

EasyBuild site talk: CSCS

9th EasyBuild User Meeting Apr 23rd – 25th 2024, Umeå, Sweden

Luca Marsella Swiss National Supercomputing Center (CSCS / ETHZ)

Outline

EasyBuild timeline @ CSCS

CSCS HPC systems

- Piz Daint
- Alps
- MeteoSwiss systems
- EasyBuild for CSCS Users
 - Custom User builds
 - Jenkins pipelines
- UENV User Environments
 - CLI and Slurm integration
 - The Stackinator tool

Outline

EasyBuild timeline @ CSCS

CSCS HPC systems

- Piz Daint
- Alps
- MeteoSwiss systems
- EasyBuild for CSCS Users
 - Custom User builds
 - Jenkins pipelines
- UENV User Environments
 - CLI and Slurm integration
 - The Stackinator tool

CSCS HPC systems

System	Users	Accelerators	Architecture
Piz Daint	HPC Platform	1 GPU	Cray XC50 / XC40 P100,Haswell/Bro adwell
Alps Eiger	HPC Platform	CPU only	Cray EX AMD Rome
Alps Clariden	AI/ML Platform	4/8 GPU	Cray EX AMD Milan, A100/Mi200
Arolla / Tsa	MeteoSwiss	8 GPU	V100, Intel SkyLake

Piz Daint

Model	Cray XC50 / XC40
XC50 node	Intel® Xeon® E5-2690 v3 (Haswell) @ 2.60GHz (12 cores, 64GB RAM) and NVIDIA® Tesla® P100 16GB
XC40 node	Intel® Xeon® E5-2695 v4 (Broadwell) @ 2.10GHz (18 cores, 64/128 GB RAM)
Login node	Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256 GB RAM)
Interconnect	Aries routing and communications ASIC, and Dragonfly network topology
Scratch	8.8 PB (Lustre / Sonexion 3000)

Flagship production system with hybrid nodes

- EB software stack in production since 11.16
- Successfully updated OS to CLE 7.0UP03 in 02.22
- · Automated update of Easyconfig files in production

Alps Eiger

Eiger on the Alps HPE/Cray EX Supercomputing system

Compute nodes

2 x AMD EPYC[™] 7742 64-Core HPE Slingshot interconnect

EB Toolchains

- Toolchains for the Cray Programming Environment (CPE)
 - cpeAMD, cpeCCE, cpeGNU, cpeIntel
- EB Hierachical Module Naming Scheme

EB Software stack

- Amber, GROMACS, LAMMPS, NAMD
- CP2K, QuantumESPRESSO, VASP
- ParaView, Vislt

CSCS

ETH zürich

MeteoSwiss systems

Arolla and Tsa

- Intel Skylake and Tesla V100
- EB software stack available since 01.20

Lowercase module names (few exceptions)

- EasyBuild-custom (CSCS EB modulefile)
- PrgEnv-gnu
- PrgEnv-pgi

Meta-modules for hierarchical environment

PrgEnv-pgi/20.4 unfolds additional modules:

- hdf5/1.10.5-pgi-20.4-gcc-8.3.0
- netcdf-c++/4.3.0-pgi-20.4-gcc-8.3.0
- netcdf-fortran/4.4.5-pgi-20.4-gcc-8.3.0
- netcdf/4.7.0-pgi-20.4-gcc-8.3.0

Outline

- EasyBuild timeline @ CSCS
- CSCS HPC systems
 - Piz Daint
 - Alps
 - MeteoSwiss systems

EasyBuild for CSCS Users

- Custom User builds
- Jenkins pipelines
- UENV User Environments
 - CLI and Slurm integration
 - The Stackinator tool

EasyBuild for CSCS Users

- EasyBuild recipes provided for software requests
 - Instead of error-prone manual steps on how to build and run
- EasyBuild documentation on the CSCS User Portal

CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

ETH zürich

Custom User builds

- Users can extend or customize CSCS EasyBuild recipes
 - git clone <u>https://github.com/eth-cscs/production.git</u>
- Export the EB custom environment variable
 - EB_CUSTOM_REPOSITORY=/<path>/production/easybuild
- Load the EB custom modulefile
 - module load EasyBuild-custom/cscs

The modulefile **EasyBuild-custom/cscs** adds CSCS production Easyconfigs to the local robot path for search

