
INTEGRATING EXACB WITH EASYBUILD
Why and How?
March 25, 2025 Jayesh Badwaik |j.badwaik@fz-juelich.de Jülich Supercomputing Centre

Member of the Helmholtz Association

CONTINUOUS BENCHMARKING ON HPC
Why now?

1 ExaFLOP/s
NVIDIA Grace-Hopper CG1

∼6000 nodes
4× CG1 chips per compute node (ARM +
Nvidia)
NVLink C2C 450 + 450 GB/s
Smart Unified Memory
Power sharing between CPU and GPU

Mean time between failures ∼ hours – days

Member of the Helmholtz Association March 25, 2025 Slide 1

WHY CONTINUOUS BENCHMARKING ON HPC?
Why now?

2024-08-08 2024-08-10 2024-08-12 2024-08-14 2024-08-16
Dates

50

51

52

53

54

Ru
nt

im
e

/ s

Time-Series Plot on Jureca DC (Lower is Better)

Simulation Runtime
Performance
Time-Series Mean
Two-Sigma Deviation

Tracking progress over time
Tracking progress through changes
Onboarding troubles

Custom versions for applications
Custom compiler flags

Well-formed auditable execution of benchmarks
Rapid testing of deployment

Member of the Helmholtz Association March 25, 2025 Slide 2

COMPLEX SOFTWARE STACK
dealii

adol-c

gcc-runtime

glibc

gmake

arborx

cmake

zlib-ng

openmpi

trilinos

openblas

arpack-ng

assimpboost

cgal

ginkgo

gsl

hdf5

intel-tbb metismuparser

netlib-scalapack p4est

petsc

slepc

suite-sparse sundials

symengine

curl

ncurses

nghttp2

pkgconf

openssl

diffutils

libiconv

ca-certificates-mozilla

perl

berkeley-db

bzip2

gdbm

readline

autoconf

automake

hwloc

libeventlibtool

numactl openssh pmix

m4

libsigsegv

libpciaccess

libxml2

util-macros

xz

findutils

krb5

libedit

libxcrypt

bison

gettext

tar

pigz

zstd

icu4c

python

expat

libffi

sqlite

util-linux-uuid libbsd

libmd

eigen

gmp

mpfr

autoconf-archive

texinfo

hypreparmetis

superlu-dist

cereal

mpc

Member of the Helmholtz Association March 25, 2025 Slide 3

COMPLEX SOFTWARE STACK

Member of the Helmholtz Association March 25, 2025 Slide 4

SYSTEM STUDIES
Energy and Performance

400 600 800 1000 1200 1400 1600 1800 2000
GPU Frequency / MHz

100

150

200

250

300

350

En
er

gy
 /

W
h

Type
Hopper
A100

Left axis
Right axis

0.01

0.02

0.03

0.04

0.05

0.06

Ru
nt

im
e

pe
r s

te
p

/ s

250 500 750 1000 1250 1500 1750 2000
GPU Frequency / MHz

10

20

30

40

50

60

70

80

En
er

gy
 /

W
h

23.3 Wh

50.8 Wh

10.9 Wh

36.0 Wh

50.9 Wh

Type
GH Module
Grace

Hopper
A100

Left axis
Right axis

100

200

300

400

500

Ru
nt

im
e

/ s

Figure: Energy to Solution for SOMA and MPTRAC

Member of the Helmholtz Association March 25, 2025 Slide 5

SCHEDULING AND RESOURCE MANAGEMENT

Figure: Workflow Optimization by Smart Scheduling

Member of the Helmholtz Association March 25, 2025 Slide 6

EXACB

Features
Continuous Benchmarking for HPC
Template-based CI/CB (declarative syntax)
Reduced barrier to entry for CI/CB
Click-to-run reproducible benchmarks
Ease of sharing workflows with community

Usecase
> 70 applications in JUREAP
Automated report generation for JUREAP

⟶ Compute time review
Energy measurements
System performance evaluation

Member of the Helmholtz Association March 25, 2025 Slide 7

TEMPLATE-BASED CI/CD

1 include:
2 - component: jureap/jube@v3.2

3 inputs:
4 prefix: "jedi.strong.tiny"
5 variant: "strong.tiny"

6 machine: "jedi"
7 queue: "all"

8 project: "cjsc"

9 budget: "zam"

10 jube_file: "simple.yaml"

Setup compute account and reservations
Run fixtures (setup and teardown)
Run benchmark (see below)
Generate reports
Upload results into repositories

$ jube-autorun -r "--tag $[[inputs....]]" $[[inputs.jube_file]]
|--
|node | slurmid | gitlab | result | runtime | start | end |
|--
|1 | 1234 | 5678 | pass | 200s | 7548.291648 | 8742.291648 |
|2 | 1235 | 5679 | pass | 220s | 4984.336033 | 6284.336033 |
|3 | 1236 | 5680 | pass | 192s | 3234.343434 | 4234.343434 |
|---|

Member of the Helmholtz Association March 25, 2025 Slide 8

ENERGY MEASUREMENTS

1 include:

