Exponentially-fitted methods applied to fourth-order boundary value problems

M. Van Daele, D. Hollevoet and G. Vanden Berghe

Department of Applied Mathematics and Computer Science

Sixth International Conference of Numerical Analysis and Applied Mathematics, Kos, 2008
Outline

Introduction
 An example
 Exponential fitting

Fourth-order boundary value problems
 The problem
 Exponentially-fitted methods
 Parameter selection

Numerical examples
 First example
 Second example

Conclusions
In the past 15 years, our research group has constructed modified versions of well-known
- linear multistep methods
- Runge-Kutta methods
Aim: build methods which perform very good when the solution has a known exponential of trigonometric behaviour.
Linear multistep methods

A well known method to solve

\[y'' = f(y) \quad y(a) = y_a \quad y'(a) = y'_a \]

is the Numerov method (order 4)

\[
y_{n+1} - 2y_n + y_{n-1} = \frac{1}{12} h^2 \left(f(y_{n-1}) + 10 f(y_n) + f(y_{n+1}) \right)
\]

Construction:

impose \(\mathcal{L}[z(t); h] = 0 \) for \(z(t) \in S = \{1, t, t^2, t^3, t^4\} \) where

\[
\mathcal{L}[z(t); h] := z(t + h) + \alpha_0 z(t) + \alpha_{-1} z(t - h) - h^2 \left(\beta_1 z''(t + h) + \beta_0 z''(t) + \beta_{-1} z''(t - h) \right)
\]
A model problem

Consider the initial value problem

\[y'' + \omega^2 y = g(y) \quad y(a) = y_a \quad y(a) = y'_a. \]

If \(|g(y)| \ll \omega^2 y \) then

\[y(t) \approx \alpha \cos(\omega t + \phi) \]

To mimic this oscillatory behaviour, one could replace polynomials by trigonometric (in the complex case: exponential) functions.
EF Numerov method

Construction: impose $\mathcal{L}[z(t); h] = 0$ for $z(t) \in S$ with

$$S = \{1, t, t^2, \sin(\omega t), \cos(\omega t)\}$$

$$\mathcal{L}[z(t); h] := z(t + h) + \alpha_0 z(t) + \alpha_{-1} z(t - h)$$
$$- h^2 \left(\beta_1 z''(t + h) + \beta_0 z''(t) + \beta_{-1} z''(t - h) \right)$$

$$y_{n+1} - 2y_n + y_{n-1} = h^2 \left(\lambda f(y_{n-1}) + (1 - 2\lambda) f(y_n) + \lambda f(y_{n+1}) \right)$$

$$\lambda = \frac{1}{4 \sin^2 \frac{\theta}{2}} - \frac{1}{\theta^2}$$
$$\theta := \omega h$$

$$= \frac{1}{12} + \frac{1}{240} \theta^2 + \frac{1}{6048} \theta^4 + \ldots$$
EF methods

Generalisation: to determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains

- polynomials:
 \[\{ t^q | q = 0, \ldots, K \} \]

- exponential or trigonometric functions, multiplied with powers of t:
 \[\{ t^q \exp(\pm \mu t) | q = 0, \ldots, P \} \]
 or, with $\omega = i \mu$,
 \[\{ t^q \cos(\omega t), t^q \sin(\omega t) | q = 0, \ldots, P \} \]

EF method can be characterized by the couple (K, P)

Classical method: $P = -1$

number of basis functions: $M = 2P + K + 3$
Examples

\[M = 2P + K + 3 \]

\[
\begin{array}{|c|c|c|c|c|}
\hline
(K, P) & (K, P) & (K, P) & (K, P) & (K, P) \\
\hline
M = 2 & M = 4 & M = 6 & M = 8 & M = 10 \\
(1, -1) & (3, -1) & (5, -1) & (7, -1) & (9, -1) \\
(-1, 1) & (1, 0) & (3, 0) & (5, 0) & (7, 0) \\
 & (-1, 1) & (1, 1) & (3, 1) & (5, 1) \\
 & & (-1, 2) & (1, 2) & (3, 2) \\
 & & & (-1, 3) & (1, 3) \\
 & & & & (-1, 4) \\
\hline
\end{array}
\]

\[(1, 2) \implies S = \left\{ 1, t, \exp(\pm \mu t), t \exp(\pm \mu t), t^2 \exp(\pm \mu t) \right\} \]
Exponential Fitting

