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AMD Optimized CPU Compiler (AOCC)

AMD Optimized CPU Libraries (AOCL)

AMD ZenDNN

AMD μProf

Heterogenous-computing Interface 

for Portability (HIP)

OpenMP API

Machine Learning Frameworks

Acceleration Libraries

ROCm  Communication Libraries (RCCL)

Developing for AMD Hardware

In addition to numerous options with open source, community tools
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AMD Compilers

• ROCm  Compiler Collection

• Supports offloading to AMD GPUs

• C, C++ and Fortran compilers based on 

LLVM with additional open-source features 

and optimizations

• AMD Optimizing C/C++ Compiler (AOCC)

• Targets x86 AMD CPUs (no offloading)

• C, C++ and Fortran compilers based on 

LLVM with extensive optimizations for AMD 

EPYC  processors
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AMD Next-Gen Fortran Compiler – Public Downloads

https://github.com/llvm/llvm-project/ 

https://rocm.blogs.amd.com

Infinity Hub Tile

https://github.com/llvm/llvm-project/
https://rocm.blogs.amd.com/
https://www.amd.com/en/developer/resources/infinity-hub.html
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ROCm  Programming Models

HIP

OpenMP®

Grid Language Maximum Control

StandardizedFork-Join Model

OpenCL StandardizedGrid Language
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ROCm  Programming Models

HIP

OpenMP®

OpenCL
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C

Fortran

StdPar

ROCm  Libs

hipFORT
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ROCm  Programming Models

StdPar

ROCm  Libs

hipFORT

HIP

OpenMP®

OpenCL

C++

C

Fortran

Common LLVM Compiler Backend
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HIP Grid Fundamentals
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HIP Kernel Example

__global__

void saxpy(float a, const float* d_x, float* d_y, unsigned int size) {

  const unsigned int global_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (global_idx < size)

    d_y[global_idx] = a * d_x[global_idx] + d_y[global_idx];

}
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HIP Kernel Example

__global__

void saxpy(float a, const float* d_x, float* d_y, unsigned int size) {

  const unsigned int global_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (global_idx < size)

    d_y[global_idx] = a * d_x[global_idx] + d_y[global_idx];

}
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HIP Kernel Launch Example

float* d_x{}; float* d_y{};

hipMalloc(&d_x, size_bytes);

hipMalloc(&d_y, size_bytes);

hipMemcpy(d_x, x.data(), size_bytes, hipMemcpyHostToDevice);

hipMemcpy(d_y, y.data(), size_bytes, hipMemcpyHostToDevice);

saxpy <<<dim3(grid_size), 

         dim3(block_size), 

         0, 

         hipStreamDefault>>> (a, d_x, d_y, size);
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HIP Porting From CUDA

HIPIFY
HIP

App

CUDA

App

HIP supports AMDGPU and CUDA

Allows incremental porting
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HIP Porting From CUDA

HIP

App

Text-based HIP translation

Compiler-based HIP translation

HIPIFY
CUDA

App
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ROCm  Programming Models

HIP

OpenMP®

OpenCL

C++
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OpenMP® API Fundamentals
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OpenMP® Fundamentals

Compiler
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OpenMP® API and C++

void saxpy(float a, const float* x, float* y, unsigned int size) {

  #pragma omp target teams distribute parallel for \

              map(to: x[0:size]) map(tofrom: y[0:size])

  for (int i = 0; i < size; ++i)

    y[i] = a * x[i] + y[i];

}
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OpenMP® API and C++ - Attribute Syntax

void saxpy(float a, const float* x, float* y, unsigned int size) {

  [[omp::directive(target teams loop \

                   map(to: x[0:size]) map(tofrom: y[0:size])]]

  for (int i = 0; i < size; ++i)

    y[i] = a * x[i] + y[i];

}
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OpenMP® API and C++

int main() {

  float a = .8f;

  float *x = new float[size];

  float *y = new float[size];

  

  #pragma omp target teams distribute parallel for \

              map(to: x[0:size]) map(tofrom: y[0:size])

  for (int i = 0; i < size; ++i)

    y[i] = a * x[i] + y[i];

  return 0;

}

Initialization 

omitted for brevity.

Some more code 

omitted for brevity.
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OpenMP® API and Fortran

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size, i

!$omp target teams distribute parallel do map(to:x) map(tofrom:y)

do i = 1, size

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy



27 |

[Public]

OpenMP® API and Fortran

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size

!$omp target teams workdistribute map(to:x) map(tofrom:y)

y = a * x + y

  !$omp end target teams workdistribute

end subroutine saxpy
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HIP
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C++
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C++ and StdPar

void saxpy(float a, std::vector<float> &x, std::vector<float> &y) {

  std::transform(x.begin(), x.end(), y.begin(), y.begin(), 

                   [a](float xi, float yi) { return a * xi + yi; });

}
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C++ and StdPar

void saxpy(float a, std::vector<float> &x, std::vector<float> &y) {

  std::transform(std::execution::par_unseq,

                   x.begin(), x.end(), y.begin(), y.begin(), 

                   [a](float xi, float yi) { return a * xi + yi; });

}
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Fortran and “StdPar”

subroutine saxpy(a, x, y, size)

real :: a, x(size), y(size)

integer :: size, i

do concurrent (i=1:size)

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

Can be parallelized for 

OpenMP host threads (now) 

and AMD GPU (wip).
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ROCm  Libraries

rocblas_create_handle(&handle);

// -- Allocate and initialize/copy device d_x and d_y; h_alpha on host

rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host);

rocblas_saxpy(handle, n, &h_alpha, d_x, incx, d_y, incy);

// -- Copy result back to host

rocblas_destroy_handle(handle);
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ROCm  Libraries

rocblas_create_handle(&handle);

// -- Allocate and initialize/copy device d_x and d_y; h_alpha on host

rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host);

rocblas_saxpy(handle, n, &h_alpha, d_x, incx, d_y, incy);

// -- Copy result back to host

rocblas_destroy_handle(handle);
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High Performance

• Powers the top500 list leader

• Solutions for HPC and AI

• Compilers, Libraries, Frameworks

• Committed to open ecosystem

• Active community engagement

• Driving development

• Portable / Standardized languages

• Solutions for evolving accelerators

• Support via third-party libraries

Open Source Portable

AMD ROCm  Platform
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and 

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but 

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has 

risks of security vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no obligation to update or otherwise correct 

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content 

hereof without obligation of AMD to notify any person of such revisions or changes.

 HI  INFORMA ION I  PRO IDED ‘A  I .” AMD MAKE  NO REPRE EN A ION  OR  ARRAN IE   I H RE PEC   O  HE 

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2025 Advanced Micro Devices, Inc.  All rights reserved.

AMD, the AMD Arrow logo, EPYC, Instinct,  ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc.  PCIe is a 

registered trademark of PCI-SIG Corporation. OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc. The OpenMP 

name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. Other product names used in this 

publication are for identification purposes only and may be trademarks of their respective companies.
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