
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European High Performance
Computing Joint Undertaking (JU) and countries participating in the project. Neither the European Union nor the granting authority can be held responsible for them.

EuroHPC JU Centre of Excellence

EESSI test suite

10th EasyBuild User Meeting@ Juelich

Thu 27 March 2025

Caspar van Leeuwen (SURF)
Lara Peeters (Ugent)

Sam Moors (VUB)

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Goal of the EESSI test suite

◎ To test the functionality and performance of the EESSI software stack on a wide

range of systems

The challenge

◎ Every system is different! Need tests that are portable

2

The EESSI test suite

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

◎ EESSI test suite is based on ReFrame

◎ ReFrame tests are typically very system specific, example attributes:

○ num_cpus_per_task, num_tasks, num_gpus_per_node: typically chosen to

match the system

○ And many more …

◎ ReFrame offers amazing fine-grained control, but at the cost of portability

3

Writing portable tests is challenging…

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

◎ All system-specific information goes into ReFrame config file

◎ Make the test do something sensible based on the config file, examples:

○ Launch one rank per available (physical) CPU core (or: numa node / socket / GPU)

○ Skip a test if the system has insufficient memory to run it

○ …

N.B. Tests ≠ benchmarks! These portable tests are not guaranteed to get the best performance

from your system for a particular use case, they are meant to spot performance changes.

4

How we make EESSI tests portable

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 1010931695

MPI4PY example
@rfm.simple_test

class EESSI_MPI4PY(rfm.RunOnlyRegressionTest, EESSI_Mixin):

device_type = DEVICE_TYPES[CPU]

compute_unit = COMPUTE_UNIT[CPU]

module_name = parameter(find_modules('mpi4py'))

n_iterations = variable(int, value=1000)

n_warmup = variable(int, value=100)

executable = 'python3'

executable_opts = ['mpi4py_reduce.py', '--n_iter', f'{n_iterations}', '--n_warmup', f'{n_warmup}']

time_limit = '5m00s'

bench_name = 'mpi4pi'

bench_name_ci = 'mpi4pi'

readonly_files = ['mpi4py_reduce.py']

def required_mem_per_node(self):

return self.num_tasks_per_node * 100 + 250

@sanity_function

…

@performance_function('s')

…

See https://www.eessi.io/docs/test-suite/writing-portable-

tests/#as-portable-reframe-test

Requires ‘CPU’ feature

Launch one task per core

Create tests for all modules called

mpi4py/<something>

Automatically tags a test instance with

this bench_name with ‘CI’ tag

Request sufficient memory, and skip

if nodes don’t have enough

All our logic is in here

https://www.eessi.io/docs/test-suite/writing-portable-tests/#as-portable-reframe-test
https://www.eessi.io/docs/test-suite/writing-portable-tests/#as-portable-reframe-test

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

◎ Detailed steps on subsequent slides

◎ Quickest way: copy-paste from slides at https://github.com/casparvl/EUM25

◎ Docs for creating a config file: https://www.eessi.io/docs/test-suite/installation-

configuration/

8

Find presentation online

https://github.com/casparvl/EUM25
https://www.eessi.io/docs/test-suite/installation-configuration/
https://www.eessi.io/docs/test-suite/installation-configuration/

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Goal: For everyone to have run the EESSI test suite on your HPC cluster (or laptop) by

the end of EUM’25!

◎ Step 1: install ReFrame & the EESSI test suite

◎ Step 2: create a ReFrame configuration file

◎ Step 3: run reframe --list -t CI

◎ Step 4: run reframe --dry-run -t CI -n /<somehash>

◎ Step 5: run reframe --run -t CI -n /<somehash>

9

Writing an EESSI test suite configuration

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

module purge # Use system python

python3 -m venv $HOME/eessi_testsuite/eessi_testsuite_venv

source $HOME/eessi_testsuite/eessi_testsuite_venv/bin/activate

pip install reframe-hpc

pip install eessi-testsuite

Check we can use things from ReFrame’s hpctestlib

python3 -c 'import hpctestlib.sciapps.gromacs'

Check we can use things from the EESSI testsuite

python3 -c 'import eessi.testsuite.eessi_mixin'

10

Step 1: Install ReFrame & EESSI test suite

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

cd $HOME/eessi_testsuite/

wget https://raw.githubusercontent.com/EESSI/test-

suite/refs/tags/v0.6.0/config/settings_example.py

export RFM_CONFIG_FILES=$HOME/eessi_testsuite/settings_example.py

export RFM_PREFIX=$HOME/eessi_testsuite/reframe_runs

export

RFM_CHECK_SEARCH_PATH=$HOME/eessi_testsuite/eessi_testsuite_venv/lib

/python3.9/site-packages/eessi/testsuite/tests/

export RFM_CHECK_SEARCH_RECURSIVE=1

11

Step 2a: create ReFrame config file

https://raw.githubusercontent.com/EESSI/test-suite/refs/tags/v0.6.0/config/settings_example.py
https://raw.githubusercontent.com/EESSI/test-suite/refs/tags/v0.6.0/config/settings_example.py