L. Ixaru and G. Vanden Berghe

Exponential fitting

\[\eta_{-1}(Z) = \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0 \\ \cosh(Z^{1/2}) & \text{if } Z \geq 0 \end{cases} \]

\[\eta_0(Z) = \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0 \\ 1 & \text{if } Z = 0 \\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases} \]

\[Z := (\mu h)^2 = -(\omega h)^2 \]

\[\eta_n(Z) := \frac{1}{Z} [\eta_{n-2}(Z) - (2n - 1)\eta_{n-1}(Z)], \quad n = 1, 2, 3, \ldots \]

\[\eta'_n(Z) = \frac{1}{2} \eta_{n+1}(Z), \quad n = 1, 2, 3, \ldots \]
Choice of ω

- local optimization
 based on local truncation error (lte)
 ω is step-dependent

- global optimization
 Preservation of geometric properties (periodicity, energy, . . .)
 ω is constant over the interval of integration
Fourth-order boundary value problem

\[y^{(4)} = F(t, y) \quad a \leq t \leq b \]

\[y(a) = A_1 \quad y''(a) = A_2 \]
\[y(b) = B_1 \quad y''(b) = B_2 \]

- special case: \(y^{(4)} + f(t) y = g(t) \)
- mathematical modeling of viscoelastic and inelastic flows, deformation of beams, plate deflection theory, . . .
- work by Doedel, Usmani, Agarwal, Cherruault et al., Van Daele et al., . . .
- finite differences, B-splines, . . .
The formulae

\[t_j = a + jh, \quad j = 0, 1, \ldots, N + 1 \quad N \geq 3 \quad h := \frac{b-a}{N+1} \]

- **central formula** for \(j = 2, \ldots, N - 1 \)

\[
y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 \left(b_2 F_{j-2} + b_1 F_{j-1} + b_0 F_j + b_1 F_{j+1} + b_2 F_{j+2} \right)
\]

whereby \(y_j \) is approximate value of \(y(t_j) \) and \(F_j := F(t_j, y_j) \).

- **begin formula**

\[
y_0 + \alpha_1 y_1 + \alpha_2 y_2 + a_3 y_3 = \gamma h^2 y''_0 + h^4 \left(\beta_0 F_0 + \beta_1 F_1 + \beta_2 F_2 + \beta_3 F_3 + \beta_4 F_4 + \beta_5 F_5 \right)
\]

- **end formula**
Central formula

\[\mathcal{L}[y] := y(t - 2 h) + a_1 y(t - h) + a_0 y(t) + a_1 y(t + h) + y(t + 2 h) \]
\[- h^4 \left(b_2 y^{(4)}(t - 2 h) + b_1 y^{(4)}(t - h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t + h) + b_2 y^{(4)}(t + 2 h) \right) \]

\[P = -1 : \quad \mathcal{L}[y] = 0 \quad \text{for} \quad y \in S = \{1, t, t^2, \ldots, t^{M-1}\} \]

\[M = 10 : \]
\[y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} = \]
\[h^4 \frac{1}{720} \left(-y_{p-2}^{(4)} + 124 y_{p-1}^{(4)} + 474 y_p^{(4)} + 124 y_{p+1}^{(4)} - y_{p+2}^{(4)} \right) \]
\[\mathcal{L}[y](t) = \frac{1}{3024} h^{10} y^{(10)}(t) + O(h^{12}) \]

\[M = 8 \text{ and } b_2 = 0 : \]
\[h^4 \left(\text{central formula} \right) \]
EF Central formula

