NVIDIA.

Modern MPI and what you need to
know about it

Jeff Hammon d
Principal Engineer
GPU Communication Software

Outline

MPI Application Binary Interface (ABI)
MPI Large-Count Support

MPI and Fortran

Using MPI RMA Effectively

MPI| GPU Futures

“7 VIDAA I

NVIDIA.

ABI

Jeff Hammond, Lisandro Dalcin, Erik Schnetter, Marc PéRache,
Jean-Baptiste Besnard, Jed Brown, Gonzalo Brito Gadeschi, Simon
Byrne, Joseph Schuchart, and Hui Zhou. 2023. MPI Application
Binary Interface Standardization. In Proceedings of EuroMPI12023: the
30th European MPI Users' Group Meeting (EUROMPI 23),
September 11-13, 2023, Bristol, United Kingdom. ACM, New
NY, USA. https://doi.org/lO.1145/3615318.361531_9.

APl versus ABI

API

int MPI Bcast(void * b, int n, MPI Datatype d, int r, MPI Comm cC);
MPI_Datatype and MPI_Comm are unspecified types

ABI

typedef struct ompi datatype t * MPI Datatype; // Open MPI family
typedef int MPI Datatype; // MPICH family

Lots of other stuff like constants, SO names, SO versioning, calling convention, etc.

ABI Status Quo

MPI has been an API standard, which defines the source code behavior in C (C++) and
Fortran. The compiled representation of MPI features is implementation-defined.

If you compile with one of the following MPI families, you MUST run with the same.

1. MPICH/ Intel MPI / MVAPICH / Cray MPI
2. Open MPI/ NVIDIA HPC-X / Amazon MPI / IBM Spectrum MPI

Family 1 exists because there was a demand for interoperability with Intel MPI due to the
prevalence of usage in ISV codes.

Family 2 is not guaranteed to be consistent, especially across major versions.

1 = https://www.mpich.org/abi/

https://www.mpich.org/abi/

Why standardize an MPI ABI?

Modern software use cases:

Third-party language support, e.g. Python, Julia, Rust, etc.
Package distribution, e.g. Apt, EasyBuild, Spack, etc.
Tools become implementation-agnostic

Containers

More efficient testing

We can:

e Architectural reasons not to are gone
e Two platform ABIs cover >90% of HPC platforms

ABI Design

Integer Constants

Requirements:

- Position sequences: 0..n (MPI_SUCCESS..MPI_ERR _LASTCODE)
- XOR-able, i.e., 2"k (e.g. MPI_MODE_NOCHECK)

- Negative (MPI_ANY_SOURCE)

- Sizes (e.g. MPI_BSEND_OVERHEAD)

- Ordered subsets (e.g. MPI_THREAD *)

- Arbitrary (e.g. MPI_ORDER_FORTRAN)

Except for error codes, array sizes and XOR-ables, all integer constants are
unique. Error messages can easy tell user what they passed as it appears in the
source code.

Handles

typedef struct MPI ABI Comm * MPI Comm;

typedef struct MPI ABI Request * MPI Request;

Satisfies existing requirements (= comparison, fits into a pointer because attributes).
Supports type-safety. Compilers know that MPI_Comm is not MPI_Group.
Downside: conversions to/from Fortran are not free like MPICH (at least with LP64).

The current 103 predefined handles are compile-time constants less than 1024 defined by a
Huffman code. They can be translated to/from Fortran trivially.

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

Integer Types

Surprisingly, this was the hardest part...

MPI_Aint is intptr_t because that satisfies all of the requirements
MPI_Offset is int64 t because that will be sufficient for ~30 years
MPI_Count is int64_t because max(MPI_Aint,MPI_Offset)
MPI_Fint is not part of the ABI

o f2c/c2f are replaced by fromint/toint

It is our intent specify an ABI for 32b and 64b systems since those are what we
understand. 128b ABIs (e.g. CHERI) can be added in the future when appropriate.

