
Modern MPI and what you need to
know about it
Jeff Hammond
Principal Engineer
GPU Communication Software

1. MPI Application Binary Interface (ABI)

2. MPI Large-Count Support

3. MPI and Fortran

4. Using MPI RMA Effectively

5. MPI GPU Futures

Outline

ABI

Jeff Hammond, Lisandro Dalcin, Erik Schnetter, Marc PéRache,

Jean-Baptiste Besnard, Jed Brown, Gonzalo Brito Gadeschi, Simon

Byrne, Joseph Schuchart, and Hui Zhou. 2023. MPI Application

Binary Interface Standardization. In Proceedings of EuroMPI2023: the

30th European MPI Users' Group Meeting (EUROMPI '23),

September 11-13, 2023, Bristol, United Kingdom. ACM, New York,

NY, USA. https://doi.org/10.1145/3615318.3615319

API versus ABI

API

int MPI_Bcast(void * b, int n, MPI_Datatype d, int r, MPI_Comm c);

MPI_Datatype and MPI_Comm are unspecified types

ABI

typedef struct ompi_datatype_t * MPI_Datatype; // Open MPI family

typedef int MPI_Datatype; // MPICH family

Lots of other stuff like constants, SO names, SO versioning, calling convention, etc.

ABI Status Quo

MPI has been an API standard, which defines the source code behavior in C (C++) and

Fortran. The compiled representation of MPI features is implementation-defined.

If you compile with one of the following MPI families, you MUST run with the same.

1. MPICH / Intel MPI / MVAPICH / Cray MPI

2. Open MPI / NVIDIA HPC-X / Amazon MPI / IBM Spectrum MPI

Family 1 exists because there was a demand for interoperability with Intel MPI due to the

prevalence of usage in ISV codes.

Family 2 is not guaranteed to be consistent, especially across major versions.

1 = https://www.mpich.org/abi/

https://www.mpich.org/abi/

Modern software use cases:

● Third-party language support, e.g. Python, Julia, Rust, etc.

● Package distribution, e.g. Apt, EasyBuild, Spack, etc.

● Tools become implementation-agnostic

● Containers

● More efficient testing

We can:

● Architectural reasons not to are gone

● Two platform ABIs cover >90% of HPC platforms

Why standardize an MPI ABI?

ABI Design

Requirements:

- Position sequences: 0..n (MPI_SUCCESS..MPI_ERR_LASTCODE)

- XOR-able, i.e., 2^k (e.g. MPI_MODE_NOCHECK)

- Negative (MPI_ANY_SOURCE)

- Sizes (e.g. MPI_BSEND_OVERHEAD)

- Ordered subsets (e.g. MPI_THREAD_*)

- Arbitrary (e.g. MPI_ORDER_FORTRAN)

Except for error codes, array sizes and XOR-ables, all integer constants are

unique. Error messages can easy tell user what they passed as it appears in the

source code.

Integer Constants

Handles

typedef struct MPI_ABI_Comm * MPI_Comm;

typedef struct MPI_ABI_Request * MPI_Request;

...

Satisfies existing requirements (= comparison, fits into a pointer because attributes).

Supports type-safety. Compilers know that MPI_Comm is not MPI_Group.

Downside: conversions to/from Fortran are not free like MPICH (at least with LP64).

The current 103 predefined handles are compile-time constants less than 1024 defined by a

Huffman code. They can be translated to/from Fortran trivially.

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

Integer Types

Surprisingly, this was the hardest part…

● MPI_Aint is intptr_t because that satisfies all of the requirements

● MPI_Offset is int64_t because that will be sufficient for ~30 years

● MPI_Count is int64_t because max(MPI_Aint,MPI_Offset)

● MPI_Fint is not part of the ABI
○ f2c/c2f are replaced by fromint/toint

It is our intent specify an ABI for 32b and 64b systems since those are what we

understand. 128b ABIs (e.g. CHERI) can be added in the future when appropriate.

Packaging

● The header is mpi.h
○ #include <mpi.h> still works - no code changes required to adopt ABI.

○ The Forum will distribute a standard header for convenience.

● The library is libmpi_abi.ext (or mpi_abi.dll)
○ Implementations are instructed to use platform-specific SO versioning conventions.

○ The Forum will distribute a standard SO for convenience.

