
 A new LLVM toolchain for 
EasyBuild

Davide Grassano (@Crivella)
CECAM Lausanne - Switzerland



Outline

● Compilers
● The LLVM project

○ Philosophy
○ Project and runtimes

● Front-ends and commercial toolchains
● Overhaul of the LLVM EasyBlock

○ Challenges & New features
○ Maintainability (EG about changes needed between major versions like offload split in 18->19)

● Introducing an LLVM only toolchain
● Features comparison with GNU
● Where to go from here?

2EUM - Julich 2025
Davide Grassano - CECAM



Compilers - modern architecture

3EUM - Julich 2025
Davide Grassano - CECAM

● IR: Any data structure that can represent the program without loss of information so that its execution can be 
conducted accurately



Compilers - GCC workflow

4EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Brief history

“The LLVM Project is a collection of modular and reusable compiler and toolchain 
technologies.”

● 2000 - University of Illinois, Vikram Adve, Chris Lattner - Research project
○ Low Level Virtual Machine (LLVM)

● 2003 - First release of LLVM
● 2005 - Apple, Chris Lattner
● 2006 - Chris Lattner starts Clang (first release 2007)
● 2011 - LLVM is not an acronym anymore but the official project name

5EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Philosophy

● Decoupling (LLVM IR)
○ Completeness of the IR enables total decoupling of the front and back-end

● Modularization
○ Organized as a set of libraries

● Reusability
○ APIs allow to reuse/mix functionalities from several existing components by new tools

6EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Projects

● LLVM Core: Libraries for middle-end optimizer and back-end code generation based on LLVM IR
● Clang: C/C++ front-end compilers + collections of extra tool for static analysis and more
● LLDB: LLVM integrated debugger based on LLVM Core API/tooling
● libc++ / libc++abi: Implementation of the C++ std library (C++11, C++14, C++17, C++20, C++23, C++2c)
● libc: Implementation of the C standard library (C23 + POSIX.1-2024)
● compiler-rt : Low level code generation support routines + RT dynamic testing and sanitizers
● MLIR: Multi-Level IR, improves reusability and compilation for heterogeneous hardware
● OpenMP: OpenMP runtime and code generation
● polly: Polyhedral optimizer for cache locality and automatic vectorization
● libclc: Implementation of OpenCL standard library
● LLD: New linker for LLVM
● BOLT: Post-link code layout optimizer
● FLANG: Fortran front end (<=2003, 2008, 2018, 2023)

7EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Front ends/toolchains

8EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Flang - history

9EUM - Julich 2025
Davide Grassano - CECAM

Start upstreaming 
of FLANG into 
LLVM 

Fortran mode 
to clang driver

1st 
appearance 
of FLANG in 
LLVM 11.0.0

1st appearance 
of FLANG-new 
in LLVM 13.0.0

FLANG-NEW 
replaces f18 as 
the compiler 
driver

FLANG-NEW 
code generation 
experimental 
15.0.0

FLANG-NEW 
code 
generation 
supported 
17.0.0

FLANG-NEW as a 
standalone 
compiler 19.1.0

Start FLANG 
front-end port 
to LLVM as f18

f18 
upstreamed 
to LLVM repo

2017 2019 2020 2022 2023

2018 2020 2021 2022 2024

2015

Start 
developing 
FLANG 2017

FLANG first 
release

FLANG 
renamed to 
FORT

FIR upstreamed 
to LLVM

Start 
development of 
FIR

2017 2022

2018

2012

RUST switches from 
an OCaml compiler to 
an LLVM based one

Intel adopts LLVM for the 
new DPC++/C++ compilers 
(icx/icpx/dpcpp)

Intel adops LLVM 
backend for new ifx 
compiler

Arm releases 
experimental 
toolchain with 
LLVM-FLANG

AMD announces next 
gen Fortran compiler 
based on 
LLVM-FLANG

2021 2024

2021 2024

LLVM

PGI
NVIDIA

2025

FLANG-NEW 
renamed to 
FLANG 20.1.0

Others



LLVM - Workflow example - Flang + OpenMP

● Fortran parser
● MLIR dialects

○ HL-FIR
○ FIR
○ OpenMP

● LLVM IR + OpenMP code-generation

10EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Workflow example - Clang + Offload

11EUM - Julich 2025
Davide Grassano - CECAM



LLVM - Workflow example - Flang + Offload

12EUM - Julich 2025
Davide Grassano - CECAM

flang -v hw_omp.f90 -fopenmp -fopenmp-targets=x86_64-unknown-linux-gnu

Compile the input file for the host to produce a bitcode file. Lower #pragma omp target declarations to offloading entries and create metadata to indicate which 
entries are on the device.
Compile the input file for the target device using the offloading entry metadata created by the host.



