

Alexander Grund Center for Information Services and High Performance Computing (ZIH)

A Secure Workflow for Shared HPC Systems

10th EasyBuild User Meeting, Jülich 25th March 2025

Motivation

- 1. Researchers require larger machines
- Compute intensive methods
- More / Longer analysis
- 2. Shared infrastructure
- Split responsibility
- Cost reduction

→ Move to HPC

Motivation

A Secure Workflow for Shared HPC Systems ZIH – TU Dresden / Alexander Grund 10th EasyBuild User Meeting // 25.03.2025

Motivation

A Secure Workflow for Shared HPC Systems ZIH – TU Dresden / Alexander Grund 10th EasyBuild User Meeting // 25.03.2025

Challenges

Data on shared (global) filesystem:

Access by Admins with root access Access by other users →Attacker can gain root

Data on Compute Nodes

Access by users on the same node SSH access

→Insufficient access protection of temporary data
 →Spoofed/compromised UID allows access

Software

Modules installed by Admins Containers provided by users System software / OS on node

- → Stored on global filesystem
- → Manipulated by previous users

Solution

Generic Workflow

- 1. Protect data on global filesystem
- 2. Secure Node against unauthorized access
- 3. Ensure integrity of used software

Assume secure...

- Image Server
- Boot process
- Local user system

Solution

1. Isolated node

- No SSH access
- Only known connections allowed (SLURM, filesystem)
- Requires *signed* SBatch script

2. Data resides in *LUKS* containers

- Transparent mount → Read & Write encrypted
- Secure symmetric key generated
- Data moves only in container

3. Software provided in Singularity image

- Asymmetric encryption ensures authenticity

4. Key transfer via KMS

- Single-use token in exchange for keys
- Encrypted in SBatch script

Summary

Data confidentiality by encryption

- Only unencrypted on "Secure Client"
- Transparent en-/decryption during processing on "Secure Node"
- No leaks
- Compatible with existing workflows

No access to "Secure Node" by other users

- Ensured through signatures
- No modification of OS / scripts / ...
- Data mount only accessible by intended user

Resistant to many user errors

- Scripts for secure key generation and encryption
- Short-lived access tokens instead of keys on HPC

References

- Nolte, Hendrik, Simon Hernan Sarmiento Sabater, Tim Ehlers, and Julian Kunkel.
 "A Secure Workflow for Shared HPC Systems."
 In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 965-974.
 IEEE, 2022.
- Trevor Khwam Tabougua, GWDG presentation https://events.gwdg.de/event/415/

