| R

e lf*l
Spack and HPSF Updc:’re ,\
Spack’s roqd tovl.0
® _ » ce
-~
Easybuild User Meeting 2025 ‘ ~'
Jl\l;lgcr?hStzjfezrgcz)rSnputlng Center o ® ‘...
-
®
Ll THELINUXFOUNDATION

https://spack.readthedocs.io/en/latest/tutorial.html

Spack is now a Linux Foundation project

Spack is a “Core” project within the High Performance Software Foundation

What does this mean for the community?

HPSF guidelines are helping us improve our project governance
Linux Foundation has outreach experts who are helping us grow the

community
e C(ollaborations with other HPC projects around Cl and testing
® Clworking group is converting the Cl system we built for Spack into a general resource
for other projects
e HPSF can run events

= HPSF

Spack has a new Technical Steering Committee

b

Todd Gamblin, LLNL Greg Becker Massimiliano Culpo Tammy Dahlgren Wouter Deconinck Ryan Krattiger Mark Krentel
TSC Chair LLNL n.p. complete s.r.l LLNL U. Manitoba Kitware Rice University

John Parent Marc Paterno Luke Peyralans Phil Sakievich Peter Scheibel Adam Stewart Harmen Stoppels
Kitware Fermilab U. Oregon Sandia LLNL TU Munich Stoppels Consulting

Ty e

Spack Governance

https://github.com/spack/governance

We aim to continue governing primarily through consensus

The Technical Steering Committee will vote to resolve technical discussions
that cannot be resolved by consensus

The TSC meets monthly to discuss

e Big-picture technical priorities for Spack development
e Release schedule and feature sets

e Technical disagreements requiring votes

e Pull request and issue backlog and trajectory

= HPSF

https://github.com/spack/governance

The High Performance
Software Foundation

® Started in May 2024

® Increasing collaboration among projects,
labs, and industry

® HPSF Conin May 2025

® Activities:
O Cl working group developing “HPC CI” service
for projects
O Project lifecycle + mentoring
O Outreach

® Bringing in new projects and members
O 2 new members since launch,
expecting more!

sz HPSF

Premier

dWsS

_/‘7

General

AMDZ

intel.

%OAK RIDGE

National Laboratory

HISh
CDAC

—

Hewlett Packard
Enterprise

Argonne &

NATIONAL LABORATORY

& kitware

IJ JULICH

Forschungszentrum

|l Lawrence Livermore
- National Laboratory

arm

i% Los Alamos

& NATIONAL LABORATORY

LIS PR
TRYLAS

Sandia
r“‘ National

Laboratories

<A NVIDIA.

UNIVERSITY OF

OREGON

O

Founding Projects

@Spack [kokkos (a)rrerames

EMReE Mpc'ﬁhmkit

S HPSF

New Projects have joined!

ENVIRONMENT /-::\
@ MODULES ((smam=-

QO P> € opencHAMI

More to come ...

= HPSF
m Bl maii i Sambaf e

We will have the first Spack user group meeting
May 7-8 at the first annual HPSF Conference

e HPSF Con will be May 5 - 8 2025

e Embassy Suites Chicago Magnificent Mile

O 45 minutes from O'Hare
O Renovatedin 2018

e Program
O Monday + Tuesday:
m HPSF Plenary sessions
m Working group collaborations
o Tues + Wed
B Project meetings
B Tutorials

S HPSF https://bit.ly/hpsfcon-2025

We have 34 contributed talks lined up for

the very first Spack User Meeting

Wednesday, May 7

Opening

Welcome and Overview

State of the Spack Community
Spack v1.0

Building Spack

Optimizing Spack: Multi-Package Parallel Builds for Faster Installation
Fast binary installation with Spack splicing

Spack on Windows

Spack Cl: Past, Present, and Future

Collaborations using Spack

E4S and Spack

Spack-stack: An interagency cc ion and spack ion

Packaging for HPC and HTC in High Energy and Nuclear Physics: Comparing Spack to other solutions
Developing and Distributing HEP Software Stacks with Spack