LLVM - Workflow example - Flang + Offload

13EUM - Julich 2025
Davide Grassano - CECAM

flang -v hw_omp.f90 -fopenmp -fopenmp-targets=x86_64-unknown-linux-gnu

Link the OpenMP device runtime library and run the backend to create a device object file.
Run the backend on the host bitcode file and create a fat object file using the device object file.



LLVM - Workflow example - Flang + Offload

14EUM - Julich 2025
Davide Grassano - CECAM

flang -v hw_omp.f90 -fopenmp -fopenmp-targets=x86_64-unknown-linux-gnu

Pass the fat object file to the linker wrapper tool and extract the device objects. Run the device linking action on the extracted objects.



LLVM - Workflow example - Flang + Offload

15EUM - Julich 2025
Davide Grassano - CECAM

flang -v hw_omp.f90 -fopenmp -fopenmp-targets=x86_64-unknown-linux-gnu

Wrap the device images and offload entries in a symbol that can be accessed by the host.



LLVM - Workflow example - Flang + Offload

16EUM - Julich 2025
Davide Grassano - CECAM

flang -v hw_omp.f90 -fopenmp -fopenmp-targets=x86_64-unknown-linux-gnu

Add the wrapped binary to the linker input and run the host linking action. Link with libomptarget to register and execute the images.



LLVM in EasyBuild - Old EasyBlocks

● LLVM (124 lines)
○ Build the llvm-core project only

● Clang (779 lines)
○ No support for shared builds
○ No support for GCCless build
○ Limited support for interplay between subprojects
○ Test-suite available but in general not ran in the respective EasyConfigs
○ Missing supports for new (>17.0.0) projects
○ Most likely non-correct RPATHing for runtimes

17EUM - Julich 2025
Davide Grassano - CECAM



LLVM in EasyBuild - NEW EasyBlock

● Fusing LLVM + Clang (1261 lines)
○ Allows static/shared builds
○ Allows for a `minimal` build for LLVM-core only
○ Allow building on top of GCC or in FULL_LLVM mode
○ More detailed project configuration
○ Ensure the test-suite is ran and allows for errors (regex or number based)
○ More extensive banned_libraries/sanity checking

18EUM - Julich 2025
Davide Grassano - CECAM



LLVM in EasyBuild - EasyBlock Challenges

● PROs of LLVM test-suite: Highly extensible and configurable

19EUM - Julich 2025
Davide Grassano - CECAM



LLVM in EasyBuild - EasyBlock Challenges

● PROs of LLVM test-suite: Highly extensible and configurable
● CONs of LLVM test-suite: Highly extensible and configurable

○ Fix with CMake parameters where possible
○ Patches to .cfg files where needed

● EG: The test-suite default configurations makes assumption on being able to 
find system libraries like libatomic

20EUM - Julich 2025
Davide Grassano - CECAM



LLVM in EasyBuild - Test suite results

21EUM - Julich 2025
Davide Grassano - CECAM

Host only All targets



LLVM in EasyBuild - EasyBlock Challenges
● RPATHING (multi-stage build)

○ Easybuild creates wrappers scripts for every compiler that takes the content of 
LD_LIBRARY_PATH and transform its to a sequence of -Wl,-rpath=XXX options

22EUM - Julich 2025
Davide Grassano - CECAM

STAGE 1 STAGE 2 STAGE 3

SYSTEM 
compilers

CMake CMake CMake

Projects Build

compilers

CMake

Runtimes Build 1st stage 
compilers

RPATH
wrappers

Projects Build

compilers

CMake

Runtimes Build 2nd stage 
compilers

RPATH
wrappers

Projects Build

compilers

CMake

Runtimes Build

RT libraries RT libraries RT libraries

TEST

SYSTEM dependencies
SYSTEM+LLVM dependencies

Partial compiler/runtimes interplay
LLVM-only dependencies

Full compiler/runtimes interplay



LLVM - Toolchain

● foss
○ GCC

■ GCCcore
○ gompi

■ OpenMPI
○ gfbf

■ linalg (BLAS, FlexiBLAS)
■ FFTW

○ Parallel.linalg (+ScaLAPACK)
○ Parallel.fftw (FFTW+MPI)

