Why Ask About Peter? Do You Think He Caused It?
How the Description of Causal Events Guides the Selection of Questions About Them

Mario Pandelaere, Vera Hoorens, and Guido Peeters
University of Leuven, Belgium

The hypothesis was tested that people use a positive test strategy to evaluate self-generated causal hypotheses. Using the implicit causality in state verbs and interpretative and state action verbs, participants were presented with behavioral descriptions eliciting different causal hypotheses. They indicated which question they wanted to ask to get more information about who instigated the event being described. Participants who hypothesized that the behavior was instigated by the actor selected the question that focused on distinctiveness information whereas participants who hypothesized that the behavior was instigated by the object selected the question that focused on consensus information, indicating participants used a positive test strategy. Nevertheless, considerations about the information value of possible answers also seemed to play a role. Still, positive test strategies seem to be so pervasive that one can infer on the basis of the type of question someone asks to whom the latter attributes the event.

Requests for reprints should be sent to Mario Pandelaere, Laboratorium voor Experimentele Sociale Psychologie, Tiensestraat 102, 3000 Leuven, Belgium. E-mail: Mario.Pandelaere@psy.kuleuven.ac.be

Many applied settings, such as interviews by police, judges of peace courts, relation counselors, conflict arbitrators, and insurance inspectors, deal with the assignment of responsibility for a given situation. All these settings have in common that following the description of a case or incident often additional information needs to be gained. Because the ultimate answer to the question of responsibility may have serious consequences for the parties involved, an understanding of the factors influencing the information search phase is very important. Following an initial description of an event or situation, people faced with the difficult task of assigning responsibility may entertain a "working" hypothesis that may guide them through the information search phase. Of particular relevance, then, is the study of human hypothesis testing.

Research has indicated that people frequently use a positive test strategy when they try to evaluate a hypothesis (Klayman & Ha, 1987), in particular when the evaluation options are equally diagnostic (e.g., Devine, Hirt, & Gehrke, 1990; Skov & Sherman, 1986; for a review see Klayman, 1995). First, people tend to ask open-ended questions that presuppose that the hypothesis is correct. For instance, Snyder and Swann (1978) found that, when testing if someone is extroverted, people select questions that presuppose that the target is extroverted, asking "What kind of situations do you seek out if you want to meet new people?" rather than "What things do you dislike at loud parties?" Second, people tend to select yes/no questions that would elicit an affirmative answer if the hypothesis were true. For instance, Zuckerman, Knee, Hodgins, and Miyake (1995) found that, when people evaluate the hypothesis that someone is extroverted, they ask questions like "Do you like going to parties?", which elicit an affirmative answer if the respondent is extroverted. We will further refer to these questions as "affirmative" questions.

Experimenter-provided hypotheses may have a different status than self-generated hypotheses. In particular, research participants may rely on the Gricean maxim of quality (cf. Schwarz, 1994) to infer the plausibility of an experimenter-provided hypothesis. According to this maxim, recipients of a message (research participants) are entitled to believe that a speaker (experimenter) wishes to be as truthful as possible. Consequently, from the outset of the testing process, an experimenter-provided hypothesis may be inferred to be more plausible than any alternative hypothesis. A different test strategy may be adopted for self-generated hypotheses because they lack some of the plausibility that experimenter-provided hypotheses may have. Although it has been established that people use a positive test strategy when evaluating experimenter-provided hypotheses, it should not be inferred uncritically that people also use a positive test strategy to test self-generated hypotheses.

Only one study has examined whether people also use a positive test strategy to test self-generated hypotheses.
Meertens, Koooren, Depeut, and Hager (1984) found that people select open-ended questions that presuppose the correctness of the hypothesis when evaluating their own hypothesis. However, it is not clear whether people also use “affirmative” questions when evaluating their own hypotheses. This issue is particularly important because people tend to use an acquiescent response style when responding to yes/no questions (Zuckerman et al., 1995). This may be due to respondents accepting the assertion embedded in a question as true in the process of understanding the question (cf. Fiedler, 2000). As a consequence, “affirmative” questions may lead to the confirmation of hypotheses, regardless of whether they are correct or not (Zuckerman et al., 1995). Therefore, the first aim of this study is to examine whether people do indeed select “affirmative” questions when evaluating self-generated hypotheses.

