
GOT BOTTLENECKS?

SCORE-P AND FRIENDS TO THE RESCUE!

2025-03-26  I  MARKUS GEIMER ATML PARALLEL PERFORMANCE



 Infrastructure for instrumentation and performance measurements of HPC applications

• Open Source (3-clause BSD license)

• Portable to all major HPC platforms

• Proven scalability

• Active, community-driven development by multiple partners

• We maintain EasyBuild recipes… of course!  (+ Spack & Fedora/OpenHPC pkgs)

 Instrumented applications can be used to produce different results:

• Call-path profiles (runtime summaries)

• Event traces

 Measurement configuration via environment variables

• Instrument once, collect multiple measurements

https://doi.org/10.5281/zenodo.1240731


SCORE-P TOOLS ECOSYSTEM
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SCORE-P TOOLS ECOSYSTEM

 Vampir (commercial)

• Interactive trace data visualization & analysis

 Scalasca Trace Tools

• Automatic event trace analysis

 Cube

• Interactive performance report exploration

 Extra-P

• Empirical performance modeling

 TAU / TAUdb

• Interactive performance report exploration & data mining

• Additional instrumentation/measurement capabilities (using Score-P as backend)



 Scalable, trace-based performance analysis toolset

• Open Source (3-clause BSD license)

• Portable to all major HPC platforms

• Proven scalability

 Main features:

• Automatic search for inefficiencies (i.e., wait states)

• Identification of delays as their root causes

• Identification of the critical-path profile

 Current focus: MPI, OpenMP (host only), POSIX threads (limited)

• Analysis of accelerator device activities not yet supported,

but still useful for host-side code (with some care)

https://doi.org/10.5281/zenodo.4103922


SCALASCA TRACE ANALYSIS
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 Identifies wait states (here: 2 “Late Sender” situations)

 Classifies wait states into direct and indirect (i.e., caused by other wait states)

 Identifies delays (excess computation/communication) as root causes of wait states

 Attributes wait states as delay costs

 Calculates the critical-path profile
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EXAMPLE: CESM SEA ICE MODULE
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EXAMPLE: CESM SEA ICE MODULE
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EXAMPLE: CESM SEA ICE MODULE
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EXAMPLE: CESM SEA ICE MODULE

Indirect Late

Sender Wait

Time Analysis

 Indirect wait states

occur for ranks

processing warmer

areas



EXAMPLE: CESM SEA ICE MODULE
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QUESTIONS

•https://www.score-p.org

• support@score-p.org

•https://www.scalasca.org

• scalasca@fz-juelich.de


