
LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Spack Update
EasyBuild User Meeting 2024

Todd Gamblin
Lawrence Livermore National Laboratory

April 24, 2024

2
LLNL-PRES-xxxxxx

Spack continues to grow

Over 7,900 software packages
Over 1,300 contributors

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

Contributors continue to grow worldwide

2023 aggregate user counts from GA4
(note: yearly user counts are almost certainly too large)

3
LLNL-PRES-xxxxxx

§ What does that mean?
— Project has a legal 501(c)(6) non-profit company

— This is a neutral legal entity
• Can be in legal agreements (e.g. for distributing binaries)
• Can get discounts on, e.g., Slack!

— Project will have a Technical Steering Committee (TSC)
• Plan is to make the main developer meetings more public
• Also have official steering committee meetings
• Main charter is written (mostly boilerplate)
• Working on initial GOVERNANCE.md, initial TSC members

— Trademark (Spack name, logo) assigned to Linux Foundation

— Project resources owned by Linux Foundation
• spack.io website
• GitHub Organization

Spack is officially a Linux Foundation Project now!

4
LLNL-PRES-xxxxxx

We are forming the High Performance Software Foundation

§ Intent to form announced at Supercomputing 2023

§Will officially kick off at ISC’24

§BOF on Monday, May 13, 1pm

HIGH PERFORMANCE
SOFTWARE FOUNDATION

Anchor Members

5

Placeholder pending confirmation

Premier

General

Associate

Initial Projects

6

Likely to grow!

Spack

WarpX

Proposed HPSF Structure
Governing Board (GB)

Technical Advisory Council (TAC)

GB Committees
Marketing Budget & Finance

CI & Testing

Working Groups

Facility Engagement

Software Stacks Architecture Support Kokkos

Projects

Spack VTK-m

HPCToolkit

End Users Benchmarking (?)

Events & Training

Charliecloud

AMReX

WarpX

Apptainer Trilinos E4S

Collaborations

HPSF Goals
1. Provide neutral home for key HPC projects to enable collaboration

between government, industry and academia

2. Promote use of HPSF projects

3. Ensure software is accessible and reliable with CI and turn-key builds

4. Ensure that HPC software is secure and ready for cloud through
collaborations with CNCF and OpenSSF

5. Sponsor events and training to grow a diverse, skilled workforce for
software in the HPSF ecosystem.

8

Increase adoption and contribution!

9
LLNL-PRES-826942

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized package
configurations (constraints)

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

10
LLNL-PRES-826942

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

 homepage = "https://computation.llnl.gov/projects/co-design/kripke"
 url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
 version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
 version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

 variant('mpi', default=True, description='Build with MPI.’)
 variant('openmp', default=True, description='Build with OpenMP enabled.’)

 depends_on('mpi', when='+mpi’)
 depends_on('cmake@3.0:', type='build’)

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
 '-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

 def install(self, spec, prefix):
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.One package.py file per software project

11
LLNL-PRES-826942

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

Complexity has grown with the addition of GPU stacks and compiler information

12
LLNL-PRES-826942

Spack’s concretizer resolves many preferences
into a concrete, installable specification

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

Is stored in spack.lock
file after solve.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This part is NP-hard!

13
LLNL-PRES-xxxxxx

Spack v0.22 is coming in May

Lots of updates but will talk about two big ones here:

1. Compiler dependencies!

2. Python ecosystem support (package auto-generation)

§ These have both been in the works for a long time

§Both made possible by recent solver work

14
LLNL-PRES-xxxxxx

Spack’s concretizer is implemented using
Answer Set Programming (ASP)

node(Dependency) :- node(Package), depends_on(Package, Dependency).

node("mpi") node("hdf5").
depends_on("hdf5", "mpi").

node("lammps").
node("cuda").
variant_value("lammps", "cuda", "True").
depends_on("lammps", "cuda").

lammps

cuda

+cuda

Facts describe the graph

First-order rules (with variables) describe how to resolve nodes and metadata

ASP looks like Prolog but is converted to SAT with optimization

Ground
Rule

15
LLNL-PRES-xxxxxx

Grounding converts a first-order logic program into a
propositional logic program, which can be solved.