23EUM - Julich 2025
Davide Grassano - CECAM

● lfoss
○ LLVMtc

■ LLVM
○ lompi

■ OpenMPI
○ lfbf

■ linalg (BLAS, FlexiBLAS)
■ FFTW

○ Parallel.linalg (+ScaLAPACK)
○ Parallel.fftw (FFTW+MPI)



Testing the toolchain: --try-toolchain

● Do we need to recreate every EC with the new toolchain?

24EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: --try-toolchain

● Do we need to recreate every EC with the new toolchain?
● eb SOME_PACKAGE.eb --robot --try-toolchain=TC_NAME,TC_VERS
● Attempt to install package and dependencies by

○ Replacing the package toolchain with the specified one
○ Replace the dependencies toolchain/subtoolchain with the equivalent one

25EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: --try-toolchain

● eb SOME_PACKAGE.eb --robot --try-toolchain=TC_NAME,TC_VERS
● Attempt to instal package and dependencies by

○ Replacing the package toolchain with the specified one
○ Replace the dependencies toolchain/subtoolchain with the equivalent one

26EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● Add the TC definition in framework (LLVMtc, lfbf, lolf, lompi, lfoss)
● Start by creating LLVMtc

○ Need an EMPTY compatibility binutils package
● zlib

○ ld.lld does not enable version scripts be default (needs -Wl,--undefined-version)
● FFTW

○ Enabling quad precision in the config file is tied on the compiler description being GCC >4.6
○ As LLVM is not recognized trying to build with quad precision will throw an error
○ NEW EC file with quad_precision disabled (anyway disabled by default for the MPI version)

27EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● UCX
○ Compatibility problem with v<1.17.0 (apply patch or use newer version)

● libpciaccess
○ Patch -Werror out of options or pass -Wno-int-conversion

● HDF5 (WIP)
○ Configure script runs flang and uses the output to determine input options for CFLAGS

■ -target-feature -lwp ends up being interpreted as a non-existing library by clang
■ This is emitted only in case of -march=native (temporary fix disable this)

○ Weird one: double quotes in the compiler version string (extracted from mpicc+clang) gets 
injected into a template file for h5cc without being escaped

28EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● ScaLAPACK:
○ Needs -std=c89 to avoid an undeclared function error

● ELPA
○ Another weird one (!precompiler)

29EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● ScaLAPACK:
○ Needs -std=c89 to avoid an undeclared function error

● ELPA
○ Another weird one (!precompiler)

30EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● QuantumESPRESSO
○ Remove HDF5 and ELPA deps as not ready yet
○ Remove qmcpack plugin that requires HDF5

31EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● QuantumESPRESSO
○ Remove HDF5 and ELPA deps as not ready yet
○ Remove qmcpack plugin that requires HDF5
○ Error while building base libraries

32EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● QuantumESPRESSO
○ Remove HDF5 and ELPA deps as not ready yet
○ Remove qmcpack plugin that requires HDF5
○ Error while building base libraries -> Bump OpenMPI version and rebuild dependent software
○ Error while building d3q plugin (missing flang feature)

33EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

● QuantumESPRESSO
○ Remove HDF5 and ELPA deps as not ready yet
○ Remove qmcpack plugin that requires HDF5
○ Error while building base libraries -> Bump OpenMPI version and rebuild dependent software
○ Error while building d3q plugin -> disable d3q plugin
○ Success

34EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: Quantum Espresso

35EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: CP2K

● BOOST: x86_64-pc-linux vs x86_64-unkown-linux-gnu target triple
● Libinit: replace cstd with extra_cxxflags to pass --std=c++11 also to clang++ 
● Catch2: Needs version >2 (used 3.8)
● Rust (WIP): clash with symbols of internal LLVM compilation

○ Possible solution: Link against already build LLVM
○ Use Rust version made to be compatible with LLVM 20.x

● SciPy-Bundle:
○ Punch the MESON build system around to use an LLVM based compiler and manually remove 

non-existing flang flags
● Libxsmm: No configure (remove/add flags with patches to the Makefile)

