
The AMD ROCm Platform
(and its GPU programming models)

Speaker: Michael Klemm

Principal Member of Technical Staff

Compilers, Languages, Runtimes & Tools

Machine Learning & Software Engineering

2 | AMD Instinct MI300A Accelerators

[Public]

AMD Optimized CPU Compiler (AOCC)

AMD Optimized CPU Libraries (AOCL)

AMD ZenDNN

AMD μProf

Heterogenous-computing Interface

for Portability (HIP)

OpenMP API

Machine Learning Frameworks

Acceleration Libraries

ROCm Communication Libraries (RCCL)

Developing for AMD Hardware

In addition to numerous options with open source, community tools

3 |

[Public]

AMD Compilers

• ROCm Compiler Collection

• Supports offloading to AMD GPUs

• C, C++ and Fortran compilers based on

LLVM with additional open-source features

and optimizations

• AMD Optimizing C/C++ Compiler (AOCC)

• Targets x86 AMD CPUs (no offloading)

• C, C++ and Fortran compilers based on

LLVM with extensive optimizations for AMD

EPYC processors

4 |

[Public]

AMD Next-Gen Fortran Compiler – Public Downloads

https://github.com/llvm/llvm-project/

https://rocm.blogs.amd.com

Infinity Hub Tile

https://github.com/llvm/llvm-project/
https://rocm.blogs.amd.com/
https://www.amd.com/en/developer/resources/infinity-hub.html

5 |

[Public]

6 |

[Public]

7 |

[Public]

ROCm Programming Models

HIP

OpenMP®

Grid Language Maximum Control

StandardizedFork-Join Model

OpenCL StandardizedGrid Language

8 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

9 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

10 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

11 |

[Public]

ROCm Programming Models

StdPar

ROCm Libs

hipFORT

HIP

OpenMP®

OpenCL

C++

C

Fortran

Common LLVM Compiler Backend

12 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

13 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

14 |

[Public]

HIP Grid Fundamentals

Lane

15 |

[Public]

HIP Kernel Example

__global__

void saxpy(float a, const float* d_x, float* d_y, unsigned int size) {

 const unsigned int global_idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (global_idx < size)

 d_y[global_idx] = a * d_x[global_idx] + d_y[global_idx];

}

16 |

[Public]

HIP Kernel Example

__global__

void saxpy(float a, const float* d_x, float* d_y, unsigned int size) {

 const unsigned int global_idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (global_idx < size)

 d_y[global_idx] = a * d_x[global_idx] + d_y[global_idx];

}

17 |

[Public]

HIP Kernel Launch Example

float* d_x{}; float* d_y{};

hipMalloc(&d_x, size_bytes);

hipMalloc(&d_y, size_bytes);

hipMemcpy(d_x, x.data(), size_bytes, hipMemcpyHostToDevice);

hipMemcpy(d_y, y.data(), size_bytes, hipMemcpyHostToDevice);

saxpy <<<dim3(grid_size),

 dim3(block_size),

 0,

 hipStreamDefault>>> (a, d_x, d_y, size);

18 |

[Public]

HIP Porting From CUDA

HIPIFY
HIP

App

CUDA

App

HIP supports AMDGPU and CUDA

Allows incremental porting

19 |

[Public]

HIP Porting From CUDA

HIP

App

Text-based HIP translation

Compiler-based HIP translation

HIPIFY
CUDA

App

20 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

21 |

[Public]

OpenMP® API Fundamentals

22 |

[Public]

OpenMP® Fundamentals

Compiler

23 |

[Public]

OpenMP® API and C++

void saxpy(float a, const float* x, float* y, unsigned int size) {

 #pragma omp target teams distribute parallel for \

 map(to: x[0:size]) map(tofrom: y[0:size])

 for (int i = 0; i < size; ++i)

 y[i] = a * x[i] + y[i];

}

24 |

[Public]

OpenMP® API and C++ - Attribute Syntax

void saxpy(float a, const float* x, float* y, unsigned int size) {

 [[omp::directive(target teams loop \

 map(to: x[0:size]) map(tofrom: y[0:size])]]

 for (int i = 0; i < size; ++i)

 y[i] = a * x[i] + y[i];

}

25 |

[Public]

OpenMP® API and C++

int main() {

 float a = .8f;

 float *x = new float[size];

 float *y = new float[size];

 #pragma omp target teams distribute parallel for \

 map(to: x[0:size]) map(tofrom: y[0:size])

 for (int i = 0; i < size; ++i)

 y[i] = a * x[i] + y[i];

 return 0;

}

Initialization

omitted for brevity.

