buiten’ \((r > 2m) \) naar ‘binnen’ \((r < 2m) \) doorgelaten. Dit oppervlak wordt een *event horizon* genoemd, aangezien het de grens vormt van alle gebeurtenissen die door een waarnemer uit het R–gebied kunnen worden waargenomen. We benadrukken dat het fenomeen van een event horizon gekoppeld is aan het feit dat \(r = 2m \) een nullhyperoppervlak is (\(g^{rr} = 0 \)): het feit dat in de schwarzschildoplossing toevallig ook \(g_{tt} = 0 \) heeft hier dus niets mee te maken!

Dat zelfs lichtsignalen niet uit het gebied \(r < 2m \) kunnen ontsnappen, heeft aanleiding gegeven tot de naam van *zwarte gaten* (black holes). Figuur 13.5 suggereert dat testdeeltjes, vanaf het ogenblik waarop ze het T–gebied binnendringen, een eindige levensduur hebben. Er is echter méér: zelfs een waarnemer, die niet op een geodeet beweegt (en b.v. probeert om met een krachtige motor ‘rond’ de singulariteit \(r = 0 \) te vliegen), zal zijn radiale coördinaat \(r \) zien kleiner worden met een snelheid

\[\left| \frac{dr}{d\tau} \right| \geq (\frac{2m}{r} - 1)^{1/2}. \quad (13-4.11) \]

Hieruit kan afgeleid worden dat de maximale levensduur van om het even welke waarnemer in het T–gebied gegeven wordt door

\[\Delta \tau = \pi m \approx 10^{-5}(\frac{m}{m_\odot})s. \quad (13-4.12) \]

\(^9\)wat aanleiding gaf tot enig dispuut tussen Painlevé en Einstein m.b.t. de uniciteit van het uitwendige gravitatieveld
Oefening

1. Bewijs beide voorgaande betrekkingen.

2. Beschouw de 2-dimensionale ruimte-tijd met metriek

\[ds^2 = -z^2 dt^2 + dz^2 \quad (0 \leq z < \infty, -\infty < t < \infty). \]

(13-4.13)

Toon aan dat \(ze^t \) constant is langs de ingaande nulgeodeten \((dz/dt < 0) \) en \(ze^{-t} \) constant is langs de uitgaande nulgeodoten. Bepaal de affiene parametervoorstelling voor een ingaande nulgeodeet vertrekkend met snelheid \(dz/d\lambda = u \) in het punt \(z_0 = z(0) \). Toon aan dat het punt \(z = 0 \) bereikt wordt na een eindige affiene parametertijd. Voor welke waarde van \(t \) gebeurt dit? Druk de metriek uit in termen van de coördinaten \(T, X \) bepaald door

\[T - X = -ze^t, \quad T + X = ze^{-t} \]

en interpreteer uw voorgaande resultaten in termen van \(T \) en \(X \).

3. Toon aan dat er in gebied I nulgeodeten bestaan die gelegen zijn in een tijdachtige cilinder \(r = \text{constant} \).

13-5 Statische en sferisch symmetrische perfecte vloeistoffen

Alhoewel de mogelijkheid van zwarte gaten reeds voorspeld werd (a) op basis van zuiver newtoniaanse argumenten door John Michell in 1784 en door Pierre Simon de Laplace in 1796 en (b) op basis van de einsteinvergelijkingen door Robert Oppenheimer en Herman Snyder in 1939, duurde het tot ongeveer 1960–1970 vooraleer het bestaan ervan min of meer algemeen aanvaard was!

Een eerste mogelijke verklaring hiervoor is de grootte \(\rho \approx 10^{21} \text{kg m}^{-3} \) die de materiedichtheid van een ster van een tiental zonsmassa’s moet bereiken, opdat ze zou kunnen inkrimpen tot haar straal de schwarzschildstraal \(r_S \approx 3(m/m_\odot) \text{ km} \) benadert: dergelijke enorme dichtheden werden door de meeste astronomen gedurende lange tijd als volslagen onrealistisch van de hand gewezen\(^\text{10}\). Een

\(^{10}\)tegenwoordig hanteren astronomen zonder schroom massaconcentraties van \(10^{8} m_\odot \), zodat een samendrukking tot \(r_S \) reeds wordt bereikt bij een dichtheid van \(10^{3} \text{ kg m}^{-3} \), wat vanuit microfysisch standpunt zéker geen fundamentele problemen stelt!
bijzonder langzaam proces was nodig om (hand in hand met de ontwikkeling van de kwantumme-
chanica) via de vertrouwdheid met witte dwergen (1926: $\rho \approx 10^8 \text{ kg m}^{-3}$) en met neutronensterren
(1968: $\rho \approx 10^{18} \text{ kg m}^{-3}$), uiteindelijk te leiden tot het vandaag alom aanvaarde scenario van z.g. totale
gravitationele collaps (zie verder).

Een tweede reden was de 19de eeuwse visie van een geordend universum, waarin de materie uitein-
deldelijk evolueert naar stationaire of statische evenwichtstoestanden. Einstein zelf was één der felle
verdedigers van dit geloof, alhoewel dit hem reeds eerder parten had gespeeld bij de introductie van
de kosmologische constante (nl. om een statisch heelal model als oplossing van de veldvergelijkingen
te bekomen: zie hoofdstuk 12). Twintig jaar na de invoering van de kosmologische constante brac ht
dezelfde overtuiging hem er opnieuw toe een (foutief) bewijs te leveren dat (in de toenmalige termi-
nologie) ‘schwarzschildsingulariteiten’ in werkelijkheid niet kunnen voorkomen. Hiertoe beschouwde
hij een stationair roterende wolk van deeltjes en toonde dat een evenwichtsoplossing enkel mogelijk
was voor een straal $r > \frac{1}{2}r_S$, zoniet zouden de buitenste deeltjes van de wolk zich moeten bewegen met
een snelheid groter dan de lichtsnelheid. De redenering was volledig consistent, maar de conclusie was
fout omdat opnieuw werd voorbij gegaan aan de mogelijkheid van een niet-stationaire

Een derde reden ten slotte is dat pas na de tweede wereldoorlog voldoend krachtige computers op het
toneel verschenen om het uiterst complexe probleem van gravitationele collaps in detail te volgen. In
wat volgt zullen we het eigenlijke probleem van de collaps niet aansnijden, maar ons beperken tot het
ermee verwante probleem van gravitationeel evenwicht. In het bijzonder zullen we de voorwaarden
onderzoeken waaraan een sferisch symmetrisch systeem moet voldoen om een statische oplossing te
comen zijn van de einsteinvergelijkingen. We zullen hierbij een z.g. inwendige oplossing (met $T_{ab} \neq 0$)
in een hyperoppervlak $r = R$ ‘lijmen’ aan een uitwendige oplossing ($T_{ab} = 0$), die een deel is van het
R–gebied van de schwarzschildoplossing ($R > R_S$)11.

Het hyperoppervlak $r = R$ noemen we het matching surface en we onderstellen dat de metriek samen
met zijn eerste normale afgeleiden continu is doorheen dit oppervlak.

