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Goal of the EESSI test suite

◎ To test the functionality and performance of the EESSI software stack on a wide

range of systems

The challenge

◎ Every system is different! Need tests that are portable
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The EESSI test suite
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◎ EESSI test suite is based on ReFrame

◎ ReFrame tests are typically very system specific, example attributes:

○ num_cpus_per_task, num_tasks, num_gpus_per_node: typically chosen to 

match the system

○ And many more …

◎ ReFrame offers amazing fine-grained control, but at the cost of portability
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Writing portable tests is challenging…
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◎ All system-specific information goes into ReFrame config file

◎ Make the test do something sensible based on the config file, examples:

○ Launch one rank per available (physical) CPU core (or: numa node / socket / GPU)

○ Skip a test if the system has insufficient memory to run it

○ …

N.B. Tests ≠ benchmarks! These portable tests are not guaranteed to get the best performance

from your system for a particular use case, they are meant to spot performance changes.
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How we make EESSI tests portable
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MPI4PY example
@rfm.simple_test

class EESSI_MPI4PY(rfm.RunOnlyRegressionTest, EESSI_Mixin):

device_type = DEVICE_TYPES[CPU]

compute_unit = COMPUTE_UNIT[CPU]

module_name = parameter(find_modules('mpi4py'))

n_iterations = variable(int, value=1000)

n_warmup = variable(int, value=100)

executable = 'python3'

executable_opts = ['mpi4py_reduce.py', '--n_iter', f'{n_iterations}', '--n_warmup', f'{n_warmup}']

time_limit = '5m00s'

bench_name = 'mpi4pi'

bench_name_ci = 'mpi4pi'

readonly_files = ['mpi4py_reduce.py']

def required_mem_per_node(self):

return self.num_tasks_per_node * 100 + 250

@sanity_function

…

@performance_function('s')

…

See https://www.eessi.io/docs/test-suite/writing-portable-

tests/#as-portable-reframe-test

Requires ‘CPU’ feature

Launch one task per core

Create tests for all modules called 

mpi4py/<something>

Automatically tags a test instance with 

this bench_name with ‘CI’ tag

Request sufficient memory, and skip 

if nodes don’t have enough

All our logic is in here

https://www.eessi.io/docs/test-suite/writing-portable-tests/#as-portable-reframe-test
https://www.eessi.io/docs/test-suite/writing-portable-tests/#as-portable-reframe-test
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◎ Detailed steps on subsequent slides

◎ Quickest way: copy-paste from slides at https://github.com/casparvl/EUM25

◎ Docs for creating a config file: https://www.eessi.io/docs/test-suite/installation-

configuration/
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Find presentation online

https://github.com/casparvl/EUM25
https://www.eessi.io/docs/test-suite/installation-configuration/
https://www.eessi.io/docs/test-suite/installation-configuration/
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Goal: For everyone to have run the EESSI test suite on your HPC cluster (or laptop) by

the end of EUM’25!

◎ Step 1: install ReFrame & the EESSI test suite

◎ Step 2: create a ReFrame configuration file

◎ Step 3: run reframe --list -t CI

◎ Step 4: run reframe --dry-run -t CI -n /<somehash>

◎ Step 5: run reframe --run -t CI -n /<somehash>
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Writing an EESSI test suite configuration
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module purge # Use system python

python3 -m venv $HOME/eessi_testsuite/eessi_testsuite_venv

source $HOME/eessi_testsuite/eessi_testsuite_venv/bin/activate

pip install reframe-hpc

pip install eessi-testsuite

# Check we can use things from ReFrame’s hpctestlib

python3 -c 'import hpctestlib.sciapps.gromacs'

# Check we can use things from the EESSI testsuite

python3 -c 'import eessi.testsuite.eessi_mixin'
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Step 1: Install ReFrame & EESSI test suite
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cd $HOME/eessi_testsuite/

wget https://raw.githubusercontent.com/EESSI/test-

suite/refs/tags/v0.6.0/config/settings_example.py

export RFM_CONFIG_FILES=$HOME/eessi_testsuite/settings_example.py

export RFM_PREFIX=$HOME/eessi_testsuite/reframe_runs

export 

RFM_CHECK_SEARCH_PATH=$HOME/eessi_testsuite/eessi_testsuite_venv/lib

/python3.9/site-packages/eessi/testsuite/tests/

export RFM_CHECK_SEARCH_RECURSIVE=1
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Step 2a: create ReFrame config file

https://raw.githubusercontent.com/EESSI/test-suite/refs/tags/v0.6.0/config/settings_example.py
https://raw.githubusercontent.com/EESSI/test-suite/refs/tags/v0.6.0/config/settings_example.py
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Now, modify settings_example.py to match your system