\[\mathcal{L}[y] := y(t - 2h) + a_1 y(t - h) + a_0 y(t) + a_1 y(t + h) + y(t + 2h) \]
\[- h^4 \left(b_2 y^{(4)}(t - 2h) + b_1 y^{(4)}(t - h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t + h) + b_2 y^{(4)}(t + 2h) \right) \]

\[P = 0 : \quad \mathcal{L}[y] = 0 \text{ for } y \in S = \{ \cos(\omega t), \sin(\omega t), 1, t, t^2, \ldots, t^{M-3} \} \]

\[M = 10 : \]
\[y_{p-2} - 4 y_{p-1} + 6 y_p - 4 y_{p+1} + y_{p+2} = \]
\[h^4 \left(b_2 y^{(4)}_{p-2} + b_1 y^{(4)}_{p-1} + b_0 y^{(4)}_p + b_1 y^{(4)}_{p+1} + b_2 y^{(4)}_{p+2} \right) \]

\[b_0 = \frac{4 \cos^2 \theta - 2 - 11 \cos \theta}{6 (\cos \theta - 1)^2} + \frac{6}{\theta^4} \quad b_1 = \frac{\cos^2 \theta + 5}{6 (\cos \theta - 1)^2} - \frac{4}{\theta^4} \quad b_2 = -\frac{\cos \theta + 2}{12 (\cos \theta - 1)^2} + \frac{1}{\theta^4} \]

\[\mathcal{L}[y](t) = \frac{1}{3024} h^{10} \left(y^{(10)}(t) + \omega^2 y^{(8)}(t) \right) + \mathcal{O}(h^{12}) \]
EF Central formula

\(\mathcal{L}[y] := y(t - 2h) + a_1 y(t - h) + a_0 y(t) + a_1 y(t + h) + y(t + 2h) \)

\[-h^4 \left(b_2 y^{(4)}(t - 2h) + b_1 y^{(4)}(t - h) + b_0 y^{(4)}(t) + b_1 y^{(4)}(t + h) + b_2 y^{(4)}(t + 2h) \right) \]

\(P = 1 : \mathcal{L}[y] = 0 \text{ for } y \in S = \left\{ \cos(\omega t), \sin(\omega t), t \cos(\omega t), t \sin(\omega t), 1, t, t^2, \ldots, t^{M-5} \right\} \)

\(M = 6 \text{ and } b_1 = b_2 = 0 : \)

\[y_{p-2} + a_1 y_{p-1} + a_0 y_p + a_1 y_{p+1} + y_{p+2} = b_0 h^4 y_p^{(4)} \]

\[a_0 = 2 \frac{-8 \sin^2 \theta + \theta \left(4 \cos \theta - 1 \right) \sin \theta - 4 \cos \theta + 4}{\theta \sin \theta + 4 \cos \theta - 4} \quad a_1 = -4 \frac{\sin \theta \left(\theta \cos \theta - 2 \sin \theta \right)}{\theta \sin \theta + 4 \cos \theta - 4} \]

\[b_0 = 4 \frac{\sin \theta \left(\sin^2 \theta - 2 + 2 \cos \theta \right)}{\theta^3 \left(\theta \sin \theta + 4 \cos \theta - 4 \right)} \]

\(\mathcal{L}[y](t) = \frac{1}{6} h^6 \left(y^{(6)}(t) + 2 \omega^2 y^{(4)}(t) + \omega^4 y^{(2)}(t) \right) + \mathcal{O}(h^8) \)
Coefficients of Central formula $M = 6$

- a_0 and a_1 for $P = -1, 0, 1, 2$.
- b_0 for $P = -1, 0, 1, 2$.
Coefficients of Central formula $M = 8$
Coefficients of Central formula $M = 10$
Central formula: coefficients

E.g. b_0 in case $M = 6$

In closed form . . .