We vertrekken met de hypothese dat het inwendige deel beschreven wordt door een perfecte vloeistof,

$$T_{ab} = \rho u_a u_b + p(g_{ab} + u_a u_b) \quad (13-5.1)$$

een dat de inwendige en uitwendige oplossingen samen worden voorgesteld door de metriek 13-2.3 met
$Y = r$ en $\lambda = \nu = 0$. De perfecte vloeistof beschreven door 13-5.1 is statisch als u parallel is met de
killingvector $\frac{\partial}{\partial t}$, t.t.z.

$$u = e^{-\nu} \frac{\partial}{\partial t}. \quad (13-5.2)$$

Hierdoor worden de van 0 verschillende componenten van T_{ab} gegeven door

$$T_{00} = \rho \quad \text{en} \quad T_{11} = T_{22} = T_{33} = p \quad (13-5.3)$$

en de einsteinvergelijkingen worden

$$8\pi p = e^{-2\lambda} (\nu'' + \nu' + \nu'') + (\nu' - \lambda' - \lambda r^{-1}) (\nu')^{-1}, \quad (13-5.4)$$

$$8\pi pr^2 = -1 + e^{-2\lambda} (1 + 2r
\nu'), \quad (13-5.5)$$

$$8\pi \rho r^2 = (r(1 - e^{-2\lambda}))'. \quad (13-5.6)$$

Uit 13-5.6 bekomen we onmiddellijk

$$e^{2\lambda} = 1 - \frac{2\mu(r)}{r}, \quad (13-5.7)$$

11verwar zulke inwendige oplossing dus niet met het T–gebied van de schwarzschildoplossing!
met
\[\mu(r) = 4\pi \int_0^r \rho(x)x^2 \, dx + \text{constante.} \] (13-5.8)

Leggen we de eis op dat de metriek voor voldoend kleine waarden van \(r \) in benadering vlak moet zijn (wat we uitdrukken door de eis dat de oppervlakte van een sfeer met straal \(r \) gegeven is door \(4\pi \times (\text{eigenstraal})^2 \)), dan moet \(\lim_{r \to 0} \lambda(r) = 0 \) en is de integratieconstante optredend in 13-5.8 noodzakelijk 0.

Lijmen van inwendige en uitwendige oplossing in \(r = R \) betekent dan dat de constante \(m \), optredend in de uitwendige oplossing, gegeven is door
\[m = 4\pi \int_0^R \rho(x)x^2 \, dx. \] (13-5.9)

Alhoewel dit identiek is met de uitdrukking voor de totale massa in newtoniaanse gravitatie, dienen we te bedenken dat het ruimtelijk volume-element gegeven is door
\[\sqrt{3}g \, \text{d}^3x = e^\lambda r^2 \sin\theta \, \text{d}r \, \text{d}\theta \, \text{d}\phi, \]
zo dat de totale massa \(m_p \) (de eigenmassa) in werkelijkheid gegeven wordt door
\[m_p = 4\pi \int_0^R \rho(x)x^2 e^\lambda(x) \, dx. \]

Noteer dat \(m_p > m \), waarbij het verschil kan geïnterpreteerd worden als de (negatieve) gravitationele bindingsenergie.

Uit 13-5.5 bekomen we nu
\[\nu' = 8\pi pr^3 + 2\mu(r) \frac{2 \mu(r)}{2r(r - 2\mu(r))}. \] (13-5.10)

In de newtoniaanse limiet, met \(pr^3 << \mu \) en \(\mu << r \), reduceert dit zich tot de poissonvergelijking, zodat we \(\nu \) kunnen interpreteren als de veralgemening van de newtoniaanse gravitationele potentiaal.

Substitutie van 13-5.7 en 13-5.10 in 13-5.4 levert een vergelijking voor \(p' \). We kunnen echter dit rekenwerk vermijden door gebruik te maken van de behoudswetten \(T^{ab,;} = 0 \): met 13-5.1 en 13-5.2 reduceren deze zich tot precies één vergelijking, nl.
\[p' = -(p + \rho)\nu'. \] (13-5.11)

Oefening

Verifieer voorgaande betrekking.

Op deze manier bekomen we onmiddellijk de *tolman-oppenheimer-volkov-vergelijking* voor hydrostatisch evenwicht:
\[p' = -(p + \rho)\frac{8\pi pr^3 + 2\mu(r)}{2r(r - 2\mu(r))}, \] (13-5.12)
waaruit we, samen met 13-5.8 en een gekozen toestandsvergelijking \(p = p(\rho) \), \(p(r) \) en \(\rho(r) \) kunnen bepalen:

(a) kies een centrale dichtheid \(\rho_c \): via de toestandsvergelijking ligt dan ook \(p_c \) vast,

(b) integreer 13-5.8 en 13-5.12 buitenwaarts, tot het oppervlak \((p = 0) \) van de ster bereikt wordt: dit bepaalt de constante \(m \) (13-5.9) die optreedt in de uitwendige oplossing,

(c) integreer 13-5.10 binnenwaarts vanaf \(r = R \).

Het essentiële verschil met newtoniaanse gravitatie is dat het rechterlid van 13-5.12 in absolute waarde steeds groter is dan de newtoniaanse term \(\rho \mu(r)/r^2 \), zodat hydrostatisch evenwicht in A.R. ‘moeilijker’
te behouden is dan in de newtoniaanse theorie. Dit blijkt duidelijk uit b.v. de exacte oplossing die bekomen wordt voor een ster met uniforme dichtheid $\rho(r) = \rho_0$. Uit 13-5.8 volgt dan

$$\mu(r) = \frac{4}{3} \pi r^3 \rho_0. \tag{13-5.13}$$

Integreren we hiermee de newtoniaanse vergelijking voor hydrostatisch evenwicht, dan bekomen we

$$p(r) = \frac{2}{3} \pi \rho_0^2 (R^2 - r^2), \tag{13-5.14}$$

zodat de centrale druk $p_c = \frac{2}{3} \pi \rho_0^2 R^2 = \left(\frac{\pi}{6}\right)^{1/3} m^{2/3} \rho_0^{4/3}$ willekeurig groot kan zijn (m.a.w. voor elke waarde van m en ρ_0 bestaat een newtoniaanse evenwichtsconfiguratie). Integratie daarentegen van de relativistische vergelijking 13-5.12 levert (Karl Schwarzschild 1916)

$$p = \rho \left[\frac{1 - k(1 - 2mr^2/R^3)^{1/2}}{k(1 - 2mr^2/R^3)^{1/2} - 3} \right]. \tag{13-5.15}$$

met $m = 4/3 \pi \rho R^3$ en met k een integratieconstante te bepalen uit $p(R) = 0$:

$$p(r) = \rho_0 \left[\frac{1 - (1 - 2m/R)^{1/2} - (1 - 2mr^2/R^3)^{1/2}}{(1 - 2mr^2/R^3)^{1/2} - 3(1 - 2m/R)^{1/2}} \right], \tag{13-5.16}$$

zodat

$$p_c = \rho_0 \left[\frac{1 - (1 - 2m/R)^{1/2}}{3(1 - 2m/R)^{1/2} - 1} \right]. \tag{13-5.17}$$

Wil de centrale druk eindig blijven, dan moet een ster met uniforme dichtheid dus een massa m hebben met

$$m < \frac{4}{9} R, \tag{13-5.18}$$

of

$$m_{\text{max}} = \frac{4}{9(3\pi)^{1/2} \rho_0^{1/2}}. \tag{13-5.18}$$

Men kan aantonen dat, onder de hypothese $\frac{dp}{dr} \leq 0$, de voorwaarde 13-5.17 onafhankelijk van de gekozen toestandsvergelijking geldt en dat de maximum waarde $\frac{dp}{dr}$ precies bereikt wordt voor het geval van uniforme dichtheid. Dit resultaat is belangrijk omdat het aantoont dat, van zodra een sferisch symmetrische materieverdeling is ingekrompen tot een straal $\leq 9R_S$, de z.g. Buchdahl-limiet, geen enkele toestandsvergelijking nog bij machte is om verdere collaps tegen te houden!