GAIA: A Software Deployment Strategy, Ordeals, Success And General Applicability

Lightning Talks

Closing Gaps in Spack for Software Application DevOps Infrastructure

Development of Complex Software Stacks with Spack

Feedback on using Spack to deploy a development environment for the gyselalibxx library
Spack at the Linac Coherent Light Source: Progress, Success and Challenges

Towards a Zero-Install Programming Environment

Deploying Software on Frontier with NCCS Software Provisioning (NSP)

Organizational Approach to Spack Engagement: A case study

Dynamic Resource Allocation for Continuous Integration Build Pipelines

s HPS

1 ssam el

Todd Gamblin
Todd Gamblin
Greg Becker

Kathleen Shea
John Gouwar
John Parent
Ryan Krattiger

Sameer Shende
Dom Heinzeller
Wouter Deconinck
Kyle Knoepfel
Etienne Malaboeuf

Phil Sakievich
Cedric Chevalier
Thomas Padioleau
Valerio Mariani
Mike Kiernan
Fernando Posada
Phil Sakievich
Caetano Melone

Thursday, May 8
Cloud, benchmarking, and containers

Creating reproducible performance optimization pipelines with Spack and Ramble
Democratizing Access to Optimized HPC Software Through Build Caches

Spack, containers, CMake: the good, the bad & the ugly in the Cl & distribution of the PDI library

Spack Deployment Story at LBNL/UC Berkeley

Developer Workflows: Challenges and lessons learned

Lessons Learned from Developing and Shipping Advanced Scientific Compressors with Spack
Challenges mixing Spack-optimized hardware accelerator libraries on personal scientifiic computers

An opinionated-default approach to enhance Spack Developer Experience
Developing and Managing Data Acquisition Software Using Spack

Doug Jacobsen
Stephen Sachs
Julien Bigot
Abhiram Chintangal

Robert Underwood
Pariksheet Nanda
Kin fai Tse

Eric Flumerfelt

From Complexity to Efficiency: SPACK’s Impact on NSM Supercomputers
Deploying a Large HPC Software Stack - Challenges and Experiences

Building and Maintaining OSS on Fugaku: RIKEN's Experience with Spack
Using Spack to Build and Maintain a Facility-Specific Programming Environment
Aurora PE: rethinking software integration in the exascale era

DevOps for Large Applications

Driving Continuous Integration and Developer Workflows with Spack

Implementing a Security Conscious Build Configuration Relay with a Shared Build Cache
Spack-based WEAVE environment at LLNL

DevOps for Monolithic Repositories using Spack

https://spack.io/sum25-schedule/

Samir Shaikh, Harshitha Ugave
Jose Gracia

Yuchi Otsuka

Nicholas Sly

Sean Koyama

Richard Berger
Chris White
Lina Muryanto
Phil Sakievich

Kenneth
declined

Contributions (lines of code) over time in packages, by organization

3000, 100000 - :;T;unuc = ;C_geomatics = g;grl;FOAM
= e | e = s
2000 - BYU m EPFL Hamburg mmm CERN
= ORNL = ANL Genentech Perimeterinst
150008 :e”‘?“e'e""s‘ = Fermilab Fa” 60000 { Wmm LANL mmm HiSilicon mmm Other
1000 e Kitware 2016 2020 woooo
500
= 200001 /Il
S N & & & S S N N S &
(\"L é’} ‘0"/ o 'L 'L ’L s s s i
N ° 4 S & &
e 2024 Contributions (lines of code) over time in packages, by organization g &7
0000 = 250000 - LLNL Bl Kitware I Intel B orgenization
a0000 | == lowa stare = EEE ANL/UIUC Max Planck Fujitsu
S T lowa B Hamburg B Pawsey
o000 | 200000 | MWW |owa State ~ W RIKEN Heidelberg
- AMD William and Mary I OpenFOAM
Bl CSCS mm CEA CINECA
e & 150000 - EPFL 3vGeomatics Fermilab
" B RIT m HZDR B Kirchhoff
CERN Perimeterinst Genentech
700007 ANL/UIUC - 100000 7]
w0000 - LN = I ANL E Oregon Bl SjTU
B Y- han- | B LANL SNL Rice
B FAU | pmags
400001 = ::i:elberg | 50000 _ HISI|ICOn - FAU . e
20000 | [| I U. Arizona
20000
10000 4
o