● The ABI is versioned
○ Starts with 1.0

○ Backwards-compatible changes (e.g. new handle type or procedures) increment the minor

version, which will happen for every new release of the standard.

○ Backwards-incompatible changes increment the major version.

https://github.com/mpi-forum/mpi-abi-stubs

https://github.com/mpi-forum/mpi-abi-stubs

Fortran ABI

Platform ABIs

The MPI ABI depends on the platform ABI, which is a function of:

1. The operating system and C compiler

2. The filesystem (offset size, but only weakly)

3. The Fortran compiler

a. INTEGER and REAL

b. string passing

c. CFI_cdesc_t

d. Module format

Visible to the MPI C ABI via handle

constants and MPI_Type_size.

Constant for a given Fortran compiler

usage (assuming no weird flags).

MPI Fortran ABI

● The MPI ABI for Fortran is incomplete, because we cannot specify it without

specifying the implementation of MPI Fortran modules.

● We defined an ABI that allows C to work with Fortran code, and for MPI

Fortran to be implementable on top of the MPI C ABI.

● Both VAPAA and MPICH are decoupling the Fortran and C implementations.

MPI_Abi_set_fortran_info, MPI_Abi_get_fortran_info, ...

The following keys are predefined for this object:

"mpi_integer_size": The size in bytes of the Fortran default INTEGER kind.

...

https://github.com/jeffhammond/vapaa

https://github.com/jeffhammond/vapaa

FAQ

● Final vote in June 2025, right before ISC.

● Launchers are not part of the ABI. There are at least two options:
○ Slurm and PBS launchers are supported by all the major MPIs already.

○ mpirun can set the shared library to use, in which case the launcher and library will match.

● Wrapper scripts (e.g. mpicc) are not standard but the ecosystem will probably

have mpicc_abi or mpicc -abi.

● MPICH and Open MPI will continue to support their existing ABIs (for now).

Large-count support

J. R. Hammond, A. Schafer and R. Latham, "To INT_MAX... and Beyond!

Exploring Large-Count Support in MPI," in 2014 Workshop on Exascale

MPI at Supercomputing Conference (ExaMPI), New Orleans, LA, USA,

2014. https://doi.ieeecomputersociety.org/10.1109/ExaMPI.2014.5

int MPI_Bcast(void *buffer, int count, MPI_Datatype

datatype, int root, MPI_Comm comm)

int MPI_Bcast_c(void *buffer, MPI_Count count, MPI_Datatype

datatype, int root, MPI_Comm comm)

Support for large-counts
C API

With one exception, all MPI functions that take a count

argument have two APIs, one for each count integer type.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast(buffer, count, datatype, root, comm, ierror) !(_c)

TYPE(*), DIMENSION(..) :: buffer

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Support for large-counts
Fortran API in mpi_f08

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

Support for large-counts
Fortran API in mpi module and mpif.h

NO LARGE-COUNT SUPPORT IN PRE-

MODERN FORTRAN SUPPORT

Implementation Status

https://github.com/pmodels/mpich/issues/4880

https://github.com/open-mpi/ompi/pull/12226

Fortran

“MPI and Modern Fortran: Better Together”

https://pasc24.pasc-conference.org/presentation/?id=msa277&sess=sess129
https://drive.google.com/file/d/1--poinTx7bETmU-tnUu--Wj3eGHUFJKp/view

https://pasc24.pasc-conference.org/presentation/?id=msa277&sess=sess129
https://drive.google.com/file/d/1--poinTx7bETmU-tnUu--Wj3eGHUFJKp/view

1. MPI C API - used by all languages except Fortran

2. MPI C++ API deleted in MPI 3.0 (2012)

3. MPI mpif.h (falsely known as “F77” bindings)

4. MPI mpi module (falsely known as “F90” bindings)

5. MPI mpi_f08 module (the good stuff)

MPI Language Support

1. MPI C API - used by all languages except Fortran

2. MPI C++ API deleted in MPI 3.0 (2012)

3. MPI mpif.h deprecated in MPI 4.1 (2023)

4. MPI mpi module (falsely known as “F90” bindings)

5. MPI mpi_f08 module (the good stuff)

MPI Language Support

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

!$PRAGMA IGNORE_TKR

<type> :: BUFFER(*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

MPI Fortran legacy API

Until Fortran 2008, there is no standard mechanism for type-agnostic buffers equivalent to C void*.

