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1 Introduction

In a lot of applications the spectrum of the signal is very smallbanded, i.e. only
a limited number of harmonic signals appear. These situations can be efficiently
simulated by solving Maxwell’s equations in the frequency domain for this limited
amount of frequencies. However, for some applications knowledge of the behavior
over a broad spectral band is required. Consider for instance the propagation of a
bit through the conductors on a PCB or the reflection of a short radar pulse at a
certain target. These situations would require simulations over the entire frequency
band. Very often this is unacceptable because it is highly computationally intensive.
Alternatively, these simulations could be done in the time domain. The signal is very
often a pulse. This pulse has a spectrum that contains the entire relevant frequency
range. After a Fourier Transform one obtains information about the system at all
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these frequencies. Even though these simulations require a more advanced solver
than their frequency domain counterpart, they are often preferred because of their
higher efficiency. In this project you are going to implement such a 2D time domain
solver for simulation of scattering at perfectly electrically conducting objects. The
resulting program can then be used to analyze a number of simple problems.

2 The wave equation in the 2D TM case

The initial calculations take place in the frequency domain for the sake of simplicity.
We start with Maxwell’s equations in free space in the frequency domain:

∇ · d(r) = − 1

jω
∇ · j(r) (1)

∇× e(r) = −jωb(r) (2)

∇ · b(r) = 0 (3)

∇× h(r) = jωd(r) + j(r) (4)

with the constitutive equations:

d(r) = εe(r) (5)

b(r) = µh(r) (6)

In a conductor we have, additionally, Ohm’s law: j(r) = σe(r). For very good
conductors the conductivity is extremely high (for instance copper with σ ≈ 107

Siemens / meter). A physical current density can only be caused by an electric
field that is very near to zero. An idealized model for this situation is the perfectly
electrical conductor (PEC). In such a conductor all fields are identically zero and
currents can only flow at the surface of such a conductor.
We wish to solve these equations in geometries that are invariant in the z-direction.
Therefore, we can search for solutions that are independent of the z-direction. When
such a solution is substituted in the curl equations and then separated into longitu-
dinal and transversal components, we obtain the following equations:

∇t × ez(ρ)uz = −jωµht(ρ) (7)

∇t × et(ρ) = −jωµhz(ρ)uz (8)

∇t × hz(ρ)uz = jωεet(ρ) + jt(ρ) (9)

∇t × ht(ρ) = jωεez(ρ)uz + jz(ρ)uz (10)

with: ρ = xux + yuy, et = exux + eyuy, ht = hxux + hyuy, jt = jxux + jyuy,
∇t = ∂xux + ∂yuy. With this assumption, Maxwell’s equations decompose into two
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sets of equations: the equations (7) and (10) contain only the unknowns ez and ht

(TM equations) while the equations (8) and (9) contain only the unknowns hz en
et (TE problem).
In the following, we focus solely on the TM problem. We eliminate ht by substituting
equation (7) into equations (10). That way we obtain the following equation for the
electric field:

∇t (∇t · ez(ρ)uz)−∇2
t ez(ρ)uz − k2ez(ρ)uz = −jωµjz(ρ) (11)

with k2 = ω2ϵµ. The divergence in the first term is zero because ∇t and uz are
orthogonal. The following scalar Helmholtz equation for the longitudinal ez field is
obtained:

∇2
t ez(ρ) + k2ez(ρ) = jωµjz(ρ) (12)

We obtain the time domain equation by application of an inverse Fourier Transform:

∇2
tEz(ρ, t)−

1

c2
∂2

∂t2
Ez(ρ, t) = µ

∂

∂t
Jz(ρ, t) (13)

When solving such linear differential equations we first search for a Green function
that is the solution of:

∇2
tG(ρ, t)− 1

c2
∂2

∂t2
G(ρ, t) = −δ(ρ)δ(t) (14)

The Green function G is the field caused by an elementary line source at position
ρ = 0 that sends a delta pulse at a time t = 0. In the following we will omit the
index z to simplify the notation.

