EasyBuild for Bioinformatics

A wishlist from UPPMAX

Douglas Scofield
UPPMAX / ITC / Evolutionary Biology Centre

Uppsala University, Sweden

About me, very quickly...

* BS Computer Science

* Compiler internals for 9 years in industry

* Biology much more interesting

* PhD Biology, plant biology, labwork, fieldwork (198-2004) ...
 But then bioinformatics pulled me back in

* 50% a biologist in the Evolutionary Biology Centre @ Uppsala
* bioinformatics and other technical help in a wide variety of projects

* 50% @ UPPMAX doing multifarious bioinformatics support

Bioinformatics ... is different

Traditional HPC

HPC for Bioinformatics

GigaScience, 7, 2018, 1-11
(GIGA)" e —”
OXFORD gCIENiy\ E RA::::;Access Publication Date: 5 April 2018

RESEARCH

Measured? Yes!

* “Traditional HPC”

°re | at|Ve |y feW we I |_ESta b I IS h ed too | S Martin Dahld 123" Douglas G. Scofield ©24"', Wesley Schaal ©123 and
Ola Spjuth ®1.23

¢ h I g h C 0 m p u te eX p e rt I S e a m O n g u S e rs 1Science for Life Laboratory, Uppsala University, Uppsala, SE-750 03, Sweden, 2Uppsala Multidisciplinary

Center for Advanced Computational Science, Uppsala University, Uppsala, SE-751 05, Sweden, >Department of
Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden and *Department of Ecology and

[B i O i n fo r m a t i CS H P C Genetics: Evolutionary Biology, Uppsala University, Uppsala, SE-752 36, Sweden
*Correspondence address. Martin Dahlé. E-mail: martin.dahlo@scilifelab.uu.se © https://orcid.org/0000-0001-5447-9465; Douglas G. Scofield. E-mail:
* biology, medicine, forestry, etc

dougla: uu.se © https: id.org/0000-0001-5235-6461
IThese authors contributed equally to this work.

o m a n y m a n y m a n y tO O I S Background: Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly
)) dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures
accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at
. . UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ~800 NGS and ~200 non-NGS projects
(] W I d e | y Va ry I n g u S e r/ d e Ve | O p e r is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects
from other sciences. Results: The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new
. research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS
eX p e rt I S e users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects
than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use
more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked
° resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Conclusions: Hosting NGS
m a n y m O re P | S a n d u S e rS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and
rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects.
We provide anonymized versions of our storage, job, and efficiency databases.

g m u C h m 0 re S C I e n t I fl C I m p a Ct Keywords: high-performance computing; e-infrastructures; bioinformatics; resource usage efficiency; efficiency metrics;

 especially impact / core-hour '
doi: 10.1093/gigascience/giy028

Received: 21 December 2017; Revised: 14 February 2018; Accepted: 22 March 2018

© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creatis .org/li /by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

6007 B NGS-related updates (272)
NGS-related new installs (226)
5004 ©¢ Non-NGS updates (20)
Non-NGS new installs (23)

* From ~2010, growth in projects

(2]
o
(]
©
Q.
S
. d 4
* ...unique Pls 2 400
_ _ 2 300+
e ... sw installations/updates © 2004
s
=
L . o -
e ... tickets and tickets/user 8 100
% 0""l"é)"l"l"l'"lb"l"l"l":b"l'|
§ % > k% > v’\(bb’& e > (o’\q’ ‘b’éb & 6’00" @’\q,
_ e A AX AX AX K9 X0 X9 KT N0 A0 KO N
(A) oo NGS projects P P PR P P P P QPR P PP
o 3007 == == Non-NGS projects
B 700+
-2, 6001
8_500- 1800
g 400 1
2 3004 1600
2 200 1
100 - o i s e o o o o e 1400

o

&
o
1S3

o

o

Principal investigators

0 . : T T T "
© QA & &) O DN v K > o o Q 1200
D N S I O
(B) 600 1 1000 m Lifescience PIs active on Jan
500 1 80 2)
: H Other Pls active on Jan 2
€ 3001 60
2001 40
1001
(L) Ll L) Ll Ll L 1 20
N 2 > b‘) o A
N N N N N N N
. S I S .

2015 2016 2017 2018 2019 2020 2021

D, o
‘0
o

(A)

Efficiency (%)

* Very few multi-node jobs o 1 NGS projects N =339841 (unscaled)
o
. . . T 10
. Slngle-core and partlal-nOde JObS - “l IH“«'“J
® 10%
©
. D 10
* Long run times (7d+) S ol ., 1] B
. © g Non-NGS projects] Niotal = 2330919 (unscaled)
* High RAM / core R
o H ” g ol 1
* “Low efficiency” CPU usage g 10} - |||
2 10 T
. . _O’ 100' d"h_l,"_ . g e s adiosn 2
* Low core hours with high storage N J A PR S AL KA R
Mean CPU usage ® " Max GiB of RAM used
e 5k-50k h/month, but 20TB-200TB+ (B)
NGS projects Non-NGS projects
NGS projects Non-NGS projects 2048 2048 -
0T T | eeee——— oo i
., - *0 ;’ . r' om0 4 o) o B e Ay
. 80 . i e 2 128- | 7 128
N) ... 3 : g : 64-] =
60 c A e
: ‘ . @ 8] 23
40 + ° 0. . o (3 g: . -t}
S 1419 {
201 < o5 054:i-= :
Efficiency feedback e 025+ S 0.25+ ==
0 lto MBS began 0 o—] T L T l’ ‘l Ll T T T 1 0— ﬁ Ll —' T T T T T L 1
2014 2015 2016 2017 2014 2015 2016 2017 i S IR R e D o R e N Sy ety

Date Mean CPU usage

How do we use software?

* Pipelines typically use many heterogeneous tools
» with a lot of user-driven swapping/experimentation
e data flow and interchange, not CPU performance

* Extreme lack of release engineering
* a huge problem that truly needs solving

* Nevertheless, some traditional provisioning
e autotools, cmake, prebuilt (sometimes static) executables

* Much usage of pypi, conda
* Conda discipline is often nonexistent

* Increasing usage of containers
* We allow Singularity (Apptainer)

* Pipelines swap environments freely

What do we want from EasyBuild?

* Being consistent with toolchains is rarely necessary
* mostly integer work (sometimes use GMP, MPFR, others)

» Greater support for isolation, for example:

* build samtools 1.20 (newest) with recent toolchain
e Use simultaneously with bwa/0.7.17 builtin 2017
e Load each only modifies PATH (plus bookkeeping), no other deps

* |s RPATH support sufficient for this?

e Can a post-hoc tool work?
 Something like eb isolate samtools/1.20-toolchain to
create samtools/1. 20 free of loaded dependencies
* Being tied to interpreter versions is rarely necessary

* Python virtualenv/EBPYTHONPREFIXES so python tools using
different python versions can be loaded and run at the same time

What can we give EasyBuild?

* Easyconfigs/easyblocks for all of our builds

* We have a github repository containing our encoded suffering
e https://github.com/UPPMAX/install-methods
* our READMEs and scripts (not always pretty)

* Data modules: what we have done
e a data module is primarily loaded as a dependency
* provides environment variables and sometimes extensive help
many data sources are versioned (Pfam/31.0, Pfam/35.0)
where not, we use /YYYYMMDD or /1atest when updating is frequent

e.g.,,blast/2.15.0+ loads blast databases/latest which sets
BLASTDB

* How to manage old software and old builds with reasonable life
cycles

https://github.com/UPPMAX/install-methods

