
EASYBUILD & EESSI @
SURF
Caspar van Leeuwen
High Performance Machine Learning Consultant
Wed 26 Mar 2025

1

The past

November 2016: EasyBuild 3.0.0 released with RPATH support

Mid 2017: first (publicly available) installations @ SURF through EasyBuild

Start 2019: EasyBuild becomes the default installation method. Manual
installation only by rare exception!

Initially build everything with foss & intel toolchains

Since Snellius (2021): foss-only

More build issues with intel, too time consuming for little benefit

4

The present: Snellius

General-purpose HPC system

Phase 1 (Q3 2021, Q4 2022)

600 AMD Rome 7H12 (zen2) CPU nodes

72 Intel Ice Lake + A100 GPU nodes

Phase 2 (Q3 2023)

800 AMD Genoa 9654 (zen4) CPU nodes

Phase 3 (Q2 2024)

88 AMD Genoa 9334 (zen4) + H100 GPU nodes

Total: 230k CPU cores, 640 GPUs, 38 PFLOPS

5

Variant symlink setup

Architecture-specific symlink: /sw/arch

Points to an architecture-specific prefix:

6

$ ls -al /sw/arch
lrwxrwxrwx 1 root root 32 Mar 3 12:12 /sw/arch -> /gpfs/admin/hpc/sw/arch/AMD-ZEN2

$ ls -al /gpfs/admin/_hpc/sw/arch
…
drwxrwxr-x 6 jenkins jenkins 8192 Dec 19 15:07 AMD-ZEN2
drwxrwxr-x 6 jenkins jenkins 4096 Oct 3 13:17 AMD-ZEN4
drwxrwxr-x 5 jenkins jenkins 4096 Oct 3 13:09 AMD-ZEN4-H100
drwxrwxr-x 6 jenkins jenkins 4096 Oct 3 13:15 INTEL-AVX512

Variant symlink setup

We don’t export submission environment in batch jobs, but even if you do, it resolves to
the correct executable:

7

int1 $ module load GROMACS/2024.3-foss-2024a

int1 $ which gmx_mpi

/sw/arch/RHEL9/EB_production/2024/software/GROMACS/2024.3-foss-2024a/bin/gmx_mpi

int1 $ realpath $(which gmx_mpi)

/gpfs/admin/_hpc/sw/arch/AMD-ZEN2/RHEL9/EB_production/2024/software/GROMACS/2024.3-foss-2024a/bin/gmx_mpi

int1 $ srun -p genoa realpath $(which gmx_mpi)

/gpfs/admin/_hpc/sw/arch/AMD-ZEN4/RHEL9/EB_production/2024/software/GROMACS/2024.3-foss-2024a/bin/gmx_mpi

How we manage 4 optimizations
Semi-automated builds by Jenkins, based on a buildlist, e.g.

8

Basic Compilers
GCCcore-13.3.0.eb
intel-compilers-2024.2.0.eb --accept-eula-for=Intel-oneAPI --from-pr=20903
Clang-18.1.8-GCCcore-13.3.0.eb --from-pr=21117

MPI Libraries
OpenMPI-5.0.3-GCC-13.3.0.eb --hooks=/sw/eb/easyconfigs-surf/hooks/mpi_hook.py --include-
easyblocks=/sw/eb/easyblocks-surf/openmpi.py --from-commit=a6c22ba28a69f0c42724a72243f92aa27fc6459c
impi-2021.13.0-intel-compilers-2024.2.0.eb --accept-eula-for=Intel-oneAPI --hooks=/sw/eb/easyconfigs-
surf/hooks/mpi_hook.py --from-pr=20919
MPICH-4.2.2-GCC-13.3.0.eb --from-pr=21442 --hooks=/sw/eb/easyconfigs-surf/hooks/mpi_hook.py
mpi4py-4.0.1-gompi-2024a.eb --from-pr=21662

Libraries
pybind11-2.12.0-GCC-13.3.0.eb --from-pr=20829
libcint-6.1.2-gfbf-2024a.eb --from-pr=21545
libpng-1.6.43-GCCcore-13.3.0.eb
libxml2-2.12.7-GCCcore-13.3.0.eb --hook=/sw/eb/easyconfigs-surf/hooks/libxml2_hook.py

Site-specific customizations are done
through hooks, rather than
customizing EasyConfigs / EasyBlocks

9

Managing OS upgrades

OS upgrades have caused issues in the past, requiring rebuilds

One solution was to pro-actively just rebuild the entire stack, on the new OS

OS-specific prefix allows building new stack while keeping old stack

 Update MODULEPATH to new prefix after upgrade to ‘flip the switch’

But: strategy not used anymore on RHEL8 to RHEL9 upgrade

ReFrame tests didn’t signal many issues

There were some issues in the end (e.g. OpenSSL related), but not many, and all
handled on the fly after the upgrade