Packaging

e The headeris mpi.h

O

O

#include <mpi.h> still works - no code changes required to adopt ABI.
The Forum will distribute a standard header for convenience.

e The library is libmpi_abi.ext (or mpi_abi.dll)

O

©)

Implementations are instructed to use platform-specific SO versioning conventions.
The Forum will distribute a standard SO for convenience.

e The ABIis versioned

O

@)

Starts with 1.0

Backwards-compatible changes (e.g. new handle type or procedures) increment the minor
version, which will happen for every new release of the standard.

Backwards-incompatible changes increment the major version.

https://github.com/mpi-forum/mpi-abi-stubs

https://github.com/mpi-forum/mpi-abi-stubs

Fortran ABI

Platform ABIs

The MPI ABI depends on the platform ABI, which is a function of:

1. The operating system and C compiler

2. The filesystem (offset size, but only weakly)

3. The Fortran compiler
al INTEGER and REAL | <+ Visible to the MPI C ABI via handle
b(string passing constants and MPI_Type_size.

c.| CFl _cdesc _t «~ Constant for a given Fortran compiler
d.\ Module format usage (assuming no weird flags).

MPI Fortran ABI

e The MPI ABI for Fortran is incomplete, because we cannot specify it without
specifying the implementation of MPI Fortran modules.

e We defined an ABI that allows C to work with Fortran code, and for MPI
Fortran to be implementable on top of the MPI C ABI.

e Both VAPAA and MPICH are decoupling the Fortran and C implementations.

MPI Abi set fortran info, MPI_Abi get fortran info, ...

The following keys are predefined for this object:

"mpi_ integer size": The size in bytes of the Fortran default INTEGER kind.

https://github.com/jeffhammond/vapaa

https://github.com/jeffhammond/vapaa

FAQ

e Final vote in June 2025, right before ISC.

e Launchers are not part of the ABI. There are at least two options:

o Slurm and PBS launchers are supported by all the major MPIs already.
o mpirun can set the shared library to use, in which case the launcher and library will match.

e \Wrapper scripts (e.g. mpicc) are not standard but the ecosystem will probably
have mpicc_abi or mpicc -abi.
e MPICH and Open MPI will continue to support their existing ABIs (for now).

<A NVIDIA.

Large-count support —

Support for large-counts

int MPI Bcast(void *buffer, int count, MPI Datatype
datatype, int root, MPI Comm comm)

int MPI Bcast c(void *buffer, MPI Count count, MPI Datatype
datatype, int root, MPI Comm comm)

With one exception, all MPI functions that take a count
argument have two APIs, one for each count integer type.

Support for large-counts

MPI Bcast (buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT (IN) :: count, root

TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT (OUT) :: ierror

MPI Bcast (buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER (KIND=MPI COUNT KIND), INTENT (IN) :: count
TYPE (MPI Datatype), INTENT(IN) :: datatype
INTEGER, INTENT (IN) :: root

TYPE (MPI Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

'(_c)

mviDaa,

Support for large-counts

Fortran APl in mpi module and mpif.h

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER (*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

NO LARGE-COUNT SUPPORT IN PRE-
MODERN FORTRAN SUPPORT

o mviDas

@ pmodels /mpich e

< Code © Issues 198

Implementation Status

mpid: large count #4880

?

hzhou opened on Nov 11, 2020 - edted by hahou o -

Standard

i
"Y‘!~‘Trﬁ“,-""“ e}’

YT OHissueyTiles S 503687 \mpud 0-report - ticket Y37~ 711c 320-6N0v2020 pat

MEps [gthut comfmpi-Sotumpmpe- standandipUi 768
hips (pINul comfmes Jodumimee-standandipul1s7

Action items

* ASd large 1) versons of C and FOB functions with count andjor cisplacement arguments
* Basic implementations

** manually add these functions

** acdd teaty

L Nown

I Pulirequests &) Discussons @) Actons [Projects 2 D w

G opon-mpi/ompi Pk

> Code (© lssues 07

11 Pulirequests 99 (O Actiors T Projects ¥

Generate bigcount interfaces for Fortran and C #12226

|tronge warts 80 merpe 19 comets N0 epes-aplinain from Jtreepeibigoowet (O

Q) Conversation 172

.8

o Comwits M A Checks u) Froschanged 1229

Jtronge commented 00 Jan 10, 2024 - edited by hppritcha « Contrianm
Thiss adids scriphs dor generating the € and Fortran mol_T08 APt indings from template fles, whie also
Penerating Digeount intorfaces for those That reguire them, On the Fortran side 1 also adds suppon for TS
29713 when possible, alowing for batter Fortran array handiing that matches the standard (some fles wero
Imported trom PR 810302},