A lot of research about positive test strategies has focused on how people test hypotheses about a target’s disposition, neglecting the equally important issue of how people test hypotheses about causal attribution. Although causal attribution and dispositional inference are conceptually related, research has shown that they are distinct (e.g., Erickson & Krull, 1999) and based on different mechanisms (e.g., Hilton, Smith, & Kim, 1995; Smith & Miller, 1983). Hence, the question remains whether or not people will use a positive test strategy when evaluating causal hypotheses. The second aim of this study is to resolve this question.

To be able to test whether people use positive test strategies in the domain of causal attribution, we needed to induce people to make causal attributions that nevertheless remain hypotheses rather than final conclusions. One possible way to ensure this was to make use of the implicit causality in verbs (cf. Rudolph & Försterling, 1997). Semin and Marsman (1994) showed that events (situations) described through interpretative and state action verbs are usually attributed to the sentence subject, whereas events (situations) described through state verbs are usually attributed to the sentence object. However, additional information can override this default attribution (Van Kleek, Hillger, & Brown, 1988). It is clear, then, that the causal attributions based on implicit causality are not being treated as solid conclusions but rather as mere hypotheses.

In addition to different causal hypotheses that can be induced, interpretative and state action verbs and state verbs are associated with different patterns of inferred covariation information. In particular, interpretative and state action verbs are associated with high consensus and high distinctiveness whereas state verbs are associated with higher consensus and high distinctiveness (Brown & Fish, 1983; Rudolph, 1997). For instance, John cheats Peter (interpretative action verb) is associated with low consensus (no one else cheats Peter) and low distinctiveness (John cheats other people as well). On the other hand, John hates Peter (state verb) is associated with high consensus (other people also hate Peter) and high distinctiveness (John hates few other people). Because of these differences in the covariation information being inferred for interpretative and state action verbs versus state verbs, people may anticipate different responses to questions about consensus and distinctiveness for sentences containing interpretative or state action verbs versus for sentences containing state verbs. In particular, people may anticipate an affirmative answer to the distinctiveness question and a negative answer to the consensus question for sentences containing interpretative or state action verbs. For sentences containing state verbs, people may anticipate a negative answer to the distinctiveness question and an affirmative answer to the consensus question. One characteristic of asking and answering distinctiveness and consensus questions about a given behavior is that they are generally considered highly relevant for testing causal hypotheses (Kelley, 1967). Therefore, implicit causality is a very well suited vehicle for investigating whether people use a positive test strategy within the context of self-generated causal hypotheses.

In our experiment, participants were presented with several sentences describing interpersonal events or situations. Half of these contained an interpretative or state action verb (e.g., to cheat) and half of these contained a state verb (e.g., to hate). First of all, participants indicated whether they thought the sentence subject or the sentence object was the instigator of the event or situation described in each sentence. In other words, they were explicitly asked to generate their own causal hypothesis. Next, for each sentence (e.g., John hates Peter), they indicated whether they would rather ask the consensus question (e.g., Do other people hate Peter?) or the distinctiveness question (e.g., Does John hate other people?) in case they wanted to gather more information with respect to who instigated the event. They also wrote down the response they anticipated to both questions.