Spack sustains the HPC software ecosystem
with the help of many contributors

Over 8,300 software packages
Over 1,460 contributors

COUNTRY ACTIVE USERS Contributions (lines of code) over time in packages, by organization
"""""""""""""""""""" 250000 - LLNL . Kitware . Intel
United States 2.1K 14.2% Emm ANL/UIUC Max Planck Fujitsu
_— lowa mm Hamburg B Pawsey
s 200000 { MWW lowa State W RIKEN Heidelberg
8.7%
China 351 t ° AMD William and Mary ~ mEE OpenFOAM
— 325 123.2% B CSCs . CEA . CINE.CA
ermany 2% 150000 1 EPFL 3vGeomatics Fermilab
— m RIT m HZDR - Kirchhoff
United Kingdom 301 14.2% 100000 4 CERN Perimeterinst Genentech
— Em ANL Emm Oregon . SjTU
France 216 14.9% - LANL SNL
o= 50000 4 HiSilicon . FAU
. s OVGU s U. Arizona
0,
, India 209 116.7% ORNL LBL
- 0 :
Hong Kong 178 150.8% ™ © @ o o ™
4 M 2 {V % {V
- 08 D 08 0 » 0

July 2024: 5,400 Active Users (per GA4)
Typically 120 — 150 contributors / month

Contributors continue to grow worldwide!

Spack v0.23.0 was released in November

Highlights:

Spec splicing

Broader variant propagation

Query specs by namespace

Spack commands respect concretizer:unify config outside environments
Improved formatting for spack spec and spack find commands

spack env track convertsenvironments from independent to managed
New software stacks in Cl and public binary cache

o ML stack for linux/aarch64
o Developertools stack for macos/aarch64

329 new packages since v0.22

e Thank you to the 373 contributors to this release
o 60 contributors to Spack core, 357 contributors to Spack packages

= HPSF

Spec splicing makes binary swapping possible

Reuse binary packages built against one
dependency while using a new dependency.

Packages retain pointers to their original —
configuration for provenance \ tlinos)

Relocation logic is repurposed for “rewiring” spec ¥\
H . . .--__ --.ﬂ"\._ II
to its new configuration __hdis ||
y

#
| zlib

Transitive and Intransitive Splices

“Transitive” splices take shared dependencies from the new dependency

“Intransitive” splices take shared dep

Full Spec Replacement

(s
@1“5 } ()

=

Splice target is
hdfS

tl'lllnDS

endencies from the original spec

Transitively spliced

(2lib)

= HPSF

Trilinos is spliced, hdfS'is used as-is

Intransitively spliced

trilinos®

build_spec
Both trilinos and hdfS are spliced

Explicit Splicing

concretizer:
splice:
explicit:
- target: mpi
replacement: mvapich2/abcdef
transitive: false

Any spec that concretizes to depend on mpi will be spliced to use the local
mvapich2 with hash abcdef.

Explicit splicing requires the user to ensure ABI compatibility

=mmm HPSF

Automatic Splicing

concretizer:
splice:
automatic: true

Packages have a new directive can_splice
can_splice("foo@1.1+a", when="@1.1", match_variants=["bar"])

“This package at version 1.1 can be spliced in for any package that satisfies
"foo@1.1+a" as long as the “bar” variant values are equal

If splicing is enabled, the concretizer will apply these constraints and optimize
for package reuse.

=mmm HPSF

Splicing in the wild (from #appreciation on Spack Slack)

Tuesday, March 18th v

Cameron Rutherford & 10:34 AM

.,,@;,, | just enabled splicing and the public build cache, and saw my build go from 1hr+ from source to
only a handful of minutes. While | would need to re-compile to target x86_64_v4 orto usea
newer compiler, this is awesome for bootstrapping my dev-environment (where performance
doesn't matter so much) with packages like neovim, stow, xclip, python and npm.

