Influence of space discretization size in 3D micromagnetic modeling

B. Van de Wielea,*, L. Dupréa, F. Olyslagerb

aDepartment of Electrical Energy, Systems and Automation, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
bDepartment of Information Technology, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract

To improve the magnetic properties of ferromagnetic materials, one needs to qualify relations between the microscopic material properties and the macroscopic magnetic behavior. Large computer resources nowadays should make it possible to do this using micromagnetic simulations for larger, bulk like samples. Here, the size of the sample is limited by computer resource restrictions on the number of spatial discretizations in the sample. Generally, the exchange length is seen as the maximum discretization size in micromagnetic computations. This paper shows that in the research area where relations between microstructure and macroscopic magnetic behavior are investigated, larger discretization sizes can be used. This is demonstrated using a micromagnetic hysteresis model.

© 2007 Elsevier B.V. All rights reserved.

PACS: 75.30.Cr; 75.40.Mg; 75.40.Cx; 75.40.Gb; 75.50.Bb

Keywords: Discretization; Hysteresis simulation; Micromagnetics

1. Introduction

The micromagnetic theory is successfully used in the simulation of storage media. Here, the magnetic dynamics in storage entities is studied in order to ensure fast writing processes e.g. Ref. [1], interactions between different magnetic data spots in patterned media e.g. Ref. [2], etc. Most of the studied samples are ferromagnetic thin films or uniaxial ferromagnetic entities like nanodots. However, the large computer resources nowadays open new application opportunities for the micromagnetic theory. Indeed, the magnetic dynamics in electrical steels used in machine cores and transformers is based on the same interactions as described by the micromagnetic theory. Hence, the micromagnetic theory can be used in the research area of electrical steels, where microstructural material parameters are sought that minimize the iron losses in ferromagnetic materials used in electromagnetic devices, resulting in a lower energy consumption. Using the micromagnetic theory, the description of the magnetic behavior of the material starts from microstructural features like grains, textures, stresses, crystal defects, etc.

The samples simulated in the storage entities research differ vastly from these studied in the research for optimal electrical steel. First, the storage entity samples have a well-known microscopic texture without any lattice defects. In contrary, the electrical steel samples consist of numerous grains of which only a distribution of lattice orientations is known. They contain all kinds of lattice defects: edge and screw dislocations, interstitials, microcracks, etc. The exact locations of these defects is not known, only a defect density and statistical spreading can be assumed. Second, the dimensions of the studied samples differ a lot. The storage entities have dimensions in the order of 10 to 100 nm, while the electrical steel samples are much larger, bulk like. The size of the simulated electrical steel samples is limited by the memory resources available and is determined by the discretization size used to describe the magnetization dynamics in the material.

2. The micromagnetic hysteresis model

A 3D micromagnetic model has been constructed to evaluate the magnetic behavior of electrical steel samples [3]. The samples are discretized using cubic finite difference (FD) cells with edges of length λ. In the cells the
magnetization is assumed homogeneous and is represented by a magnetic dipole in the center of the FD cell. According to the micromagnetic theory, the amplitude of each magnetic dipole is fixed, but the orientation varies in space and time.

In the bulk like samples considered here, many vortex states and domain walls can be formed since the number of metastable states is extremely high. Hence, the applied field is assumed to change quasi statically to ensure that the system is always in static micromagnetic equilibrium. Therefore, the external applied field \mathbf{H}_a is discretized on a macroscopic time scale of the order of ms and approximated with a piecewise constant time function. It is assumed that at the moment the applied field jumps from one constant value to the next one, the system is in micromagnetic static equilibrium. The new equilibrium state corresponding with the next value of the applied field is determined by time stepping the Landau–Lifshitz equation (LL equation) in each FD cell until the next micromagnetic static equilibrium state is reached [3]. Here, a microscopic time step δt of the order of ps is used. Time stepping the LL-equation ensures that a next equilibrium state is reached for which the total free energy of the system is an ever decreasing function of time during evolution to that state. Once the equilibrium is reached, the applied field takes a next jump and the next magnetization state is computed, etc.

This numerical scheme differs from the schemes used in the storage entities research area, where generally only the equilibrium states corresponding with a digital 0 and a digital 1 are important and the switching process between the equilibrium states is much more important than in the micromagnetic hysteresis model described here. In the storage entities research, efficient implicit time stepping schemes for the LL-equation are developed, e.g. Ref. [4]. They allow large microscopic time steps δt, but demand solving a large system of globally coupled nonlinear equations every time step, which is not feasible for the large number of FD cells in the bulk like samples. The large number of FD cells obliges the use of explicit methods in the micromagnetic hysteresis model described here. In the storage entities research area, the exchange length is seen as the maximum discretization size because on a smaller scale no inhomogeneities can take place [6]. In the electrical steel samples (iron) the exchange length is about 2.8 nm. To examine if the exchange length is also an upper bound in the micromagnetic hysteresis model for electrical steels, hysteresis loops are simulated for an iron sample with dimensions of $0.32 \mu m \times 1.28 \mu m \times 0.32 \mu m$ using different discretization sizes. The external field is applied along the longest edge of the sample. A discretization size of 2.5 nm (slightly smaller than the exchange length), 5.0 nm and 10 nm is considered. The hysteresis loops are shown in Fig. 1.

