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About me, very quickly...

* BS Computer Science

* Compiler internals for 9 years in industry

* Biology much more interesting

* PhD Biology, plant biology, labwork, fieldwork (198-2004) ...
 But then bioinformatics pulled me back in

* 50% a biologist in the Evolutionary Biology Centre @ Uppsala
* bioinformatics and other technical help in a wide variety of projects

* 50% @ UPPMAX doing multifarious bioinformatics support



Bioinformatics ... is different

Traditional HPC

HPC for Bioinformatics
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Measured? Yes!

* “Traditional HPC”
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o m a n y m a n y m a n y tO O I S Background: Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly
) ) dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures
accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at
. . UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ~800 NGS and ~200 non-NGS projects
(] W I d e | y Va ry I n g u S e r/ d e Ve | O p e r is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects
from other sciences. Results: The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new
. research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS
eX p e rt I S e users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects
than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use
more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked
° resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Conclusions: Hosting NGS
m a n y m O re P | S a n d u S e rS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and
rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects.
We provide anonymized versions of our storage, job, and efficiency databases.
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6007 B NGS-related updates (272)
NGS-related new installs (226)
5004 ©¢ Non-NGS updates (20)
Non-NGS new installs (23)

* From ~2010, growth in projects
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How do we use software?

* Pipelines typically use many heterogeneous tools
» with a lot of user-driven swapping/experimentation
e data flow and interchange, not CPU performance

* Extreme lack of release engineering
* a huge problem that truly needs solving

* Nevertheless, some traditional provisioning
e autotools, cmake, prebuilt (sometimes static) executables

* Much usage of pypi, conda
* Conda discipline is often nonexistent

* Increasing usage of containers
* We allow Singularity (Apptainer)

* Pipelines swap environments freely



What do we want from EasyBuild?

* Being consistent with toolchains is rarely necessary
* mostly integer work (sometimes use GMP, MPFR, others)

» Greater support for isolation, for example:

* build samtools 1.20 (newest) with recent toolchain
e Use simultaneously with bwa/0.7.17 builtin 2017
e Load each only modifies PATH (plus bookkeeping), no other deps

* |s RPATH support sufficient for this?

e Can a post-hoc tool work?
 Something like eb isolate samtools/1.20-toolchain to
create samtools/1. 20 free of loaded dependencies
* Being tied to interpreter versions is rarely necessary

* Python virtualenv/EBPYTHONPREFIXES so python tools using
different python versions can be loaded and run at the same time



What can we give EasyBuild?

* Easyconfigs/easyblocks for all of our builds

* We have a github repository containing our encoded suffering
e https://github.com/UPPMAX/install-methods
* our READMEs and scripts (not always pretty)

* Data modules: what we have done
e a data module is primarily loaded as a dependency
* provides environment variables and sometimes extensive help
many data sources are versioned (Pfam/31.0, Pfam/35.0)
where not, we use /YYYYMMDD or /1atest when updating is frequent

e.g.,,blast/2.15.0+ loads blast databases/latest which sets
BLASTDB

* How to manage old software and old builds with reasonable life
cycles


https://github.com/UPPMAX/install-methods