2 - component: jureap/ energy@v3.2

3 inputs:
4 prefix: "jedi.strong.tiny"
5 variant: "strong.tiny"

6 machine: "jedi"
7 queue: "all"

8 project: "cjsc"

9 budget: "zam"

10 jube_file: "simple.yaml"

srun [options] jpwr [jpwr-options] executable [args]

Member of the Helmholtz Association March 25, 2025 Slide 9

REPORT GENERATION

1 include:
2 - component: jureap/report@v3.2

3 inputs:
4 prefix: "report"
5 pipeline: ["245543", "245544"]

6 selector: ["jedi", "booster"]

Fetch data for the pipeline from datastore
Generate PDF reports with plots and tables

Member of the Helmholtz Association March 25, 2025 Slide 10

OTHER FACTORS

Technical Factors
Scheduled runs and report generation
Data storage (Gitlab Repo, S3)
Automatic alerts (Gitlab, email)

Community Factors
Enforce reproducibility
Compare application with synthentic
Integrate benchmarks in development repor

Member of the Helmholtz Association March 25, 2025 Slide 11

WHAT IS REPRODUCIBILITY?
In this context

Site-specific dependencies

Required Optional Uncontrollable

Versioned dependencies (including flags) Bit-wise reproducibility of dependencies Network effects

Slurm configuration (including defaults) Same hardware I/O effects

Environment configuration Environment Isolation Driver and OS updates

Member of the Helmholtz Association March 25, 2025 Slide 12

AUDITABILITY AND REPRODUCIBILITY

Aspect Should Audit Can Audit Tool
Configure Environment No No Fail/Pass

Load data/cache Yes Yes (No Uniformity) Checksum
Load dependencies Yes Depends Dependency manager

Build application Ideally Yes Difficult Hermiticity
Run benchmark Yes Yes exaCB
Upload results Yes Yes exaCB

Why develop for auditability?
Helps in debugging on support side
Shared techniques – faster onboarding
Quicker study for prioritization

Member of the Helmholtz Association March 25, 2025 Slide 13

AUDITABILITY AND REPRODUCIBILITY

Aspect Should Audit Can Audit Tool
Configure Environment No No Fail/Pass

Load data/cache Yes Yes (No Uniformity) Checksum
Load dependencies Yes Depends Dependency manager

Build application Ideally Yes Difficult Hermiticity
Run benchmark Yes Yes exaCB
Upload results Yes Yes exaCB

Member of the Helmholtz Association March 25, 2025 Slide 14

CURRENT STATE
Resolution Method Number of Projects Explicit Dependencies Rerunnable

Out-of-band (Spack, Container) 6 20 ?
Prebuilt Binary 17 15 ?
In-situ/Ad-hoc 26 15 ?

JUBE script 1 4 ?
Gitlab CI 2 6 ?

Total (Outside EasyBuild) 48 20 12
EasyBuild 20 12 16

Undesirable Situation
Blind spots about important dependencies
Restricts number of projects that can be integrated
Restricts ability to help users with potential bugs
Restricts ability to plan changes
Prevents building up of shared resource
Duplicated work

Member of the Helmholtz Association March 25, 2025 Slide 15

TOWARDS A POTENTIAL SOLUTION
Current problems (and potential solutions?)

Problem Potential Solution
Long build times Caching

Complicated build process Dependency management
Modules not available in EasyBuild Custom modules

Customized build for each configuration On-demand builds
Custom version of modules On-demand builds

Custom compilation options On-demand builds
Reproducibility at later date Lockfiles

Member of the Helmholtz Association March 25, 2025 Slide 16

CURRENT TOOLS IN EASYBUILD ECOSYSTEM
Easybuild

Need variant and toolchain along with suffix as additional actionable parameters
-Wl,-rpath – extremely useful to separate build and run environments
Chaining installations ergonomically

User installations
Manually setup caches
Not easy to inject custom dependencies in a given chain
Not enough institutional knowledge to advise users

EESSI
S3 is important - JSC is going to offer MinIO
Periodic refresh (need on-demand)
Unergonomic to use without root
Per user filepaths are (not possible?)
Multiple caches per user are not possible (independent CI runs)
Geared towards broadcasting downstream

Member of the Helmholtz Association March 25, 2025 Slide 17

TENTATIVE IDEA
Single Point of Usage

ebpkg cache add jedi.2025 --type s3 --credentials jedi.2025.yaml
ebpkg source --chainload /p/easysite/jedi/2025 dependency.yaml
ebpkg resolve

User driven auditable and reproducible wrapper around easybuild

Exactly similar workflow on all machines
Desktop, HPC Centers, CI Containers

Ability to chain installations
Separation of concerns and workload
Leverage the 3000 easybuild recipes

First class support to download and upload caches
Support for injecting a specific dependency
Reproducibility at later date (Lockfiles)

Institutional knowledge (with users)

Uniform names for core packages

Ability to experiment and freeze current state

Users and admins are equal (mostly?)

Community contributions

Community testing

Member of the Helmholtz Association March 25, 2025 Slide 18

Thank You!

Member of the Helmholtz Association March 25, 2025 Slide 19