EasyBuild with Jenkins

- Jenkins service for Continuous Integration
 - Deploy software packages on the systems in production
 - Test new Easyconfig files submitted by staff and users
 - Check regressions of Easyconfigs listed in production
 - **Update** production recipes in view of system upgrades
- Jenkins projects running with EasyBuild
 - ProductionEB builds the Easyconfigs once they are in production
 - **TestingEB** is triggered when a new pull request appears on Github
 - UpdateEB runs EasyBuild to update recipes and installed software
- Jenkins projects defined by Pipelines
 - Enhanced flexibility of the actions performed by Jenkins
 - Jenkinsfile script of each project is version controlled
 - The CI can **run in parallel** optimizing the available resources

CSCS production repository on GitHub

How to submit a pull request

- Add the EasyBuild configuration files to a **new branch** in your **fork**
- The pull request must include **all the required dependencies**

Policy of pull requests

- The title **must match a supported system** (or the CI will fail)
- System names are enclosed in square brackets
- Dom and Piz Daint can test -gpu and -mc builds
 - [dom-gpu] NAMD (will build using -gpu)
 - [dom-mc] NAMD (will build using -mc)
 - [dom] NAMD (will use both -gpu and -mc)
- Jenkins project **TestingEB** tests the build of new recipes
 - Pipeline script at <u>https://github.com/eth-cscs/production/tree/master/jenkins</u>

ProductionEB Pipeline

✓ <u>ProductionEB</u> < 1600			Pipeline	Changes	Tests	Artifacts	5	*	Logout	×
Branch: –	15m 50s	Changes by Gu	ilherme Peretti	-Pezzi						
Commit: -	🕓 a day ago	Started by an S	CM change							

Bui	Build Stage / eiger - 15m 43s	
~	Check out from version control	3s
~	> echo \$PWD — Shell Script	<1s
~	> #!/bin/bash -I echo \$SCRATCH — Shell Script	<1s
~	> #!/bin/bash -I echo \$XDG_RUNTIME_DIR/build — Shell Script	<1s
~	> #!/bin/bash -l echo /apps/eiger/UES/jenkins/1.3.2/20.10 — Shell Script	<1s
~	> Shell Script	6m 52s

TestingEB Pipeline

Github Pull Request

[dom daint eiger tsa] Add recipe for ReFrame version 3.4 #2126 ✓ TestingEB < 4573 Pipeline 3 > Merged teojgo merged 1 commit into master from reframe/3.4 [] yesterday Branch: 4m 48s Commit: -₽ Conversation 3 -O- Commits 1 E Checks 0 Files changed 1 Description PR #2126 Collaborator ... **(** jenkins-cscs commented yesterday No description provided. Initialization Start Machine Selection **Build Stage** End daint-gpu Add recipe for ReFrame version 3.4 -0-✓ eae82a daint-mc 🔮 jenkins-cscs requested review from teojgo and vkarak yesterday \odot dom-gpu jenkins-cscs commented yesterday Collaborator Author ··· Can I test this patch? dom-mc eiger teojgo commented yesterday Contributor ... ok to test

Pipeline triggered on Jenkins

UpdateEB Pipeline

Automated GitHub PR for successful updates (GitHub stage)

Update Stage / dom-gpu - 18h 48m 23s

~	>	Check out from version control
~	>	List of unuse paths: /apps/dom/UES/jenkins/7.0.UP02/gpu/easybuild/tools/modules/all /apps/dom/UES/jenkins/7.0.UP02/gpu/easybuild/modules/all
×	>	Shell Script

Outline

- EasyBuild timeline @ CSCS
- CSCS HPC systems
 - Piz Daint
 - Alps
 - MeteoSwiss systems
- EasyBuild for CSCS Users
 - Custom User builds
 - Jenkins pipelines

• UENV User Environments

- CLI and Slurm integration
- The Stackinator tool

UENV User Environments: background

- User software installed on top of several layers

 - Cray Operating System (COS)Cray Programming Environment (CPE)
 - CSCS software stack maintained by staff
- A change to one layer affects every layer above
 - COS and CPE updates often require rebuilding software
 - This applies both to CSCS software stack and users software
- CPE provides libraries and tools for many use cases
 - Once an issue is identified, the fix will come in a future release
 - Long latency between issue reporting and fix in production
 - New releases require extensive testing to check issue resolution