The aforementioned research suggests that people will hypothesize that it is the subject who instigated the event or situation described in a sentence if the sentence contains an interpretative or state action verb and that they will hypothesize it is the object if the sentence contains a state verb. If the sentence contains an interpretative or state action verb, they will expect a “yes” to the distinctiveness question (“Does John cheat other people?”) and a “no” to the consensus question (“Do other people cheat Peter as well?”). If the sentence contains a state verb, they will expect a “no” to the distinctiveness question (“Does John hate other people?”) and a “yes” to the consensus question (“Do other people hate Peter as well?”). Consequently, if people use a positive test strategy when evaluating their own hypothesis about event instigation, they will select the question to which they anticipate...
an affirmative answer being the distinctiveness question for interpretative and state action verbs and the consensus question for state verbs. Of course, the above reasoning presupposes that this study replicates the finding that interpretative and state action verbs lead to subject attribution and that state verbs lead to object attribution (e.g., Semin & Marsman, 1994) as well as the finding that interpretative and state action verbs are associated with low consensus and low distinctiveness and that state verbs are associated with high consensus and high distinctiveness (e.g., Brown & Fish, 1983; Rudolph, 1997).

METHOD

Participants

Eighty-five first-year psychology students (65 women, 20 men) of the University of Leuven participated during a collective session to fulfill academic requirements.

Material

Eight interpretative and state action verbs and eight state verbs were randomly selected, all derived from Semin and Marsman (1994). Because earlier research (Franco & Arcuri, 1990) found verb evaluation to moderate implicit causality, half of the verbs of each type were evaluatively positive and the other were evaluatively negative. The verbs selected were: deceive, tease, lie to, hurt (negative interpretative and state action verbs), inspire, fascinate, surprise, protect (positive interpretative and state action verbs), envy, fear, hate, despise (negative state verbs), believe in, admire, respect, and trust (positive state verbs). The verbs were embedded in sentences of the type “John [verb] Peter.” Experimental booklets were constructed so that the order of the 16 sentences was randomized but constant across participants. After each sentence, the distinctiveness and consensus question appeared with the order of appearance counterbalanced within participants. After each question the words YES and NO were printed (with the order of appearance counterbalanced within participants). An example of an item with a negative interpretative action verb is the following:

John deceives Peter.

• Does John deceive other people? YES NO
• Do other people deceive Peter? YES NO

Procedure

The participants arrived in a classroom where they were asked to fill in various questionnaires, including the one pertaining to this research. The instructions read that they would be presented with 16 sentences describing events or situations that were instigated either by the subject or by the object of the sentence. They were asked to circle the name of the person who they thought was the instigator. Half of the participants were then asked to put a cross next to the question they would like to ask to find out more about the identity of the instigator. The two questions to select from were the distinctiveness question and the consensus question. After making a choice, participants were asked to circle the response they anticipated to each of the two questions. The responses to be chosen from were yes or no. For the other half of the participants, the order of these two tasks (question selection and selection of anticipated response) was reversed.

RESULTS AND DISCUSSION

Because each participant received 16 items, the binary responses to the different items are not independent. In this situation, ordinary logistic regression models that do not take these dependencies into account are not very suited because they can yield dramatically incorrect standard errors for the regression coefficients leading to incorrect inferences (Diggle, Liang, & Zeger, 1994). Therefore, the data were analyzed with Generalized Estimating Equations (GEE) logistic regression models (Diggle et al., 1994), as implemented in SAS version 8.0, which does take the dependent nature of within-participant responses into account. The GEE approach requires the specification of a working correlation matrix, representing a hypothesis about the correlations between the 16 responses within participants. Given the working correlation matrix, the regression coefficients are estimated. Conditional on the obtained regression coefficients, the true within-participant correlations between the 16 responses are estimated and the working correlation matrix is replaced by the newly estimated correlation matrix. The GEE approach then alternates between estimation of the regression coefficients, given the most recent estimated correlations, and the estimation of the true within participant correlations, given the most recent regression coefficients, until the estimates converge. Zeger and Liang (1992) argued that the choice of the working correlation matrix usually has little impact on the estimates of the regression coefficients and their standard errors. Nevertheless, following the recommendation of Zorn (2001) to check this claim on a case-by-case basis, we used various different choices for the working correlation matrix. Our results, however, were very similar across these different specifications of the working correlation matrix. The reported results are based on score statistics derived from empirical standard errors under a working correlation matrix of independence.