Dergelijk scenario kan zich afspelen als een ster al haar nucleaire brandstof heeft opgebruikt en een Fe-Ni kern heeft opgebouwd: is de massa van de ster op dat ogenblik kleiner dan de Chandrasekharlimiet $m_c \approx 1.4 M_\odot$, dan trekt de ster verder samen tot een stabiele evenwichtstoestand van witte dwerg bereikt wordt, waar de gravitationele aantrekking gecompenseerd wordt door ontaarde elektronendruk. Is de massa groter dan m_c dan gaat de gravitationele samentrekking verder tot in de kern nucleaire materiedichtheidsbereik wordt bereikt worden. Is de totale massa van de samentrekkende kern op dat ogenblik kleiner dan een kritische massa $m_n \approx 3 M_\odot$, dan kan verdere samentrekking worden tegengehouden door de ontaarde neutronen en door de kernkrachten. Het resultaat is dan een neutronenster: bij de afremming van de kern ontstaat een schokgolf die verantwoordelijk is voor het wegslingeren van de buitenste lagen van de ster, wat dan aanleiding geeft tot de vorming van een supernova. Is echter de massa van de samentrekkende kern groter dan m_n, dan tonen numerieke simulaties aan dat de collaps onbeperkt verder gaat en de vorming van een zwarte gat onvermijdelijk is. Men schat dat de Melkweg ongeveer 10^8 van dergelijke zwarte gaten bevat. Daarnaast is er een consensus dat de kern van de meeste — of bijna alle— sterrenstelsels bestaat uit zwarte gaten van 10^6 tot $10^{10} M_\odot$. Het zwarte
Elliptische regel of elliptische symmetrie

\begin{equation}
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\end{equation}

Hierboven is het algemeen manier van het afzonderlijke element van een elliptische symmetrie, als een voorbeeld van dergelijke gevormde objecten. Hierboven is de algemene vorm van een elliptische symmetrie, die een voorbeeld van dergelijke gevormde objecten.
Ten tweede is er de onzekerheid i.v.m. de te gebruiken gravitatietheorie: andere gravitatietheorieën dan A.R. voorspellen andere maximale massa’s voor neutronensterr en. Deze zelfde opmerking geldt in nog sterkere mate voor de uiteindelijke fase van de collaps, t.t.z. nadat de ster zich binnen r_S heeft samengeprokten: deze fase treedt binnen een aantal alternatieve theorieën zelfs helemaal niet op.

Blijven we echter binnen het kader van A.R., dan kunnen we nog opmerken dat het alles behalve verwonderlijk is dat, bij zuiver sferisch symmetrische collaps, uiteindelijk een singulariteit optreedt in $r = 0$. Men kan zich i.h.b. afvragen of een niet-singuliere eindtoestand van de materie mogelijk is als we afwijkingen van de sferische symmetrie beschouwen. Een gedeeltelijk antwoord op deze vraag wordt gegeven door de z.g. singulariteitstheorema’s (Roger Penrose en Stephen Hawking, 1965–1970), die aantonen dat, onafhankelijk van de precieze vorm van de veldvergelijkingen of van de energie-impuls tensor, de belangrijkste eigenschappen van sferisch symmetrische collaps worden overgedragen naar het geval van algemene collaps. Deze theorema’s vertrekken van een beperkt aantal ‘voor de hand liggende’ hypotheses betreffende het gedrag van de materie (de z.g. energie voorwaarden) en betreffende de causale structuur van de ruimtetijd en tonen aan dat onder deze algemene voorwaarden singulariteiten altijd optreden. De singulariteitstheorema’s zijn echter zuivere existentietheorema’s en ze geven geen enkele informatie over de plaats of de aard van de resulterende singulariteiten: dit moeten dus niet noodzakelijk (zoals o.a. in het sferisch symmetrische geval) krommingssingulariteiten zijn!

13-6 FKS-extensie van de schwarzschildmetriek

In paragraaf 13-4 slaagden we er reeds in om m.b.v. de eddington-finkelsteinmetriek (13-4.6) zowel het R–gebied als het T–gebied van de schwarzschildoplossing te bekijken als deelvarieteiten van één zelfde varieté. We gebruikten hiervoor de familie van inkomende geodeten en zorgden ervoor dat hun affiene parameter kon voortgezet worden aan beide zijden van $r = 2m$.

Een blik op figuur 13.5 doet echter vermoeden dat hiermee nog niet alle problemen uit de weg geruimd zijn. De uitgaande nulgeodeten in het R–gebied kunnen onmogelijk uit het T–gebied afkomstig zijn: elk punt heeft slechts een eindige parameterafstand tot $r = 2m$, wat wijst op onvolledigheid nabij $r = 2m$, $\mathcal{T} = -\infty$! Inderdaad, met τ een affiene parameter zijn de radiale nulgeodeten gegeven door

$$\frac{d\mathcal{T}}{dr} = \frac{l}{1 - \frac{2m}{r}},$$

De oplossingen hiervan zijn

$$r = r_0 - l\tau,$$

$$\mathcal{T} + r = \mathcal{T}_0 + r_0$$

voor de inkomende familie en

$$r = r_0 + l\tau,$$

$$\mathcal{T} - r = \mathcal{T}_0 - r_0 + 4m \log \frac{r - 2m}{r_0 + 2m}$$

voor de uitgaande familie.

Als alternatief kunnen we ook de uitgaande familie ‘recht trekken’: i.p.v. 13-4.10 voeren we nu een nieuwe tijdcoördinataat in,

$$t^* = t - 2m \log (r - 2m)$$

en bekomen hiermee de gedaante

$$ds^2 = -(1 - \frac{2m}{r})dt^*^2 - \frac{4m}{r}dt^*dr + (r + \frac{2m}{r})dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

181
wat precies de tijdsomkering is van 13-4.613. Figuur 13.5 wordt dan figuur 13.7, zodat we hoger vermeld probleem uiteindelijk slechts verschoven hebben van de uitgaande naar de inkomende geodeten! Om de onvolledigheid bij $r = 2m$ te vermijden dienen we blijkbaar op één of andere manier simultaan de uitgaande én inkomende families recht trekken. C. Fronsdal (Phys. Rev. 1959)14, M. Kruskal (1960) en G. Szekeres (1960) losten dit probleem onafhankelijk van elkaar op door twee nulcoördinaten v en w te definiëren door

$$w = t^* - r = t - r - 2m \log |r/2m - 1|,$$

$$v = \tau + r = t + r + 2m \log |r/2m - 1|.$$

Hierdoor worden beide families nulgeodeten dan eenvoudig bepaald door

$$w = \text{constant} \quad \text{(uitgaande familie)}$$

en

$$v = \text{constant} \quad \text{(inkomende familie)}$$

en vinden we de metriek door 13-6.5 op te lossen naar r en t:

$$r + 2m \log |r/2m - 1| = \frac{v - w}{2}, \quad t = (v + w)/2.$$

Hiermee wordt de schwarzschildmetriek 13-3.1 herschreven als

$$ds^2 = -\frac{2me^{-r/2m}}{r}e^{(v-w)/4m}dvdw + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

$$= -\left(1 - \frac{2m}{r}\right)dvdw + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

13Men noemt dit de \textit{retarded eddington-finkelstein extension} van gebied I, in tegenstelling tot 13-4.6, die ook de \textit{advanced eddington-finkelstein extension} van gebied I genoemd wordt.