The loops are very similar: they have the same slope and enclose a similar surface, two important aspects of electrical steels for their performance in electromagnetic devices. Table 1 shows the simulation data for the loops of

![Hysteresis loops of an iron sample using different discretization sizes.](image)

Fig. 1. Hysteresis loops of an iron sample using different discretization sizes Δ.

<table>
<thead>
<tr>
<th>Δ (nm)</th>
<th>N</th>
<th>δt (ps)</th>
<th>$\delta \delta t$</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>8388608</td>
<td>0.5</td>
<td>27036</td>
<td>103 h 15 min</td>
</tr>
<tr>
<td>5.0</td>
<td>1048576</td>
<td>1.0</td>
<td>14627</td>
<td>8 h 33 min</td>
</tr>
<tr>
<td>10</td>
<td>131072</td>
<td>5.0</td>
<td>1163</td>
<td>7 min 46 s</td>
</tr>
</tbody>
</table>

Table 1

Simulation data for the simulated loops of Fig. 1

3. Spatial discretization size

The use of a smaller discretization size Δ not only drastically increases the number of FD cells N for a given sample, it has also a large impact on the microscopic time step δt needed in the time stepping scheme. Indeed, when smaller FD cells are used, smaller microscopic time steps δt have to be used in the predictor-corrector semianalytical time stepping scheme to guarantee convergence between two successive equilibrium magnetization states. In Ref. [5] it is demonstrated that when Δ is decreased with a decade, the maximum δt for which the system converges decreases by roughly two decades. Hence, the use of smaller FD cells not only leads to more FD cells, but moreover the time stepping of the LL-equation in all these FD cells has to be performed with smaller time steps δt, leading to an increasing number of time steps.

For a given sample, the CPU time needed to simulate the hysteresis loop is dramatically reduced when larger discretization sizes Δ are used. However, in the storage entities research area, the exchange length is seen as the maximum discretization size because on a smaller scale no inhomogeneities can take place [6].
The total number of FD cells used to discretize the sample increases enormous when smaller discretization sizes A are taken. As already mentioned, smaller time steps δt are used when A is decreased. The used time steps δt are slightly smaller than the maximum δt that guarantee convergence according to Fig. 6 in Ref. [3] to ensure a good precision. When the microscopic time step δt decreases, the total number of microscopic time steps $\# \delta t$ to simulate the hysteresis loop increases. The massive differences in CPU time mentioned in the last column of Table 1 are due to a combination of two factors: (i) more microscopic time steps δt are needed when a smaller discretization size A is used and (ii) a single time step δt needs more CPU time when a smaller discretization size A is used. Since the computation time scales as $O(N \log N)$, the CPU time increases rapidly with increasing number of FD cells.

The hysteresis loops shown in Fig. 1 give only information about the macroscopic magnetization of the ferromagnetic sample. The micromagnetic hysteresis model allows us to see if also identical magnetization configurations are passed through. Fig. 2 shows the microscopic magnetization pattern in a plane parallel with the applied field for the loops of Fig. 1 at zero applied field (remanent magnetization). It is clear that almost identical magnetization configurations lead to the loops of Fig. 1. The small differences in the magnetization loops can be neglected. Indeed, since the internal structure of the sample is not completely known, the uncertainty of the microscopic properties of the sample introduces an uncertainty on its hysteresis loop. Another example is shown in Fig. 3 where a sample with dimensions 0.32 μm \times 2.56 μm \times 0.32 μm is simulated using different discretization sizes ($A = 2.5$, 7.5 and 10 nm). The loops enclose again similar surfaces and have the same slope, furthermore they differ significantly from those in Fig. 3. When the loops of Figs. 1 and 3 are compared identical conclusions can be drawn about the influence of the sample geometry on the hysteresis loops, regardless of the used discretization. The simulation times are respectively 404 h, 1 h 30 min and 19 min.

4. Conclusions

The micromagnetic theory is applied for electrical steels. The dimensions of the electrical steel samples are much larger than those used in the storage entities research. Therefore, it is beneficial that large discretization sizes can
be used for micromagnetic hysteresis simulations. From the presented simulations it is clear that discretization sizes larger than the exchange length can be used for the simulation of large, bulk like samples. However, the discretization size should be sufficiently small with respect to other characteristic length scales in the material as the thickness of a domain wall (about 70 nm in Fe) and the dimensions of vortex states (about 35 nm in Fe). Considering this together with the massive differences in CPU time and memory needs justifies the use of a discretization length up to 10 nm. Indeed, when studying magnetic properties of electrical steels, the small precision improvement when a physical justified discretization size of $\Delta = 2.5$ nm is used, cannot justify the huge increase of CPU time compared with the computations where e.g. $\Delta = 10$ nm is used.

Acknowledgment

This work was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen) SB/51032.

References