36EUM - Julich 2025
Davide Grassano - CECAM



Testing the toolchain: CP2K

● Test version 2024.3
● With LLVM 20.x: disable SciPy based dependencies due to skipping Rust
● Stricter checks on OMP sections with default none

○ Patch to ensure all variable appear as either private/shared
● Error due to missing feature

37EUM - Julich 2025
Davide Grassano - CECAM



FLANG: Missing feature

● Grepping through the flang source code
○ 339 missing features (as of 20.1.0 and 20.1.1)

38EUM - Julich 2025
Davide Grassano - CECAM



FLANG: Missing feature

● Grepping through the flang source code
○ 339 missing features (as of 20.1.0 and 20.1.1)

39EUM - Julich 2025
Davide Grassano - CECAM



FLANG: Missing feature

● Grepping through the flang source code
○ 339 missing features (as of 20.1.0 and 20.1.1)

40EUM - Julich 2025
Davide Grassano - CECAM



FLANG: Missing feature

● Grepping through the flang source code
○ 339 missing features (as of 20.1.0 and 20.1.1)

41EUM - Julich 2025
Davide Grassano - CECAM



Feature comparison with GNU - language standard

42EUM - Julich 2025
Davide Grassano - CECAM

LLVM GNU

c++11 DONE DONE

c++14 DONE DONE

c++17 ALMOST ALMOST

c++20 ALMOST EXPERIMEN
TAL

c++23 EXPERIME
NTAL

EXPERIMEN
TAL

c++2c WIP EXPERIMEN
TAL

C++
LLVM GNU

1995 DONE DONE

2003 ~DONE DONE

2008 ALMOST ALMOST

2018 EXPERIME
NTAL

EXPERIMEN
TAL

2023 WIP WIP

FORTRAN



Feature comparison with GNU - targets

● LLVM (20.1.0)
○ aarch32/64 (82 CPUs, 308 feat)

■ upto v9.6
○ amdgcn (73 GPUs, 209 feat)

■ upto gfx1201
○ avr (315 CPUs, 37 feat)
○ bpf (6 CPUs, 3 feat)
○ loongarch (6 CPUs, 20 feat)
○ mips (19 CPUs, 53 feat)
○ ppc (39 CPUs, 84 feat)
○ r600 (19 GPUs, 16 feat)
○ risc-v32/64 (39 CPUs, 276 feat)
○ sparc (40 CPUs, 53 feat)
○ spirv32/64
○ wasm32/64 (4 CPUs, 17 feat)
○ x86/86_64 (129 CPUs, 196 feat)

■ upto diamondrapids (AMX-AVX512)
■ upto znver5

○ xcore

43EUM - Julich 2025
Davide Grassano - CECAM

● GCC (14.2)
○ aarch32/64 (84 CPUs)

■ upto v9.5 (more for 15.0)
○ amdgcn (26 GPUs)

■ upto gfx1153 (more for 15.0)
○ loongarch (5 CPUs)
○ mips (92 CPUs)
○ ppc (55 CPUs)
○ risc-v32/64 (18 CPUs)
○ x86/86_64 (112 CPUs)

■ upto diamondrapids (AMX-AVX512)
■ upto znver5 



Where to go from here? EasyBlock - missing projects

● DONE
○ bolt
○ clang
○ clang-extra-tools
○ compiler-rt
○ flang
○ lld
○ lldb
○ llvm-core
○ openmp
○ offload
○ libcxx
○ libcxxabi
○ libunwind
○ mlir
○ polly

44EUM - Julich 2025
Davide Grassano - CECAM

● Missing/untested
○ libc
○ libclc
○ llvm-libgcc
○ pstl
○ SPIR-V (external)



Where to go from here? EasyBlock - maintainability

● More testing
○ More systems (especially with GPU and offloading)
○ Cross-compilation
○ More project and parameters combination

● Smarter version control list of enabled targets and devices
● Hope the CMake variables and project structure keeps stable

45EUM - Julich 2025
Davide Grassano - CECAM



Where to go from here? Flags - Optimization

● Toolchain tested with same optimization options as the FOSS one
● Test LLVM specific optimization

○ Test if defaults for option not used is the same as in GCC
○ Test target specific optimizations and effect of march/mtune
○ Test the polyhedral optimizer (Polly)