14Fronsdal gebruikte de inbedding van de schwarzschildmetriek —gevonden door Kasner— in een 6 dimensionale euclidische ruimte, om de analytische extensie te construeren. Hij merkte op dat Kruskal de extensie ook al had gevonden (Kruskal had dit echter niet de moeite gevonden om te publiceren!) en merkwaardig genoeg is Fronsdal’s naam vervolgens in het stof van de geschiedenis verdwenen.
De metrik bevat nog steeds een coördinaatsingulariteit bij \(r = 2m \), maar men kan deze singulariteit opheffen door een nieuwe keuze van nullcoördinaten \(v' = v'(v) \) en \(w' = w'(w) \): met de keuze
\[
v' = e^{v'/4m} = \sqrt{|v'/2m - 1|} \exp\left(\frac{r + t}{4m}\right),
\]
\[
w' = -e^{-w'/4m} = -\epsilon\sqrt{|r'/2m - 1|} \exp\left(\frac{r - t}{4m}\right), \quad (\epsilon = \text{sgn}(r - 2m))
\]
(13-6.10)
bekomen we
\[
ds^2 = -32m^4 e^{-r/2m} \frac{r}{r} dv'dw' + r^2(d\theta^2 + \sin^2 \theta d\phi^2),
\]
(13-6.11)
of nog, na invoering van \(T = \frac{1}{2}(v' + w') \) en \(X = \frac{1}{2}(v' - w') \)
\[
ds^2 = 32m^4 e^{-r/2m} \frac{r}{r} (-dT^2 + dX^2) + r^2(d\theta^2 + \sin^2 \theta d\phi^2),
\]
(13-6.12)
wat we de *FKS-extensie* van de schwarzschild metrik zullen noemen.
Hierin is \(r(X, T) \) impliciet bepaald door 13-6.7, i.e.
\[
\left(\frac{r}{2m} - 1\right)e^{r/2m} = X^2 - T^2,
\]
(13-6.13)
terwijl de oorspronkelijke \(t \) coördinaat gegeven wordt door \(t = 4m \tan^{-1} \frac{T}{X} \). Noteer in 13-6.13 het verdwijnen van de absolute waarde van \(r - 2m \) en van \(e \): de uitdrukking is geldig in beide gebieden I en II en de functie in het linkerlid is strikt stijgend in \([0, \infty)\].
De coördinaten \(T \) en \(X \) worden enkel beperkt door de voorwaarde \(r > 0 \), vermits \(r = 0 \) een niet te verwijderen krommingssingulariteit is. Uitgedrukt in \(X \) en \(T \) betekent dit
\[
X^2 - T^2 > -1,
\]
(13-6.14)
wat het coördinat domein beperkt tot het in figuur 13.8 voorgestelde gebied van de hyperbool \(X^2 - T^2 = -1 \). Bovendien is \(T \) wel degelijk een tijdachtige coördinaat, aangezien \(g(\partial_T, \partial_T) = g_{TT} < 0 \).
In dit diagram worden de krommen \(r = \text{constant} \) voorgesteld door gelijkzijdige hyperbolen en de krommen \(t = \text{constant} \) door rechten door de oorsprong. Nulgeodeten worden voorgesteld door rechten die een hoek van \(\pm 45^\circ \) maken met de \(X \)-as, wat de conforme structuur uiterst eenvoudig maakt.
De unie van de gebieden I en II van het z.g. FKS-diagram is isometrisch equivalent met de *advanced eddington-finkelstein extension* 13-4.6, terwijl de unie van de gebieden I en III isometrisch equivalent is met de *retarded eddington-finkelstein-extension* 13-6.4. Men kan aantonen dat de FKS-metriek de unieke *analytische* uitbreiding is van de schwarzschildoplossing, die *maximaal* is in de zin dat ze geen geelvarietéit is van een andere lokaal niet-uitbreidbare uitbreiding van de schwarzschildoplossing.
Het gebied I kan geïnterpreteerd worden als het uitwendige van een statisch en sferisch symmetrisch lichaam. In gebied II eindigt elke nulgeodeet—en dus ook elke tijdachtige kromme—nodzakelijk op het singuliere oppervlak \(r = 0 \): dit gebied correspondeert dus met de in vorig hoofdstuk besproken zwarte gaten. De tijdsomkering van gebied II is gebied III. Elke nulgeodeet begint er nodzakelijk op het singuliere oppervlak \(r = 0 \) en de eigenschappen ervan zijn volkomen analoog aan deze van gebied II: men noemt dit daarom ook wel een *wit gat*.

Zeer vreemd in de FKS-extensie is het optreden van een tweede asymptotisch vlak gebied IV, waarvan de eigenschappen analoog zijn aan deze van gebied I. Gebieden I en IV zijn echter causaal volledig van elkaar losgekoppeld: elk signaal dat tussen beide zou verzonden worden, wordt door de \(r = 0 \) singulariteit opgeslokt. Het is ver van duidelijk of de gane extensie, i.h.b. gebied IV, enige fysische betekenis heeft: geen enkel fysisch proces is gekend, dat aanleiding kan geven tot de vorming van de vier gebieden.

Merk nog op dat de killingvector \(\mathbf{K} = \partial_t \) in gebied I te schrijven is als \(\mathbf{K} = \frac{1}{4m}(v'\partial_\nu + w'\partial_\omega) \), waarbij het rechterlid een killingvector is in de volledige FKS-ruimtetijd. Omdat \(\mathbf{K} \) op de hypervlakkken \(v' = 0 \)
en \(w' = 0 \) een nulvector is, loodrecht op (en rakend aan) deze hypervlakken, voeren we het begrip *killinghorizon* in:

we noemen een killinghorizon elk nulhypervlak \(\Sigma \) dat invariant is onder de stroming van een killingvectorveld \(K \) en dat een samenhangende component is van de verzameling \(\{ p \in M : g(K_p, K_p) = 0, K \neq 0 \} \). De FKS ruimte-tijd bezit dus vier killinghorizons. De doorsnede van hun afsluiting, de 2-sfeer \(v' = w' = 0 \), is het *bifurcatie-oppervlak*. De unie van dit 2-dimensionaal ruimte-achtig oppervlak (waarop \(K = 0 \)) met de vier nulhypervlakken gegenered door de nulgeodeten loodrecht op \(\Sigma \) (in de FKS ruimte-tijd dus de unie van de verzamelingen \(v' = 0 \) en \(w' = 0 \)) wordt een *gebifurceerde killinghorizon* genoemd (dit is zelf geen killinghorizon omdat \(K = 0 \) wordt op het bifurcatie-oppervlak). Een soortgelijk voorbeeld wordt geleverd door de nulhypervlakken \(t \pm z = 0 \) in de minkowski ruimtetijd, gegenered door de *boost killing vector* \(K = z \partial_t + t \partial_z \). Ook hier is er een bifurcatie-oppervlak, nl. de verzameling \(\{ t = z = 0 \} \).

Killinghorizons danken hun belang aan het z.g. *rigiditeitstheorema* van Hawking, dat zegt dat de event horizon van een stationaire asymptotisch vlakke ruimtetijd noodzakelijk een killinghorizon is.

Is \(\Sigma \) een killinghorizon horend bij een killingvector \(K \), dan volgt, met \(\nu = g(K, K) \), uit \(\nu|_\Sigma = 0 \) dat \(dv^2 \perp \Sigma \) en dus (omdat de nulvectoren van \(\Sigma \) op een veelvoud na uniek bepaald zijn, dat, op \(\Sigma \), \(dv^2 \parallel K \)). Dit rechtvaardigt de volgende definitie,

\[
dg(K, K) = -2 \kappa K^2, \tag{13-6.15}
\]
waarbij κ de oppervlaktegravitatie\(^{15}\) van de killinghorizon genoemd wordt\(^{16}\).

oefening:

1. Toon aan dat de oppervlaktegravitatie van de boost killinghorizon in minkowski-ruimtetijd gelijk is aan ± 1 (een dergelijke killinghorizon, waarop κ niet identiek 0 is, wordt niet-ontaard genoemd).

2. Toon aan dat in de minkowski-ruimtetijd het killingvectorveld $y\partial_t + t\partial_y + x\partial_y - y\partial_x$ aanleiding geeft tot een ontaarde killinghorizon $t + x = 0, y \neq 0$, waarop κ identiek 0 is.

3. Toon aan dat de vier killinghorizons van de FKS-ruimtetijd eveneens niet-ontaard zijn en dat $\kappa = \frac{1}{2m}$\(^{17}\).