3 The time domain 2D Green function

In principle we can proceed as follows: first we solve the equation of the 2D frequency
domain Green function and afterwards apply an inverse Fourier Transform to obtain
the time domain Green function. This transformation can be calculated by using
the residue theorem from complex analysis.
A more straightforward way, which additionally leads to a deeper physical under-
standing, is starting from the 3D Green function. We know that the frequency
domain 3D Green function is given by:

G3D(r, ω) =
e−jωr/c

4πr
. (15)

with r =
√
ρ2 + z2. This function has a very simple inverse Fourier Transform:

G3D(r, t) =
δ(t− r/c)

4πr
. (16)
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A two dimensional source can be seen as an infinitely long line source in 3D. For
calculation of the 2D Green function it is therefore sufficient to integrate the 3D
Green function along the z-axis:

G2D(ρ, t) =

∫ +∞

−∞

δ(t− r/c)

4πr
dz. (17)

We use a lemma about integrals and integrands containing Dirac distributions.

Theorem 1 The integral ∫ +∞

−∞
g(z)δ(f(z))dz

equals ∑
i

g(zi)

|f ′(zi)|

where the summation runs over all real zeros of f(z).

We have f(z) = t −
√
ρ2 + z2/c en g(z) = 1

4π
√

ρ2+z2
. The two zeros of f(z) are

z = ±
√

(ct)2 − ρ2 when ct > ρ. In the other case there are no zeros and the result
after integration is zero. Finally we obtain:

G2D(ρ, t) =

∫ +∞

−∞

δ(t− r/c)

4πr
=

1

2π

H(t− ρ/c)√
t2 − ρ2/c2

. (18)

with H the Heaviside step function. Remember that the Green function gives the
field caused by a Dirac pulse in both time and space. The field caused by a general
current distribution along a line C can be calculated by a convolution with this
current distribution:

Es
z(ρ, t) = − µ

2π

∫
C

H(t− |ρ− ρ′|/c)√
t2 − |ρ− ρ′|2/c2

∗ ∂tJz(ρ′, t)dl′ (19)

where the asterix indicates temporal convolution. From now on, we will omit de
subscript z for convenience.

4 The boundary integral equation

The problem we wish to solve is the following: an electromagnetic wave illuminates a
very good (perfect) conductor (PEC). We want to know the total field. This field E
consists of two parts: the incoming field and the scattered field. The incoming field
Ei is the field in absence of the conductor. The scattered field Es is the difference
between the total field and the incoming field. This scattered field is caused by a yet

4



Figure 1: Green’s function vs distance to the origin at t = 1, t = 3, en t = 8.

unknown current distribution J(ρ, t) on the boundary of the conductor and can be
computed by convolution with the fundamental solution of the 2D wave equation:

Es(ρ, t) = − µ

2π

∫
C

H(t− |ρ− ρ′|/c)√
t2 − |ρ− ρ′|2/c2

∗ ∂tJ(ρ′, t)dl′ (20)

where the integral is computed over the boundary of the conductor. As described
above the electric field in the PEC is equal to zero. The boundary condition states
that the electric field just outside the PEC has to be zero.

lim
ρ→C

(
Ei(ρ, t) + Es(ρ, t)

)
= 0, ∀t > 0. (21)

We use this condition as an equation to determine the unknown current density. If
we use the integral representation for the scattered field, the boundary condition
becomes:

Ei(ρ, t)− µ

2π

∫
C

H(t− |ρ− ρ′|/c)√
t2 − |ρ− ρ′|2/c2

∗ ∂tJ(ρ′, t)dl′ = 0 ∀t > 0,∀ρ ∈ C. (22)

The unknown current distribution must satisfy this integral equation. In the next
section we explain how this equation can be solved approximately through a dis-
cretization procedure. For simplicity, we don’t solve the equations for J(ρ, t), but
for the auxiliary quantity U(ρ, t) = µ ∂

∂t
J(ρ, t).