Implementations rely on compiler-specific extensions (e.g., as shown above) or lack of enforcement of

type safety to compile. There is also no way to use Fortran array properties, including subarrays.

This matters more now, because GCC warnings are increasingly hostile to type abuse.

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

!$PRAGMA IGNORE_TKR

<type> :: BUFFER(*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

MPI Fortran legacy API

Datatypes and communicators are MPI object handles, not generic integers. Without proper types,

compilers cannot identify user errors, so they manifest in unpleasant ways at runtime.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

Buffers are assumed-type, assumed-rank arguments. MPI implementations can - but are not required

to - support non-contiguous subarrays.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

MPI object handles are properly typed and thus compilers will not accept erroneous usage. At the

same time, MPI object handle types are interoperable with the old method, because the type contains

the integer handle as its only member.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

All MPI procedures that take a count argument use polymorphic interfaces to support both INTEGER

(usually 32b) and large-count (i.e. 64b) variants. This aspect of the MPI Fortran API is superior to both

C and C++.

MPI_Irecv(buf, count, datatype, source, tag, comm,

request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

Non-blocking procedures require ASYNCHRONOUS buffer attribute to prohibit (unlikely) compiler

optimizations and (likely) temporary copies that break correctness.

Asynchronous Procedures

integer :: buf(1000)

call MPI_Irecv(buf(1:1000:2), .., req)

! integer :: temp(500) = buf(1:1000:2)

! address of temp passed to network API

! temp is deallocated when MPI_Irecv returns

call MPI_Wait(req)

! network writes to temp, which no longer exists

! segmentation fault

MPI_SUBARRAYS_SUPPORTED = .FALSE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .FALSE.

<= This is uncommon usage.

Asynchronous Procedures

void CFI_MPI_Irecv(CFI_cdesc_t * desc, int count, int datatype_f, int

source, int tag, int comm_f, int * request_f, int * ierror)

{

! translate datatype and communication handles from Fortran to C

! create MPI datatype from desc, count and datatype: temp_type

*ierror = PMPI_Irecv(desc->base_addr, 1, temp_type, source, tag,

comm, &request);

! translate request handle from C to Fortran

}

MPI_SUBARRAYS_SUPPORTED = .TRUE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .TRUE.

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

Today:

● Fortran compiler should support Fortran 2018 CFI features, i.e. CFD_cdesc_t.

○ NVHPC Fortran was the last major compiler to support this.

● MPI implementation should support assumed-rank, assumed-type arguments in the interface and

CFI_cdesc_t buffer arguments in the implementation.

○ MPICH has this. Open MPI doesn’t. Both implementations are valid.

● The MPI library is compiled once for every Fortran compiler.

○ Regular users don’t care but sysadmins hate this.

Tomorrow:

● MPI Fortran features depend only on the C ABI and may be built separately.

○ VAPAA is a prototype of this. MPICH may also get there.

Implementation Status

RMA (aka one-sided)

● Separate data movement from synchronization. Theoretically more scalable.

○ Send-Recv matches in order and often requires a handshake.

○ RMA allows control over ordering.

● Unstructured communication. Random access reads and/or updates.

○ NWChem distributed arrays are accessed quasi-randomly.

○ Sorting can be written as scattering across the system based on local info.

● Better match for modern HPC hardware.

○ RDMA read and write = MPI Get and Put (in theory)

○ RDMA atomics = MPI atomics (in theory)

○ Registered memory = MPI window allocation

Why one-sided communication?

MPI RMA Ecosystem Examples

Intel Fortran

GCC Fortran (OpenCoarrays)

OSHMPI

Global Arrays ARMCI-MPI

The only standardized PGAS language, the original one-

sided library, and the most widely used application based on
one-sided are all demonstrated to use MPI-3 RMA.

