
Recent Advances in ReFrame

9th EasyBuild User Meeting

Vasileios Karakasis (NVIDIA)

April 24, 2024

ReFrame

ReFrame is a powerful framework that enables system testing and performance testing
as code with unique HPC features.

● Composable tests written in Python allowing the creation of reusable test libraries
● Multi-dimensional test parameterisation
● Support for test fixtures
● Parallel execution of tests
● Programmable configuration
● Support for multiple HPC schedulers, modules systems, build systems and

container runtimes
● Integration with Elastic and Graylog for feeding directly performance data from tests
● CI integration through Gitlab child pipelines

29th EasyBuild User Meeting

ReFrame community

● Documentation: https://reframe-hpc.readthedocs.io
○ >500 unique readers monthly from all over the world

● Slack workspace (289 members):
○ Join us through this link.

● Github
○ ReFrame HPC community group: https://github.com/reframe-hpc

■ Collection of public forks of site test repositories
○ 52 contributors since the beginning
○ Backlog: https://github.com/orgs/reframe-hpc/projects/1
○ Code: https://github.com/reframe-hpc/reframe

■ Give it a ⭐ !
● PyPI: https://pypi.org/project/ReFrame-HPC/

○ More than 10K downloads/month according to pepy.tech

39th EasyBuild User Meeting

https://reframe-hpc.readthedocs.io
https://join.slack.com/t/reframetalk/shared_invite/zt-1tar8s71w-At0tolJ~~zxT2oG_2Ly9sw
https://github.com/reframe-hpc
https://github.com/orgs/reframe-hpc/projects/1
https://github.com/reframe-hpc/reframe
https://pypi.org/project/ReFrame-HPC/

New docs!

Large part of the documentation was rewritten from scratch (v4.6)

● New tutorial that covers all the modern aspects of ReFrame
○ Worth reading it even if you are an existing user!
○ https://reframe-hpc.readthedocs.io/en/stable/tutorial.html

● How To articles
○ https://reframe-hpc.readthedocs.io/en/stable/howto.html

● Fully containerized
○ Docker containers for single node tests
○ Docker compose with Slurm for multi-node tests

49th EasyBuild User Meeting

https://reframe-hpc.readthedocs.io/en/stable/tutorial.html
https://reframe-hpc.readthedocs.io/en/stable/howto.html

New features and enhancements

● Installation using the bootstrap.sh script
○ Support for multiple platforms (v4.5)
○ Support for pip-less environments (v4.5)

● Parallel launchers
○ Support for pdsh and clush (v4.3)

● Scheduler backends
○ New ssh backend (v4.4)

■ Copies test's artifacts to a remote host, launches the test and pulls back the generated
artifacts

■ Only single-node jobs are supported
■ Multiple hosts can be specified and the --distribute option can be used to launch

the same test on all remote hosts.
○ Support for writing custom scheduler backends outside the framework (v4.4)

59th EasyBuild User Meeting

New features and enhancements

● Environment configuration improvements
○ New prepare_cmds environment-level configuration option to emit commands before the

environment is loaded (v4.3)
○ Skip sanity checking of a modules system backend, if module conflict resolution is off (v4.5)

■ Useful when the current system does not have a modules system installed, but its
partitions have one

○ New nvcc option to set the NVIDIA CUDA compiler (v4.6)
● Spack integration improvements

○ New env_create_opts option to pass options to the spack env create command (v4.3)
○ New preinstall_cmds option to emit commands before spack install (v4.3)

69th EasyBuild User Meeting

New features and enhancements

● Expose more hardware info to the test
○ New model and vendor attributes in ProcessorInfo and DeviceInfo (v4.6)

■ E.g., "Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz"
○ New platform attribute ProcessorInfo (v4.6)

■ E.g., "arm64", "x86_64"
● Flexible (Slurm) node allocation improvements (v4.6)

○ --distribute=STATE now distributes to nodes strictly in STATE state
■ E.g., --distribute=idle will not select nodes in IDLE+DRAIN

○ --distribute=STATE* will distribute to nodes that are at least in state STATE
○ New pseudo-state avail to select all nodes potentially available (nodes in any of ALLOCATED,

IDLE, COMPLETING states)
○ Same rules apply for --flex-alloc-nodes

79th EasyBuild User Meeting

New features and enhancements

● Logging and performance logging
○ Job submit time is now logged through the check_job_submit_time placeholder (v4.5)
○ New placeholder %(check_#ALL)s that dumps all the loggable variables and parameters (v4.3)
○ Default perflog format has changed (v4.3)
○ Perflogs for parameterized are combined (v4.3)
○ Parameters and variables are loggable by default (v4.5)