5 Discretization

To solve the integral equation (22) numerically, we have to perform a discretization.
This is because we now have an infinite number of unknowns, namely the value

5



of U(ρ, t) at every point of the surface of the scattered, at all positive moments in
time. With a computer, however, we can only solve problems with a finite number of
unknowns. Therefore we are going to approximate the function U(ρ, t) by a function
with a finite number of unknowns and approximate the equation by a linear system
of finite dimension. This is done by means of the following procedure:

• We approximate the curve that describes the boundary of the scatterer by a
piecewise linear curve, i.e. the boundary of the scatterer is approximated by
NS segments.

• We approximate the unknown U(ρ, t) by a linear combination of products of
NS spatial and NT temporal basis functions:

U(ρ, t) ≈
NS∑
n=1

NT∑
i=1

Ui,nfn(ρ)Ti(t)

• We substitute this approximation in the equation (22) and evaluate the equa-
tion at equidistant moments in time tj = j∆t, j = 1, ..., NT and in the centers
of the NS segments ρm,m = 1, ..., NS.

The first discretization steps are illustrated in the figures 2, 3 and 4. As temporal
basis functions we use pulses Ti(t) = T (t− i∆t) with

T (t) =

{
1, −∆t < t < 0
0, elsewhere.

(23)

We choose pulses for the spatial basis functions as well. The basis function fn(ρ)
has the value 1 on segment n and zero on all others. Applying the third step in the
discretisation procedure yields

Ei(ρm, j∆t)− 1

2π

NS∑
n=1

NT∑
i=1

Ui,n

∫
C

H(t− |ρm − ρ′|/c)√
t2 − |ρm − ρ′|2/c2

∗ Ti(t)

∣∣∣∣∣
t=j∆t

fn(ρ
′)dl′ (24)

Causality, included in the equations by the Heaviside function, allows us to do the
summation over i only up to j. Expanded, the temporal convolution looks like:

H(t− |ρm − ρ′|/c)√
t2 − |ρm − ρ′|2/c2

∗ Ti(t)

∣∣∣∣∣
t=j∆t

=

∫
H(t′ − |ρm − ρ′|/c)√
t′2 − |ρm − ρ′|2/c2

T (j∆t− i∆t− t′)dt′

(25)
In this form, it is obvious that the convolution depends only on the difference be-
tween i and j. Therefore, we introduce the new temporal summation index k = j−i:
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Figure 2: Approximation of the boundary of the scatterer by linear segments.

Figure 3: Approximation of the temporal dimension by pulses.

Figure 4: Approximation of the spatial dimension by pulses.
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Ei(ρm, j∆t)− 1

2π

NS∑
n=1

j−1∑
k=0

Uj−k,n

∫
C

H(t− |ρ− ρ′|/c)√
t2 − |ρ− ρ′|2/c2

∗ T (t)

∣∣∣∣∣
t=k∆t

fn(ρ
′)dl′ (26)

or in matrix notation:

Vj +

j−1∑
k=0

Zk · Uj−k = 0, j = 1, ..., NT (27)

with (Vj)m = Ei(ρm, j∆t), (Ui)n = Ui,n and

(Zk)m,n = − 1

2π

∫
Cn

H(t− |ρm − ρ′|/c)√
t2 − |ρm − ρ′|2/c2

∗ T (t)

∣∣∣∣∣
t=k∆t

fn(ρ
′)dl′ (28)

with Cm segment m. For j = 1 this system reduces to

V1 + Z0 · U1 = 0. (29)

This equation can be solved directly for U1. For j = 2 one obtains a system that
contains U1 en U2. This system can easily be solved for U2, because you know U1 by
now. This way, you march on in time, until you know the solution for all moments
in time. This explains the name of the algorithm. An example of the solution that
is obtained in this manner is shown in figure 5.
All that remains now is the calculation of the integrals. We start with the temporal
convolution:∫