Dat de oppervlaktegravitatie in deze drie voorbeelden constant is, is geen toeval: men kan aantonen dat κ constant is 1) voor elke gebifurceerde killinghorizon en 2) op elke killinghorizon van een ruimtetijd waarin voldaan is aan de dominante energievoorwaarde. Eigenschap (1) is niet moeilijk om zelf te bewijzen:

oefening:

1. is Σ een killinghorizon horend bij een killingvector K, gebruik dan de hypervlak-orthogonaliteit van K ($[K_{[a,b}K_{c]} = 0$) om aan te tonen dat $\kappa^2 = -\frac{1}{\Sigma}K_{[a,b}K^{a;b}$. (13-6.16)

2. Leid hieruit (of door evaluatie van L_{e_A} van 13-6.15) af dat κ constant is langs elk killingtraject.

3. Beschouw, in het geval van een gebifurceerde killinghorizon, met K en $e_A (A = 1, 2)$ rakend aan Σ, de afgeleide L_{e_A} van 13-6.16. Steun vervolgens op 9-2.3 en op het bestaan van het bifurcatieoppervlak om aan te tonen dat κ ook constant is in elk 2D-deeloppervlak van Σ dat de killingtrajecten transversaal snijdt.

We kunnen proberen ons een voorstelling te vormen van de FKS ruimtetijd door de ruimtelijke hypervlakken $t = \text{constant}$ (i.e. $T/X = \text{constant}$) in te bedden in een 4-dimensionale euclidische ruimte met metriek $ds^2 = dz^2 + dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)$. De metriek geïnduceerd op de $z = z(r)$ oppervlakken, $(z^2 + 1)dr^2 + r^2d\phi^2$ valt dan samen met

$$ds^2 = (1 - \frac{2m}{r})^{-1}dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2),$$

mits

$$z' = \pm(\frac{2m}{r - 2m})^{1/2}. \quad (13-6.17)$$

De doorsnede hiervan met het $\theta = \frac{\pi}{2}$ vlak is dan een 2-dimensionale omwentelingsparaboloide (de z.g. Flamm paraboloïde), waarin we de verbindende ‘tunnel’ tussen beide asymptotisch vlakke ruimten de einstein-rosenbrug noemen\(^{18}\): Het is duidelijk dat deze hypervlakken enkel een foliatie vormen van het $r \geq 2m$ gedeelte van de FKS-extensie (nl. van gebieden I en IV). De einstein-rosenbrug kan ook

\(^{15}\)Sommige auteurs gebruiken een factor 4 i.p.v. 2.

\(^{16}\)Uiteraard is κ afhankelijk van de normalisatie van K. In b.v. asymptotisch vlakke ruimtetijden kan deze gekozen worden zodat $g(K, K) = \pm 1$ op oneindig en wordt het dus zinvol om te spreken over ‘de oppervlaktegravitatie van een killinghorizon’

\(^{17}\)De benaming oppervlaktegravitatie vindt haar oorsprong in de eigenschap dat κ precies de versnelling is van een deeltje dat in $r = 2m + \epsilon (0 < \epsilon \ll 1)$ op zijn plaats wordt gehouden door een waarnemer op oneindig.

\(^{18}\)naar A. Einstein en N. Rosen 1935, Phys. Rev. 48, 73
worden voorgesteld a.d.h.v. een metriek waarin aan \(r \geq 2m \) automatisch voldaan is: passen we b.v. de coördinaattransformatie

\[
r = (1 + \frac{m}{2\rho})^2 \rho
\]

toe op de gebieden I of IV, dan bekomen we de metriek in *isotrope coördinaten*,

\[
ds^2 = -\left(\frac{m-2\rho}{m+2\rho}\right)^2 dt^2 + (1 + \frac{m}{2\rho})^4 (d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\phi^2),
\]

waarin de \(t = \text{constante} \) hypervlakken duidelijk conform vlak zijn en waar de transformatie \(\rho \to \frac{m^2}{4\rho} \) een isometrie bepaalt die I op IV afbeeldt.

Aangezien de einsteinvergelijkingen enkel de lokale structuur van de oplossingen bepalen, behoort echter ook de topologie geïllustreerd in fig. 13.10 tot de mogelijkheden. De einstein-rosenbrug verbindt

\[
\text{Figure 13.10: wormgat}
\]
dan twee gedeelten van één zelfde asymptotisch vlakke ruimte: we spreken in dit geval van een *wormgat*. Onderzoek naar *tijdmachines* houdt zich o.a. met de vorming van dergelijke wormgaten bezig. \(^{19}\)

\(^{19}\)Afgezien van enkele toeristische attracties, zoals de Poll na bPéist op Inis Mór (Aran, Ierland) zijn er tot dusver geen indicaties dat wormgaten bestaan.
13-7 Conforme compactificatie

Alhoewel figuur 13.8 reeds een inzicht geeft in de causale structuur van de FKS-extensie, is het gedrag ‘op oneindig’ er niet onmiddellijk uit af te lezen. In het bijzonder is de structuur van de oplossing op z.g. *nu-oneindig* moeilijk te herkennen: het is deze structuur — eerder dan de structuur op *ruimtelijk-oneindig* — die van belang is, als we bij meer gecompliceerde oplossingen b.v. het asymptotisch gedrag van straling wensen te onderzoeken. Om dergelijke vragen te bestuderen werden door Roger Penrose een aantal belangrijke technieken ontwikkeld. Het is de bedoeling om in deze paragraaf enkele van deze technieken, samen met de ermee gepaard gaande terminologie, te illustreren aan de hand van de minkowski- en FKS-metrieken.

Zoals hierboven gesuggereerd, is het opzet een compactificatie van het ruimtetijdmodel te bekomen, waarbij we ‘bewerkingen op oneindig’ kunnen vervangen door bewerkingen bij eindige waarden van de coördinaten (door gebruik te maken van functies zoals tan\(^{-1}\)). Tijdens zulke procedure worden echter meestal nieuwe coördinatsingulariteiten ingevoerd, die we proberen op te vangen door een andere metriek op de gegeven variëteit te definiëren: omdat we op zijn minst verlangen dat de causale structuur van de nieuwe metriek (de *onfysische metriek* \(g_{ab}\)) identiek zou zijn aan deze van de oude metriek (de *fysische metriek* \(g_{ab}\)), stellen we

\[
g_{ab} = \Omega^2 \overline{g}_{ab}, \tag{13-7.1}
\]

waarbij \(\Omega \in \mathcal{F}(\mathcal{M})\) zo gekozen is dat de door de compactificatie geïntroduceerde coördinaatsingulariteiten verdwijnen.

Bekijken we eerst het geval van de minkowskimetriek, die we m.b.v. nulcoördinaten \(v = t + r\) en \(w = t - r\) herschrijven als

\[
ds^2 = -dv dw + \frac{1}{4} (v - w)^2 (d\theta^2 + \sin^2 \theta d\phi^2). \tag{13-7.2}
\]

Aangezien \(-\infty < t < \infty\) en \(0 < r < \infty\) geldt

\[
-\infty < v < \infty,
-\infty < w < \infty,
\]

\[
v > w. \tag{13-7.3}
\]

Definieren we nu coördinaten \(v'\) en \(w'\) door \(v' = \tan^{-1} v\) en \(w' = \tan^{-1} w\) dan geldt

\[
-\frac{\pi}{2} < v' < \frac{\pi}{2},
-\frac{\pi}{2} < w' < \frac{\pi}{2},
\]

\[
v' > w'
\]

en wordt de metriek

\[
ds^2 = \frac{1}{4} \sec^2 v' \sec^2 w' \left[-4dv' dw' + \sin^2(v' - w')(d\theta^2 + \sin^2 \theta d\phi^2) \right]. \tag{13-7.4}
\]

De coördinaatsingulariteiten bij \(\pm \frac{\pi}{2}\) kunnen we nu opheffen door een onfysische metriek 13-7.1 in te voeren met \(\Omega = \frac{1}{2} \sec v' \sec w'\). Stellen we bovendien \(t' = v' + w'\) en \(r' = v' - w'\), dan bekomen we

\[
ds^2 = -dt'^2 + dr'^2 + \sin^2 r' (d\theta^2 + \sin^2 \theta d\phi^2), \tag{13-7.5}
\]

met

\[
-\pi < t' + r' < \pi,
-\pi < t' - r' < \pi,
\]

\[
r' > 0. \tag{13-7.6}
\]
De metriek 13.7.5 met \(-\infty < t' < \infty, 0 < r' < \pi, 0 < \theta < \pi, 0 < \phi < 2\pi\) is de metriek van het statisch einsteinheelal (zie ook 12.5): dit kan beschouwd worden als de inbedding van een cilinder \(x'^2 + y'^2 + z'^2 + w'^2 = 1\) in een 5-dimensionale euclidische ruimte met metriek \(ds^2 = -dt'^2 + dx'^2 + dy'^2 + dz'^2 + dw'^2\) (stel \(x = \cos r', y = \sin r' \sin \theta \cos \phi, z = \sin r' \sin \theta \sin \phi\) en \(w = \sin r' \cos \phi\)).