- $P = -1$:
 \[
 b_0 = 1
 \]

- $P = 0$:
 \[
 b_0 = 4 \frac{(\cos \theta - 1)^2}{\theta^4}
 \]

- $P = 1$:
 \[
 b_0 = -4 \frac{\sin \theta (\cos \theta - 1)^2}{\theta^3 (4 \cos \theta - 4 + \theta \sin \theta)}
 \]

- $P = 2$:
 \[
 b_0 = -2 \frac{\sin^3 \theta}{\theta^2 (\theta \cos \theta - 3 \sin \theta)}
 \]
Central formula: coefficients

E.g. \(b_0 \) in case \(M = 6 \)

As a series . . .

- \(P = -1 : \)
 \[b_0 = 1 \]

- \(P = 0 : \)
 \[b_0 = 1 - \frac{1}{6} \theta^2 + \frac{1}{80} \theta^4 + \mathcal{O}(\theta^6) \]

- \(P = 1 : \)
 \[b_0 = 1 - \frac{1}{3} \theta^2 + \frac{37}{720} \theta^4 + \mathcal{O}(\theta^6) \]

- \(P = 2 : \)
 \[b_0 = 1 - \frac{1}{2} \theta^2 + \frac{7}{60} \theta^4 + \mathcal{O}(\theta^6) \]
Central formula: local truncation error

\[lte = \mathcal{L}[y](t) \]

As an infinite series:

\[lte = h^M C_{M} D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + \mathcal{O}(h^{M+2}) \]

In closed form: (Coleman and Ixaru)

\[lte = h^M \Phi_{K,P}(Z) D^{K+1} (D^2 + \omega^2)^{P+1} y(\xi) \]

\[Z \in \text{some interval} \quad \Phi_{K,P}(0) \neq 0 \quad \xi \in (t - 2h, t + 2h) \]
Local truncation error

\[\text{lte} = h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + O(h^{M+2}), \]

At \(t_j : D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \bigg|_{t=t_j} = 0 \quad j = 2, \ldots, N - 1 \)

- \(P = 0 : \)
 \[y^{(K+3)}(t_j) + y^{(K+1)}(t_j) \omega_j^2 = 0 \]

- \(P = 1 : \)
 \[y^{(K+5)}(t_j) + 2 y^{(K+3)}(t_j) \omega_j^2 + y^{(K+1)}(t_j) \omega_j^4 = 0 \]

- \(P = 2 : \)
 \[y^{(K+7)}(t_j) + 3 y^{(K+5)}(t_j) \omega_j^4 + 3 y^{(K+3)}(t_j) \omega_j^4 + y^{(K+1)}(t_j) \omega_j^6 = 0 \]
Local truncation error

\[\text{lte} = h^M C_M D^{K+1} (D^2 + \omega^2)^{P+1} y(t) + \mathcal{O}(h^{M+2}) , \]

At \(t_j : \left. D^{(K+1)} (D^2 + \omega_j^2)^{(P+1)} y(t) \right|_{t=t_j} = 0 \quad j = 2, \ldots, N - 1 \]

\(\omega_j^2 \) is solution of equation of degree \(P + 1 \).

- Which value of \(P \) should be chosen ?
- Which root \(\omega_j \) should be chosen ?
Parameter selection

\[\ell(t) = h^M C_M D^{K+1} (D^2 - \mu^2)^{P+1} y(t) + O(h^{M-2}) \]

Suppose \(y(t) \) takes the form \(t^{P_0} e^{\mu_0 t} \)

Then \(\ell(t) = 0 \) for any EF rule with \(P \geq P_0 \) and \(\mu_j = \mu_0 \)

Theorem

If \(y(t) = t^{P_0} e^{\mu_0 t} \) then \(\nu = \mu_0^2 \) is a root of multiplicity \(P - P_0 + 1 \)

of \(D^{K+1} (D^2 - \nu)^{P+1} y(t) = 0 \).

- if \(P = P_0 \), then \(\mu = \mu_0 \) will be a single root
- if \(P = P_0 + 1 \), then \(\mu = \mu_0 \) will be a double root
- if \(P = P_0 + 2 \), then \(\mu = \mu_0 \) will be a triple root
- ...
Parameter selection

Suppose $y(t)$ does not take the form $t^{P_0} e^{\mu_0 t}$

Then $y(t) \not\in S$ for any P.