H(t′ − |ρm − ρ′|/c)√
t′2 − |ρm − ρ′|2/c2

T (k∆t− t′)dt′ =

∫ b

a

dt′
1√

t′2 − |ρm − ρ′|2/c2
(30)

with, considering the supports of the Heaviside function and the temporal basis
functions, a = max(k∆t, |ρm − ρ′|/c) and b = max((k + 1)∆t, |ρm − ρ′|/c). This
integration can be done analytically and the result is:

F (k,ρm,ρ
′) = log

b+
√
b2 − |ρm − ρ′|2/c2

a+
√

a2 − |ρm − ρ′|2/c2
. (31)

In figure 6 this function has been evaluated as a function of |ρm − ρ′|/c for t = 0,
t = 3, and t = 8. To calculate the elements of Zk, we need to do another spatial
integration. These are approximated numerically by means of a Gaussian quadrature
rule of order NG:

(Zk)m,n = − ln
2π

NG∑
g=1

wgF (k,ρm,ρn,g) (32)
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Figure 5: The auxiliary current U(ρ, t) on the surface of a cylinder illuminated by a
plane wave.

Figure 6: Convolution of the Green function with the temporal basis functions.
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with ln the length of segment n, wg the weights of a Gaussian quadrature rule on
the interval [0, 1] and ρn,g the point on segment n with line coordinate xg, with xg

the abscis values that belong with the Gauss-rule.
We need to tackle a small problem. In figure 6 it is shown that for k = 0 the
integrand we wish to handle with the Gauss-rule has a singularity for ρm = ρ′. This
singularity lies within the integration boundaries for ρ′ when m = n. In this case
we are forced to do the spatial integration analytically. Fortunately, this is possible.
The result is:

(Z0)m,m = −Lm

2π
log

2c∆t+
√

(2c∆t)2 − L2
m

Lm

− c∆t

π
arctan

Lm√
(2c∆t)2 − L2

m

(33)

with Lm = min(lm, 2c∆t).

6 Assignment

6.1 Validation by means of a simple example

In a first step you have to validate the code. This can be done by calculating the
time domain scattering at a cylinder. Use an incoming wave

Ei(ρ, t) =
4

T
√
π
e−γ2

(34)

with γ = 4
T
(c(t − t0) − x). T determines the width of the pulse; the shorter the

pulse, the broader its spectrum. A short pulse demands a sufficiently short ∆t and
a sufficiently fine discretization of the scatterer. Let your code solve this situation;
the result is a solution U(ρ, t) = µ∂tJ(ρ, t). After a Fourier transformation you find
the spectral content of this solution u(ρ, ω) = jωµj(ρ, ω). This is the response to
the Fourier transformation of the incoming field. We have:

Ei(ρ, t) =
1

2π

∫
dωA(ω)ei(ωt−kx) (35)

with A(ω) = e−jωt0−(Tω
8c )

2

/c. To know the response to a plane wave with frequency
ω and unit amplitude you proceed as follows:

j0(ρ, ω) =
F(U)

jωA(ω)µ
. (36)

This current can be directly compared to the analytical solution for a PEC cylinder.
In figure 7 you see an example of such a validation. Because the method has only
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Figure 7: Comparison of the normalised current ηJ [in units Volt] at the illuminated
and shadow side of a cylinder with unit radius as a function of the normalised
frequency ω/c [in units per meter]. The spectrum of the excitation is plotted
in black.

limited accuracy and the incoming field has a finite spectrum, the results will only
agree in a limited frequency range.
In summary:

• Implement the march-on-in-time algorithm as described above. Think care-
fully about what data structures you will be using to describe the scatterer
geometry.

• Implement a function that allows you to plot the electric field and the in-
duced current resulting from the scattering of a time-harmonic plane wave by
a circular cylinder.

• Reproduce Fig. 7. Discuss how your simulation parameters determine the
frequency range over which you can expect good agreement (i.e. over which
your method is accurate).

• The method to solve the exterior scattering problem for a circular cylinder and
a plane incident wave can be found in one the appendices to this document.