Python >=3.0 i requiced for running these scrigts, which is only necessary when the binding fles have not
Sireacy Beon Qenerated. Users of the distribution 1arball should ot need 10 generate these files and thus
shovid mot require Python

We used M Jpthub comices hoCioc v - Denchmarss and the MPLSY test sute 10 help ensure all big
count intertaces (C and Fortran) are Deing gererated

PR FI20ET Is 3 previows version of this focused specifically on Al suppornt

Nose that there are additionad changes needed 10 Open MP1 for Bigcount support, One Is that the datatype
System needs 10 Be embigoened. This PR includes workarcunds 1o¢ this lack of 3upoort that will seed 1o be

https://github.com/pmodels/mpich/issues/4880
https://github.com/open-mpi/ompi/pull/12226

0 Nostications

0 wis © Security |~ msighes

05 vovies

) rosenena

& navres
€3 cosurparl

Avbazress
o are avegred

Projects

Y Fen 890

oS 2

L1528 <4704) wumn

<« 090

“7 VIDAA I

NVIDIA.

Fortran

“‘MPI and Modern Fortran: Better Together”
https://pasc24.pasc-conference.org/presentation/?id=
https://drive.googIe.com/file/d/l--poinTx?bETm>U-tnUu--

https://pasc24.pasc-conference.org/presentation/?id=msa277&sess=sess129
https://drive.google.com/file/d/1--poinTx7bETmU-tnUu--Wj3eGHUFJKp/view

MPI Language Support

MPI C API - used by all languages except Fortran
—MPHE++APRE deleted in MPI 3.0 (2012)

MPI mpif.h (falsely known as “F77” bindings)

MPI1 mpi module (falsely known as “F90” bindings)

MPI mpi_f08 module (the good stuff)

“7 VIDAA I

MPI Language Support

MPI C API - used by all languages except Fortran
—MPHE++APRE deleted in MPI 3.0 (2012)
—MPmpif-h deprecated in MPI1 4.1 (2023)

MPI1 mpi module (falsely known as “F90” bindings)

MPI mpi_f08 module (the good stuff)

“7 VIDAA I

MPI Fortran legacy API

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

! SPRAGMA IGNORE TKR
<type> :: BUFFER (%)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

Until Fortran 2008, there is no standard mechanism for type-agnostic buffers equivalent to C void*.
Implementations rely on compiler-specific extensions (e.g., as shown above) or lack of enforcement of
type safety to compile. There is also no way to use Fortran array properties, including subarrays.

This matters more now, because GCC warnings are increasingly hostile to type abuse. o

MPI Fortran legacy API

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

! SPRAGMA IGNORE TKR
<type> :: BUFFER(%*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

Datatypes and communicators are MPI object handles, not generic integers. Without proper types,
compilers cannot identify user errors, so they manifest in unpleasant ways at runtime.

| vIDaa, I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, ilerror)
TYPE (*), DIMENSION(..) :: buffer
INTEGER, INTENT (IN) :: count, root
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT (IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: 1error

Buffers are assumed-type, assumed-rank arguments. MPI implementations can - but are not required
to - support non-contiguous subarrays.

2 PVIDA, I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, ilerror)
TYPE (*), DIMENSION(..) :: buffer
INTEGER, INTENT (IN) :: count, root
TYPE (MPI Datatype), INTENT(IN) :: datatype
TYPE (MPI Comm), INTENT (IN) :: comm
INTEGER, OPTIONAL, INTENT (OUT) :: ierror

MPI object handles are properly typed and thus compilers will not accept erroneous usage. At the
same time, MPI object handle types are interoperable with the old method, because the type contains
the integer handle as its only member.

o mviDas I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, ierror)

TYPE (*), DIMENSION(..) :: buffer

INTEGER (KIND=MPI COUNT KIND), INTENT (IN) :: count
TYPE (MPI Datatype), INTENT (IN) :: datatype
INTEGER, INTENT (IN) :: root

TYPE (MPI Comm), INTENT (IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: 1error

All MPI procedures that take a count argument use polymorphic interfaces to support both INTEGER

(usually 32b) and large-count (i.e. 64b) variants. This aspect of the MPI Fortran API is superior to both
C and C++.