The road to v1.0 has been long

e We wanted:

4 New ASP-based concretizer
How do we handle this?

M Reuse of existing installations

M Stable production continuous integration e s

M Stable binary cache el
Compiler dependencies (nearly done!) T

() Stable package API S T e

o Separate builtin repo from Spack tool " winneiek vrin.

= This is soon to be merged in.

e v1.0will:
o Change the spec model for compilers
Enable users to use entirely custom packages
Improve reproducibility
Improve stability &

O O O

e Thisis the largest change to Spack since the
new concretizer Me, presenting how simple all
= Dep this would be at FOSDEM in 2018

Introducing Language Dependencies

depends_on("c", type="build")
depends_on("cxx", type="build")
depends_on("fortran", type="build")

e You now need to specify these to use ¢, cxx, or fortran
o No-op in the release as we prepare for compilers as dependencies
o Backported to v0.22 release to assist teams working across Spack releases

e Spack has historically made these compilers available to every package
o A compiler was actually “something that supports c + cxx + fortran + 77"
o Made for a lot of special cases
o Also makes for duplication of purely interpreted packages (e.g. python)

= HPSF

We are releasing experimental alpha versions as we
approach the 1.0 release

Release schedule:
Prereleases so far

e Releases are continuously rebased on
v1.0.0-alphal 2024-11-21

develop
e Inchde compllers as c‘iependenues. v1.0.0-alpha2 2024-12-09
e Anticipate merging this to develop in

February v1.0.0-alpha3 2025-01-13

e V.1.0.0 will be published before ISC'25

= HPSF Visit github.com/spack/spack/releases

https://github.com/spack/spack/releases

Compiler Dependencies

® Compilers are now proper build dependencies

® Runtime libraries modeled as packages

———

e

Link dependency Build dependency

zlib-ng@2.2.1

CXX

® gcc-runtime node is injected as a link
dependency by gcc

® packages depend on ¢, CxX,
fortran virtuals,
which are satisfied by gcc node

® glibcis an automatically detected external
® Injected as a libc” virtual dependency
® Does not require user configuration
® Wil eventually be able to choose implementations
(e.g., musl)

sz HPSF

libc

libc

A

A\ 4

compiler-wrapper

gcc-runtime@10.5.0

gmake@4.4.1

gcc@10.5.0

libc

Configuring compilers in Spack v1.*

Spack v0.x Spack v1.x
compilers.yaml packages.yaml
packages:
J . gcc:

COTpiiE;fier' externals:

spec: gcc@12.3. 1 - specz gcc@12.3.1+binutils

prefix: /usr
paths:

extra_attributes:
compilers:
c: /usr/bin/gcc
cxx: /usr/bin/gt++
fc: /usr/bin/gfortran
modules: [...]

c: /usr/bin/gcc

cxx: /usr/bin/gt++

fc: /usr/bin/gfortran
modules: [...]

e We will provide a tool for migrating configuration

e We will still support reading the old configuration until at /east v1.1

-
i HPSF . ® Allfields from compilers.yaml are supported in extra_attributes

Breaking changes A\

1. Itis no longer safe to assume every node has a compiler.
a. The tokens {compiler}, {compiler.version}, and {compiler.name} in Spec.format expand to none

if a Spec does not depend on C, C++, or Fortran.
b. spec.compiler will defaultto the c compiler if present, else cxx, else fortran for backwards

compatibility.
C. The new defaultinstall tree projection is
{architecture.platform}/{architecture.target}/{name}-{version}-{hash}

2. The syntax spec["name"] will only search link/run dependencies and

direct build dependencies.
O Previously, thiswould find deep, transitive deps, which was almost always the wrong behavior.