https://github.com/mpiwg-rma/mpi-standard/wiki/Application-Overview

https://github.com/mpiwg-rma/mpi-standard/wiki/Application-Overview

Overview of RMA

One-sided operations

1. Put/Get: non-atomic RMA
2. Accumulate: atomic RMA

a. Acc/Get_acc w/ math
b. w/ NOOP & REPLACE

c. F&Op, CAS for scalars

Window Types

1. Created collectively from user buffer
2. Created dynamically from user buffers

3. Allocated by MPI
4. Allocated by MPI from shared-memory

Synchronization Motifs

1. Fence (true BSP)
2. Post-Start-Complete-Wait (PSCW)

3. Passive-target (Lock/Unlock)
a. Exclusive lock

b. Shared lock
c. Flush local and remote
d. Request-based

4. Pure shared-memory

Overview of RMA

One-sided operations

1. Put/Get: non-atomic RMA
2. Accumulate: atomic RMA

a. Acc/Get_acc w/ math
b. w/ NOOP & REPLACE

c. F&Op, CAS for scalars

Window Types

1. Created collectively from user buffer
2. Created dynamically from user buffers

3. Allocated by MPI
4. Allocated by MPI from shared-memory

Synchronization Motifs

1. Fence (true BSP)
2. Post-Start-Complete-Wait (PSCW)

3. Passive-target (Lock/Unlock)
a. Exclusive lock

b. Shared lock
c. Flush local and remote
d. Request-based

4. Pure shared-memory

The key to using RMA is to pick a

small subset of things you actually

need and ignore the rest!

Choosing a Window Type

Do I need to be able to attach multiple user buffers asynchronously?

You must use MPI_Win_create_dynamic +
MPI_Win_attach.

Do I need to be able to attach a user buffer?

You must use MPI_Win_create.

Do I need to know for sure that I can use shared-memory on this window?

You must use MPI_Win_allocate_shared.

For all other purposes, use MPI_Win_allocate.

P
e
rfo

rm
a

n
c
e

 Im
p

ro
v
e
s

Choosing a Synchronization Motif

Am I weirdly opposed to using Send-Recv and want to gamble on performance?

Fine, use Post-Start-Complete-Wait (PSCW).

Am I weirdly opposed to using collectives like MPI_Alltoallv?

Fine, use Fence synchronization.

Am I using MPI as an easy alternative to POSIX shm_open and nothing else?

Okay, use language/processor-specific atomic operations
and sync.

Use passive-target synchronization…

Choosing a Synchronization Motif, Part 2

Do I want MPI to provide transaction semantics for a group of RMA operations?

MPI_Win_lock(MPI_LOCK_EXCLUSIVE,..) provides this.
(Why?)

Is your communication limited to a small set of processes?

MPI_Win_lock(MPI_LOCK_SHARED,..) may be more
efficient.

Use MPI_Win_lock_all, which is ~free with MPI_MODE_NOCHECK.

Summary: Windows and Synchronization

1. Use MPI_Win_allocate whenever possible.

2. Just use passive-target synchronization with MPI_Win_lock_all.

void Allocate<T>(MPI_Comm comm, MPI_Aint n, T* *ptr, MPI_Win *win)

{

MPI_Win_allocate(n, sizeof(T), MPI_INFO_NULL, comm, ptr, win);

MPI_Win_lock_all(MPI_MODE_NOCHECK, *win);

}

void Blocking_Put(const void *buf, int count, MPI_Datatype type,

int target, MPI_Aint disp, MPI_Win win)

{

MPI_Put(buf, count, type, target, disp, count, type, win);

MPI_Win_flush_local(target, win);

}

void Global_Sync(MPI_Win win, MPI_Comm comm)

{

MPI_Win_flush_all(MPI_Win win);

MPI_Barrier(comm);

}

RMA Communication

RMA Results

The primary motivation for ARMCI-MPI is that

it does not crash and requires no effort to port
to a modern HPC system, but it often
performs well, too.

https://www.hpcadvisorycouncil.com/pdf/NWChem_01302023.pdf

https://www.hpcadvisorycouncil.com/pdf/NWChem_01302023.pdf

Summary of MPI RMA in Practice

● MPI RMA is complicated and hard to understand.

Everyone involved feels bad about this.

○ All the easy fixes break backwards-compatibility.

● Abstraction layers like Fortran coarrays, OpenSHMEM and ARMCI-MPI hide

the complexity of MPI RMA semantics.

● MPI RMA is properly implemented on essentially all platforms.

○ Open MPI 5, MPICH, Intel MPI and MVAPICH all work well.

● Asynchronous progress is critical for some applications.

○ Casper (from Argonne) is an implementation-agnostic solution.