1 rvioaa I

MPI Fortran modern API

MPI Irecv (buf, count, datatype, source, tag, comm,
request, 1lerror)

TYPE (*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT (IN) :: count, source, tag
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT(IN) :: comm

TYPE (MPI Request), INTENT (OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: 1lerror

Non-blocking procedures require ASYNCHRONOUS buffer attribute to prohibit (unlikely) compiler
optimizations and (likely) temporary copies that break correctness.

mviDaa,

Asynchronous Procedures

MPI_SUBARRAYS_SUPPORTED = .FALSE.
MPI_ASYNC_PROTECTS_NONBLOCKING = .FALSE.

integer :: buf(1000)

call MPI Irecv(buf(1:1000:2), .., req) <= This is uncommon usage.

! integer :: temp(500) = buf(1:1000:2)

! address of temp passed to network APIT

! temp i1s deallocated when MPI Irecv returns
call MPI Wait (req)

! network writes to temp, which no longer exists

! segmentation fault

o mviDas I

Asynchronous Procedures

MPI_SUBARRAYS_SUPPORTED = .TRUE.
MPI_ASYNC_PROTECTS_NONBLOCKING = .TRUE.

void CFI MPI Irecv(CFI cdesc t * desc, int count, int datatype f, int
source, 1nt tag, int comm f, int * request f, int * lerror)

{

! translate datatype and communication handles from Fortran to C

! create MPI datatype from desc, count and datatype: temp type

*lerror = PMPI Irecv(desc->base addr, 1, temp type, source, tag,
comm, &request);

! translate request handle from C to Fortran

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c A rwioia |

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

Implementation Status

Today:

® Fortran compiler should support Fortran 2018 CFl features, i.e. CFD_cdesc _t.
O NVHPC Fortran was the last major compiler to support this.
e MPIlimplementation should support assumed-rank, assumed-type arguments in the interface and
CFl_cdesc_t buffer arguments in the implementation.
O MPICH has this. Open MPI doesn’t. Both implementations are valid.
e The MPI library is compiled once for every Fortran compiler.
O Regular users don’t care but sysadmins hate this.

Tomorrow:

e MPI Fortran features depend only on the C ABI and may be built separately.
o VAPAA is a prototype of this. MPICH may also get there.

mviDaa,

<2 NVIDIA.

RMA (aka one-sided)

Why one-sided communication?

® Separate data movement from synchronization. Theoretically more scalable.
o Send-Recv matches in order and often requires a handshake.
o RMA allows control over ordering.

® Unstructured communication. Random access reads and/or updates.
o NWChem distributed arrays are accessed quasi-randomly.
o Sorting can be written as scattering across the system based on local info.

® Better match for modern HPC hardware.
O RDMA read and write = MPI Get and Put (in theory)
O RDMA atomics = MPI atomics (in theory)
O Registered memory = MPI window allocation

mviDaa,

MB/s

2000

1800

1600

1400

1200

1000

800

600

400

200

PAMI vs. MPI

internode communication

—— Get
—— Put
Rget

—i— Rput

—— Send+R
Send+L

—H— MPI_Irsend

20 200 2000 20000 200000

bytes

“7 VIDAA I

MPI RMA Ecosystem Examples

Intel Fortran
GCC Fortran (OpenCoarrays)

NWCHEM

HIGH-PERFORMANCE COMPUTATIONAL
CHEMISTRY SOFTWARE

Global Arrays = ARMCI-MPI

OSHMP The only standardized PGAS language, the original one-

sided library, and the most widely used application based on
one-sided are all demonstrated to use MPI-3 RMA.

https://qgithub.com/mpiwg-rma/mpi-standard/wiki/Application-Overview S nvioia I

https://github.com/mpiwg-rma/mpi-standard/wiki/Application-Overview

Overview of RMA

Window Types

Created collectively from user buffer
Created dynamically from user buffers
Allocated by MPI

Allocated by MPI from shared-memory

PwOnNPE

One-sided operations

1. Put/Get: non-atomic RMA

2. Accumulate: atomic RMA
a. Acc/Get_acc w/ math
b. w/NOOP & REPLACE
c. F&Op, CAS for scalars

Synchronization Motifs

1.
2.
3.