O You can still hop around in the graph, e.g. spec["cmake"][”bzip2"] will find cake's link dependency

3. The % sigil in specs means “direct build dependency”.
O Cannowsay: foo %cmake@3.26 “bar %cmake@3.31

O * dependencies are unified, % dependencies are not

= HPSF

More on direct dependencies with %

® You could previously write:

pkg %gcc +foo # +foo would associate with pkg, not gcc — will error in 1.0

e Now you'll need to write:

pkg +foo %gcc # +foo associates with pkg

e We want these to be symmetric:

pkg +foo %dep +bar # ‘pkg +foo” depends on “dep +bar” directly
pkg +foo Adep +bar # ‘pkg +foo” depends on "dep +bar’ directly or transitively

® spack style --spec-strings --fix can remedy this automatically
O Fixes YAML files, scripts, package.py files
O Alternative was to have a very hard-to-explain syntax - we surveyed users and they decided it was better
) to break a bit than to explaining the subtleties of the first 10 years of Spack forever

Step 2: Splitting out the packages

e Spackis 2 things:
o Core tool
o 8,400+ package.py files

e Coupling between core and packages is tight in some places:
1. Package base classes for using build systems are in core (cmake, autotools, etc.)
2. Compiler wrappers used to inject flags and RPATHSs are in core
3. Package files are used after installation, e.g., at load/unload time
m Leads to drift between old installations and package files
4. Packages live in Spack’s GitHub repository -- not easy to separate

= HPSF

We reducing coupling between packages and core

1. Build system classes are moving into the package repository
o Need to provide a way to include “utility” code from package.py files

2. Compiler wrappers will become a package
o Also improves build provenance and reproducibility

3. Generate shell code for environment changes at install time
o Bakes load/unload logic into installations and binary packages
o Removes need for package.py files to remember all past versions

4. Spack packages will live in a separate GitHub repository
o Need Spack to bootstrap this new repository
o Will need to download automatically on first install

= HPSF

Some complexities left to navigate

e Compiler wrappers have already become their own package
o Now injected by compilers
o Still some coupling with the build environment
m Spack setsvariables to control RPATH flags

e In some cases Spack still knows compiler and runtime library names

o A few optimizations in the solver know about, e.g., gcc-runtime, intel runtime, etc.
o Working to fully generify this without losing solver performance

e Some parts of our tests rely on builtin packages
o May need to mock these, or ensure that tests auto-checkout builtin repo

= HPSF

v1.0 Release plan

® This week:
O Merge compiler dependencies
o Start fielding bug reports on develop

® April-May:
o Split out the builtin package repository
O Ensure bootstrapping / repo cloning is smooth

® June
O Release v1.0 at the Spack BOF at ISC 2025

® Likely to be done after v1.0 (longtime RIKEN ask)
O Firstsolver capabilities for cross-compiles
o Think about adapting package builds for cross-compiles
m Easy for some (cmake)
m Harder for others (autotools or autotools-like)

) TR
—mmm HPSF https://bit.ly/spack-changes for more

	Slide 1
	Slide 2: Spack is now a Linux Foundation project
	Slide 3: Spack has a new Technical Steering Committee
	Slide 4: Spack Governance
	Slide 5: The High Performance Software Foundation
	Slide 6: Founding Projects
	Slide 7: New Projects have joined!
	Slide 8: We will have the first Spack user group meeting May 7-8 at the first annual HPSF Conference
	Slide 9: We have 34 contributed talks lined up for the very first Spack User Meeting
	Slide 10: Spack is 11 years old!
	Slide 11: Spack sustains the HPC software ecosystem with the help of many contributors
	Slide 12: Spack v0.23.0 was released in November
	Slide 13: Spec splicing makes binary swapping possible
	Slide 14: Transitive and Intransitive Splices
	Slide 15: Explicit Splicing
	Slide 16: Automatic Splicing
	Slide 17: Splicing in the wild (from #appreciation on Spack Slack)
	Slide 18: The road to v1.0 has been long
	Slide 19: Introducing Language Dependencies
	Slide 20: We are releasing experimental alpha versions as we approach the 1.0 release
	Slide 21: Compiler Dependencies
	Slide 22: Configuring compilers in Spack v1.*
	Slide 23: Breaking changes ⚠️
	Slide 24: More on direct dependencies with %
	Slide 25: Step 2: Splitting out the packages
	Slide 26: We reducing coupling between packages and core
	Slide 27: Some complexities left to navigate
	Slide 28: v1.0 Release plan