Given that the empirical test of our crucial hypothesis depends on the extent to which our findings replicate previous findings about (a) the influence of verb type on self-generated
hypotheses about who instigated the event/situation and (b) the influence of verb type on the inferences concerning consensus and distinctiveness, we will first discuss how well our findings match those previous findings.

Does Verb Type Affect Causal Hypotheses?

The causal hypothesis (i.e., whether participants initially attributed the event to the subject or to the object of the sentence) was analyzed with a logistic regression model containing verb type, verb evaluation, and their interaction. A main effect of verb type, $\chi^2(1, N = 85) = 61.25$, $p < .001$, indicated that the odds 2 of a subject hypothesis were 9.74 times larger for sentences containing an interpretative or state action verb than for sentences containing a state verb. In addition, a main effect of verb evaluation, $\chi^2(1, N = 85) = 14.80$, $p < .001$, showed that the odds of a subject hypothesis were 1.88 times higher for a negative event than for a positive event. The interaction between verb type and verb evaluation was not significant, $\chi^2(1, N = 85) = 2.84$, $p > .09$. To aid the interpretation of this analysis, the observed probabilities are shown in Table 1.

As is clear from Table 1, for sentences containing interpretative or state action verbs, the event was more often attributed to the sentence subject than to the sentence object. For sentences containing state verbs, the event was more often attributed to the sentence object than to the sentence subject. Finally, an event was more often attributed to the sentence subject for negative verbs than for positive verbs.

Are Interpretative and State Action Verbs Versus State Verbs Associated With Different Patterns of Consensus and Distinctiveness Inferences?

The anticipated responses to the consensus question were analyzed with a logistic regression model containing verb type and verb evaluation as predictors. A main effect of verb type, $\chi^2(1, N = 85) = 54.76$, $p < .001$, indicated that the odds of a “yes” (rather than a “no”) being expected as the response to the consensus question were 5.23 times higher for a state verb than for an interpretative or state action verb. A main effect of verb evaluation, $\chi^2(1, N = 85) = 13.86$, $p < .001$, indicated that the odds of a “yes” being expected as the response to the consensus question were 1.83 times higher for a positive verb than for a negative verb. Finally, a significant verb type by verb evaluation interaction, $\chi^2(1, N = 85) = 13.94$, $p < .001$, showed that the effect of verb evaluation was stronger for state verbs than for interpretative and state action verbs. As post-hoc analyses showed, verb evaluation had no effect for interpretative and state action verbs, $\chi^2(1, N = 85) = .24$, $p = .62$, but a large effect for state verbs, $\chi^2(1, N = 85) = 22.61$, $p < .001$. The observed probabilities are displayed in Table 2.

The anticipated responses to the distinctiveness question were also analyzed with a logistic regression model containing verb type and verb evaluation as predictors. A main effect of verb type, $\chi^2(1, N = 85) = 30.20$, $p < .001$, indicated that the odds of a “yes” (rather than a “no”) being expected as the response to the distinctiveness question were 2.60 times higher with an interpretative or state action verb than with a state verb. A main effect of verb evaluation, $\chi^2(1, N = 85) = 4.31$, $p < .05$, indicated that the odds of a “yes” response being expected were 1.37 times higher for a positive verb than for a negative verb. Finally, a significant verb type by verb evaluation interaction, $\chi^2(1, N = 85) = 27.38$, $p < .001$, showed that the effect of verb evaluation was different for interpretative and state action verbs than for state verbs. As post-hoc analyses showed, for interpretative and state action verbs, the odds of a “yes” response were 2.77 times higher for negative events than for positive events, $\chi^2(1, N = 85) = 19.32$, $p < .001$. For state verbs the odds of a “yes” response were 1.48 times higher for positive events than for negative events, $\chi^2(1, N = 85) = 5.89$, $p = .015$. The observed probabilities are shown in Table 2.