Fence (true BSP)
Post-Start-Complete-Wait (PSCW)
Passive-target (Lock/Unlock)

a. Exclusive lock

b. Shared lock

c. Flush local and remote

d. Request-based
Pure shared-memory

2 PVIDA, I

Overview of RMA

Window Types

PwOnNPE

Created collectively from user buffer
Created dynamically from user buffers
Allocated by MPI

Allocated by MPI from shared-memory

One-sided operations

1.

Put/Get: non-atomic RMA

2. Accumulate: atomic RMA

a. Acc/Get_acc w/ math
b. w/NOOP & REPLACE
c. F&Op, CAS for scalars

Synchronization Motifs

1.
2.
3.

Fence (true BSP)
Post-Start-Complete-Wait (PSCW)
Passive-target (Lock/Unlock)

a. Exclusive lock

b. Shared lock

c. Flush local and remote

d. Request-based

Pure shared-memory

The key to using RMA is to pick a
small subset of things you actually
need and ignore the rest!

2 PVIDA, I

Choosing a Window Type

Do | need to be able to attach multiple user buffers asynchronously?
You must use MPI_Win_create_dynamic +

MPI_Win_attach.

Do | need to be able to attach a user buffer?
You must use MPI_Win_create.

Do | need to know for sure that | can use shared-memory on this window?
You must use MPI_Win_allocate_shared.

sanoidwi] aouewliopad

For all other purposes, use MPI_Win_allocate.

<

2 PVIDA, I

Choosing a Synchronization Motif

Am | weirdly opposed to using Send-Recv and want to gamble on performance?
Fine, use Post-Start-Complete-Wait (PSCW).

Am | weirdly opposed to using collectives like MPI1_Alltoallv?
Fine, use Fence synchronization.

Am | using MPI as an easy alternative to POSIX shm_open and nothing else?
Okay, use language/processor-specific atomic operations
and sync.

Use passive-target synchronization...

o mviDas I

Choosing a Synchronization Motif, Part 2

Do | want MPI to provide transaction semantics for a group of RMA operations?
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,..) provides this.

(Why?)

Is your communication limited to a small set of processes?
MPI_Win_lock(MPI_LOCK_SHARED,..) may be more
efficient.

Use MPI_Win_lock_all, which is ~free with MPI_MODE_NOCHECK.

o mviDas I

Summary: Windows and Synchronization

1. Use MPI_Win_allocate whenever possible.
2. Just use passive-target synchronization with MPI_Win_lock_all.

void Allocate<T>(MPI_Comm comm, MPI Aint n, T* *ptr, MPI Win *win)
{
MPI Win allocate(n, sizeof(T), MPI_ INFO NULL, comm, ptr, win);
MPI Win lock all(MPI_MODE NOCHECK, *win);

2 PVIDA, I

RMA Communication

void Blocking Put(const void *buf, int count, MPI Datatype type,
int target, MPI Aint disp, MPI Win win)

MPI Put (buf, count, type, target, disp, count, type, win);
MPI Win flush local (target, win);

void Global Sync(MPI Win win, MPI_Comm comm)

{
MPI Win flush all (MPI Win win);

MPI_Barrier(comm);

“7 VIDAA I

< NVIDIA.