Elk hyperoppervlak \(t' = \text{constant}\) is een 3-sfeer, zodat het einsteinheelal de topologie \(\mathbb{R} \times S^3\) heeft. Laten we de \(w\)- en \(z\)-coördinaten weg, dan kan de minkowski ruimte dus conform voorgesteld worden als de ‘ruit’ \(-\pi < t' \pm r' < \pi\) van de einsteincilinder \(x^2 + y^2 = 1\), gelegen in een 3-dimensionale ruimte met metriek \(ds^2 = -dt^2 + dx^2 + dy^2\): We noemen de resulterende variëteit de gcompactifieerde minkowski ruimte. De conforme structuur ‘op oneindig’ van de minkowski ruimte wordt nu voorgesteld door de rand van de ruit.

Deze rand bestaat uit de volgende delen:

- een nullhyperoppervlak \(v' = -\frac{\pi}{2}\) (\(3^+\)),
- een nullhyperoppervlak \(w' = -\frac{\pi}{2}\) (\(3^-\)),
- een punt \(v' = w' = \frac{\pi}{2}\) (\(i^+\)),
- een punt \(v' = \frac{\pi}{2}, w' = -\frac{\pi}{2}\) (\(i^0\)),
- een punt \(v' = w' = -\frac{\pi}{2}\) (\(i^-\)).

Men kan aantonen dat

1. alle tijdachtige geodeten van de originele metriek beginnen in \(i^-\) en eindigen in \(i^+\),
2. alle nulgeodeten beginnen op \(3^-\) en eindigen op \(3^+\) en

Figure 13.11: einstein cilinder en gcompactifieerde minkowski ruimte
(3) alle ruimte-achtige geodeten beginnen en eindigen in i^0. Vandaar dat men i^+ en i^- respectievelijk toekomstig en verleden tijdachtig oneindig noemt, \mathbb{I}^+ en \mathbb{I}^- respectievelijk toekomstig en verleden nul oneindig en i^0 ruimte-achtig oneindig.

In een penrosediagram wordt, met weglating van de θ- en ϕ-coördinaten, slechts de halve ruit $r' > 0$ voorgesteld ($r' = 0$ is de standaard coördinaatsingulariteit die steeds optreedt bij poolcoördinaten). In onderstaande figuur zijn bovendien de r- en t-coördinaatkrommen getekend. De nulgeodeten (i.e. de $v' = \text{constant}$ en $w' = \text{constant}$ krommen) zijn precies de rechten die een hoek van $\pm 45^\circ$ maken met de horizontale.

Voor de de sitter-metriek, 9-3.13, bekomen we door middel van de coördinaattransformatie $\sin \eta = \text{sech} \, t$ de gedaante

$$ds^2 = \frac{a^2}{\sin^2 \eta} (-d\eta^2 + d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)), \quad (13-7.7)$$

waaruit onmiddellijk kan afgelezen worden dat de de sitterruimte conform is met het $0 \leq \eta \leq \pi$ gedeelte van de einsteincilinder. Het penrosediagram krijgt dan de volgende structuur:

Verleden en toekomstig oneindig i^+ en i^- zijn nu duidelijk ruimte-achtige hypervlakken, aangezien de normaal $n^a = \overline{g}^{ab} \Omega_b$ tijdachtig is.

Met een penrosediagram kan ook de asymptotische structuur van niet-conform vlakke metrieken worden voorgesteld, op voorwaarde dat ze aan bijkomende eigenschappen —zoals sferische symmetrie— voldoen. Zo wordt b.v. de asymptotische structuur van de radiale nulgeodeten in 6.2.3 volkomen bepaald door de 2–vlakken met (conform vlakke) metriek $ds^2 = -e^{2v} dt^2 + e^{2\lambda} dr^2$. Dit suggereert om de FKS-metriek als volgt te vervormen: eerst definiëren we nulcoördinaten v'' en w'' door $v'' = \tan^{-1} v'$ en $w'' = \tan^{-1} w'$. Er geldt dan

$$\frac{-\pi}{2} < v'' < \frac{\pi}{2} \quad \frac{-\pi}{2} < w'' < \frac{\pi}{2} \quad \frac{-\pi}{2} < v'' + w'' < \frac{\pi}{2} \quad (13-7.8)$$

en de metriek van de $\theta = \text{constant}$, $\phi = \text{constant}$ deelvariëteit van 6.6.11 wordt

$$ds^2 = -32m^3 \sec^2 v'' \sec^2 w'' \frac{e^{-r/2m}}{r} dv'' du''. \quad (13-7.9)$$
Met $\Omega = \sec v'' \sec w''$ en $T'' = v'' + w''$, $X'' = v'' - w''$ bekomen we dan voor de onfysische metriek

$$d\mathfrak{s}_{(2)}^2 = 8m^3 \frac{e^{-r/2m}}{r} (-dT''^2 + dX''^2). \tag{13-7.10}$$

Hieruit wordt volgend diagram afgeleid voor de FKS-extensie: de figuur toont nogmaals overduidelijk dat $r = 0$ een ruimte-achtig singulier oppervlak is, waarop alle nulgeodeten eindigen die vertrekken vanuit gebied II.
In deze paragraaf stellen we het penrosediagram op van een maximale uitbreiding van de reissner-nordstrømruimtetijd: deze kan als model dienen voor een sferisch symmetrische, geladen en graviterende puntmassa. Het model is echter vooral van belang omdat, met nog relatief eenvoudig rekenwerk, eigenschappen bekomen worden, die een sterke gelijkenis vertonen met deze van het veel ingewikkelder kerrmodel voor roterende zwarte gaten.

We beginnen met de einstein-maxwellvergelijkingen te beschouwen, $G_{ab} = 8\pi T_{ab}$, met T_{ab} de energie-impulstensor voor een vrij maxwellveld (zie 2-6.3):

$$T_{ab} = \frac{1}{4\pi} \left(F_{am} F_{bm} - \frac{1}{4} g_{ab} F_{mn} F^{mn} \right) \quad (13-8.1)$$

F dient hierbij tevens een oplossing te zijn van de maxwellvergelijkingen

$$\nabla_b F^{ab} = 0, \quad (13-8.2)$$

$$\nabla_{[a} F_{bc]} = 0. \quad (13-8.3)$$

Opnieuw beperken we ons tot sferische symmetrie, zodat de metriek geschreven kan worden als 13-2.3. Zoals vroeger reeds opgemerkt, geldt ook nu de jebsen-birkhoffs telling op voorwaarde dat $(\nabla Y)^2 \neq 0$. Aangezien men kan aantonen dat de enige oplossing met $(\nabla Y)^2 = 0$ eigenlijk een bijzonder geval is van het algemene reissner-nordstrømmodel (zie b.v. Misner, Thorne en Wheeler), laten we dit verder buiten beschouwing en schrijven dus de metriek in het R-gebied als

$$ds^2 = -e^{2\nu} dt^2 + e^{2\lambda} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \quad (13-8.4)$$

met λ en ν functies van r.