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

First-order Logic Program Propositional Program Stable Models (Answer Sets)

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
 :- node(Pkg),
 depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :- node(a).
node(c) :- node(a).
node(d) :- node(c).
node(d) :- node(b).

% at least one is true
1 { node(a); node(b) }.

Answer 1:
node(b)
node(d)

Answer 2:
node(a)
node(b)
node(c)
node(d)Ground Solve

a

cb

d

a

cb

d

b

d

Answer 1: Only node(b) is true
Answer 2: Both node(a) and node(b) are trueWe use the Clingo solver from potassco.org

https://potassco.org/

16
LLNL-PRES-xxxxxx

ASP searches for stable models of the input program

§ Stable models are also called answer sets

§ A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
—Similar to fixpoints
—Put more simply: a set of atoms where all your rules are true!

§ Unlike Prolog:
—Stable models contain everything that can be derived (vs. just querying values)
—ASP is guaranteed to complete!

17
LLNL-PRES-xxxxxx

§ Main logic program is:
— ~250 rules
— 20 optimization criteria
— 933 lines of ASP code

§ Problem instances can vary quite a bit
— Common dependencies get us some magic

numbers
— gmake’s optional dependency on guile makes

most solves consider at least 527 packages
— gnuconfig is notably very simple J

Some stats on problem sizes

Package Possible
dependencies

Facts

gnuconfig 1 150

zlib 527 30,095

gmake 527 30,160

openmpi 527 109,021

qt 527 109,029

trilinos 694 224,142

root 699 146,372

mfem 714 273,078

r-condop 774 142,212

warpx 819 319,374

exawind 820 322,535

18
LLNL-PRES-xxxxxx

We have been working to make our solver more flexible

§ Only one configuration per package
allowed in the DAG

§ Ensures ABI compatibility but is too
restrictive

§ In the example py-numpy needs to use
py-cython@0.29 as a build tool

§ That enforces using an old py-gevent,
because newer versions depend on py-
cython@3.0 or greater

gptune

py-cython@0.29

py-gevent@1.5 py-numpy

19
LLNL-PRES-xxxxxx

Objective: dependency splitting

§ The constraint on build dependencies
can be relaxed, without compromising
the ABI compatibility

§ Having a single configuration of a
package is now enforced on unification
sets

§ These are the set of nodes used
together at runtime (the one shown is
for gptune)

§ This allows us to use the latest version
of py-gevent, because now we can have
two versions of py-cython

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

Unification
Set

20
LLNL-PRES-xxxxxx

We want to dynamically “split” nodes when needed

node(DependencyName)
 :- dependency_holds(PkgName, DependencyName)

Start with deducing single dependency nodes:

Want to allow solver to choose to duplicate a node:
Converted node identifier
from name to (name, id)

1 {
 depends_on(PkgNode, node(0..Y-1, DepNode), Type)
 : max_dupes(DepNode, Y)
} 1
 :- dependency_holds(PkgNode, DepNode).

21
LLNL-PRES-xxxxxx

§ Facts that come from package descriptions can be used with all duplicate nodes

§ We now have to ground multiple copies of most of our rules

§ Performance still scales with total number of possible nodes
— Small numbers of duplicates don’t really explode the solve

Generic package metadata can be used with any duplicate node

pkg_fact("alsa-lib",version_declared("1.2.3.2",0,"package_py")).
pkg_fact("alsa-lib",version_declared("1.2.2",1,"package_py")).
pkg_fact("alsa-lib",version_declared("1.1.4.1",2,"package_py")).

pkg_fact("alsa-lib",condition(20)).
condition_reason(20,"alsa-lib depends on python when +python").
pkg_fact("alsa-lib",condition_trigger(20,15)).

22
LLNL-PRES-xxxxxx

First try at allowing duplicates in a single solve

Increased solve times by
>> 2x in some cases

23
LLNL-PRES-xxxxxx

It turns out that cycle detection in the solver is expensive

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

% this constraint says "no cycles"
:- path(A, B), path(B, A).