RMA Results

NWChem Evaluation NWChem SCF performance (old)

+ 1hsg_28 benchmark system NWChem 6&.3/ARMCI-MPI3/Casper NWChem 6.5/ARMCI-DMAPP

* 122 atoms, 1159 basis functions (built by NERSC, Nov. 2014)

* H,CN,0 w/ cc-pVDZ basis set iter energy time iter energy time

1 -2B30.4366669992 £9.6 1 -2B30.4366670018 &7.6
2 -2831.3734512508 7B8.8 2 -2B31.3734512526 B5.5
3 -2831.5712563433 B86.9 3 -2B31.5713109544 105.4
E. Chow, X. Liu, S. Misra, M. Dukhan, M. Smelyanskiy, J. R. Hammond, Y. Du, X.-K. Liacand P. 4 =2B31.5727802438 96.1 4 -2831.5727856636 126.6
5 5
6 6

* Semidirect algorithm

* Closed shell (RHF)

Dubey. International Journal of High Performance Computing Applications. “Scaling up -2B831.5727956882 110.0 -2B31.5727956992 161.7

Hartree-Fock Calculations on Tianhe-2.” http://dx.doi.org/10,1177/1094342015592960 -2831.5727956978 127.8 -2831.5727956998 190.9
(GTFock used GAJARMCI-MPI and MPICH-Glex for these petascale runs.)

Running on 8 nodes with 24 ppn. Casper uses 2 ppn for comm.

NWChem SCF performance (new)

]]]] NWChem 6.3/ARMCI-MPI3/Casper NWChem Dev/ARMCI-MPIPR
The primary motivation for ARMCI-MPI is that (built by NERSC, Sept. 2015)

it does not crash and requires no effort to port

to a modern HPC system, butitoften | o e e e
performs We”, tOO. 1 =2830.43666699590 69.3 1 =2830.4366669999 6l1l.4
2 =2831.3734512499 77.1 2 =2831.3734512509 69.3
3 -2831.5712604368 84.6 3 -2831.5713109521 77.8
4 -2831.5727804428 93.0 4 -2831.5727856618 &87.3
5 5

6

-2831.5727956927 107.3 -2831.5727956%974 103.9
-2831.5727956977 128.0 6 -2831.5727956980 125.7

Running on 8 nodes with 24 ppn. Both use 2 ppn for comm.

Cluster A

Dual Socket Intel Platinum 8280 CPU @2.70GHz
NVIDIA ConnectX-6 HDR100 InfiniBand adapter
MNVIDIA Quantum HDR InfiniBand Switch QM7200
Memory: 192GE DDR4 2666MHz RDIMMs per noc
Lustre Storage, NFS

Software

05: Rocky Linux 8.6 , MLNX_OFED 5.6.1
MPI: OpenMPI 4.1, OpenMPI 5

Global Arrays configured with ARMCI-MPI, which
uses MPI-3 RMA,

NWChem 7.0.1
Input: nsf_rcesd_co-pydz_enengy.nw

0
8
H N{)\ NH2

(1 guanine)

Benchmark details
- Based on the NSF Blue Waters SPP benchmark:

- Ewvaluates the communication-intensive CCSD phase
of the benchmark, which only ran on 1 processor per

CPU on Blue Waters due to network saturation,

https://www.hpcadvisorycouncil.com/pdf/NWChem 01302023.pdf

NWChem
(nsf_rocsd_cc-puwdz_energy)

© OpenMPI4.1 = Open MPI5

4
Number of Nodes
Parameter OpenMP1 4.1 | OpenMPI1 5.0 Percentage Change
RMW max (Tail latency) 74s 0.011s 654X
RMW max average 0.327580s 0.000395s 829X
Barrier max (Tail latency) 44s 16s 27X
Barrier average 0.05s 0.012 4.2X
Wait time max (Tail latency) 11.6s 0.025s 8.6X
Fence average Susec 3usec 1.66X
NbGet max (Tail latency) 1.9s 0.8s 13.7X
NbGet average 0.0046s 0.00055s 8.5X

“7 VIDAA I

https://www.hpcadvisorycouncil.com/pdf/NWChem_01302023.pdf

Summary of MPI RMA in Practice

MPI RMA is complicated and hard to understand.
Everyone involved feels bad about this.

o All the easy fixes break backwards-compatibility.
Abstraction layers like Fortran coarrays, OpenSHMEM and ARMCI-MPI hide
the complexity of MPI RMA semantics.
MPI RMA is properly implemented on essentially all platforms.

o Open MPI5, MPICH, Intel MPI and MVAPICH all work well.
Asynchronous progress is critical for some applications.

O Casper (from Argonne) is an implementation-agnostic solution.