● Test parameters and variables
○ Tests parameterization from the command-line with -P var=<values> (v4.3)

■ E.g., -P num_nodes=1,2,4,8,16
■ num_nodes must be defined as a variable (ReFrame will take care of any implicit

conversion)
○ Nested mapping variables can be set with -S x='{"key0": {"key1": 1234}}' (v4.3)

89th EasyBuild User Meeting

New features and enhancements

● Support for custom system auto-detection
methods (v4.3)
○ New top-level configuration option

autodetect_methods or the
RFM_AUTODETECT_METHODS env. variable

○ A list of auto-detection methods that
generate a key that will be matched with
the systems' hostnames

○ Can be arbitrary Python functions or
external scripts

○ Very useful in cases where a system
configuration cannot be derived from the
hostname (e.g., cloud environments)

99th EasyBuild User Meeting

def get_vm_type():
 return
requests.get('http://169.254.169.254/latest/meta-data/i
nstance-type')

site_configuration = {
 'autodetect_methods': ['py::get_vm_type'],
 'systems': [
 {
 'name': 'm5n-large',
 'hostnames': ['m5n.large'],
 ...
 }
]
}

New features and enhancements

● LauncherWrapper is deprecated (v4.6)
○ Use the new job.launcher.modifier and job.launcher.modifier_opts

● Sanity checking is not required for CompileOnlyRegressionTest (v4.6)
○ The compile stage would fail anyway if compilation fails
○ If a sanity function is provided, it will still be used.

● Scheduler and launcher types can be used as partition constraints (v4.6)
○ valid_systems = [r'%scheduler=slurm', r'%scheduler=squeue']
○ valid_systems = [r'%launcher=mpirun']

109th EasyBuild User Meeting

New features and enhancements

● Support multiple inheritance of variables
(v4.6)
○ Variables defined in a mixin can now be

inherited multiple times → increases the
composability of tests, which is very useful
for libraries

○ The resolution of the final variable value is
up to the user

○ The feature is enabled only when
merge_func is passed as an argument to
a variable definition

class Mixin(rfm.RegressionMixin):
 x = variable(
 typ.List[int], value=[],
 merge_func=lambda x, y: list(map(max, zip(x,
y)))
)

class X(Mixin):
 x = [3, 4]

class Y(Mixin):
 x = [10, 1]

class Z(X, Y):
 pass

assert Z.x == [10, 4]

119th EasyBuild User Meeting

New features and enhancements

● More versatile pipeline hook ordering
when inheriting tests (v4.5)
○ By default, hooks in a stage are ordered in

reverse MRO order
○ If a hook is marked as always_last it

will be appended at the end of the stage in
MRO order

○ This allows hooks of library base classes
to always have the last word (e.g.,
assembling test parameters into
command-line arguments of the test's
executable)

class X(rfm.RunOnlyRegressionTest):
 @run_before('run', always_last=True)
 def hook_a(self): pass

 @run_before('run')
 def hook_b(self): pass

class Y(X):
 @run_before('run', always_last=True)
 def hook_c(self): pass

 @run_before('run')
 def hook_d(self): pass

execution order of Y hooks
X.hook_b, Y.hook_d, Y.hook_c, X.hook_a

execution order of Y hooks
in the absence of `always_last=True`
X.hook_a, X.hook_b, Y.hook_c, Y.hook_d

129th EasyBuild User Meeting

New features and enhancements

● Relative imports in test files (v4.6)
○ When ReFrame imports a test file and

encounters an __init__.py file in the
directory hierarchy it will load it as a parent
module

○ Quite useful for test libraries using utilities
where both the library test and the final
test need to be able to run

test_example.py
import reframe as rfm
from testlib.simple import simple_echo_check

testlib/simple.py ###
import reframe as rfm
import reframe.utility.sanity as sn

This will fail when loading directly testlib/simple.py,
unless testlib/__init__.py is present
from .utility import dummy_fixture

139th EasyBuild User Meeting

~/reframe-examples/howto
├── testlib
│ ├── __init__.py
│ ├── simple.py
│ └── utility
│ └── __init__.py
└── testlib_example.py

Future outlook

● Improve reporting and post processing of reports
○ Update --performance-report output
○ Search and compare easily with past reports
○ Generate references automatically
○ Obtain test references outside test

● Support for incremental test constraints through the valid_systems and
valid_prog_environs

● Support for custom indexing in references
● Drop support of Python 3.6 after Centos 7 EOL

149th EasyBuild User Meeting