§ Has to maintain path() predicate representing paths between nodes

§ Cycles are actually rare in solutions
— Switched to post-processing for cycle detection
— Only do expensive solve if a cycle is detected in a solution

§ Similar issue arose for variant propagation in graph
— Fixed by reworking variant propagation not to track paths

50%+ improvement
in solve time

24
LLNL-PRES-xxxxxx

Unification sets can be expensive too

§ Unification set creation was originally
recursive for any build dependencies
— Ends up blowing up grounding

§ Mitigation:
— Only create new sets for explicitly marked

build tools
— Transitive build dependencies that are not

from marked build tools go into a common
unification set

§ Need better heuristics to split when
necessary for full generality

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

25
LLNL-PRES-xxxxxx

Optimizations: Solve Time

26
LLNL-PRES-xxxxxx

It was not trivial to come up with this model

§ In addition to this “coupled” method, we
tried an iterative version with multiple
solves

§ Multiple solves had some disadvantages:
— Slower due to overhead of multiple solves
— Not coupled, so feedback from solve to solve was

awkward
— Packagers needed to “help” the solver

§ Requiring packagers to provide solve hints
in packages isn’t practical

27
LLNL-PRES-xxxxxx

We’ve made a lot of progress on compiler dependencies

§Compiler runtime libraries represented in the graph
—C++, Fortran runtimes

§ libc is now represented in dependency graphs on Linux
—No more need to rely on OS tag for compatibility information

§Reuse binaries without their compiler needing to be configured
locally

§ Improved buildcache hit rate using libraries for compatibility

28
LLNL-PRES-xxxxxx

Compilers can now model their own runtimes

§ New method,
runtime_constraints, for injecting
runtimes into graphs

§ Currently supported for gcc,
intel-oneapi
— still working on others

§ Allows solver to take libstdc++,
fortran rutime compatibility into
account.

§ Example:
— Intel compilers now (correctly)

depend on gcc-runtime

29
LLNL-PRES-xxxxxx

Packages now declare the languages they depend on

§ Languages are almost virtuals
— HDF5 package depends on cxx and fortran
— Handled specially internally, until compilers are

nodes

§ Imply a compiler and compiler package can
specify runtime libraries to inject

§ Allows solver to mix compilers correctly
— Runtimes are unified like other nodes
— Package authors can model toolchain properties
— probably not for most package authors, but very

powerful

§ TBD:
— Other runtimes like clang libraries and OpenMP
— Compilers as nodes in the graph

30
LLNL-PRES-xxxxxx

We’ve also added libc as a dependency

§ libc is a virtual
— glibc and musl packages are providers
— (nearly) every graph has libc in it, via the

compiler
— Can be external or built by Spack

§ We are not building libc for every stack
in Spack
— Automatically detect system libc version
— Add a node to the graph to be used for

binary compatibility

§ No longer using OS tags for
buildcaches
— Now use libc for this
— many more buildcache hits

31
LLNL-PRES-xxxxxx

Libc modeling makes for a much better buildcache experience

§ Currently on develop (emcas 100% from binary):

32
LLNL-PRES-xxxxxx

Managing Python packages in Spack has become unwieldy

§ Several reasons:
—Lots of small packages
—Dependencies tend to be overconstrained
—Finding version ranges that allow Spack users to integrate has been

hard
—Adam Stewart has become increasingly busy; moved on from Python

ecosystem (only ML packages now)

§ So we decided to automate
—Generate pure python packages
—Continue to model packages with native builds by hand

33
LLNL-PRES-xxxxxx

Autogenerating Python packages

§ Python ecosystem is a lot to maintain

§ Increasingly, we need to update faster
than we can sustain through pull
requests

§ Reviewing version ranges has been
painful

§ Decided to auto-generate Python
packages from public metadata

34
LLNL-PRES-xxxxxx

Generating Python

§ Had to rework version system to handle
some frequent python conventions
— Prereleases
— Alpha, beta
— Release candidate

§ Now PyPI metadata can map to Spack
depends_on() constraints

§ Some caveats
— Only doing this for pure python packages
— Wheels (and PyPI database) lack build

dependency info
— May not be able to use spack develop

with these

35
LLNL-PRES-xxxxxx

Summary

§ HPSF is kicking off in May at ISC
— Spack, other projects now in HPSF
— Part of Linux Foundation

§ Split build dependency work has enabled compiler dependencies

§ Compiler dependencies coming in v0.22
— Compiler runtime libraries like libstdc++, fortran
— Libc now in Spack

§ Python package generation!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