○ Open MPI 5 on IB is really good.

● Dinan, J., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., and Thakur, R. (2016) An implementation and evaluation of the MPI 3.0
one-sided communication interface. Concurrency Computat.: Pract. Exper., 28: 4385–4404. https://doi.org/10.1002/cpe.3758

● Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013. Enabling highly-scalable remote memory access programming
with MPI-3 one sided. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (SC '13). Association for Computing Machinery, New York, NY, USA, Article 53, 1–12.
https://doi.org/10.1145/2503210.2503286

● Hammond, J.R., Ghosh, S., Chapman, B.M. (2014). Implementing OpenSHMEM Using MPI-3 One-Sided Communication. In: Poole,
S., Hernandez, O., Shamis, P. (eds) OpenSHMEM and Related Technologies. Experiences, Implementations, and Tools.
OpenSHMEM 2014. Lecture Notes in Computer Science, vol 8356. Springer, Cham. https://doi.org/10.1007/978-3-319-05215-1_4

● Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William Gropp, and Keith Underwood. 2015. Remote
Memory Access Programming in MPI-3. ACM Trans. Parallel Comput. 2, 2, Article 9 (July 2015), 26 pages.
https://doi.org/10.1145/2780584

● Tutorial: https://htor.inf.ethz.ch/publications/img/MPI_RMA_and_advanced_MPI.pdf

● https://github.com/pmodels/armci-mpi and https://github.com/jeffhammond/oshmpi demonstrate all of the aforementioned
techniques in detail.

Reading List

https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1002/cpe.3758
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1145/2780584
https://github.com/pmodels/armci-mpi
https://github.com/jeffhammond/oshmpi

GPUs

Why MPI on GPUs is Hard

● Is this a CUDA GPU or an OpenCL GPU?

○ Forward-progress guarantees are important.

○ Blocking, synchronization and ordering are all performance hazards on

GPUs. RMA is a good model for GPUs…

○ MPI support for NUMA doesn’t easily extend to GPUs.

● NCCL is MPI for GPUs

○ Stream semantics in everything.

○ Only implements patterns that make sense.

○ Supports GPU endpoints…

● Hopefully, MPI-6 will catch up to NCCL…

https://github.com/NVIDIA/mpi-acx

https://github.com/NVIDIA/mpi-acx

	Slide 1: Modern MPI and what you need to know about it
	Slide 3: Outline
	Slide 4: ABI
	Slide 6: API versus ABI
	Slide 7: ABI Status Quo
	Slide 8: Why standardize an MPI ABI?
	Slide 10: ABI Design
	Slide 11: Integer Constants
	Slide 12: Handles
	Slide 21: Integer Types
	Slide 22: Packaging
	Slide 23: Fortran ABI
	Slide 24: Platform ABIs
	Slide 25: MPI Fortran ABI
	Slide 28: FAQ
	Slide 29: Large-count support
	Slide 30: Support for large-counts
	Slide 31: Support for large-counts
	Slide 32: Support for large-counts
	Slide 33: Implementation Status
	Slide 34: Fortran
	Slide 35: MPI Language Support
	Slide 36: MPI Language Support
	Slide 37: MPI Fortran legacy API
	Slide 38: MPI Fortran legacy API
	Slide 39: MPI Fortran modern API
	Slide 40: MPI Fortran modern API
	Slide 41: MPI Fortran modern API
	Slide 42: MPI Fortran modern API
	Slide 43: Asynchronous Procedures
	Slide 44: Asynchronous Procedures
	Slide 45: Implementation Status
	Slide 57: RMA (aka one-sided)
	Slide 58: Why one-sided communication?
	Slide 59
	Slide 60: MPI RMA Ecosystem Examples
	Slide 61: Overview of RMA
	Slide 62: Overview of RMA
	Slide 63: Choosing a Window Type
	Slide 64: Choosing a Synchronization Motif
	Slide 65: Choosing a Synchronization Motif, Part 2
	Slide 66: Summary: Windows and Synchronization
	Slide 67: RMA Communication
	Slide 69: RMA Results
	Slide 70
	Slide 71
	Slide 72: Summary of MPI RMA in Practice
	Slide 73: Reading List
	Slide 74: GPUs
	Slide 75: Why MPI on GPUs is Hard