10

int1 $ realpath $(which gmx_mpi)

/gpfs/admin/_hpc/sw/arch/AMD-ZEN2/RHEL9/EB_production/2024/software/GROMACS/2024.3-foss-2024a/bin/gmx_mpi

User installations

Wrapper eblocalinstall:

EASYBUILD_INSTALLPATH = ∼/.local/easybuild/…

EASYBUILD_OPTARCH = <lowest_common_denominator>

eb …

11

Snellius software policy

We update our software stack once per year. Typically:

based on 202Xa

released around Q3 or Q4

O(400) packages

Only honor sofware installation requests if:

… is versioned

… has an official release within last 2 years

Max. 2 versions per software per year

Though we may allow exceptions (but don’t tell our users ☺)

12
https://servicedesk.surf.nl/wiki/spaces/WIKI/pages/30660267/Software+policy+Snellius

Currently considering to add 202Xb, but toolchains-only

https://servicedesk.surf.nl/wiki/spaces/WIKI/pages/30660267/Software+policy+Snellius

Snellius software policy

Yearly software stacks available through meta-modules (that set MODULEPATH)

Clear what is still supported

Confronts users with how old things are that they are using…

13

$ module av

--------------------------- /sw/noarch/environment ----------------------------

2022 2023 2024 EESSI/2023.06

Full support: additional installations + resolve issues with existing installations

Limited support: resolve issues with existing installations

Deprecated: if it still works for you, we won’t stop you from using it…

Older stacks (2020, 2021) are still there if you know where to look (but don’t tell our users ☺)

The future

EasyBuild: share installation recipes

Share some of the software-installation burden with the community

But: potential issues, e.g. because of differences in OS stack

European Environment for Scientific Software Installations (EESSI)1: share actual
installations

Share more of the software-installation burden with the community

15

1https://www.eessi.io/docs/

https://www.eessi.io/docs/

The future

Use EESSI as the base software stack

Main software environment on Snellius based on EESSI

Already the case on SURF Experimental Technologies Platform

Provide site installations (e.g. proprietary software) on top through the EESSI-
extend module1

Initially on local filesystem

Long term, through CVMFS (‘software.surf.nl’) with whitelisting for SURF-
internal systems

Build and deployed by eessi-bot2

Webinar, (probably) June 2nd 2025. See: https://gitlab.com/eessi/support/-
/issues/135

16
1https://www.eessi.io/docs/using_eessi/building_on_eessi/#building-software-on-top-of-eessi-with-easybuild
2https://www.eessi.io/docs/bot/

https://gitlab.com/eessi/support/-/issues/135
https://gitlab.com/eessi/support/-/issues/135
https://www.eessi.io/docs/using_eessi/building_on_eessi/#building-software-on-top-of-eessi-with-easybuild
https://www.eessi.io/docs/bot/

The future

Advantages for EESSI-based software environment

More synergy / shared effort with other HPC teams

Less build effort when new system or phase gets deployed

Uniform software stack across SURF systems (Snellius, SURF Research Cloud &
Spider cluster)

Better build automation (EESSI build bot instead of Jenkins)

Optimized user-space builds (through EESSI-extend) instead of lowest
common denominator

18

The future

Risks & mitigations in adopting EESSI-based software environment

(How) do we provide support on software that we did not build/deploy ourselves?

Active involvement in EESSI to build knowledge & experience

EESSI community can also provide support, and has much more knowledge!

Risk: EESSI disappears / is no longer maintained

‘software.surf.nl’ build on top of EESSI => easy to (re)build full stack

Bigger community = smaller risks

20

The future

Risks & mitigations in adopting EESSI-based software environment

Risk: EESSI infrastructure (Stratum 0 / 1) is unavailable

Private Stratum 1 hosts full copy of the SW stack (+ better performance!)

Risk: EESSI does not support the hardware architecture I care about

Provide build infrastructure for EESSI

21

The future

So if it’s EESSI, EESSI, EESSI, is there a future for EasyBuild?

Yes! EasyBuild is a key technology in EESSI facilitating both the builds in the repository as well
as the user-local builds!

EESSI may create additional adoption of EasyBuild

Community adopts EESSI (to get easy access to software they care about)

Community wants newer versions => Motivation to dive into EasyBuild

Have seen this in discussions with geosciences & radio-astronomy communities in NL

22

	Template-set voorbeeld indelingen
	Slide 1
	Slide 4: The past
	Slide 5: The present: Snellius
	Slide 6: Variant symlink setup
	Slide 7: Variant symlink setup
	Slide 8: How we manage 4 optimizations
	Slide 9
	Slide 10: Managing OS upgrades
	Slide 11: User installations
	Slide 12: Snellius software policy
	Slide 13: Snellius software policy
	Slide 15: The future
	Slide 16: The future
	Slide 18: The future
	Slide 20: The future
	Slide 21: The future
	Slide 22: The future

