
GOT BOTTLENECKS?

SCORE-P AND FRIENDS TO THE RESCUE!

2025-03-26 I MARKUS GEIMER ATML PARALLEL PERFORMANCE

 Infrastructure for instrumentation and performance measurements of HPC applications

• Open Source (3-clause BSD license)

• Portable to all major HPC platforms

• Proven scalability

• Active, community-driven development by multiple partners

• We maintain EasyBuild recipes… of course! (+ Spack & Fedora/OpenHPC pkgs)

 Instrumented applications can be used to produce different results:

• Call-path profiles (runtime summaries)

• Event traces

 Measurement configuration via environment variables

• Instrument once, collect multiple measurements

https://doi.org/10.5281/zenodo.1240731

SCORE-P TOOLS ECOSYSTEM

Application

Vampir
Scalasca

Trace Tools
Extra-P

Accelerator-based

parallelism
(CUDA, HIP, OpenACC,

OpenCL, OpenMP, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles (CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

TAU

SCORE-P TOOLS ECOSYSTEM

 Vampir (commercial)

• Interactive trace data visualization & analysis

 Scalasca Trace Tools

• Automatic event trace analysis

 Cube

• Interactive performance report exploration

 Extra-P

• Empirical performance modeling

 TAU / TAUdb

• Interactive performance report exploration & data mining

• Additional instrumentation/measurement capabilities (using Score-P as backend)

 Scalable, trace-based performance analysis toolset

• Open Source (3-clause BSD license)

• Portable to all major HPC platforms

• Proven scalability

 Main features:

• Automatic search for inefficiencies (i.e., wait states)

• Identification of delays as their root causes

• Identification of the critical-path profile

 Current focus: MPI, OpenMP (host only), POSIX threads (limited)

• Analysis of accelerator device activities not yet supported,

but still useful for host-side code (with some care)

https://doi.org/10.5281/zenodo.4103922

SCALASCA TRACE ANALYSIS

time

Recv

Recv

lo
c
a
tio

n

foo

foo

foo

Send

SendRecv

Recv

Direct

DirectIndirect

A

B

C

 Identifies wait states (here: 2 “Late Sender” situations)

 Classifies wait states into direct and indirect (i.e., caused by other wait states)

 Identifies delays (excess computation/communication) as root causes of wait states

 Attributes wait states as delay costs

 Calculates the critical-path profile

Computation

Communication

Wait state

Delay

Critical path

EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis

 Finds waiting time

at MPI_Waitall

inside ice boundary

halo update

 Shows distribution

of imbalance

across system

and ranks

EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis +

Application

Topology

 Shows distribution

of imbalance

over topology

 MPI topologies

are automatically

captured

EXAMPLE: CESM SEA ICE MODULE

Direct Late

Sender Wait

Time Analysis

 Direct wait states

caused by ranks

processing areas

near the north and

south ice borders

EXAMPLE: CESM SEA ICE MODULE

Indirect Late

Sender Wait

Time Analysis

 Indirect wait states

occur for ranks

processing warmer

areas

EXAMPLE: CESM SEA ICE MODULE

Late Sender

Delay Costs

Analysis

 Delays NOT

caused by ranks

processing ice!

QUESTIONS

•https://www.score-p.org

• support@score-p.org

•https://www.scalasca.org

• scalasca@fz-juelich.de