◎ Define a stagedir on a shared filesystem

◎ Select the matching scheduler https://reframe-

hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler (set 

local if you are doing this on your laptop)

◎ Select the matching parallel launcher https://reframe-

hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher

(mpirun should work for everyone, but you can use e.g. srun )

◎ Modify the access field to define arguments to be passed to the scheduler, etc. It should 

define a homogeneous set of nodes
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Step 2b: create ReFrame config file

https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.scheduler
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher
https://reframe-hpc.readthedocs.io/en/stable/config_reference.html#config.systems.partitions.launcher
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Now, modify settings_example.py to match your system

◎ Under resources set the flag that should be passed to your scheduler to define required 

memory per node and pass {size} as argument

○ Slurm users: ‘--mem={size}’ 

○ Local spawner: ‘--whatever={size}’ (unused) 

◎ Define the max available memory per node under the EXTRAS.MEM_PER_NODE item (in

MiB).

○ SLURM users: check scontrol show node <nodename> for the RealMemory on your nodes.

○ Local spawner: put anything (unused)
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Step 2c: create ReFrame config file
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Now, modify settings_example.py to match your system

◎ Under features specify what FEATURES (CPU/GPU) and SCALES your system support

○ CPU partition: ‘features’: [FEATURES.CPU],

○ GPU partition where you don’t want to run CPU-only tests: ‘features’: [FEATURES.GPU],

○ GPU partition where you also want to run CPU-only tests: ‘features’: [FEATURES.CPU, 

FEATURES.GPU],

○ To run all scales (up to 16 nodes): ‘features’: [FEATURES.XYZ] + 

list(SCALES.keys())

○ To run only single (full) node (e.g. local laptop): ‘features’: [FEATURES.XYZ] + [key for 

key, value in SCALES.items() if value.get("num_nodes") == 1]

◎ GPU partitions only: under extras define EXTRAS.GPU_VENDOR: GPU_VENDORS.NVIDIA
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Step 2d: create ReFrame config file



This project has received funding from the European 
High Performance Computing Joint Undertaking under 
grant agreement No. 101093169

Run reframe --list -t CI

◎ You may get things like “WARNING: skipping test 'EESSI_TensorFlow': the 

following parameters are undefined: module_name”. That’s ok, it simply 

means you don’t have the software(module) needed to run this test
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Step 3: run reframe --list -t CI
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Run reframe --list -t CI

◎ If you get “WARNING: failed to retrieve remote processor info: 

command 'sbatch rfm-detect-job.sh' failed with exit code 1:”, 

ReFrame’s automatic CPU detection failed. 

○ Check the ReFrame log (“Log file(s) saved in ‘/path/to/log’”) 

○ You might be missing access arguments 

○ If it keeps failing, you could try ‘manually’ running reframe --detect-host-topology on 

the relevant node https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-

topology-file . Then copy to ~/.reframe/topology/<system>-

<partition>/processor.json
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Step 3: run reframe --list -t CI

https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-topology-file
https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/#create-topology-file
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Run reframe --list -t CI

◎ You’ll need to have at least one module available for which we have a test ☺

○ If you don’t, simply install e.g. a CPU version of OSU-MicroBenchmarks with EasyBuild

◎ Expected output:

…

- EESSI_TensorFlow %scale=2_nodes %module_name=TensorFlow/2.13.0-foss-2023a %device_type=cpu /cbc475c5

- EESSI_TensorFlow %scale=1_node %module_name=TensorFlow/2.13.0-foss-2023a %device_type=cpu /9864d0f5
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Step 3: run reframe --list -t CI

Test hash
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Run reframe --dry-run -t CI –n /<testhash> to just run an individual

test as an example

◎ Check the jobscript ReFrame will generate & submit in 

<stagedir>/<system_name>/<partition_name>/default/<testname_tes

thash>/rfm_job.sh

◎ If you have issues, that job script is (probably) your first place to look!
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Step 4: run reframe --dry-run -t CI
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Run reframe --run -t CI –n /<testhash> to just run an individual test as

an example
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Step 5: run reframe --run -t CI
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◎ Writing the ReFrame config requires some knowledge specific to the EESSI test suite

(https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/)

◎ Apart from the ReFrame config, the EESSI test suite is ‘plug-and-play’!

◎ Number of supported applications is could be bigger – open to new contributions (see

https://www.eessi.io/docs/test-suite/writing-portable-tests/ )

Shout-out to ReFrame devs: EESSI test suite is possible because they spent time on our bug reports &

feature requests☺
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Summary

https://www.eessi.io/docs/test-suite/ReFrame-configuration-file/
https://www.eessi.io/docs/test-suite/writing-portable-tests/
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