Bekijken we eerst het rechterlid van de veldvergelijkingen: de voorwaarde 13-8.3 leidt m.b.v. de poincaréstelling tot het bestaan van een potentiaal A, zodat $F = dA$. Veronderstellen we nu dat het maxwellveld zuiver elektrostatisch is: $A = A(r) dt$ en dus $F = A' dr \wedge dt$. Met $E = A'$ de elektrische veldsterkte, herleidt 13-8.2 zich tot

$$(e^{-\nu-\lambda}r^2 E')' = 0, \quad (13-8.5)$$

191
wat het bestaan impliceert van een constante Q zodat
\[
E = e^{\nu + \lambda} \frac{Q}{r^2}.
\] (13-8.6)

In een asymptotisch vlakke ruimte geldt $\lim_{r \to \infty} \nu = \lim_{r \to \infty} \lambda = 0$, zodat we, naar analogie met het klassieke resultaat voor het elektrisch veld van een geladen puntdeeltje, Q kunnen interpreteren als de lading van het veld. Hiermee is de energie-impuls tensor volkomen gekend en kunnen we de veldvergelijkingen oplossen: we vinden $\nu' + \lambda' = 0$ (dus $\lambda = -\nu$) en vervolgens $(r^2 \nu')' = 1 - Q^2 / r^2$.

Met een integratieconstant m bekomen we alzo de reissner-nordstrommetrik
\[
ds^2 = -(1 - \frac{2m}{r} + \frac{Q^2}{r^2})dt^2 + (1 - \frac{2m}{r} + \frac{Q^2}{r^2})^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2.
\] (13-8.7)

Dit is duidelijk een veralgemening van de schwarzschildmetrik en uit de studie van de beweging van neutrale testdeeltjes voor $r >> 2m$ volgt opnieuw dat we m kunnen interpreteren als de massa van het veld. Een berekening van de invariant $R_{abcd} R^{abcd}$ toont, zoals te verwachten was, dat $r = 0$ ook hier weer een krommingssingulariteit is. Voor een verdere studie van de oplossing dienen we een onderscheid te maken tussen $Q^2 \leq m^2$ en $Q^2 > m^2$.

Als $Q^2 = m^2$ dan is de metrik 13-8.7 regulier voor alle $r \in [0, +\infty[$; dit is o.a. het geval wanneer we een elektron zouden bekijken als klassiek puntdeeltje. In gravitationele eenheden is de lading van het elektron immers $1.38 \times 10^{-36} m_P$ en de massa van het elektron $6.77 \times 10^{-58} m_P$, zodat $Q/m \approx 2 \times 10^{21}$.

De metrik 13-8.7 met $0 < r < \infty$, $-\infty < t < \infty$ is reeds maximaal (op de coördinaatsingulariteiten in $\theta = 0$ en $\theta = \pi$ na) en het penrosediagram lijkt op dat van de minkowskirimte (net zoals de maximale analytische extensie van de schwarzschildmetrik met negatieve massa). Nu is echter het tijdstijgende oppervlak $r = 0$ geen coördinaatsingulariteit; bovendien is $r = 0$ niet afgeschermd van waarnemers door een event horizon. We noemen de krommingssingulariteit $r = 0$ daarom een *naakte tijdstijgende singulariteit*. Ook de verleden singulariteit (de $r = 0$ singulariteit van het wit gat) in de FKS-ruimtetijd, zie fig. 13.14, is een naakte singulariteit, maar ze is ruimte-achtig.

Een interessantere structuur ontstaat wanneer we macroscopische lichamen (sterren, planeten, ...) beschouwen, waarvoor we kunnen aannemen dat ze in goede benadering neutraal zijn, t.t.z. $Q/m << 1$.

De discriminant van de kwadratische vorm $r^2 - 2mr + Q^2$ is dan positief, zodat $g_{tt} = -(g^{rr})^{-1} 0$ wordt voor $r = r_{\pm}$, met
\[
r_{\pm} = m \pm (m^2 - Q^2)^{1/2}.
\] (13-8.8)

Waar we bij de schwarzschildoplossing twee gebieden (R en T) afzonderlijk dienden te bestuderen, moeten we nu drie gebieden onderscheiden:

\[
\begin{align*}
I) & \quad r_+ < r < \infty, \\
II) & \quad r_- < r < r_+ , \\
III) & \quad 0 < r < r_-.
\end{align*}
\] (13-8.9)

Als $Q^2 = m^2$ is gebied (II) afwezig. De metrik 13-8.7 neemt dan in isotope coördinaten de vorm aan (verifieer!)
\[
ds^2 = -H^{-2} dt^2 + H^2 (d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\phi^2), \quad H = 1 + \frac{m}{\rho}.
\] (13-8.10)

Dit is een bijzonder geval van de z.g. *majumdar-papapetrou* ruimtetijden (waarvoor de killinghorizons allemaal ontaard zijn), waarbij $\text{ds}^2 = -H^{-2} dt^2 + H^2 (dx^2 + dy^2 + dz^2)$, met $H = H(x, y, z)$ een oplossing van de laplacevergelijking $\Delta H = 0$: $H = 1 + \sum_{i=1}^{N} \frac{m_i}{|x-x_i|}$ stelt dan een superpositie voor van N reissner-nordstrøm ‘deeltjes’, waarbij de onderlinge gravitationele aantrekkingen en electrostatische
afstotingen mekaar precies in evenwicht houden20.

Is $Q^2 < m^2$ dan kunnen we, net zoals bij de schwarzschildoplossing, aantonen dat de drie oplossingen isometrisch equivalent zijn met deelvariëteiten van één zelfde ruimtetijd. De drie gebieden worden van elkaar gescheiden door de nullhyperoppervlakken $r = r_+$ en $r = r_-$. Bij $r = r_+$ is de situatie vergelijkbaar met wat zich afspelt bij $r = r_S$ in de schwarzschildoplossing: de coördinaten t en r, respectievelijk tijdachtig en ruimte-achtig in gebied I worden ruimte-achtig en tijdachtig in gebied II. Bij $r = r_-$ treedt de omgekeerde eigenschap op, zodat gebieden I en III statisch zijn. Vooral het feit dat gebied III (waar de $r = 0$ singulariteit gelegen is) statisch is, heeft merkwaardige gevolgen.

Voeren we echter eerst, volkomen in analogie met hoofdstuk 7, de eddington-finkelsteincoördinaten in:

$\tilde t = t + \frac{r^2}{r_+ - r_-} \log(r - r_+) - \frac{r^2}{r_+ - r_-} \log(r - r_-)$. \hfill (13-8.11)

Substitutie hiervan in 13-8.7 geeft

$$ds^2 = -(1 - \psi) dt^2 + 2\psi d\tilde t dr + (1 + \psi) dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2),$$ \hfill (13-8.12)

met

$$\psi = \frac{2m}{r} - \frac{Q^2}{r^2}. \hfill (13-8.13)$$

Voor de radiale nulgeodeten kunnen we 13-8.12 factoriseren:

$$0 = (dr + d\tilde t) \left((1 + \psi) dr - (1 - \psi) d\tilde t\right) = 0,$$

wat voor de ingaande familie resulteert in

$$\tilde t + r = \text{constant} \hfill (13-8.14)$$

en voor de uitgaande familie in

$$\frac{d\tilde t}{dr} = \frac{1 + \psi}{1 - \psi}. \hfill (13-8.15)$$

Een schets van de functies $1 + \psi$ en $1 - \psi$ geeft dan onmiddellijk voldoende informatie om een kwalitatief beeld te verkrijgen van de uitgaande familie.

Uit fig. 13.15 blijkt duidelijk dat $r = r_+$ opnieuw een event horizon is: geen enkel signaal kan zich van gebied II naar gebied I bewegen.