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Now, modify settings_example.py to match your system

◎ Define a stagedir on a shared filesystem

◎ Select the matching scheduler https://reframe-

hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler (set

local if you are doing this on your laptop)

◎ Select the matching parallel launcher https://reframe-

hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher

(mpirun should work for everyone, but you can use e.g. srun)

◎ Modify the access field to define arguments to be passed to the scheduler, etc. It should

define a homogeneous set of nodes

12

Step 2b: create ReFrame config file

https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Now, modify settings_example.py to match your system

◎ Under resources set the flag that should be passed to your scheduler to define required

memory per node and pass {size} as argument

○ Slurm users: ‘--mem={size}’

○ Local spawner: ‘--whatever={size}’ (unused)

◎ Define the max available memory per node under the EXTRAS.MEM_PER_NODE item (in

MiB).

○ SLURM users: check scontrol show node <nodename> for the RealMemory on your nodes.

○ Local spawner: put anything (unused)

13

Step 2c: create ReFrame config file

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Now, modify settings_example.py to match your system

◎ Under features specify what FEATURES (CPU/GPU) and SCALES your system support

○ CPU partition: ‘features’: [FEATURES.CPU],

○ GPU partition where you don’t want to run CPU-only tests: ‘features’: [FEATURES.GPU],

○ GPU partition where you also want to run CPU-only tests: ‘features’: [FEATURES.CPU,

FEATURES.GPU],

○ To run all scales (up to 16 nodes): ‘features’: [FEATURES.XYZ] +

list(SCALES.keys())

○ To run only single (full) node (e.g. local laptop): ‘features’: [FEATURES.XYZ] + [key for

key, value in SCALES.items() if value.get("num_nodes") == 1]

◎ GPU partitions only: under extras define EXTRAS.GPU_VENDOR: GPU_VENDORS.NVIDIA

14

Step 2d: create ReFrame config file

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Run reframe --list -t CI

◎ You may get things like “WARNING: skipping test 'EESSI_TensorFlow': the

following parameters are undefined: module_name”. That’s ok, it simply

means you don’t have the software(module) needed to run this test

15

Step 3: run reframe --list -t CI

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Run reframe --list -t CI

◎ If you get “WARNING: failed to retrieve remote processor info:

command 'sbatch rfm-detect-job.sh' failed with exit code 1:”,

ReFrame’s automatic CPU detection failed.

○ Check the ReFrame log (“Log file(s) saved in ‘/path/to/log’”)

○ You might be missing access arguments

○ If it keeps failing, you could try ‘manually’ running reframe --detect-host-topology on

the relevant node https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-

topology-file . Then copy to ~/.reframe/topology/<system>-

<partition>/processor.json

16

Step 3: run reframe --list -t CI

https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-topology-file
https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-topology-file

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Run reframe --list -t CI

◎ You’ll need to have at least one module available for which we have a test ☺

○ If you don’t, simply install e.g. a CPU version of OSU-MicroBenchmarks with EasyBuild

◎ Expected output:

…

- EESSI_TensorFlow %scale=2_nodes %module_name=TensorFlow/2.13.0-foss-2023a %device_type=cpu /cbc475c5

- EESSI_TensorFlow %scale=1_node %module_name=TensorFlow/2.13.0-foss-2023a %device_type=cpu /9864d0f5

17

Step 3: run reframe --list -t CI

Test hash

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Run reframe --dry-run -t CI –n /<testhash> to just run an individual

test as an example

◎ Check the jobscript ReFrame will generate & submit in

<stagedir>/<system_name>/<partition_name>/default/<testname_tes

thash>/rfm_job.sh

◎ If you have issues, that job script is (probably) your first place to look!

18

Step 4: run reframe --dry-run -t CI

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

Run reframe --run -t CI –n /<testhash> to just run an individual test as

an example

19

Step 5: run reframe --run -t CI

This project has received funding from the European
High Performance Computing Joint Undertaking under
grant agreement No. 101093169

◎ Writing the ReFrame config requires some knowledge specific to the EESSI test suite

(https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/)

◎ Apart from the ReFrame config, the EESSI test suite is ‘plug-and-play’!

◎ Number of supported applications is could be bigger – open to new contributions (see

https://www.eessi.io/docs/test-suite/writing-portable-tests/)

Shout-out to ReFrame devs: EESSI test suite is possible because they spent time on our bug reports &

feature requests☺

20

Summary

https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/
https://www.eessi.io/docs/test-suite/writing-portable-tests/

Web page: multixscale.eu

Facebook: MultiXscale

X: @MultiXscale

LinkedIn: multixscale

YouTube: @MultiXscale

Funded by the European Union. This work has received funding from the European High Performance Computing Joint
Undertaking (JU) and countries participating in the project under grant agreement No 101093169.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

