

MultiXscale

An EuroHPC Centre of Excellence

Alan O'Cais (University of Barcelona/CECAM)

26 March 2025

alan.ocais@cecam.org

What is MultiXscale?

- Collaboration between scientific partners (CECAM nodes) who deliver 3 pilot use cases, and technical partners (EESSI members) who provide the tools to allow application software to be seamlessly used on any available hardware
- MultiXscale targets improving the
 - Productivity of scientists who develop and/or use open source codes
 - Performance of those codes on EuroHPC hardware (and beyond)
 - Portability of the codes and workflows from laptop to server to cloud to HPC
- The focus of MultiXscale is <u>multi-scale modelling and leveraging the</u> <u>opportunities that EuroHPC offers</u>
- Advances the transition towards <u>use of exascale resources</u> for the community

Pilot: Batteries for sustainable energy

- Carbon/carbon supercapacitors are energy storage devices which are particularly attractive for their superior power density.
- Predicting materials with enhanced performance requires <u>extremely large</u> <u>scales</u>.

Pilot: Biomedical Applications

- Create an accurate "digital twin" for the ultrasound process
- Use the digital twin to improve protocols: controlled testing and rational optimization of ultrasound parameters, such as frequency and amplitude

Pilot: Design of innovative helicopters for civil applications

- An extremely complex task which requires proper modelling of the fluid flows around the helicopter body and detailed understanding of the mechanical forces sustained during flight operations.
- <u>Coupling</u> between aerodynamic and structural modelling is <u>limited by the high</u> <u>computational cost</u> associated to high-fidelity fluid dynamics methodologies, especially once applied to moving bodies, as in the case of helicopter rotors.

Scientific motivation requiring technical innovations

- <u>Each pilot</u> is dealing with phenomena that <u>manifest at multiple scales</u>, and as a result each utilizes <u>multiple methods</u> and a <u>variety of software applications</u>
- The challenge is <u>coupling</u> these together, and making sure they can take advantage of large scale resources
- In Europe, the largest scale resources are to be found (for free!) in EuroHPC
- Having access to resources is not enough, we need to get the <u>scientific</u> workflows there and make it as <u>easy as possible</u> for the scientists <u>to use</u>

EESSI as a shared software stack

EESSI-extend: building on top of EESSI with EasyBuild

- EESSI provides base installations
- We can install on top of the EESSI software stack with EasyBuild

\$ module load EESSI-extend/2023.06-easybuild -- Using /tmp/\$USER as a temporary working directory for installations, you can override this by setting the environment variable WORKING_DIR and reloading the module (e.g., /dev/shm is a common option) Configuring for use of EESSI_USER_INSTALL under /home/ec2-user/eessi -- To create installations for EESSI, you _must_ have write permissions to /home/ec2-user/eessi/versions/2023.06/software/linux/x86_64/amd/zen4 -- You may wish to configure a sources directory for EasyBuild (for example, via setting the

environment variable EASYBUILD SOURCEPATH) to allow you to reuse existing sources for packages.

Leveraging EESSI in CI environments

- EESSI can be used in CI environments like:
 - GitHub: github.com/marketplace/actions/eessi
 - GitLab: <u>gitlab.com/explore/catalog/eessi/gitlab-eessi</u>
- EESSI can provide:
 - Different compilers to test your software with
 - Required dependencies for your software
 - Additional tools like ReFrame, performance analysis tools, ...
- Other than CernVM-FS to get access to EESSI, no software installations required!
 - Everything that is actually needed is pulled in on-demand by CernVM-FS
- Significantly facilitates also running CI tests in other contexts (laptop, HPC, ...)

Leveraging EESSI GitHub Action

Leveraging EESSI in CI environments

We have an EESSI GitHub Action that provides EESSI+direnv:

```
EESSI
```

```
See it in action in the github-eessi-action repository:
name: ubuntu tensorflow
                            aithub.com/EESSI/aithub-action-eessi
on: [push, pull request]
                            github.com/EESSI/github-action-eessi/blob/main/.github/workflows/tensorflow-usage.yml
jobs:
 build:
   runs-on: ubuntu-latest
   steps:
   - uses: actions/checkout@v3
   - uses: eessi/github-action-eessi@v3
     with:
       eessi stack version: '2023.06'
   - name: Test EESSI
     shell: bash
     run:
       module load TensorFlow
       python -c 'import tensorflow; print(tensorflow. version )'
```

11

Putting things together

- Can create an EasyBuild recipe which uses `--software-commit` and git repository sources
- Use EESSI to build and test via EasyBuild in CI
- Simplest case has all dependencies existing in EESSI
- In GitHub, can build for Arm and x86_64 for free
- Future work: `buildenv` module with exported RPATH wrappers so method can also work more easily work without EasyBuild

12

Web page: multixscale.eu

Facebook: MultiXscale

Twitter: @MultiXscale

LinkedIn: MultiXscale