46EUM - Julich 2025
Davide Grassano - CECAM



Where to go from here? - Standalone vs + GCCcore

● Standalone
○ No leftover GCC dependencies
○ With a more mature libc could allow for a more system independent toolchain?
○ Needs to redo all the GCCcore EC files

● On top of GCCcore
○ Reuse existing GCCcore dependencies
○ Risc mixing of OpenMP and compiler runtime libraries

■ Seems that calling a libgomp compiled libraries from a libomp linked executable works 
as intended

47EUM - Julich 2025
Davide Grassano - CECAM



Where to go from here? - Standalone vs + GCCcore

● Standalone
○ No leftover GCC dependencies
○ With a more mature libc could allow for a more system independent toolchain?
○ Needs to redo all the GCCcore EC files

● On top of GCCcore
○ Reuse existing GCCcore dependencies
○ Risc mixing of OpenMP and compiler runtime libraries

■ Seems that calling a libgomp compiled libraries from a libomp linked executable works 
as intended

48EUM - Julich 2025
Davide Grassano - CECAM



Where to go from here? - Standalone vs + GCCcore

● Standalone
○ No leftover GCC dependencies
○ With a more mature libc could allow for a more system independent toolchain?
○ Needs to redo all the GCCcore EC files

● On top of GCCcore
○ Reuse existing GCCcore dependencies
○ Risc mixing of OpenMP and compiler runtime libraries

■ Seems that calling a libgomp compiled libraries from a libomp linked executable works 
as intended

■ The opposite seems to lead to undefined behavior and the OMP part tied to libomp 
being ignored/not working

49EUM - Julich 2025
Davide Grassano - CECAM



Where to go from here? - Standalone vs + GCCcore

● Standalone
○ No leftover GCC dependencies
○ With a more mature libc could allow for a more system independent toolchain?
○ Needs to redo all the GCCcore EC files

● On top of GCCcore
○ Reuse existing GCCcore dependencies
○ Risc mixing of OpenMP and compiler runtime libraries

■ Seems that calling a libgomp compiled libraries from a libomp linked executable works 
as intended

■ The opposite seems to lead to undefined behavior and the OMP part tied to libomp 
being ignored/not working

50EUM - Julich 2025
Davide Grassano - CECAM



Thanks for your 
attention.

Questions?
51EUM - Julich 2025

Davide Grassano - CECAM



Compilers - Intermediate Representation (IR)

● Any data structure that can represent the program without loss of information 
so that its execution can be conducted accurately

● Requirements / design choices
○ Correctness
○ Clear/defined semantics
○ Decoupled/orthogonal operations

■ GPUs might benefit from non-orthogonal operations (eg fused multiply-add)
○ Completeness

● Forms
○ Textual (Debugging)
○ Bytecode (Persistence/exchange + possible compatibility)
○ In-memory (analysis/passes)

52EUM - Julich 2025
Davide Grassano - CECAM



Compilers - Static Single Assignment (SSA)

● IR where each variable is assigned once

53EUM - Julich 2025
Davide Grassano - CECAM

● a = 1
● b = a
● a = a + 3
● c = a + b

● a1 = 1
● b1 = a1
● a2 = a1 + 3
● c1 = a2 + b1



Compilers - Static Single Assignment (SSA)

● IR where each variable is assigned once
● Enables/facilitates

○ Constant propagation
○ Dead-code elimination
○ Global value numbering
○ Branch predictions

■ Value range propagation
■ Sparse conditional constant propagation

○ Register allocation
○ Strength reduction

54EUM - Julich 2025
Davide Grassano - CECAM



Compilers - Static Single Assignment (SSA)

● Used by
○ Mono
○ WebKit
○ Swift
○ Erlang
○ LLVM
○ GNU Compiler collection
○ GO
○ IMB’s java virtual machine
○ Mozilla JavaScript engine
○ Chrome JavaScript engine
○ PyPy
○ Android runtime

55EUM - Julich 2025
Davide Grassano - CECAM

○ Standard ML compiler
○ LuaJIT
○ HHVM PHP JIT compiler
○ libFirm
○ Oracle’s JVM
○ Microsoft Visual C++ compiler
○ SPIR-V
○ IBM XL compilers
○ NVIDIA CUDA



Example of LLVM middle end optimizations

56EUM - Julich 2025
Davide Grassano - CECAM