• Carefully choose the parameter t0 in the incident wave to make sure all fields
at the scatterer’s surface are zero (up to some tolerance) at the start of the
simulation.
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6.2 Computation of resonance frequencies of a cylindrical
cavity

In this assignment you will excite the cylinder from the inside. To do this, you
need to use an electric field that is a solution of the Maxwell equations and that
is radiated by a source configuration within the cylinder. More explicitly, you are
going to use as incident field Ei(ρ, t) the electric field radiated by a line source at
the origin:

J(ρ, t) =
4

T
√
π
e−(4c

t−t0
T )

2 δ(ρ)

2πρ
. (37)

• Compute the field Ei(ρ, t) radiated by (37), using the 2D time-domain Green’s
function. The integral representation cannot be integrated analytically. You
will have to resort to numerical quadrature. The integrand of the integral,
however, contains a mild singularity (O(1/

√
t)). This can be removed by ap-

plying a suitable substitution of the integration variable. The new integral
representation has a smooth integrand and can be very accurately approxi-
mated by Gauss-Legendre quadrature.

• Which cavity modes do you expect this incident wave will excite? Compute
the corresponding resonance frequencies by solving the sourceless TM Maxwell
equations in a cylindrical cavity.

• Perform a Fourier transformation on the numerical solution of the MOT sys-
tem. Normalize this spectrum using the spectrum of the incident wave as
detailed in last assignment. What resonance peaks can you resolve? Does this
agree with your expectations?

• Repeat the above points for an off-center source at ρ = 1
2
ux. Which modes do

you expect now to be excited? Can you find the corresponding peaks in the
spectrum of the MOT solution?

6.3 Creative assignment

Invent one or more configurations of scatterers and solve the integral equation for
this configuration. Make sure that at least one of your examples is physically or
technically relevant. For instance, browse the internet for interesting problems.
Extract conclusions from your simulations and try where possible to discuss the
accuracy.

7 Report

You need to write a report of this project. The report must contain the email
addresses of the authors. It should not exceed 15 pages. Follow this structure:
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• A short summary of the problem.

• Description of the implementation. Include only small relevant code snippets
in your report and accompany these snippets with an explanation as to why
they are relevant. No full code listing should be included in the report.

• The solutions to the assignments in the previous section.

You can implement this assignment in either Matlab, Python, or Julia. Include in
your report clear instructions on how to reproduce the results and figures you use
in the report. Test your code on multiple machines to ensure it can be run during
assessment of your work.
It is highly recommended to work together in a private (!) git repository. This
facilitates combining work from multiple team members and keeping track of code
development throughout the project duration.

A Methods provided

A couple of matlab functions are provided. A first routine can be used to calculate
the Gauss nodes and weights. The syntax is:

[x,w] = lgwt(N,a,b).

Here N is the number of Gauss nodes and a and b are the upper and lower limit of
the integration interval. After execution, the array x contains the abscis values and
the array w the corresponding weights. If f is the array that contains the function
values of the integrandum in the abscis values x the integral can be calculated by
means of the command

sum( w .* f ).

A second function allows you to do the Fourier Transform of a function. If the
array f contains the samples of a function in equidistant abscis values tj = j∆t, j =
0, ..., NT − 1, the Fourier Transform can by calculated with

[v,F] = fourierTransform(delta_t,f,dim).

with dim the dimension along which the Fourier transform should be taken. So, if
you want to take the Fourier transform along the rows of an array, you set dim to
2, while if you wish to transform along the columns you set dim to 1. If you leave
out the argument, the transformation will be along the rows by default, which may
lead to weird results if you work with column vectors. After execution v contains
the frequencies at which the Fourier Transform is known and F is the array with
the value of the Fourier Transform at these frequencies. To obtain accurate results,
you must take ∆t smaller than the Nyquist sample interval, the signal must be zero
for t = 0 and sufficiently damped out for t = (NT − 1)∆t.
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B Analytical solution for circular cylinder