These analyses partially replicate the findings of Rudolph (1997). Consistent with Rudolph, our participants anticipated a “yes” response to the consensus question for state verbs and a “no” response for interpretative and state action verbs. Also consistent with Rudolph, our participants anticipated a “yes”

| Table 1 |
|-------------------|-------------------|
| **Interpretative or State Action Verb** | **State Verb** |
| Positive | Negative | Positive | Negative |
| .78 | .89 | .31 | .41 |
| (0.022) | (0.017) | (0.025) | (0.027) |

2Probabilities with a subscript differ significantly from .50.

| Table 2 |
|-------------------|-------------------|
| **Consensus** | **State Verb** |
| Positive | Negative | Positive | Negative |
| .38 | .36 | .84 | .63 |
| (0.026) | (0.026) | (0.020) | (0.026) |

Distinctiveness	**State Verb**
Positive	Negative
.65	.84
(0.026)	(0.020)

aProbabilities with a subscript differ significantly from .50.
response to the distinctiveness question for interpretative and state action verbs. Unlike the results of Rudolph, however, for positive state verbs, our participants also anticipated a “yes” response to the distinctiveness question but for negative state verbs, they anticipated as much a “no” as a “yes” response. Nevertheless, the extent to which they expected a “yes” response to the distinctiveness question was higher for interpretative and state action verbs than for state verbs.

Do People Use a Positive Test Strategy?

We addressed this question in two ways. First of all, we examined whether verb type determined the question participants selected in case they wanted to obtain more information about the situation or event (i.e., the consensus or the distinctiveness question). If participants relied on a positive test strategy, this was to be expected on the basis of our previous results. Second, we also examined whether verb type still influenced the question participants selected when the anticipated responses to both consensus and distinctiveness questions were already taken into account.

To examine whether verb type influenced the selected question, we conducted a logistic regression analysis of the selected question with verb type, verb evaluation, and their interaction as predictors. We included verb evaluation (and its interaction with verb type) because our previous analyses had shown that verb evaluation (and the interaction with verb type) determined the anticipated responses to both the consensus and the distinctiveness question. Because participants had to choose between the consensus and distinctiveness question, we had to analyze the probability that one question was selected instead of the other. We arbitrarily choose to analyze the probability that the distinctiveness question was selected instead of the consensus question.

The analysis yielded a main effect of verb type, \(\chi^2(1, N = 85) = 52.48, p < .001 \), indicating that the odds of selecting the distinctiveness question (rather than the consensus question) were 5.05 times higher for a sentence containing an interpretative or state action verb than for a sentence containing a state verb. A main effect of verb evaluation, \(\chi^2(1, N = 85) = 20.73, p < .001 \), indicated that the odds of selecting the distinctiveness question were 1.83 times higher for a sentence containing a negative verb than for a sentence containing a positive verb. The interaction between verb type and verb evaluation was marginally significant, \(\chi^2(1, N = 85) = 3.27, p = .07 \), indicating that effect of verb evaluation was slightly higher for interpretative and state action verbs than for state verbs. The odds of selecting the distinctiveness question were 2.26 times higher for positive interpretative or state action verbs than for positive interpretative or state action verbs, whereas the odds of selecting the distinctiveness question were only 1.50 times higher for negative state verbs than for positive state verbs. The observed probabilities are shown in Table 3.