For a given value of P:

$$D^{(K+1)} (D^2 - \mu_j^2)^{(P+1)} y(t) \bigg|_{t=t_j} = 0$$

At each point t_j, this gives $P + 1$ values for μ_j^2.

Idea: keep $|\mu_j h|$ as small as possible.
If possible, choose $P \geq 1$ to avoid too large values for $|\mu_j|$.
First example

\[y^{(4)} - \frac{384 t^4}{(2 + t^2)^4} y = 24 \frac{2 - 11 t^2}{(2 + t^2)^4} \]

\[y(-1) = \frac{1}{3} \quad y(1) = \frac{1}{3} \]

\[y''(-1) = \frac{2}{27} \quad y''(1) = \frac{2}{27} \]

Solution: \[y(t) = \frac{1}{2 + t^2} \]
\(\mu_j \) for \(M = 8 \)

\[P = 0 : y^{(8)}(t_j) - y^{(6)}(t_j) \mu_j^2 = 0 \]

- re-express higher order derivatives in terms of \(y \), \(y' \), \(y'' \) and \(y''' \)
- approximate \(y' \), \(y'' \) and \(y''' \) in terms of \(y \)
- an initial approximation for \(y \) can be computed with a polynomial rule

Real and imaginary part of \(\mu_j \)
\(\mu_j \) for \(M = 8 \)

\[P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0 \]

Real and imaginary part of \(\mu_j \) with smallest norm

Real and imag. part of \(\mu_{1,j} \) and \(\mu_{2,j} \)
μ_j for $M = 8$

$P = 1 : y^{(8)}(t_j) - 2 y^{(6)}(t_j) \mu_j^2 + y^{(4)}(t_j) \mu_j^4 = 0$

error obtained with $\mu_{1,j}$, $\mu_{2,j}$ and μ with smallest norm
Global error

\[M = 6 : \quad (K, P) = (5, -1) : \text{second-order method} \]
\[(K, P) = (1, 1) : \text{fourth-order method} \]
Global error

\[M = 8 : \quad (K, P) = (7, -1) : \text{fourth-order method} \]
\[(K, P) = (3, 1) : \text{sixth-order method} \]
Global error

\(M = 10 : \)

\((K, P) = (9, -1)\) : sixth-order method
\((K, P) = (5, 1)\) : eighth-order method
Condition number

\[\text{cond}(A) \]

\[10^{-3} \quad 10^{-2} \quad 10^{-1} \quad 10^{4} \quad 10^{6} \quad 10^{8} \quad 10^{10} \quad 10^{12} \]

\[h \]
Second example

\[y^{(4)} - t = 4e^t \]

\[y(-1) = -1/e \quad y(1) = e \]
\[y''(-1) = 1/e \quad y''(1) = 3e \]

Solution: \[y(t) = e^t t \]
\(\mu_j \) for \(M = 6 \)

\[
P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0
\]

differentiating the differential equation:

\[
(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0
\]

\(y^{(2)}(t_j) \) approximated by fourth-order finite difference scheme

two real roots \(\mu^{(1)} \) and \(\mu^{(2)} \)
\(M = 6 \)

\[P = 1 : y^{(6)}(t_j) - 2 y^{(4)}(t_j) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0 \]

differentiating the differential equation:

\[(y^{(2)}(t_j) + 4 e^{t_j}) - 2 (y_j + 4 e^{t_j}) \mu_j^2 + y^{(2)}(t_j) \mu_j^4 = 0 \]

\(y^{(2)}(t_j) \) approximated by sixth-order finite difference scheme

two real roots \(\mu^{(1)} \) and \(\mu^{(2)} \)
Conclusions

- Fourth-order boundary value problems are solved by means of parameterized exponentially-fitted methods.
- A suitable value for the parameter can be found from the roots of the leading term of the local truncation error.
- If a constant value is found, then a very accurate solution can be obtained.
- However, the methods strongly suffer from the fact that the system to be solved is ill-conditioned for small values of the mesh size.