Some more code

omitted for brevity.

26 |

[Public]

OpenMP® API and Fortran

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size, i

!$omp target teams distribute parallel do map(to:x) map(tofrom:y)

do i = 1, size

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

27 |

[Public]

OpenMP® API and Fortran

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size

!$omp target teams workdistribute map(to:x) map(tofrom:y)

y = a * x + y

 !$omp end target teams workdistribute

end subroutine saxpy

28 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

29 |

[Public]

C++ and StdPar

void saxpy(float a, std::vector<float> &x, std::vector<float> &y) {

 std::transform(x.begin(), x.end(), y.begin(), y.begin(),

 [a](float xi, float yi) { return a * xi + yi; });

}

30 |

[Public]

C++ and StdPar

void saxpy(float a, std::vector<float> &x, std::vector<float> &y) {

 std::transform(std::execution::par_unseq,

 x.begin(), x.end(), y.begin(), y.begin(),

 [a](float xi, float yi) { return a * xi + yi; });

}

31 |

[Public]

Fortran and “StdPar”

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size, i

do concurrent (i=1:size)

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

Can be parallelized for

OpenMP host threads (now)

and AMD GPU (wip).

32 |

[Public]

ROCm Libraries

rocblas_create_handle(&handle);

// -- Allocate and initialize/copy device d_x and d_y; h_alpha on host

rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host);

rocblas_saxpy(handle, n, &h_alpha, d_x, incx, d_y, incy);

// -- Copy result back to host

rocblas_destroy_handle(handle);

33 |

[Public]

ROCm Libraries

rocblas_create_handle(&handle);

// -- Allocate and initialize/copy device d_x and d_y; h_alpha on host

rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host);

rocblas_saxpy(handle, n, &h_alpha, d_x, incx, d_y, incy);

// -- Copy result back to host

rocblas_destroy_handle(handle);

34 |

[Public]

ROCm Programming Models

HIP

OpenMP®

OpenCL

C++

C

Fortran

StdPar

ROCm Libs

hipFORT

35 |

[Public]

36 |

[Public]

37 |

[Public]

High Performance

• Powers the top500 list leader

• Solutions for HPC and AI

• Compilers, Libraries, Frameworks

• Committed to open ecosystem

• Active community engagement

• Driving development

• Portable / Standardized languages

• Solutions for evolving accelerators

• Support via third-party libraries

Open Source Portable

AMD ROCm Platform

38 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content

hereof without obligation of AMD to notify any person of such revisions or changes.

 HI INFORMA ION I PRO IDED ‘A I .” AMD MAKE NO REPRE EN A ION OR ARRAN IE I H RE PEC O HE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, Instinct, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a

registered trademark of PCI-SIG Corporation. OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc. The OpenMP

name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

	Slide 1: The AMD ROCm™ Platform (and its GPU programming models)
	Slide 2: Developing for AMD Hardware
	Slide 3: AMD Compilers
	Slide 4: a
	Slide 5
	Slide 6
	Slide 7: ROCm™ Programming Models
	Slide 8: ROCm™ Programming Models
	Slide 9: ROCm™ Programming Models
	Slide 10: ROCm™ Programming Models
	Slide 11: ROCm™ Programming Models
	Slide 12: ROCm™ Programming Models
	Slide 13: ROCm™ Programming Models
	Slide 14: HIP Grid Fundamentals
	Slide 15: HIP Kernel Example
	Slide 16: HIP Kernel Example
	Slide 17: HIP Kernel Launch Example
	Slide 18: HIP Porting From CUDA
	Slide 19: HIP Porting From CUDA
	Slide 20: ROCm™ Programming Models
	Slide 21: OpenMP® API Fundamentals
	Slide 22: OpenMP® Fundamentals
	Slide 23: OpenMP® API and C++
	Slide 24: OpenMP® API and C++ - Attribute Syntax
	Slide 25: OpenMP® API and C++
	Slide 26: OpenMP® API and Fortran
	Slide 27: OpenMP® API and Fortran
	Slide 28: ROCm™ Programming Models
	Slide 29: C++ and StdPar
	Slide 30: C++ and StdPar
	Slide 31: Fortran and “StdPar”
	Slide 32: ROCm™ Libraries
	Slide 33: ROCm™ Libraries
	Slide 34: ROCm™ Programming Models
	Slide 35
	Slide 36
	Slide 37: AMD ROCm™ Platform
	Slide 38: Disclaimer
	Slide 39