To examine whether the influence of verb type and verb evaluation on the probability of selecting the distinctiveness question was mediated by the anticipated responses to the distinctiveness and the consensus questions, a logistic regression model of selected question with verb type, verb evaluation, their interaction, anticipated response to the consensus question and anticipated response to the distinctiveness question as predictors was conducted. This model fitted the data, \(\chi^2(10, N = 85) = 14.53, p = .1541 \), and hence was able to explain the variation within the cross-classification table formed by the factors. To the main effect of verb type, \(\chi^2(1, N = 85) = 37.50, p < .001 \), indicated that the odds of selecting the distinctiveness question were 3.21 times higher for sentences containing interpretative or state action verbs than for sentences containing state verbs. The main effect of verb evaluation, \(\chi^2(1, N = 85) = 11.82, p < .001 \), indicated that the odds of selecting the distinctiveness question were 1.62 times higher for sentences containing negative verbs than for sentences containing positive verbs. The main effect of anticipated response to the consensus question, \(\chi^2(1, N = 85) = 27.72, p < .001 \), showed that the odds of selecting the distinctiveness question were 3.33 times higher when the anticipated response to the consensus question was “no” than when the anticipated response was “yes”. Finally, the main effect of the anticipated response to the distinctiveness question, \(\chi^2(1, N = 85) = 30.82, p < .001 \), showed that the odds of selecting the distinctiveness question were 2.94 times higher when the anticipated response to the distinctiveness question was “yes” than when the anticipated response was “no”. The interaction between verb type and verb evaluation did not significantly affect the question selection, \(\chi^2(1, N = 85) = 2.32, p > .12 \).

These results show that verb type and verb evaluation indeed influence the question people select to find out more about who instigated the event or situation described in a

3A goodness-of-fit statistic was not reported for the previous models, because all these models were saturated models (i.e., models containing as many parameters as the number of cells in the cross-classification table). Saturated models fit perfectly by definition. This model was a constrained (i.e., nonsaturated) model that could be tested. Indeed, all interactions, except for the verb type by verb evaluation interaction, were fixed to zero. None of the remaining interactions make sense in the hypothesized mediational model (cf. Baron & Kenny, 1986).

Table 3

<table>
<thead>
<tr>
<th>Interpretative or State Action Verb</th>
<th>Interpretative or State Action Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>.68*</td>
<td>.83*</td>
</tr>
<tr>
<td>(.025)</td>
<td>(.020)</td>
</tr>
</tbody>
</table>

*Probabilities with a subscript differ significantly from .50.
sentence. When the sentence describing an event or situation contains an interpretative or state action verb, people tend to choose the distinctiveness question more often than the consensus question to gather more information. On the other hand, when the sentence contains a state verb, people tend to choose the consensus question more often than the distinctiveness question. This tendency is partly mediated by the anticipated responses to the consensus and distinctiveness question. Indeed, both anticipated responses influence the question selection. When people anticipate a “yes” to the distinctiveness question, they select the distinctiveness question more often than when they anticipate a “no” to that question. Likewise, when people anticipate a “yes” to the consensus question, they select the consensus question more often than when they expected a “no” to that question. Both effects demonstrate that people do indeed select the “affirmative” question when evaluating self-generated causal hypotheses. Although previous research has shown that people ask open-ended questions that presuppose the correctness of self-generated hypotheses (Meertens et al., 1984), to our knowledge, no published study ever examined whether people also select “affirmative” questions.

Intriguingly, the effects of verb type and verb evaluation on question selection were only partly mediated by the anticipated responses to the consensus and the distinctiveness question. Indeed, although their effects dropped (from an odds ratio of 5.05 to 3.21 for verb type and from 1.83 to 1.62 for verb evaluation), both verb type and verb evaluation still affected the question selection after controlling for the anticipated responses to the consensus and distinctiveness questions. One interpretation of these findings may be that, in addition to being guided by the anticipated response (affirmative vs. negative), people are also led by the information value of a question.4

With respect to verb type, Brown and Fish (1983) pointed out that the answer to the distinctiveness question is more informative for interpretative or state action verbs than for state verbs. Consider, for instance, John helps Peter (action verb). Brown and Fish argued that most people need help sometimes, whereas very few people would consistently help other people. It is very interesting to know whether or not John is one of those few. Therefore, the response to the consensus question is much more interesting than the response to the distinctiveness question, which may prompt people to prefer the consensus question. Now, consider John admires Peter (state verb). Here, the answer to the consensus question is more interesting than the answer to the distinctiveness question. Indeed, it is more interesting to know whether Peter is one of those special people who elicit admiration from many people than to know that John is one of the many people who admires someone.