The **one size fits all model** does not scale with use cases

UENV User Environments: description

- The UENV User Environments approach
 - Login to a simpler environment
 - Minimal set of dependencies
 - COS + Slurm workload manager + runtime container + drivers
 - Load one or more user environments on demand
- Users can choose their environment
 - Classic CPE via modules: module load cray
 - CSCS-provided images for user environments
 - User-built user environments for advanced users
- Each environment is contained in a single file
 - Shared in an artifactory or stored on a filesystem
 - The environments are **independent of one another and of CPE**
 - The environments are built on top of the base-image not the CPE

User Environments: tools

- Command Line Interface (CLI)
 - **squashfs-mount**: low level tool for mounting environments
 - **uenv:** a command line tool for interacting with environments
- Slurm plugin
 - manages loading UENV images on compute nodes
 - https://github.com/eth-cscs/slurm-uenv-mount
- Stackinator https://eth-cscs.github.io/stackinator
 - Tool for generating uenv images from a declarative recipe

 - Used by CSCS to build the user environments
 Available for advanced users to build their own images
- GitHub repository with CSCS recipes
 - https://github.com/eth-cscs/alps-spack-stacks
 - CI/CD pipeline to build, test and deploy images

User Environments: mount points

Mounted at /user-environment

- Programming Environments
 - Compilers, MPI, libraries (e.g.: HDF5, FFTW, OpenBLAS...)
 - Can be application specific (e.g.: supporting ICON builds)
- Application Environments
 - Provide applications, libraries and tools required to run them
 - CP2K, GROMACS, LAMMPS, NAMD, QuantumESPRESSO...
- Mounted at /user-tools
 - Debuggers: DDT
 - Profilers
 - Visualisation: ParaView, VisIt,...

User Environments: benefits

- Single image within a squashFS file
 - Managed in a registry/artifactory and not on the file system
 - Performance decoupled from the file system
- Defined by a simple declarative recipe
 - Key dependencies: **libfabric** and **Slurm** workload manager
 - The same environment can be rebuilt after system upgrades
- Small set of system dependencies
 - Only need rebuilding when **libfabric** or **Slurm** are changed

User Environments: getting started

- Get started with the latest development
 - git clone <u>https://github.com/eth-cscs/uenv.git</u>
 - cd uenv && ./install –local
- Test the status of the user environment
 - uenv status
- Load an environment
 - uenv start \$SCRATCH/gromacs-eiger.squashfs
- Activate modules available in /user-environment/modules
 - uenv modules --use

Stackinator: quick start

- Install with pip install stackinator or from GitHub
 - Clone it from GitHub <u>https://github.com/eth-cscs/stackinator.git</u>
 - Run **bootstrap.sh** and install dependencies for stand-alone usage
 - Update your PATH with <stackinator-install-path>/bin
- Stackinator creates makefiles and spack configurations
 - equivalent to calling cmake or configure before running make
 - stack-config --build \$BUILD_PATH --recipe \$RECIPE_PATH -system \$SYSTEM_CONFIG_PATH
 - Configuration paths:
 - **BUILD_PATH** is the path where the build will be configured
 - RECIPE_PATH contains the recipe of the software stack
 - SYSTEM_CONFIG_PATH configuration of the target cluster

Stackinator: install

- The configuration generates a top-level Makefile
 - env --ignore-environment PATH=/usr/bin:/bin:`pwd`/spack/bin make modules store.squashfs -j64
 - The wrapper env --ignore-environment unsets environment variables to improve portability and reproducibility of the build
- The installation path is set by the configure step
 - The default location set in the store field of config.yaml
- make creates two software stacks in the build path
 - **store** sub-directory with the full software stack installation tree
 - store.squashfs compressed image of the of the store path
- The image can be mounted at runtime with UENV
 - squashfs-mount or the <u>Slurm plugin</u> or by a system-administrator

Useful links @ CSCS

- User Documentation
 - CSCS Knowledge Base <u>https://docs.cscs.ch</u>
 - User Portal still available <u>https://user.cscs.ch</u>
- CSCS production repository
 - <u>https://github.com/eth-cscs/production</u>
 - Mirror under the EasyBuilders GitHub repository
 - https://github.com/easybuilders/CSCS
- UENV User Environments
 - CSCS Knowledge Base article and <u>https://eth-cscs.github.io/uenv</u>
- Stackinator <u>https://eth-cscs.github.io/stackinator</u>

Thank you for your kind attention