
EasyBuild for Bioinformatics

A wishlist from UPPMAX

Douglas Scofield
UPPMAX / ITC / Evolutionary Biology Centre

Uppsala University, Sweden

About me, very quickly...
• BS Computer Science
• Compiler internals for 9 years in industry
• Biology much more interesting
• PhD Biology, plant biology, labwork, fieldwork (198-2004) ...
• But then bioinformatics pulled me back in
• 50% a biologist in the Evolutionary Biology Centre @ Uppsala

• bioinformatics and other technical help in a wide variety of projects

• 50% @ UPPMAX doing multifarious bioinformatics support

Bioinformatics ... is different

Traditional HPC

HPC for Bioinformatics

Measured? Yes!
• “Traditional HPC”

• relatively few well-established tools
• high compute expertise among users

• Bioinformatics HPC
• biology, medicine, forestry, etc
• many, many, many tools
• widely varying user/developer

expertise
• many more PIs and users
• much more scientific impact
• especially impact / core-hour

doi: 10.1093/gigascience/giy028

• From ~2010, growth in projects
• ... unique PIs
• ... sw installations/updates
• ... tickets and tickets/user

• Very few multi-node jobs
• Single-core and partial-node jobs
• Long run times (7d+)
• High RAM / core
• “Low efficiency” CPU usage
• Low core hours with high storage

• 5k-50k h/month, but 20TB-200TB+

How do we use software?
• Pipelines typically use many heterogeneous tools

• with a lot of user-driven swapping/experimentation
• data flow and interchange, not CPU performance

• Extreme lack of release engineering
• a huge problem that truly needs solving

• Nevertheless, some traditional provisioning
• autotools, cmake, prebuilt (sometimes static) executables

• Much usage of pypi, conda
• Conda discipline is often nonexistent
• Increasing usage of containers

• We allow Singularity (Apptainer)
• Pipelines swap environments freely

What do we want from EasyBuild?
• Being consistent with toolchains is rarely necessary

• mostly integer work (sometimes use GMP, MPFR, others)

• Greater support for isolation, for example:
• build samtools 1.20 (newest) with recent toolchain
• Use simultaneously with bwa/0.7.17 built in 2017
• Load each only modifies PATH (plus bookkeeping), no other deps

• Is RPATH support sufficient for this?
• Can a post-hoc tool work?

• Something like eb isolate samtools/1.20-toolchain to
create samtools/1.20 free of loaded dependencies

• Being tied to interpreter versions is rarely necessary
• Python virtualenv/EBPYTHONPREFIXES so python tools using

different python versions can be loaded and run at the same time

What can we give EasyBuild?
• Easyconfigs/easyblocks for all of our builds
• We have a github repository containing our encoded suffering

• https://github.com/UPPMAX/install-methods
• our READMEs and scripts (not always pretty)

• Data modules: what we have done
• a data module is primarily loaded as a dependency
• provides environment variables and sometimes extensive help
• many data sources are versioned (Pfam/31.0, Pfam/35.0)
• where not, we use /YYYYMMDD or /latest when updating is frequent
• e.g., blast/2.15.0+ loads blast_databases/latest which sets
BLASTDB

• How to manage old software and old builds with reasonable life
cycles

https://github.com/UPPMAX/install-methods