O Open MPI5 on IB is really good.

Reading List

Dinan, J., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., and Thakur, R. (2016) An implementation and evaluation of the MPI 3.0
one-sided communication interface. Concurrency Computat.: Pract. Exper., 28: 4385—4404. https://doi.org/10.1002/cpe.3758

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013. Enabling highly-scalable remote memory access programming
with MPI-3 one sided. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (SC '13). Association for Computing Machinery, New York, NY, USA, Article 53, 1-12.
https://doi.org/10.1145/2503210.2503286

Hammond, J.R., Ghosh, S., Chapman, B.M. (2014). Implementing OpenSHMEM Using MPI-3 One-Sided Communication. In: Poole,
S., Hernandez, O., Shamis, P. (eds) OpenSHMEM and Related Technologies. Experiences, Implementations, and Tools.
OpenSHMEM 2014. Lecture Notes in Computer Science, vol 8356. Springer, Cham. https://doi.org/10.1007/978-3-319-05215-1 4

Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William Gropp, and Keith Underwood. 2015. Remote
Memory Access Programming in MPI-3. ACM Trans. Parallel Comput. 2, 2, Article 9 (July 2015), 26 pages.
https://doi.org/10.1145/2780584

Tutorial: https://htor.inf.ethz.ch/publications/img/MPI_RMA _and_advanced_MPI.pdf

and demonstrate all of the aforementioned
techniques in detail.

mviDaa,

https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1002/cpe.3758
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1145/2780584
https://github.com/pmodels/armci-mpi
https://github.com/jeffhammond/oshmpi

< NVIDIA.

GPUs

Why MPI on GPUs is Hard

® |sthis a CUDA GPU or an OpenCL GPU?
O Forward-progress guarantees are important.
O Blocking, synchronization and ordering are all performance hazards on
GPUs. RMA is a good model for GPUs...
O MPI support for NUMA doesn’t easily extend to GPUs.
e NCCLis MPI for GPUs
O Stream semantics in everything.
o Only implements patterns that make sense.
O Supports GPU endpoints...
e Hopefully, MPI-6 will catch up to NCCL...

https://github.com/NVIDIA/mpi-acx

	Slide 1: Modern MPI and what you need to know about it
	Slide 3: Outline
	Slide 4: ABI
	Slide 6: API versus ABI
	Slide 7: ABI Status Quo
	Slide 8: Why standardize an MPI ABI?
	Slide 10: ABI Design
	Slide 11: Integer Constants
	Slide 12: Handles
	Slide 21: Integer Types
	Slide 22: Packaging
	Slide 23: Fortran ABI
	Slide 24: Platform ABIs
	Slide 25: MPI Fortran ABI
	Slide 28: FAQ
	Slide 29: Large-count support
	Slide 30: Support for large-counts
	Slide 31: Support for large-counts
	Slide 32: Support for large-counts
	Slide 33: Implementation Status
	Slide 34: Fortran
	Slide 35: MPI Language Support
	Slide 36: MPI Language Support
	Slide 37: MPI Fortran legacy API
	Slide 38: MPI Fortran legacy API
	Slide 39: MPI Fortran modern API
	Slide 40: MPI Fortran modern API
	Slide 41: MPI Fortran modern API
	Slide 42: MPI Fortran modern API
	Slide 43: Asynchronous Procedures
	Slide 44: Asynchronous Procedures
	Slide 45: Implementation Status
	Slide 57: RMA (aka one-sided)
	Slide 58: Why one-sided communication?
	Slide 59
	Slide 60: MPI RMA Ecosystem Examples
	Slide 61: Overview of RMA
	Slide 62: Overview of RMA
	Slide 63: Choosing a Window Type
	Slide 64: Choosing a Synchronization Motif
	Slide 65: Choosing a Synchronization Motif, Part 2
	Slide 66: Summary: Windows and Synchronization
	Slide 67: RMA Communication
	Slide 69: RMA Results
	Slide 70
	Slide 71
	Slide 72: Summary of MPI RMA in Practice
	Slide 73: Reading List
	Slide 74: GPUs
	Slide 75: Why MPI on GPUs is Hard