Consider the incident plane wave

eiz(ρ) = ejkx, . (38)

The current induced on a PEC surface is solution to the following integral equation:

eiz(ρ) = jωµ

∫
c

Gk(|ρ− ρ′|)jz(ρ′)dc′, ∀ρ ∈ c. (39)

In this section, we will solve this integral equation, starting from the Maxwell equa-
tions in the exterior domain, complemented with a suitable set of boundary condi-
tions:

∇2ez(ρ) + k2ez(ρ) = 0 : ∀ρ outside of the PEC, (40)

ez(ρ) = 0 : ∀ρ on boundary of and inside the PECs. (41)

This problem, supplemented with the requirement that the scattered field must be
radiating to infinity (and not the other way around) is equivalent to the integral
equation (39). Equation (40) can be solved by means of separation of variables (in
a cylindrical coordinate system), with the following result:

ez(ρ) =
∞∑

n=−∞

anJn (kρ) e
jnϕ + bnH

(2)
n (kρ) ejnϕ, (42)

where ρ = ρ [cosϕ, sinϕ]. We will now write both the incoming and scattered electric
field in a form similar to (42).
Since the incoming field is given by eiz(ρ) = ejkx, it can be written in a series of type
(42) by appealing to the Jacobi-Anger expansion:

ejkx = ejkρ cosϕ =
∞∑

n=−∞

jnJn (kρ) e
jnϕ. (43)

The scattered field outside of the PEC circular cylinder will be written as

esz(ρ) =
∞∑

n=−∞

bnH
(2)
n (kρ) ejnϕ. (44)

The reason why the an coefficients are zero in the expansion of the scattered field is
that

Jn (kρ) =
1

2

[
H(2)

n (kρ) +H(1)
n (kρ)

]
, (45)
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i.e. the field Jn (kρ) e
jnϕ is actually a superposition of a wave coming from infinity

to the origin (i.e. H
(1)
n (kρ) ejnϕ) and a wave propagating from the origin to infinity

(i.e. H
(2)
n (kρ) ejnϕ). Since the scattered field of the cylinder should not have a part

coming from infinity, the an coefficients are set to zero for the representation of the
scattered field.
Finally, the PEC boundary conditions at ρ = a can be enforced as follows

∞∑
n=−∞

jnJn (ka) e
jnϕ +

∞∑
n=−∞

bnH
(2)
n (ka) ejnϕ = 0,∀ϕ. (46)

Multiplying this equation with ejmϕ and integrating over ϕ ∈ [0, 2π] yields

bm = −jm
Jm (ka)

H
(2)
m (ka)

, (47)

which completes the analytical solution

ez(ρ) =
∞∑

n=−∞

jn

[
Jn (kρ)−

Jn (ka)

H
(2)
n (ka)

H(2)
n (kρ)

]
ejnϕ. (48)

To evaluate this series, it is useful to know that the Bessel functions Jn (z) and

H
(2)
n (z) can be computed by means of the commands besselj(n,z) and besselh(n,2,z)

respectively. Also, the series needs to be truncated at some finite n, which requires
some numerical experimentation. The rule of thumb that Bessel functions start to
decay exponentially as soon as their index exceeds their argument can be used as a
starting point for this exploration.
To find the induced current use (Faraday’s law) that

ht = − 1

jωµ
∇t × ezuz (49)

and (by the jump/continuity conditions at the PEC surface)

jzuz = n× ht, (50)

where n is the unit normal on the contour, directed in the exterior domain. Upon
some further vector algebra we arrive at

jz =
1

jωµ

∂ez
∂ρ

∣∣∣∣
ρ=a

(51)

In other words, up to a factor, the induced current is the normal (and for a circular
scatterer this means radial) derivative of the total current at the boundary of the
scatterer. Hint: the final expression can be simplified drastically by leveraging the
Wronskian relationship Jn(z)H

′(2)
n − J ′

n(z)H
(2)
n (z) = − 2j

πz
.
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