At this point, one may raise the question why information about an admired Peter or a helping John is interesting. The answer may be found in the pragmatic relevance of the information for deciding about approach and avoidance behavior. In the case of John admires Peter, whether or not John admires other people communicates little that seems relevant for deciding about approaching or avoiding John, whereas whether or not others admire Peter may inform us how interesting it may be to approach Peter. In contrast, in the case of John helps Peter, whether or not others help Peter teaches us little about whether to approach or to avoid Peter, whereas whether or not John helps other people may inform us how desirable it may be to approach John.

Similar considerations can help explain the effect of verb evaluation. Negative action verbs may raise suspicions about the approachability of the sentence subject. Consider, for instance, John cheats Peter and John helps Peter. Although in both cases, the answer to the distinctiveness question is more interesting than the answer to the consensus question, this is even more so for the situation of cheating than for the situation of helping. Indeed, failing to avoid a cheater may have far worse consequences than failing to approach a helpful person (cf. Peeters, 2002; Peeters & Czapinski, 1990). The latter situation is only an opportunity foregone (i.e., a virtual cost), whereas the latter situation may imply a real cost.

For state verbs, the adopted approach-avoidance framework also can elucidate why negative verbs lead to an increased selection of the distinctiveness question. Compare, for instance, John fears Peter with John admires Peter. As already argued, in the latter situation (admiration), the answer to the consensus question may communicate more about approach-avoidance behavior than the answer to the distinctiveness question. In the former situation (fear), however, this ceases to be the case. Indeed, the answer to the consensus question (do others fear Peter?) may teach us that Peter is dangerous (if the answer is affirmative) or that John is easily frightened or weak (if the answer is negative). Likewise, the answer to the distinctiveness question (does John fear others?) may also indicate that Peter is dangerous (if the answer is negative) or that John is easily frightened or weak (if the answer is affirmative). Clearly, then, the consensus question and the distinctiveness question yield the same information. One should then expect these questions to be chosen with equal probability. In line with this reasoning, controlling for the anticipated responses to the distinctiveness and the consensus question, the probability of selecting the distinctiveness question for sentences containing negative state verbs was 47% and did not significantly depart from 50%, $\chi^2(1, N = 85) = 0.93, p < .33$.

Summarizing, our results suggest that people’s hypothesis testing behavior involves a mix of two tendencies. First of all, people appear to use a positive test strategy by asking affirmative questions. Second, people also seem to select questions that may yield the most information along an approach-avoidance dimension. Together, these two tendencies imply a very strong connection between the initial hypothesis and the question selected. When participants thought

4We would like to thank an anonymous reviewer for suggesting this interpretation.
John caused the event, in 77% of the cases, they chose the question involving John (i.e., the distinctiveness question: does John cheat other people?). On the other hand, when participants thought Peter caused it, in 80% of the cases they chose the question involving Peter (i.e., the consensus question: do others hate Peter?). It should be noted that the association between the causal hypothesis and the question participants selected goes the other way around as well: When participants asked about John, in 80% of the cases they thought John caused the event whereas when they asked about Peter, in 68% of the cases they thought Peter caused it. Hence, in communication, people can infer one’s attribution on the basis of the question one has asked. This confirms the validity of a reply sometimes heard in every day conversations: “Why do you ask about Peter? Do you think he caused it?”.

As suggested in the introduction, in many applied settings, following the initial presentation of an incident or event, people have to search for additional information to assign responsibility for it. As our results suggest, the way a case or incident is described may influence the initial hypotheses about the identity of the responsible party. Furthermore, our results suggest that people may ask “affirmative” questions to gain additional information. Because respondents to questions tend to use an acquiescent response set, one implication of these findings is that an initial hypothesis may tend to be confirmed irrespective of its correctness (Zuckerman et al., 1995). Clearly, then, the way an incident is described may ultimately lead to an overestimation of the responsibility of one party in comparison with the other.

REFERENCES