Elk deeltje dat zich in gebied II bevindt, zal na verloop van een eindige eigentijd het gebied III binnendringen of zal het oppervlak $r = r_-$ asymptotisch benaderen. Deeltjes die zich in gebied III bevinden moeten echter niet noodzakelijk naar de $r = 0$ singulariteit toe bewegen: vermits $\xi = \frac{\partial}{\partial \tau}$ een tijdachtige killingvector is in gebied III, is $< \xi, u > = -(1 - \psi) \frac{d\tau}{d\tau}$ een constante van de beweging (τ is een affiene parameter en $u = \frac{dx}{\partial \tau} \frac{\partial}{\partial x}$). Een tweede constante van de beweging volgt uit

$$1 = (1 - \psi) \left(\frac{dr}{d\tau}\right)^2 - (1 - \psi)^{-1} \left(\frac{d\tau}{d\tau}\right)^2$$ \hfill (13-8.16)

zodat de radiale bewegingsvergelijking gegeven wordt door

$$\left(\frac{dr}{d\tau}\right)^2 = l^2 - 1 + \psi. \hfill (13-8.17)$$

20Men kan aantonen dat de majumdar-papapetrou ruimtetijden, samen met de reissner-nordstrøm ruimtetijden (ontstaande zowel als niet-ontstaande) de enige statische asymptotisch vlakke einstein-maxwell oplossingen zijn met een niet-singulier uitwendig gebied (Chrusciel en Nadirashvili, 1995, evenals Chrusciel en Tod, 2005).
Deze vergelijking beschrijft de één-dimensionale beweging van een deeltje met kinetische energie \((\frac{dE}{dt})^2\) in een potentiaal \(1 - \psi\). De oneindige potentiaalmuur bij \(r = 0\) zorgt er dus voor dat alle neutrale testdeeltjes door de singulariteit zelfs worden afgestoten!

Figuur 13.15 wekt opnieuw de indruk dat deeltjes vertrekkend uit gebied III niet naar gebied II kunnen ontsnappen en \(r = r_-\) enkel asymptotisch kunnen benaderen. Men kan echter aantonen dat zij \(r = r_-\) in een eindige eigentijd bereiken, zodat figuur 13.15 het verband tussen de gebieden II en III misleidend voorstelt. Net zoals bij de schwarzschildoplossing verhelpen we hieraan door de FKS-techniek toe te passen. We kiezen dus nullcoördinaten

\[
v = t + r + \frac{r_+^2}{r_+ - r_-} \log(r - r_+) - \frac{r_-^2}{r_+ - r_-} \log(r - r_-),
\]
\[
w = t + r - \frac{r_+^2}{r_+ - r_-} \log(r - r_+) + \frac{r_-^2}{r_+ - r_-} \log(r - r_-)
\]

en bekomen met de hulp van 13-8.7

\[
\text{ds}^2 = (1 - \frac{2m}{r} + \frac{Q^2}{r^2})dv dw - r^2(d\theta^2 + \sin^2\theta d\phi^2).
\]

Oefening:
Toon aan dat de oppervlaktegravitatie van de buitenste horizon (en met de gepaste normalisatie van de tijdachtige killingvector in gebied I) gegeven wordt door

\[
\kappa = \frac{r_+ - r_-}{2r_+^2} = \sqrt{\frac{m^2 - Q^2}{r_+^2}}.
\]

We definiëren nu verder

\[
v'' = \tan^{-1}(\exp\frac{r_+ - r_-}{4r_+^2}v)
\]
\[
w'' = \tan^{-1}(\exp\frac{r_+ - r_-}{4r_+^2}w)
\]

en herschrijven 13-8.19 als

\[
\text{ds}^2 = -64(1 - \frac{2m}{r} + \frac{Q^2}{r^2})\frac{r_+^4}{(r_+ - r_-)^2}\cosec2v''\cosec2w'' \ dv'' dw'' - r^2(d\theta^2 + \sin^2\theta d\phi^2)
\]
waarbij $r = r(u'' , w'')$ impliciet bepaald is door

$$
\tan u'' \tan w'' = -\exp\left(\frac{r_+ - r}{2r_+^2}\right) (r - r_+)^{1/2} (r - r_-)^{-r_+^2/2r_+^2/2} .
$$

(13-8.22)

Net zoals de FKS-extensie de maximale analytische uitbreiding is van de schwarzschildmetriek, is de metriek 13-8.21 de maximale analytische uitbreiding van de reissner-nordstrøm-metriek. Op eerste zicht is dit verwonderlijk: de functie $r(u'' , w'')$ is immers niet analytisch in $r = r_-$ (ze is er wel C^2).

Men kan echter nieuwe coördinaten definiëren, waarvoor de metriek analytisch wordt in $r = r_-$ (maar dan weer niet analytisch in $r = r_+$). Enkel door beide kaarten te gebruiken, kan een analytische atlas geconstrueerd worden (zie b.v. Hawking & Ellis). Constructie van het penrosediagram levert ten slotte, door topologische identificatie van de $r = r_+$ en $r = r_-$ randen, de voorstelling van de maximale uitbreiding getoond in fig.13.16: het oneindig aantal asymptotisch vlakke gebieden I, aan elkaar verbonden d.m.v. de gebieden II en III, (waarbij III telkens een tijdachtige singulariteit bevat), opent schijns de deur voor een topologisch science fiction scenario, waarin b.v. (1) een reiziger vertrekt in gebied I, (2) doorheen de lokale event horizon $r = r_+$ in gebied II binnendringt, (3) zich doorheen $r = r_-$ toegang verschafte tot gebied III (en een kijkje neemt nabij de tijdachtige singulariteit $r = 0$), (4) tot het besef komt dat terugkeer naar het eigen universum onmogelijk is, maar (5) erin slaagt om via II en I in een ‘ander’ universum te belanden.21 In ‘de praktijk’ is zulke scenario echter niet uitvoerbaar: het blijkt immers dat, wanneer we elektromagnetische straling of gravitationele straling in het model introduceren, de flux van deze straling divergeert in $r = r_-$, zodat de reiziger geëvaporiseerd wordt (Chandrasekhar en Hartle, 1982).

Het oppervlak $r = r_-$ heeft nog een andere merkwaardige eigenschap: om het even welke vorm van informatie die wordt vastgelegd op een ruimtelijk hyperoppervlak S (zie figuur 13.16), kan uitsluitend de gebeurtenissen voorspellen die gelegen zijn in de vlak ‘boven’ S gelegen I en II gebieden. Wat gebeurt in III of in alle ‘hoger’ gelegen gebieden, is op geen enkele causale manier bepaald door de beginvoorwaarden (m.a.w. de cauchydata) gedefinieerd op S. We zeggen dat $r = r_-$ een cauchyhorizon vormt. Een waarnemer die de cauchyhorizon overschrijdt, ziet binnen een eindige eigentijd de ganse geschiedenis van één der asymptotisch vlakke gebieden I! Deze eigenschap, samen met het divergeren van de stralingsflux op de cauchyhorizon, doet vermoeden dat de cauchyhorizon wellicht instabiel is. Of in een voldoend algemene ruimttijd zich al dan niet cauchyhorizons vormen, is echter nog steeds een open probleem en houdt direct verband met R. Penrose’s Cosmic Censorship Conjecture.

Oefening: Ga na dat de coördinatentransformatie $r = \rho [(1 + m^2 \rho^2)^{-1/2} - Q^2 / 4\rho^2]$ de metriek 13-8.7 omzet in

$$
-a^2 b^2 c^2 d^2 + b^2 (dp^2 + \rho^2 d\Omega^2),
$$

(13-8.23)

met $a = 1 - m^2 Q^2 / 4\rho^2$ en $b = (1 + m^2 \rho^2)^{-1/2} - Q^2 / 4\rho^2$, wat invariant is onder de inversie $\rho \to m^2 Q^2 / 4\rho$. Er is nu slechts één horizon, namelijk bij $\sqrt{m^2 - Q^2} / 2$. Wat is er met de Cauchy-horizon gebeurd?

21 Dit nieuwe universum kan desgewenst met het oorspronkelijke universum van de reiziger geïdentificeerd worden, maar dit geeft aanleiding tot causale problemen i.v.m. gesloten tijdachtige krommen.
Figure 13.16: maximaal analytische uitbreiding van de reissner-nordstrommetriek met $Q < m$